#include "Rover.h" #include "GCS_MAVLink_Rover.h" #include #include #include #include MAV_TYPE GCS_Rover::frame_type() const { if (rover.is_boat()) { return MAV_TYPE_SURFACE_BOAT; } return MAV_TYPE_GROUND_ROVER; } uint8_t GCS_MAVLINK_Rover::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation if (rover.control_mode->has_manual_input()) { _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } if (rover.control_mode->is_autopilot_mode()) { _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; } if (rover.g2.stick_mixing > 0 && rover.control_mode != &rover.mode_initializing) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } // we are armed if we are not initialising if (rover.control_mode != &rover.mode_initializing && rover.arming.is_armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return _base_mode; } uint32_t GCS_Rover::custom_mode() const { return (uint32_t)rover.control_mode->mode_number(); } MAV_STATE GCS_MAVLINK_Rover::vehicle_system_status() const { if ((rover.failsafe.triggered != 0) || rover.failsafe.ekf) { return MAV_STATE_CRITICAL; } if (rover.control_mode == &rover.mode_initializing) { return MAV_STATE_CALIBRATING; } if (rover.control_mode == &rover.mode_hold) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void GCS_MAVLINK_Rover::send_position_target_global_int() { Location target; if (!rover.control_mode->get_desired_location(target)) { return; } static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000; static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE; mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL, // targets are always global altitude TYPE_MASK, // ignore everything except the x/y/z components target.lat, // latitude as 1e7 target.lng, // longitude as 1e7 target.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } void GCS_MAVLINK_Rover::send_nav_controller_output() const { if (!rover.control_mode->is_autopilot_mode()) { return; } const Mode *control_mode = rover.control_mode; mavlink_msg_nav_controller_output_send( chan, 0, // roll degrees(rover.g2.attitude_control.get_desired_pitch()), control_mode->nav_bearing(), control_mode->wp_bearing(), MIN(control_mode->get_distance_to_destination(), UINT16_MAX), 0, control_mode->speed_error(), control_mode->crosstrack_error()); } void GCS_MAVLINK_Rover::send_servo_out() { float motor1, motor3; if (rover.g2.motors.have_skid_steering()) { motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleLeft) * 0.001f); motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttleRight) * 0.001f); } else { motor1 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_steering) / 4500.0f); motor3 = 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * 0.01f); } mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 motor1, 0, motor3, 0, 0, 0, 0, 0, #if AP_RSSI_ENABLED receiver_rssi() #else UINT8_MAX #endif ); } int16_t GCS_MAVLINK_Rover::vfr_hud_throttle() const { return rover.g2.motors.get_throttle(); } #if AP_MAVLINK_MSG_RANGEFINDER_SENDING_ENABLED void GCS_MAVLINK_Rover::send_rangefinder() const { float distance = 0; float voltage = 0; bool got_one = false; // report smaller distance of all rangefinders for (uint8_t i=0; idistance() < distance) { distance = s->distance(); voltage = s->voltage_mv(); got_one = true; } } if (!got_one) { // no relevant data found return; } mavlink_msg_rangefinder_send( chan, distance, voltage); } #endif // AP_MAVLINK_MSG_RANGEFINDER_SENDING_ENABLED #if AP_RANGEFINDER_ENABLED void GCS_MAVLINK_Rover::send_water_depth() { if (!HAVE_PAYLOAD_SPACE(chan, WATER_DEPTH)) { return; } // only send for boats: if (!rover.is_boat()) { return; } RangeFinder *rangefinder = RangeFinder::get_singleton(); if (rangefinder == nullptr) { return; } // depth can only be measured by a downward-facing rangefinder: if (!rangefinder->has_orientation(ROTATION_PITCH_270)) { return; } // get position const AP_AHRS &ahrs = AP::ahrs(); Location loc; IGNORE_RETURN(ahrs.get_location(loc)); const auto num_sensors = rangefinder->num_sensors(); for (uint8_t i=0; i= num_sensors) { last_WATER_DEPTH_index = 0; } const AP_RangeFinder_Backend *s = rangefinder->get_backend(last_WATER_DEPTH_index); if (s == nullptr || s->orientation() != ROTATION_PITCH_270 || !s->has_data()) { continue; } // get temperature float temp_C; if (!s->get_temp(temp_C)) { temp_C = 0.0f; } const bool sensor_healthy = (s->status() == RangeFinder::Status::Good); mavlink_msg_water_depth_send( chan, AP_HAL::millis(), // time since system boot TODO: take time of measurement last_WATER_DEPTH_index, // rangefinder instance sensor_healthy, // sensor healthy loc.lat, // latitude of vehicle loc.lng, // longitude of vehicle loc.alt * 0.01f, // altitude of vehicle (MSL) ahrs.get_roll_rad(), // roll in radians ahrs.get_pitch_rad(), // pitch in radians ahrs.get_yaw_rad(), // yaw in radians s->distance(), // distance in meters temp_C); // temperature in degC break; // only send one WATER_DEPTH message per loop } } #endif // AP_RANGEFINDER_ENABLED /* send PID tuning message */ void GCS_MAVLINK_Rover::send_pid_tuning() { Parameters &g = rover.g; ParametersG2 &g2 = rover.g2; const AP_PIDInfo *pid_info; // steering PID if (g.gcs_pid_mask & 1) { pid_info = &g2.attitude_control.get_steering_rate_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER, degrees(pid_info->target), degrees(pid_info->actual), pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // speed to throttle PID if (g.gcs_pid_mask & 2) { pid_info = &g2.attitude_control.get_throttle_speed_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // pitch to throttle pid if (g.gcs_pid_mask & 4) { pid_info = &g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, degrees(pid_info->target), degrees(pid_info->actual), pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // left wheel rate control pid if (g.gcs_pid_mask & 8) { pid_info = &g2.wheel_rate_control.get_pid(0).get_pid_info(); mavlink_msg_pid_tuning_send(chan, 7, pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // right wheel rate control pid if (g.gcs_pid_mask & 16) { pid_info = &g2.wheel_rate_control.get_pid(1).get_pid_info(); mavlink_msg_pid_tuning_send(chan, 8, pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // sailboat heel to mainsail pid if (g.gcs_pid_mask & 32) { pid_info = &g2.attitude_control.get_sailboat_heel_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, 9, pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // Position Controller Velocity North PID if (g.gcs_pid_mask & 64) { pid_info = &g2.pos_control.get_vel_pid().get_pid_info_x(); mavlink_msg_pid_tuning_send(chan, 10, pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } // Position Controller Velocity East PID if (g.gcs_pid_mask & 128) { pid_info = &g2.pos_control.get_vel_pid().get_pid_info_y(); mavlink_msg_pid_tuning_send(chan, 11, pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } void Rover::send_wheel_encoder_distance(const mavlink_channel_t chan) { // send wheel encoder data using wheel_distance message if (g2.wheel_encoder.num_sensors() > 0) { double distances[MAVLINK_MSG_WHEEL_DISTANCE_FIELD_DISTANCE_LEN] {}; for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { distances[i] = wheel_encoder_last_distance_m[i]; } mavlink_msg_wheel_distance_send(chan, 1000UL * AP_HAL::millis(), g2.wheel_encoder.num_sensors(), distances); } } bool GCS_Rover::vehicle_initialised() const { return rover.control_mode != &rover.mode_initializing; } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Rover::try_send_message(enum ap_message id) { switch (id) { case MSG_SERVO_OUT: CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); send_servo_out(); break; case MSG_WHEEL_DISTANCE: CHECK_PAYLOAD_SIZE(WHEEL_DISTANCE); rover.send_wheel_encoder_distance(chan); break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); rover.g2.windvane.send_wind(chan); break; #if AP_OADATABASE_ENABLED case MSG_ADSB_VEHICLE: { AP_OADatabase *oadb = AP::oadatabase(); if (oadb != nullptr) { CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); uint16_t interval_ms = 0; if (get_ap_message_interval(id, interval_ms)) { oadb->send_adsb_vehicle(chan, interval_ms); } } break; } #endif #if AP_RANGEFINDER_ENABLED case MSG_WATER_DEPTH: CHECK_PAYLOAD_SIZE(WATER_DEPTH); send_water_depth(); break; #endif // AP_RANGEFINDER_ENABLED default: return GCS_MAVLINK::try_send_message(id); } return true; } bool GCS_MAVLINK_Rover::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (!rover.control_mode->in_guided_mode()) { // only accept position updates when in GUIDED mode return false; } // make any new wp uploaded instant (in case we are already in Guided mode) return rover.mode_guided.set_desired_location(cmd.content.location); } MAV_RESULT GCS_MAVLINK_Rover::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { switch (packet.y) { case 1: if (rover.g2.windvane.start_direction_calibration()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } case 2: if (rover.g2.windvane.start_speed_calibration()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } default: break; } return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg); } MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { switch (packet.command) { case MAV_CMD_DO_CHANGE_SPEED: // param1 : type // param2 : new speed in m/s switch (SPEED_TYPE(packet.param1)) { case SPEED_TYPE_CLIMB_SPEED: case SPEED_TYPE_DESCENT_SPEED: case SPEED_TYPE_ENUM_END: return MAV_RESULT_DENIED; case SPEED_TYPE_AIRSPEED: // Airspeed is treated as ground speed for GCS compatibility case SPEED_TYPE_GROUNDSPEED: break; } if (!rover.control_mode->set_desired_speed(packet.param2)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_REPOSITION: return handle_command_int_do_reposition(packet); case MAV_CMD_DO_SET_REVERSE: // param1 : Direction (0=Forward, 1=Reverse) rover.control_mode->set_reversed(is_equal(packet.param1,1.0f)); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_RETURN_TO_LAUNCH: if (rover.set_mode(rover.mode_rtl, ModeReason::GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) return rover.mavlink_motor_test_start(*this, (AP_MotorsUGV::motor_test_order)packet.param1, static_cast(packet.param2), static_cast(packet.param3), packet.param4); case MAV_CMD_MISSION_START: if (!is_zero(packet.param1) || !is_zero(packet.param2)) { // first-item/last item not supported return MAV_RESULT_DENIED; } if (rover.set_mode(rover.mode_auto, ModeReason::GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; #if AP_MAVLINK_MAV_CMD_NAV_SET_YAW_SPEED_ENABLED case MAV_CMD_NAV_SET_YAW_SPEED: send_received_message_deprecation_warning("MAV_CMD_NAV_SET_YAW_SPEED"); return handle_command_nav_set_yaw_speed(packet, msg); #endif default: return GCS_MAVLINK::handle_command_int_packet(packet, msg); } } #if AP_MAVLINK_MAV_CMD_NAV_SET_YAW_SPEED_ENABLED MAV_RESULT GCS_MAVLINK_Rover::handle_command_nav_set_yaw_speed(const mavlink_command_int_t &packet, const mavlink_message_t &msg) { // param1 : yaw angle (may be absolute or relative) // param2 : Speed - in metres/second // param3 : 0 = param1 is absolute, 1 = param1 is relative // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { return MAV_RESULT_FAILED; } // get final angle, 1 = Relative, 0 = Absolute if (packet.param3 > 0) { // relative angle rover.mode_guided.set_desired_heading_delta_and_speed(packet.param1 * 100.0f, packet.param2); } else { // absolute angle rover.mode_guided.set_desired_heading_and_speed(packet.param1 * 100.0f, packet.param2); } return MAV_RESULT_ACCEPTED; } #endif MAV_RESULT GCS_MAVLINK_Rover::handle_command_int_do_reposition(const mavlink_command_int_t &packet) { const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE; if (!rover.control_mode->in_guided_mode() && !change_modes) { return MAV_RESULT_DENIED; } // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_DENIED; } if (packet.x == 0 && packet.y == 0) { return MAV_RESULT_DENIED; } Location requested_location {}; if (!location_from_command_t(packet, requested_location)) { return MAV_RESULT_DENIED; } if (!rover.control_mode->in_guided_mode()) { if (!rover.set_mode(Mode::Number::GUIDED, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } } if (is_positive(packet.param1)) { if (!rover.control_mode->set_desired_speed(packet.param1)) { return MAV_RESULT_FAILED; } } // set the destination if (!rover.mode_guided.set_desired_location(requested_location)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } void GCS_MAVLINK_Rover::handle_message(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: handle_set_attitude_target(msg); break; case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: handle_set_position_target_local_ned(msg); break; case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: handle_set_position_target_global_int(msg); break; default: GCS_MAVLINK::handle_message(msg); break; } } void GCS_MAVLINK_Rover::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow) { manual_override(rover.channel_steer, packet.y, 1000, 2000, tnow); manual_override(rover.channel_throttle, packet.z, 1000, 2000, tnow); } void GCS_MAVLINK_Rover::handle_set_attitude_target(const mavlink_message_t &msg) { // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(&msg, &packet); // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { return; } // ensure type_mask specifies to use thrust if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_THROTTLE_IGNORE) != 0) { return; } // convert thrust to ground speed packet.thrust = constrain_float(packet.thrust, -1.0f, 1.0f); const float target_speed = rover.control_mode->get_speed_default() * packet.thrust; // if the body_yaw_rate field is ignored, convert quaternion to heading if ((packet.type_mask & MAVLINK_SET_ATT_TYPE_MASK_YAW_RATE_IGNORE) != 0) { // convert quaternion to heading float target_heading_cd = degrees(Quaternion(packet.q[0], packet.q[1], packet.q[2], packet.q[3]).get_euler_yaw()) * 100.0f; rover.mode_guided.set_desired_heading_and_speed(target_heading_cd, target_speed); } else { // use body_yaw_rate field rover.mode_guided.set_desired_turn_rate_and_speed((RAD_TO_DEG * packet.body_yaw_rate) * 100.0f, target_speed); } } // if we receive a message where the user has not masked out // acceleration from the input packet we send a curt message // informing them: void GCS_MAVLINK_Rover::send_acc_ignore_must_be_set_message(const char *msgname) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Ignoring %s; set ACC_IGNORE in mask", msgname); } void GCS_MAVLINK_Rover::handle_set_position_target_local_ned(const mavlink_message_t &msg) { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(&msg, &packet); // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { return; } // need ekf origin Location ekf_origin; if (!rover.ahrs.get_origin(ekf_origin)) { return; } // check for supported coordinate frames switch (packet.coordinate_frame) { case MAV_FRAME_LOCAL_NED: case MAV_FRAME_LOCAL_OFFSET_NED: case MAV_FRAME_BODY_NED: case MAV_FRAME_BODY_OFFSET_NED: break; default: return; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare target position Location target_loc = rover.current_loc; if (!pos_ignore) { switch (packet.coordinate_frame) { case MAV_FRAME_BODY_NED: case MAV_FRAME_BODY_OFFSET_NED: { // rotate from body-frame to NE frame const float ne_x = packet.x * rover.ahrs.cos_yaw() - packet.y * rover.ahrs.sin_yaw(); const float ne_y = packet.x * rover.ahrs.sin_yaw() + packet.y * rover.ahrs.cos_yaw(); // add offset to current location target_loc.offset(ne_x, ne_y); } break; case MAV_FRAME_LOCAL_OFFSET_NED: // add offset to current location target_loc.offset(packet.x, packet.y); break; case MAV_FRAME_LOCAL_NED: default: // MAV_FRAME_LOCAL_NED is interpreted as an offset from EKF origin target_loc = ekf_origin; target_loc.offset(packet.x, packet.y); break; } } float target_speed = 0.0f; float target_yaw_cd = 0.0f; // consume velocity and convert to target speed and heading if (!vel_ignore) { const float speed_max = rover.control_mode->get_speed_default(); // convert vector length into a speed target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max); // convert vector direction to target yaw target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw heading if (!yaw_ignore) { target_yaw_cd = degrees(packet.yaw) * 100.0f; // rotate target yaw if provided in body-frame if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { target_yaw_cd = wrap_180_cd(target_yaw_cd + rover.ahrs.yaw_sensor); } } // consume yaw rate float target_turn_rate_cds = 0.0f; if (!yaw_rate_ignore) { target_turn_rate_cds = degrees(packet.yaw_rate) * 100.0f; } // handling case when both velocity and either yaw or yaw-rate are provided // by default, we consider that the rover will drive forward float speed_dir = 1.0f; if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) { // Note: we are using the x-axis velocity to determine direction even though // the frame may have been provided in MAV_FRAME_LOCAL_OFFSET_NED or MAV_FRAME_LOCAL_NED if (is_negative(packet.vx)) { speed_dir = -1.0f; } } if (!acc_ignore) { // ignore any command where acceleration is not ignored send_acc_ignore_must_be_set_message("SET_POSITION_TARGET_LOCAL_NED"); return; } // set guided mode targets if (!pos_ignore) { // consume position target if (!rover.mode_guided.set_desired_location(target_loc)) { // GCS will need to monitor desired location to // see if they are having an effect. } return; } if (!vel_ignore && yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (!vel_ignore && yaw_ignore && !yaw_rate_ignore) { // consume velocity and turn rate rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed); } else if (!vel_ignore && !yaw_ignore && yaw_rate_ignore) { // consume velocity and heading rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (vel_ignore && !yaw_ignore && yaw_rate_ignore) { // consume just target heading (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f); } else if (vel_ignore && yaw_ignore && !yaw_rate_ignore) { // consume just turn rate (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f); } } void GCS_MAVLINK_Rover::handle_set_position_target_global_int(const mavlink_message_t &msg) { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(&msg, &packet); // exit if vehicle is not in Guided mode if (!rover.control_mode->in_guided_mode()) { return; } // check for supported coordinate frames switch (packet.coordinate_frame) { case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: case MAV_FRAME_GLOBAL_RELATIVE_ALT: case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: case MAV_FRAME_GLOBAL_TERRAIN_ALT: case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: break; default: return; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // prepare target position Location target_loc = rover.current_loc; if (!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { // result = MAV_RESULT_FAILED; return; } target_loc.lat = packet.lat_int; target_loc.lng = packet.lon_int; } float target_speed = 0.0f; float target_yaw_cd = 0.0f; // consume velocity and convert to target speed and heading if (!vel_ignore) { const float speed_max = rover.control_mode->get_speed_default(); // convert vector length into a speed target_speed = constrain_float(safe_sqrt(sq(packet.vx) + sq(packet.vy)), -speed_max, speed_max); // convert vector direction to target yaw target_yaw_cd = degrees(atan2f(packet.vy, packet.vx)) * 100.0f; } // consume yaw heading if (!yaw_ignore) { target_yaw_cd = degrees(packet.yaw) * 100.0f; } // consume yaw rate float target_turn_rate_cds = 0.0f; if (!yaw_rate_ignore) { target_turn_rate_cds = degrees(packet.yaw_rate) * 100.0f; } // handling case when both velocity and either yaw or yaw-rate are provided // by default, we consider that the rover will drive forward float speed_dir = 1.0f; if (!vel_ignore && (!yaw_ignore || !yaw_rate_ignore)) { // Note: we are using the x-axis velocity to determine direction even though // the frame is provided in MAV_FRAME_GLOBAL_xxx if (is_negative(packet.vx)) { speed_dir = -1.0f; } } if (!acc_ignore) { // ignore any command where acceleration is not ignored send_acc_ignore_must_be_set_message("SET_POSITION_TARGET_GLOBAL_INT"); return; } // set guided mode targets if (!pos_ignore) { // consume position target if (!rover.mode_guided.set_desired_location(target_loc)) { // GCS will just need to look at desired location // outputs to see if it having an effect. } return; } if (!vel_ignore && yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (!vel_ignore && yaw_ignore && !yaw_rate_ignore) { // consume velocity and turn rate rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, speed_dir * target_speed); } else if (!vel_ignore && !yaw_ignore && yaw_rate_ignore) { // consume velocity rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, speed_dir * target_speed); } else if (vel_ignore && !yaw_ignore && yaw_rate_ignore) { // consume just target heading (probably only skid steering vehicles can do this) rover.mode_guided.set_desired_heading_and_speed(target_yaw_cd, 0.0f); } else if (vel_ignore && yaw_ignore && !yaw_rate_ignore) { // consume just turn rate(probably only skid steering vehicles can do this) rover.mode_guided.set_desired_turn_rate_and_speed(target_turn_rate_cds, 0.0f); } } /* handle a LANDING_TARGET command. The timestamp has been jitter corrected */ void GCS_MAVLINK_Rover::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms) { #if AC_PRECLAND_ENABLED rover.precland.handle_msg(packet, timestamp_ms); #endif } uint64_t GCS_MAVLINK_Rover::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | GCS_MAVLINK::capabilities()); } #if HAL_HIGH_LATENCY2_ENABLED uint8_t GCS_MAVLINK_Rover::high_latency_tgt_heading() const { const Mode *control_mode = rover.control_mode; if (rover.control_mode->is_autopilot_mode()) { // need to convert -180->180 to 0->360/2 return wrap_360(control_mode->wp_bearing()) / 2; } return 0; } uint16_t GCS_MAVLINK_Rover::high_latency_tgt_dist() const { const Mode *control_mode = rover.control_mode; if (rover.control_mode->is_autopilot_mode()) { // return units are dm return MIN((control_mode->get_distance_to_destination()) / 10, UINT16_MAX); } return 0; } uint8_t GCS_MAVLINK_Rover::high_latency_tgt_airspeed() const { const Mode *control_mode = rover.control_mode; if (rover.control_mode->is_autopilot_mode()) { // return units are m/s*5 return MIN((vfr_hud_airspeed() - control_mode->speed_error()) * 5, UINT8_MAX); } return 0; } uint8_t GCS_MAVLINK_Rover::high_latency_wind_speed() const { if (rover.g2.windvane.enabled()) { // return units are m/s*5 return MIN(rover.g2.windvane.get_true_wind_speed() * 5, UINT8_MAX); } return 0; } uint8_t GCS_MAVLINK_Rover::high_latency_wind_direction() const { if (rover.g2.windvane.enabled()) { // return units are deg/2 return wrap_360(degrees(rover.g2.windvane.get_true_wind_direction_rad())) / 2; } return 0; } #endif // HAL_HIGH_LATENCY2_ENABLED // Send the mode with the given index (not mode number!) return the total number of modes // Index starts at 1 uint8_t GCS_MAVLINK_Rover::send_available_mode(uint8_t index) const { const Mode* modes[] { &rover.mode_manual, &rover.mode_acro, &rover.mode_steering, &rover.mode_hold, &rover.mode_loiter, #if MODE_FOLLOW_ENABLED &rover.mode_follow, #endif &rover.mode_simple, &rover.g2.mode_circle, &rover.mode_auto, &rover.mode_rtl, &rover.mode_smartrtl, &rover.mode_guided, &rover.mode_initializing, #if MODE_DOCK_ENABLED (Mode *)rover.g2.mode_dock_ptr, #endif }; const uint8_t mode_count = ARRAY_SIZE(modes); // Convert to zero indexed const uint8_t index_zero = index - 1; if (index_zero >= mode_count) { // Mode does not exist!? return mode_count; } // Ask the mode for its name and number const char* name = modes[index_zero]->name4(); const uint8_t mode_number = (uint8_t)modes[index_zero]->mode_number(); mavlink_msg_available_modes_send( chan, mode_count, index, MAV_STANDARD_MODE::MAV_STANDARD_MODE_NON_STANDARD, mode_number, 0, // MAV_MODE_PROPERTY bitmask name ); return mode_count; }