ardupilot/Rover/GCS_MAVLink_Rover.cpp
2025-09-26 08:31:32 +10:00

1074 lines
36 KiB
C++

#include "Rover.h"
#include "GCS_MAVLink_Rover.h"
#include <AP_RPM/AP_RPM_config.h>
#include <AP_RangeFinder/AP_RangeFinder_Backend.h>
#include <AP_EFI/AP_EFI_config.h>
#include <AC_Avoidance/AP_OADatabase.h>
MAV_TYPE GCS_Rover::frame_type() const
{
if (rover.is_boat()) {
return MAV_TYPE_SURFACE_BOAT;
}
return MAV_TYPE_GROUND_ROVER;
}
uint8_t GCS_MAVLINK_Rover::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
if (rover.control_mode->has_manual_input()) {
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
if (rover.control_mode->is_autopilot_mode()) {
_base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
}
if (rover.g2.stick_mixing > 0 && rover.control_mode != &rover.mode_initializing) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
// we are armed if we are not initialising
if (rover.control_mode != &rover.mode_initializing && rover.arming.is_armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return _base_mode;
}
uint32_t GCS_Rover::custom_mode() const
{
return (uint32_t)rover.control_mode->mode_number();
}
MAV_STATE GCS_MAVLINK_Rover::vehicle_system_status() const
{
if ((rover.failsafe.triggered != 0) || rover.failsafe.ekf) {
return MAV_STATE_CRITICAL;
}
if (rover.control_mode == &rover.mode_initializing) {
return MAV_STATE_CALIBRATING;
}
if (rover.control_mode == &rover.mode_hold) {
return MAV_STATE_STANDBY;
}
return MAV_STATE_ACTIVE;
}
void GCS_MAVLINK_Rover::send_position_target_global_int()
{
Location target;
if (!rover.control_mode->get_desired_location(target)) {
return;
}
static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000;
static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE;
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
TYPE_MASK, // ignore everything except the x/y/z components
target.lat, // latitude as 1e7
target.lng, // longitude as 1e7
target.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void GCS_MAVLINK_Rover::send_nav_controller_output() const
{
if (!rover.control_mode->is_autopilot_mode()) {
return;
}
const Mode *control_mode = rover.control_mode;
mavlink_msg_nav_controller_output_send(
chan,
0, // roll
degrees(rover.g2.attitude_control.get_desired_pitch()),
control_mode->nav_bearing(),
control_mode->wp_bearing(),
MIN(control_mode->get_distance_to_destination(), UINT16_MAX),
0,
control_mode->speed_error(),
control_mode->crosstrack_error());
}
void GCS_MAVLINK_Rover::send_servo_out()
{
float motor1, motor3;
if (rover.g2.motors.have_skid_steering()) {
motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleLeft) * 0.001f);
motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleRight) * 0.001f);
} else {
motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f);
motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * 0.01f);
}
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
motor1,
0,
motor3,
0,
0,
0,
0,
0,
#if AP_RSSI_ENABLED
receiver_rssi()
#else
UINT8_MAX
#endif
);
}
int16_t GCS_MAVLINK_Rover::vfr_hud_throttle() const
{
return rover.g2.motors.get_throttle();
}
#if AP_MAVLINK_MSG_RANGEFINDER_SENDING_ENABLED
void GCS_MAVLINK_Rover::send_rangefinder() const
{
float distance = 0;
float voltage = 0;
bool got_one = false;
// report smaller distance of all rangefinders
for (uint8_t i=0; i<rover.rangefinder.num_sensors(); i++) {
AP_RangeFinder_Backend *s = rover.rangefinder.get_backend(i);
if (s == nullptr) {
continue;
}
if (!got_one ||
s->distance() < distance) {
distance = s->distance();
voltage = s->voltage_mv();
got_one = true;
}
}
if (!got_one) {
// no relevant data found
return;
}
mavlink_msg_rangefinder_send(
chan,
distance,
voltage);
}
#endif // AP_MAVLINK_MSG_RANGEFINDER_SENDING_ENABLED
#if AP_RANGEFINDER_ENABLED
void GCS_MAVLINK_Rover::send_water_depth()
{
if (!HAVE_PAYLOAD_SPACE(chan, WATER_DEPTH)) {
return;
}
// only send for boats:
if (!rover.is_boat()) {
return;
}
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return;
}
// depth can only be measured by a downward-facing rangefinder:
if (!rangefinder->has_orientation(ROTATION_PITCH_270)) {
return;
}
// get position
const AP_AHRS &ahrs = AP::ahrs();
Location loc;
IGNORE_RETURN(ahrs.get_location(loc));
const auto num_sensors = rangefinder->num_sensors();
for (uint8_t i=0; i<num_sensors; i++) {
last_WATER_DEPTH_index += 1;
if (last_WATER_DEPTH_index >= num_sensors) {
last_WATER_DEPTH_index = 0;
}
const AP_RangeFinder_Backend *s = rangefinder->get_backend(last_WATER_DEPTH_index);
if (s == nullptr || s->orientation() != ROTATION_PITCH_270 || !s->has_data()) {
continue;
}
// get temperature
float temp_C;
if (!s->get_temp(temp_C)) {
temp_C = 0.0f;
}
const bool sensor_healthy = (s->status() == RangeFinder::Status::Good);
mavlink_msg_water_depth_send(
chan,
AP_HAL::millis(), // time since system boot TODO: take time of measurement
last_WATER_DEPTH_index, // rangefinder instance
sensor_healthy, // sensor healthy
loc.lat, // latitude of vehicle
loc.lng, // longitude of vehicle
loc.alt * 0.01f, // altitude of vehicle (MSL)
ahrs.get_roll_rad(), // roll in radians
ahrs.get_pitch_rad(), // pitch in radians
ahrs.get_yaw_rad(), // yaw in radians
s->distance(), // distance in meters
temp_C); // temperature in degC
break; // only send one WATER_DEPTH message per loop
}
}
#endif // AP_RANGEFINDER_ENABLED
/*
send PID tuning message
*/
void GCS_MAVLINK_Rover::send_pid_tuning()
{
Parameters &g = rover.g;
ParametersG2 &g2 = rover.g2;
const AP_PIDInfo *pid_info;
// steering PID
if (g.gcs_pid_mask & 1) {
pid_info = &g2.attitude_control.get_steering_rate_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER,
degrees(pid_info->target),
degrees(pid_info->actual),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// speed to throttle PID
if (g.gcs_pid_mask & 2) {
pid_info = &g2.attitude_control.get_throttle_speed_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// pitch to throttle pid
if (g.gcs_pid_mask & 4) {
pid_info = &g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
degrees(pid_info->target),
degrees(pid_info->actual),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// left wheel rate control pid
if (g.gcs_pid_mask & 8) {
pid_info = &g2.wheel_rate_control.get_pid(0).get_pid_info();
mavlink_msg_pid_tuning_send(chan, 7,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// right wheel rate control pid
if (g.gcs_pid_mask & 16) {
pid_info = &g2.wheel_rate_control.get_pid(1).get_pid_info();
mavlink_msg_pid_tuning_send(chan, 8,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// sailboat heel to mainsail pid
if (g.gcs_pid_mask & 32) {
pid_info = &g2.attitude_control.get_sailboat_heel_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, 9,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// Position Controller Velocity North PID
if (g.gcs_pid_mask & 64) {
pid_info = &g2.pos_control.get_vel_pid().get_pid_info_x();
mavlink_msg_pid_tuning_send(chan, 10,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
// Position Controller Velocity East PID
if (g.gcs_pid_mask & 128) {
pid_info = &g2.pos_control.get_vel_pid().get_pid_info_y();
mavlink_msg_pid_tuning_send(chan, 11,
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
void Rover::send_wheel_encoder_distance(const mavlink_channel_t chan)
{
// send wheel encoder data using wheel_distance message
if (g2.wheel_encoder.num_sensors() > 0) {
double distances[MAVLINK_MSG_WHEEL_DISTANCE_FIELD_DISTANCE_LEN] {};
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
distances[i] = wheel_encoder_last_distance_m[i];
}
mavlink_msg_wheel_distance_send(chan, 1000UL * AP_HAL::millis(), g2.wheel_encoder.num_sensors(), distances);
}
}
bool GCS_Rover::vehicle_initialised() const
{
return rover.control_mode != &rover.mode_initializing;
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_SERVO_OUT:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
send_servo_out();
break;
case MSG_WHEEL_DISTANCE:
CHECK_PAYLOAD_SIZE(WHEEL_DISTANCE);
rover.send_wheel_encoder_distance(chan);
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
rover.g2.windvane.send_wind(chan);
break;
#if AP_OADATABASE_ENABLED
case MSG_ADSB_VEHICLE: {
AP_OADatabase *oadb = AP::oadatabase();
if (oadb != nullptr) {
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
uint16_t interval_ms = 0;
if (get_ap_message_interval(id, interval_ms)) {
oadb->send_adsb_vehicle(chan, interval_ms);
}
}
break;
}
#endif
#if AP_RANGEFINDER_ENABLED
case MSG_WATER_DEPTH:
CHECK_PAYLOAD_SIZE(WATER_DEPTH);
send_water_depth();
break;
#endif // AP_RANGEFINDER_ENABLED
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
if (!rover.control_mode->in_guided_mode()) {
// only accept position updates when in GUIDED mode
return false;
}
// make any new wp uploaded instant (in case we are already in Guided mode)
return rover.mode_guided.set_desired_location(cmd.content.location);
}
MAV_RESULT GCS_MAVLINK_Rover::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch (packet.y) {
case 1:
if (rover.g2.windvane.start_direction_calibration()) {
return MAV_RESULT_ACCEPTED;
} else {
return MAV_RESULT_FAILED;
}
case 2:
if (rover.g2.windvane.start_speed_calibration()) {
return MAV_RESULT_ACCEPTED;
} else {
return MAV_RESULT_FAILED;
}
default:
break;
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg);
}
MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch (packet.command) {
case MAV_CMD_DO_CHANGE_SPEED:
// param1 : type
// param2 : new speed in m/s
switch (SPEED_TYPE(packet.param1)) {
case SPEED_TYPE_CLIMB_SPEED:
case SPEED_TYPE_DESCENT_SPEED:
case SPEED_TYPE_ENUM_END:
return MAV_RESULT_DENIED;
case SPEED_TYPE_AIRSPEED: // Airspeed is treated as ground speed for GCS compatibility
case SPEED_TYPE_GROUNDSPEED:
break;
}
if (!rover.control_mode->set_desired_speed(packet.param2)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
case MAV_CMD_DO_SET_REVERSE:
// param1 : Direction (0=Forward, 1=Reverse)
rover.control_mode->set_reversed(is_equal(packet.param1,1.0f));
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (rover.set_mode(rover.mode_rtl, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
return rover.mavlink_motor_test_start(*this,
(AP_MotorsUGV::motor_test_order)packet.param1,
static_cast<uint8_t>(packet.param2),
static_cast<int16_t>(packet.param3),
packet.param4);
case MAV_CMD_MISSION_START:
if (!is_zero(packet.param1) || !is_zero(packet.param2)) {
// first-item/last item not supported
return MAV_RESULT_DENIED;
}
if (rover.set_mode(rover.mode_auto, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#if AP_MAVLINK_MAV_CMD_NAV_SET_YAW_SPEED_ENABLED
case MAV_CMD_NAV_SET_YAW_SPEED:
send_received_message_deprecation_warning("MAV_CMD_NAV_SET_YAW_SPEED");
return handle_command_nav_set_yaw_speed(packet, msg);
#endif
default:
return GCS_MAVLINK::handle_command_int_packet(packet, msg);
}
}
#if AP_MAVLINK_MAV_CMD_NAV_SET_YAW_SPEED_ENABLED
MAV_RESULT GCS_MAVLINK_Rover::handle_command_nav_set_yaw_speed(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
// param1 : yaw angle (may be absolute or relative)
// param2 : Speed - in metres/second
// param3 : 0 = param1 is absolute, 1 = param1 is relative
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return MAV_RESULT_FAILED;
}
// get final angle, 1 = Relative, 0 = Absolute
if (packet.param3 > 0) {
// relative angle
rover.mode_guided.set_desired_heading_delta_and_speed(packet.param1 * 100.0f, packet.param2);
} else {
// absolute angle
rover.mode_guided.set_desired_heading_and_speed(packet.param1 * 100.0f, packet.param2);
}
return MAV_RESULT_ACCEPTED;
}
#endif
MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE;
if (!rover.control_mode->in_guided_mode() && !change_modes) {
return MAV_RESULT_DENIED;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_DENIED;
}
if (packet.x == 0 && packet.y == 0) {
return MAV_RESULT_DENIED;
}
Location requested_location {};
if (!location_from_command_t(packet, requested_location)) {
return MAV_RESULT_DENIED;
}
if (!rover.control_mode->in_guided_mode()) {
if (!rover.set_mode(Mode::Number::GUIDED, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
}
if (is_positive(packet.param1)) {
if (!rover.control_mode->set_desired_speed(packet.param1)) {
return MAV_RESULT_FAILED;
}
}
// set the destination
if (!rover.mode_guided.set_desired_location(requested_location)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
void GCS_MAVLINK_Rover::handle_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
handle_set_attitude_target(msg);
break;
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
handle_set_position_target_local_ned(msg);
break;
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
handle_set_position_target_global_int(msg);
break;
default:
GCS_MAVLINK::handle_message(msg);
break;
}
}
void GCS_MAVLINK_Rover::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow)
{
manual_override(rover.channel_steer, packet.y, 1000, 2000, tnow);
manual_override(rover.channel_throttle, packet.z, 1000, 2000, tnow);
}
void GCS_MAVLINK_Rover::handle_set_attitude_target(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return;
}
// ensure type_mask specifies to use thrust
if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_THROTTLE_IGNORE) != 0) {
return;
}
// convert thrust to ground speed
packet.thrust = constrain_float(packet.thrust, -1.0f, 1.0f);
const float target_speed = rover.control_mode->get_speed_default() * packet.thrust;
// if the body_yaw_rate field is ignored, convert quaternion to heading
if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_YAW_RATE_IGNORE) != 0) {
// convert quaternion to heading
float target_heading_cd = degrees(Quaternion(packet.q[0], packet.q[1], packet.q[2], packet.q[3]).get_euler_yaw()) * 100.0f;
rover.mode_guided.set_desired_heading_and_speed(target_heading_cd, target_speed);
} else {
// use body_yaw_rate field
rover.mode_guided.set_desired_turn_rate_and_speed((RAD_TO_DEG * packet.body_yaw_rate) * 100.0f, target_speed);
}
}
// if we receive a message where the user has not masked out
// acceleration from the input packet we send a curt message
// informing them:
void GCS_MAVLINK_Rover::send_acc_ignore_must_be_set_message(const char *msgname)
{
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Ignoring %s; set ACC_IGNORE in mask", msgname);
}
void GCS_MAVLINK_Rover::handle_set_position_target_local_ned(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return;
}
// need ekf origin
Location ekf_origin;
if (!rover.ahrs.get_origin(ekf_origin)) {
return;
}
// check for supported coordinate frames
switch (packet.coordinate_frame) {
case MAV_FRAME_LOCAL_NED:
case MAV_FRAME_LOCAL_OFFSET_NED:
case MAV_FRAME_BODY_NED:
case MAV_FRAME_BODY_OFFSET_NED:
break;
default:
return;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// prepare target position
Location target_loc = rover.current_loc;
if (!pos_ignore) {
switch (packet.coordinate_frame) {
case MAV_FRAME_BODY_NED:
case MAV_FRAME_BODY_OFFSET_NED: {
// rotate from body-frame to NE frame
const float ne_x = packet.x * rover.ahrs.cos_yaw() - packet.y * rover.ahrs.sin_yaw();
const float ne_y = packet.x * rover.ahrs.sin_yaw() + packet.y * rover.ahrs.cos_yaw();
// add offset to current location
target_loc.offset(ne_x, ne_y);
}
break;
case MAV_FRAME_LOCAL_OFFSET_NED:
// add offset to current location
target_loc.offset(packet.x, packet.y);
break;
case MAV_FRAME_LOCAL_NED:
default:
// MAV_FRAME_LOCAL_NED is interpreted as an offset from EKF origin
target_loc = ekf_origin;
target_loc.offset(packet.x, packet.y);
break;
}
}
float target_speed = 0.0f;
float target_yaw_cd = 0.0f;
// consume velocity and convert to target speed and heading
if (!vel_ignore) {
const float speed_max = rover.control_mode->get_speed_default();
// convert vector length into a speed
target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max);
// convert vector direction to target yaw
target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw heading
if (!yaw_ignore) {
target_yaw_cd = degrees(packet.yaw) * 100.0f;
// rotate target yaw if provided in body-frame
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor);
}
}
// consume yaw rate
float target_turn_rate_cds = 0.0f;
if (!yaw_rate_ignore) {
target_turn_rate_cds = degrees(packet.yaw_rate) * 100.0f;
}
// handling case when both velocity and either yaw or yaw-rate are provided
// by default, we consider that the rover will drive forward
float speed_dir = 1.0f;
if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) {
// Note: we are using the x-axis velocity to determine direction even though
// the frame may have been provided in MAV_FRAME_LOCAL_OFFSET_NED or MAV_FRAME_LOCAL_NED
if (is_negative(packet.vx)) {
speed_dir = -1.0f;
}
}
if (!acc_ignore) {
// ignore any command where acceleration is not ignored
send_acc_ignore_must_be_set_message("SET_POSITION_TARGET_LOCAL_NED");
return;
}
// set guided mode targets
if (!pos_ignore) {
// consume position target
if (!rover.mode_guided.set_desired_location(target_loc)) {
// GCS will need to monitor desired location to
// see if they are having an effect.
}
return;
}
if (!vel_ignore && yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (!vel_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume velocity and turn rate
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed);
} else if (!vel_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume velocity and heading
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (vel_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume just target heading (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f);
} else if (vel_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume just turn rate (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f);
}
}
void GCS_MAVLINK_Rover::handle_set_position_target_global_int(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (!rover.control_mode->in_guided_mode()) {
return;
}
// check for supported coordinate frames
switch (packet.coordinate_frame) {
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
case MAV_FRAME_GLOBAL_RELATIVE_ALT:
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
break;
default:
return;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// prepare target position
Location target_loc = rover.current_loc;
if (!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
// result = MAV_RESULT_FAILED;
return;
}
target_loc.lat = packet.lat_int;
target_loc.lng = packet.lon_int;
}
float target_speed = 0.0f;
float target_yaw_cd = 0.0f;
// consume velocity and convert to target speed and heading
if (!vel_ignore) {
const float speed_max = rover.control_mode->get_speed_default();
// convert vector length into a speed
target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max);
// convert vector direction to target yaw
target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f;
}
// consume yaw heading
if (!yaw_ignore) {
target_yaw_cd = degrees(packet.yaw) * 100.0f;
}
// consume yaw rate
float target_turn_rate_cds = 0.0f;
if (!yaw_rate_ignore) {
target_turn_rate_cds = degrees(packet.yaw_rate) * 100.0f;
}
// handling case when both velocity and either yaw or yaw-rate are provided
// by default, we consider that the rover will drive forward
float speed_dir = 1.0f;
if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) {
// Note: we are using the x-axis velocity to determine direction even though
// the frame is provided in MAV_FRAME_GLOBAL_xxx
if (is_negative(packet.vx)) {
speed_dir = -1.0f;
}
}
if (!acc_ignore) {
// ignore any command where acceleration is not ignored
send_acc_ignore_must_be_set_message("SET_POSITION_TARGET_GLOBAL_INT");
return;
}
// set guided mode targets
if (!pos_ignore) {
// consume position target
if (!rover.mode_guided.set_desired_location(target_loc)) {
// GCS will just need to look at desired location
// outputs to see if it having an effect.
}
return;
}
if (!vel_ignore && yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (!vel_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume velocity and turn rate
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed);
} else if (!vel_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume velocity
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed);
} else if (vel_ignore && !yaw_ignore && yaw_rate_ignore) {
// consume just target heading (probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f);
} else if (vel_ignore && yaw_ignore && !yaw_rate_ignore) {
// consume just turn rate(probably only skid steering vehicles can do this)
rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f);
}
}
/*
handle a LANDING_TARGET command. The timestamp has been jitter corrected
*/
void GCS_MAVLINK_Rover::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms)
{
#if AC_PRECLAND_ENABLED
rover.precland.handle_msg(packet, timestamp_ms);
#endif
}
uint64_t GCS_MAVLINK_Rover::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
GCS_MAVLINK::capabilities());
}
#if HAL_HIGH_LATENCY2_ENABLED
uint8_t GCS_MAVLINK_Rover::high_latency_tgt_heading() const
{
const Mode *control_mode = rover.control_mode;
if (rover.control_mode->is_autopilot_mode()) {
// need to convert -180->180 to 0->360/2
return wrap_360(control_mode->wp_bearing()) / 2;
}
return 0;
}
uint16_t GCS_MAVLINK_Rover::high_latency_tgt_dist() const
{
const Mode *control_mode = rover.control_mode;
if (rover.control_mode->is_autopilot_mode()) {
// return units are dm
return MIN((control_mode->get_distance_to_destination()) / 10, UINT16_MAX);
}
return 0;
}
uint8_t GCS_MAVLINK_Rover::high_latency_tgt_airspeed() const
{
const Mode *control_mode = rover.control_mode;
if (rover.control_mode->is_autopilot_mode()) {
// return units are m/s*5
return MIN((vfr_hud_airspeed() - control_mode->speed_error()) * 5, UINT8_MAX);
}
return 0;
}
uint8_t GCS_MAVLINK_Rover::high_latency_wind_speed() const
{
if (rover.g2.windvane.enabled()) {
// return units are m/s*5
return MIN(rover.g2.windvane.get_true_wind_speed() * 5, UINT8_MAX);
}
return 0;
}
uint8_t GCS_MAVLINK_Rover::high_latency_wind_direction() const
{
if (rover.g2.windvane.enabled()) {
// return units are deg/2
return wrap_360(degrees(rover.g2.windvane.get_true_wind_direction_rad())) / 2;
}
return 0;
}
#endif // HAL_HIGH_LATENCY2_ENABLED
// Send the mode with the given index (not mode number!) return the total number of modes
// Index starts at 1
uint8_t GCS_MAVLINK_Rover::send_available_mode(uint8_t index) const
{
const Mode* modes[] {
&rover.mode_manual,
&rover.mode_acro,
&rover.mode_steering,
&rover.mode_hold,
&rover.mode_loiter,
#if MODE_FOLLOW_ENABLED
&rover.mode_follow,
#endif
&rover.mode_simple,
&rover.g2.mode_circle,
&rover.mode_auto,
&rover.mode_rtl,
&rover.mode_smartrtl,
&rover.mode_guided,
&rover.mode_initializing,
#if MODE_DOCK_ENABLED
(Mode *)rover.g2.mode_dock_ptr,
#endif
};
const uint8_t mode_count = ARRAY_SIZE(modes);
// Convert to zero indexed
const uint8_t index_zero = index - 1;
if (index_zero >= mode_count) {
// Mode does not exist!?
return mode_count;
}
// Ask the mode for its name and number
const char* name = modes[index_zero]->name4();
const uint8_t mode_number = (uint8_t)modes[index_zero]->mode_number();
mavlink_msg_available_modes_send(
chan,
mode_count,
index,
MAV_STANDARD_MODE::MAV_STANDARD_MODE_NON_STANDARD,
mode_number,
0, // MAV_MODE_PROPERTY bitmask
name
);
return mode_count;
}