mirror of
https://github.com/openjdk/jdk18u.git
synced 2025-12-12 17:50:05 -06:00
1615 lines
65 KiB
C++
1615 lines
65 KiB
C++
/*
|
|
* Copyright (c) 2011, 2021, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/opaquenode.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
|
|
/*
|
|
* The general idea of Loop Predication is to insert a predicate on the entry
|
|
* path to a loop, and raise a uncommon trap if the check of the condition fails.
|
|
* The condition checks are promoted from inside the loop body, and thus
|
|
* the checks inside the loop could be eliminated. Currently, loop predication
|
|
* optimization has been applied to remove array range check and loop invariant
|
|
* checks (such as null checks).
|
|
*
|
|
* There are at least 3 kinds of predicates: a place holder inserted
|
|
* at parse time, the tests added by predication above the place
|
|
* holder (referred to as concrete predicates), skeleton predicates
|
|
* that are added between main loop and pre loop to protect C2 from
|
|
* inconsistencies in some rare cases of over unrolling. Skeleton
|
|
* predicates themselves are expanded and updated as unrolling
|
|
* proceeds. They don't compile to any code.
|
|
*
|
|
*/
|
|
|
|
//-------------------------------register_control-------------------------
|
|
void PhaseIdealLoop::register_control(Node* n, IdealLoopTree *loop, Node* pred, bool update_body) {
|
|
assert(n->is_CFG(), "msust be control node");
|
|
_igvn.register_new_node_with_optimizer(n);
|
|
if (update_body) {
|
|
loop->_body.push(n);
|
|
}
|
|
set_loop(n, loop);
|
|
// When called from beautify_loops() idom is not constructed yet.
|
|
if (_idom != NULL) {
|
|
set_idom(n, pred, dom_depth(pred));
|
|
}
|
|
}
|
|
|
|
//------------------------------create_new_if_for_predicate------------------------
|
|
// create a new if above the uct_if_pattern for the predicate to be promoted.
|
|
//
|
|
// before after
|
|
// ---------- ----------
|
|
// ctrl ctrl
|
|
// | |
|
|
// | |
|
|
// v v
|
|
// iff new_iff
|
|
// / \ / \
|
|
// / \ / \
|
|
// v v v v
|
|
// uncommon_proj cont_proj if_uct if_cont
|
|
// \ | | | |
|
|
// \ | | | |
|
|
// v v v | v
|
|
// rgn loop | iff
|
|
// | | / \
|
|
// | | / \
|
|
// v | v v
|
|
// uncommon_trap | uncommon_proj cont_proj
|
|
// \ \ | |
|
|
// \ \ | |
|
|
// v v v v
|
|
// rgn loop
|
|
// |
|
|
// |
|
|
// v
|
|
// uncommon_trap
|
|
//
|
|
//
|
|
// We will create a region to guard the uct call if there is no one there.
|
|
// The continuation projection (if_cont) of the new_iff is returned which
|
|
// is by default a true projection if 'if_cont_is_true_proj' is true.
|
|
// Otherwise, the continuation projection is set up to be the false
|
|
// projection. This code is also used to clone predicates to cloned loops.
|
|
ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
|
|
Deoptimization::DeoptReason reason, int opcode,
|
|
bool if_cont_is_true_proj, Node_List* old_new,
|
|
UnswitchingAction unswitching_action) {
|
|
assert(cont_proj->is_uncommon_trap_if_pattern(reason), "must be a uct if pattern!");
|
|
IfNode* iff = cont_proj->in(0)->as_If();
|
|
|
|
ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
|
|
Node *rgn = uncommon_proj->unique_ctrl_out();
|
|
assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
|
|
|
|
uint proj_index = 1; // region's edge corresponding to uncommon_proj
|
|
if (!rgn->is_Region()) { // create a region to guard the call
|
|
assert(rgn->is_Call(), "must be call uct");
|
|
CallNode* call = rgn->as_Call();
|
|
IdealLoopTree* loop = get_loop(call);
|
|
rgn = new RegionNode(1);
|
|
Node* uncommon_proj_orig = uncommon_proj;
|
|
uncommon_proj = uncommon_proj->clone()->as_Proj();
|
|
register_control(uncommon_proj, loop, iff);
|
|
rgn->add_req(uncommon_proj);
|
|
register_control(rgn, loop, uncommon_proj);
|
|
_igvn.replace_input_of(call, 0, rgn);
|
|
// When called from beautify_loops() idom is not constructed yet.
|
|
if (_idom != NULL) {
|
|
set_idom(call, rgn, dom_depth(rgn));
|
|
}
|
|
// Move nodes pinned on the projection or whose control is set to
|
|
// the projection to the region.
|
|
lazy_replace(uncommon_proj_orig, rgn);
|
|
} else {
|
|
// Find region's edge corresponding to uncommon_proj
|
|
for (; proj_index < rgn->req(); proj_index++)
|
|
if (rgn->in(proj_index) == uncommon_proj) break;
|
|
assert(proj_index < rgn->req(), "sanity");
|
|
}
|
|
|
|
Node* entry = iff->in(0);
|
|
if (new_entry != NULL) {
|
|
// Clonning the predicate to new location.
|
|
entry = new_entry;
|
|
}
|
|
// Create new_iff
|
|
IdealLoopTree* lp = get_loop(entry);
|
|
IfNode* new_iff = NULL;
|
|
if (opcode == Op_If) {
|
|
new_iff = new IfNode(entry, iff->in(1), iff->_prob, iff->_fcnt);
|
|
} else {
|
|
assert(opcode == Op_RangeCheck, "no other if variant here");
|
|
new_iff = new RangeCheckNode(entry, iff->in(1), iff->_prob, iff->_fcnt);
|
|
}
|
|
register_control(new_iff, lp, entry);
|
|
Node* if_cont;
|
|
Node* if_uct;
|
|
if (if_cont_is_true_proj) {
|
|
if_cont = new IfTrueNode(new_iff);
|
|
if_uct = new IfFalseNode(new_iff);
|
|
} else {
|
|
if_uct = new IfTrueNode(new_iff);
|
|
if_cont = new IfFalseNode(new_iff);
|
|
}
|
|
|
|
if (cont_proj->is_IfFalse()) {
|
|
// Swap
|
|
Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
|
|
}
|
|
register_control(if_cont, lp, new_iff);
|
|
register_control(if_uct, get_loop(rgn), new_iff);
|
|
|
|
// if_uct to rgn
|
|
_igvn.hash_delete(rgn);
|
|
rgn->add_req(if_uct);
|
|
// When called from beautify_loops() idom is not constructed yet.
|
|
if (_idom != NULL) {
|
|
Node* ridom = idom(rgn);
|
|
Node* nrdom = dom_lca_internal(ridom, new_iff);
|
|
set_idom(rgn, nrdom, dom_depth(rgn));
|
|
}
|
|
|
|
// If rgn has phis add new edges which has the same
|
|
// value as on original uncommon_proj pass.
|
|
assert(rgn->in(rgn->req() -1) == if_uct, "new edge should be last");
|
|
bool has_phi = false;
|
|
for (DUIterator_Fast imax, i = rgn->fast_outs(imax); i < imax; i++) {
|
|
Node* use = rgn->fast_out(i);
|
|
if (use->is_Phi() && use->outcnt() > 0) {
|
|
assert(use->in(0) == rgn, "");
|
|
_igvn.rehash_node_delayed(use);
|
|
Node* phi_input = use->in(proj_index);
|
|
if (unswitching_action == UnswitchingAction::FastLoopCloning
|
|
&& !phi_input->is_CFG() && !phi_input->is_Phi() && get_ctrl(phi_input) == uncommon_proj) {
|
|
// There are some control dependent nodes on the uncommon projection and we are currently copying predicates
|
|
// to the fast loop in loop unswitching (first step, slow loop is processed afterwards). For the fast loop,
|
|
// we need to clone all the data nodes in the chain from the phi ('use') up until the node whose control input
|
|
// is the uncommon_proj. The slow loop can reuse the old data nodes and thus only needs to update the control
|
|
// input to the uncommon_proj (done on the next invocation of this method when 'unswitch_is_slow_loop' is true.
|
|
assert(LoopUnswitching, "sanity check");
|
|
phi_input = clone_data_nodes_for_fast_loop(phi_input, uncommon_proj, if_uct, old_new);
|
|
} else if (unswitching_action == UnswitchingAction::SlowLoopRewiring) {
|
|
// Replace phi input for the old predicate path with TOP as the predicate is dying anyways. This avoids the need
|
|
// to clone the data nodes again for the slow loop.
|
|
assert(LoopUnswitching, "sanity check");
|
|
_igvn.replace_input_of(use, proj_index, C->top());
|
|
}
|
|
use->add_req(phi_input);
|
|
has_phi = true;
|
|
}
|
|
}
|
|
assert(!has_phi || rgn->req() > 3, "no phis when region is created");
|
|
if (unswitching_action == UnswitchingAction::SlowLoopRewiring) {
|
|
// Rewire the control dependent data nodes for the slow loop from the old to the new uncommon projection.
|
|
assert(uncommon_proj->outcnt() > 1 && old_new == NULL, "sanity");
|
|
for (DUIterator_Fast jmax, j = uncommon_proj->fast_outs(jmax); j < jmax; j++) {
|
|
Node* data = uncommon_proj->fast_out(j);
|
|
if (!data->is_CFG()) {
|
|
_igvn.replace_input_of(data, 0, if_uct);
|
|
set_ctrl(data, if_uct);
|
|
--j;
|
|
--jmax;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_entry == NULL) {
|
|
// Attach if_cont to iff
|
|
_igvn.replace_input_of(iff, 0, if_cont);
|
|
if (_idom != NULL) {
|
|
set_idom(iff, if_cont, dom_depth(iff));
|
|
}
|
|
}
|
|
return if_cont->as_Proj();
|
|
}
|
|
|
|
// Clone data nodes for the fast loop while creating a new If with create_new_if_for_predicate. Returns the node which is
|
|
// used for the uncommon trap phi input.
|
|
Node* PhaseIdealLoop::clone_data_nodes_for_fast_loop(Node* phi_input, ProjNode* uncommon_proj, Node* if_uct, Node_List* old_new) {
|
|
// Step 1: Clone all nodes on the data chain but do not rewire anything, yet. Keep track of the cloned nodes
|
|
// by using the old_new mapping. This mapping is then used in step 2 to rewire the cloned nodes accordingly.
|
|
DEBUG_ONLY(uint last_idx = C->unique();)
|
|
Unique_Node_List list;
|
|
list.push(phi_input);
|
|
for (uint j = 0; j < list.size(); j++) {
|
|
Node* next = list.at(j);
|
|
Node* clone = next->clone();
|
|
_igvn.register_new_node_with_optimizer(clone);
|
|
old_new->map(next->_idx, clone);
|
|
for (uint k = 1; k < next->req(); k++) {
|
|
Node* in = next->in(k);
|
|
if (!in->is_Phi() && get_ctrl(in) == uncommon_proj) {
|
|
list.push(in);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 2: All nodes are cloned. Rewire them by using the old_new mapping.
|
|
for (uint j = 0; j < list.size(); j++) {
|
|
Node* next = list.at(j);
|
|
Node* clone = old_new->at(next->_idx);
|
|
assert(clone != NULL && clone->_idx >= last_idx, "must exist and be a proper clone");
|
|
if (next->in(0) == uncommon_proj) {
|
|
// All data nodes with a control input to the uncommon projection in the chain need to be rewired to the new uncommon
|
|
// projection (could not only be the last data node in the chain but also, for example, a DivNode within the chain).
|
|
_igvn.replace_input_of(clone, 0, if_uct);
|
|
set_ctrl(clone, if_uct);
|
|
}
|
|
|
|
// Rewire the inputs of the cloned nodes to the old nodes to the new clones.
|
|
for (uint k = 1; k < next->req(); k++) {
|
|
Node* in = next->in(k);
|
|
if (!in->is_Phi()) {
|
|
assert(!in->is_CFG(), "must be data node");
|
|
Node* in_clone = old_new->at(in->_idx);
|
|
if (in_clone != NULL) {
|
|
assert(in_clone->_idx >= last_idx, "must be a valid clone");
|
|
_igvn.replace_input_of(clone, k, in_clone);
|
|
set_ctrl(clone, if_uct);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Node* clone_phi_input = old_new->at(phi_input->_idx);
|
|
assert(clone_phi_input != NULL && clone_phi_input->_idx >= last_idx, "must exist and be a proper clone");
|
|
return clone_phi_input;
|
|
}
|
|
//--------------------------clone_predicate-----------------------
|
|
ProjNode* PhaseIdealLoop::clone_predicate_to_unswitched_loop(ProjNode* predicate_proj, Node* new_entry,
|
|
Deoptimization::DeoptReason reason, Node_List* old_new) {
|
|
UnswitchingAction unswitching_action;
|
|
if (predicate_proj->other_if_proj()->outcnt() > 1) {
|
|
// There are some data dependencies that need to be taken care of when cloning a predicate.
|
|
unswitching_action = old_new == NULL ? UnswitchingAction::SlowLoopRewiring : UnswitchingAction::FastLoopCloning;
|
|
} else {
|
|
unswitching_action = UnswitchingAction::None;
|
|
}
|
|
|
|
ProjNode* new_predicate_proj = create_new_if_for_predicate(predicate_proj, new_entry, reason, Op_If,
|
|
true, old_new, unswitching_action);
|
|
IfNode* iff = new_predicate_proj->in(0)->as_If();
|
|
Node* ctrl = iff->in(0);
|
|
|
|
// Match original condition since predicate's projections could be swapped.
|
|
assert(predicate_proj->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
|
|
Node* opq = new Opaque1Node(C, predicate_proj->in(0)->in(1)->in(1)->in(1));
|
|
C->add_predicate_opaq(opq);
|
|
Node* bol = new Conv2BNode(opq);
|
|
register_new_node(opq, ctrl);
|
|
register_new_node(bol, ctrl);
|
|
_igvn.hash_delete(iff);
|
|
iff->set_req(1, bol);
|
|
return new_predicate_proj;
|
|
}
|
|
|
|
// Clones skeleton predicates starting at 'old_predicate_proj' by following its control inputs and rewires the control edges of in the loop from
|
|
// the old predicates to the new cloned predicates.
|
|
void PhaseIdealLoop::clone_skeleton_predicates_to_unswitched_loop(IdealLoopTree* loop, const Node_List& old_new, Deoptimization::DeoptReason reason,
|
|
ProjNode* old_predicate_proj, ProjNode* iffast_pred, ProjNode* ifslow_pred) {
|
|
assert(iffast_pred->in(0)->is_If() && ifslow_pred->in(0)->is_If(), "sanity check");
|
|
// Only need to clone range check predicates as those can be changed and duplicated by inserting pre/main/post loops
|
|
// and doing loop unrolling. Push the original predicates on a list to later process them in reverse order to keep the
|
|
// original predicate order.
|
|
Unique_Node_List list;
|
|
get_skeleton_predicates(old_predicate_proj, list);
|
|
|
|
Node_List to_process;
|
|
IfNode* iff = old_predicate_proj->in(0)->as_If();
|
|
ProjNode* uncommon_proj = iff->proj_out(1 - old_predicate_proj->as_Proj()->_con);
|
|
// Process in reverse order such that 'create_new_if_for_predicate' can be used in 'clone_skeleton_predicate_for_unswitched_loops'
|
|
// and the original order is maintained.
|
|
for (int i = list.size() - 1; i >= 0; i--) {
|
|
Node* predicate = list.at(i);
|
|
assert(predicate->in(0)->is_If(), "must be If node");
|
|
iff = predicate->in(0)->as_If();
|
|
assert(predicate->is_Proj() && predicate->as_Proj()->is_IfProj(), "predicate must be a projection of an if node");
|
|
IfProjNode* predicate_proj = predicate->as_IfProj();
|
|
|
|
ProjNode* fast_proj = clone_skeleton_predicate_for_unswitched_loops(iff, predicate_proj, reason, iffast_pred);
|
|
assert(skeleton_predicate_has_opaque(fast_proj->in(0)->as_If()), "must find skeleton predicate for fast loop");
|
|
ProjNode* slow_proj = clone_skeleton_predicate_for_unswitched_loops(iff, predicate_proj, reason, ifslow_pred);
|
|
assert(skeleton_predicate_has_opaque(slow_proj->in(0)->as_If()), "must find skeleton predicate for slow loop");
|
|
|
|
// Update control dependent data nodes.
|
|
for (DUIterator j = predicate->outs(); predicate->has_out(j); j++) {
|
|
Node* fast_node = predicate->out(j);
|
|
if (loop->is_member(get_loop(ctrl_or_self(fast_node)))) {
|
|
assert(fast_node->in(0) == predicate, "only control edge");
|
|
Node* slow_node = old_new[fast_node->_idx];
|
|
assert(slow_node->in(0) == predicate, "only control edge");
|
|
_igvn.replace_input_of(fast_node, 0, fast_proj);
|
|
to_process.push(slow_node);
|
|
--j;
|
|
}
|
|
}
|
|
// Have to delay updates to the slow loop so uses of predicate are not modified while we iterate on them.
|
|
while (to_process.size() > 0) {
|
|
Node* slow_node = to_process.pop();
|
|
_igvn.replace_input_of(slow_node, 0, slow_proj);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Put all skeleton predicate projections on a list, starting at 'predicate' and going up in the tree. If 'get_opaque'
|
|
// is set, then the Opaque4 nodes of the skeleton predicates are put on the list instead of the projections.
|
|
void PhaseIdealLoop::get_skeleton_predicates(Node* predicate, Unique_Node_List& list, bool get_opaque) {
|
|
IfNode* iff = predicate->in(0)->as_If();
|
|
ProjNode* uncommon_proj = iff->proj_out(1 - predicate->as_Proj()->_con);
|
|
Node* rgn = uncommon_proj->unique_ctrl_out();
|
|
assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
|
|
assert(iff->in(1)->in(1)->Opcode() == Op_Opaque1, "unexpected predicate shape");
|
|
predicate = iff->in(0);
|
|
while (predicate != NULL && predicate->is_Proj() && predicate->in(0)->is_If()) {
|
|
iff = predicate->in(0)->as_If();
|
|
uncommon_proj = iff->proj_out(1 - predicate->as_Proj()->_con);
|
|
if (uncommon_proj->unique_ctrl_out() != rgn) {
|
|
break;
|
|
}
|
|
if (iff->in(1)->Opcode() == Op_Opaque4 && skeleton_predicate_has_opaque(iff)) {
|
|
if (get_opaque) {
|
|
// Collect the predicate Opaque4 node.
|
|
list.push(iff->in(1));
|
|
} else {
|
|
// Collect the predicate projection.
|
|
list.push(predicate);
|
|
}
|
|
}
|
|
predicate = predicate->in(0)->in(0);
|
|
}
|
|
}
|
|
|
|
// Clone a skeleton predicate for an unswitched loop. OpaqueLoopInit and OpaqueLoopStride nodes are cloned and uncommon
|
|
// traps are kept for the predicate (a Halt node is used later when creating pre/main/post loops and copying this cloned
|
|
// predicate again).
|
|
ProjNode* PhaseIdealLoop::clone_skeleton_predicate_for_unswitched_loops(Node* iff, ProjNode* predicate,
|
|
Deoptimization::DeoptReason reason,
|
|
ProjNode* output_proj) {
|
|
Node* bol = clone_skeleton_predicate_bool(iff, NULL, NULL, output_proj);
|
|
ProjNode* proj = create_new_if_for_predicate(output_proj, NULL, reason, iff->Opcode(), predicate->is_IfTrue());
|
|
_igvn.replace_input_of(proj->in(0), 1, bol);
|
|
_igvn.replace_input_of(output_proj->in(0), 0, proj);
|
|
set_idom(output_proj->in(0), proj, dom_depth(proj));
|
|
return proj;
|
|
}
|
|
|
|
//--------------------------clone_loop_predicates-----------------------
|
|
// Clone loop predicates to cloned loops when unswitching a loop.
|
|
void PhaseIdealLoop::clone_predicates_to_unswitched_loop(IdealLoopTree* loop, Node_List& old_new, ProjNode*& iffast_pred, ProjNode*& ifslow_pred) {
|
|
LoopNode* head = loop->_head->as_Loop();
|
|
bool clone_limit_check = !head->is_CountedLoop();
|
|
Node* entry = head->skip_strip_mined()->in(LoopNode::EntryControl);
|
|
|
|
// Search original predicates
|
|
ProjNode* limit_check_proj = NULL;
|
|
limit_check_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
|
|
if (limit_check_proj != NULL) {
|
|
entry = skip_loop_predicates(entry);
|
|
}
|
|
ProjNode* profile_predicate_proj = NULL;
|
|
ProjNode* predicate_proj = NULL;
|
|
if (UseProfiledLoopPredicate) {
|
|
profile_predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate);
|
|
if (profile_predicate_proj != NULL) {
|
|
entry = skip_loop_predicates(entry);
|
|
}
|
|
}
|
|
if (UseLoopPredicate) {
|
|
predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
|
|
}
|
|
if (predicate_proj != NULL) { // right pattern that can be used by loop predication
|
|
// clone predicate
|
|
iffast_pred = clone_predicate_to_unswitched_loop(predicate_proj, iffast_pred, Deoptimization::Reason_predicate, &old_new);
|
|
ifslow_pred = clone_predicate_to_unswitched_loop(predicate_proj, ifslow_pred, Deoptimization::Reason_predicate);
|
|
clone_skeleton_predicates_to_unswitched_loop(loop, old_new, Deoptimization::Reason_predicate, predicate_proj, iffast_pred, ifslow_pred);
|
|
|
|
check_created_predicate_for_unswitching(iffast_pred);
|
|
check_created_predicate_for_unswitching(ifslow_pred);
|
|
}
|
|
if (profile_predicate_proj != NULL) { // right pattern that can be used by loop predication
|
|
// clone predicate
|
|
iffast_pred = clone_predicate_to_unswitched_loop(profile_predicate_proj, iffast_pred, Deoptimization::Reason_profile_predicate, &old_new);
|
|
ifslow_pred = clone_predicate_to_unswitched_loop(profile_predicate_proj, ifslow_pred, Deoptimization::Reason_profile_predicate);
|
|
clone_skeleton_predicates_to_unswitched_loop(loop, old_new, Deoptimization::Reason_profile_predicate, profile_predicate_proj, iffast_pred, ifslow_pred);
|
|
|
|
check_created_predicate_for_unswitching(iffast_pred);
|
|
check_created_predicate_for_unswitching(ifslow_pred);
|
|
}
|
|
if (limit_check_proj != NULL && clone_limit_check) {
|
|
// Clone loop limit check last to insert it before loop.
|
|
// Don't clone a limit check which was already finalized
|
|
// for this counted loop (only one limit check is needed).
|
|
iffast_pred = clone_predicate_to_unswitched_loop(limit_check_proj, iffast_pred, Deoptimization::Reason_loop_limit_check, &old_new);
|
|
ifslow_pred = clone_predicate_to_unswitched_loop(limit_check_proj, ifslow_pred, Deoptimization::Reason_loop_limit_check);
|
|
|
|
check_created_predicate_for_unswitching(iffast_pred);
|
|
check_created_predicate_for_unswitching(ifslow_pred);
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void PhaseIdealLoop::check_created_predicate_for_unswitching(const Node* new_entry) {
|
|
assert(new_entry != NULL, "IfTrue or IfFalse after clone predicate");
|
|
if (TraceLoopPredicate) {
|
|
tty->print("Loop Predicate cloned: ");
|
|
debug_only(new_entry->in(0)->dump(););
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//--------------------------skip_loop_predicates------------------------------
|
|
// Skip related predicates.
|
|
Node* PhaseIdealLoop::skip_loop_predicates(Node* entry) {
|
|
IfNode* iff = entry->in(0)->as_If();
|
|
ProjNode* uncommon_proj = iff->proj_out(1 - entry->as_Proj()->_con);
|
|
Node* rgn = uncommon_proj->unique_ctrl_out();
|
|
assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
|
|
entry = entry->in(0)->in(0);
|
|
while (entry != NULL && entry->is_Proj() && entry->in(0)->is_If()) {
|
|
uncommon_proj = entry->in(0)->as_If()->proj_out(1 - entry->as_Proj()->_con);
|
|
if (uncommon_proj->unique_ctrl_out() != rgn)
|
|
break;
|
|
entry = entry->in(0)->in(0);
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
Node* PhaseIdealLoop::skip_all_loop_predicates(Node* entry) {
|
|
Node* predicate = NULL;
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
|
|
if (predicate != NULL) {
|
|
entry = skip_loop_predicates(entry);
|
|
}
|
|
if (UseProfiledLoopPredicate) {
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate);
|
|
if (predicate != NULL) { // right pattern that can be used by loop predication
|
|
entry = skip_loop_predicates(entry);
|
|
}
|
|
}
|
|
if (UseLoopPredicate) {
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
|
|
if (predicate != NULL) { // right pattern that can be used by loop predication
|
|
entry = skip_loop_predicates(entry);
|
|
}
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
//--------------------------find_predicate_insertion_point-------------------
|
|
// Find a good location to insert a predicate
|
|
ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason) {
|
|
if (start_c == NULL || !start_c->is_Proj())
|
|
return NULL;
|
|
if (start_c->as_Proj()->is_uncommon_trap_if_pattern(reason)) {
|
|
return start_c->as_Proj();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//--------------------------find_predicate------------------------------------
|
|
// Find a predicate
|
|
Node* PhaseIdealLoop::find_predicate(Node* entry) {
|
|
Node* predicate = NULL;
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
|
|
if (predicate != NULL) { // right pattern that can be used by loop predication
|
|
return entry;
|
|
}
|
|
if (UseLoopPredicate) {
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
|
|
if (predicate != NULL) { // right pattern that can be used by loop predication
|
|
return entry;
|
|
}
|
|
}
|
|
if (UseProfiledLoopPredicate) {
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate);
|
|
if (predicate != NULL) { // right pattern that can be used by loop predication
|
|
return entry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Invariance-----------------------------------
|
|
// Helper class for loop_predication_impl to compute invariance on the fly and
|
|
// clone invariants.
|
|
class Invariance : public StackObj {
|
|
VectorSet _visited, _invariant;
|
|
Node_Stack _stack;
|
|
VectorSet _clone_visited;
|
|
Node_List _old_new; // map of old to new (clone)
|
|
IdealLoopTree* _lpt;
|
|
PhaseIdealLoop* _phase;
|
|
Node* _data_dependency_on; // The projection into the loop on which data nodes are dependent or NULL otherwise
|
|
|
|
// Helper function to set up the invariance for invariance computation
|
|
// If n is a known invariant, set up directly. Otherwise, look up the
|
|
// the possibility to push n onto the stack for further processing.
|
|
void visit(Node* use, Node* n) {
|
|
if (_lpt->is_invariant(n)) { // known invariant
|
|
_invariant.set(n->_idx);
|
|
} else if (!n->is_CFG()) {
|
|
Node *n_ctrl = _phase->ctrl_or_self(n);
|
|
Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
|
|
if (_phase->is_dominator(n_ctrl, u_ctrl)) {
|
|
_stack.push(n, n->in(0) == NULL ? 1 : 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute invariance for "the_node" and (possibly) all its inputs recursively
|
|
// on the fly
|
|
void compute_invariance(Node* n) {
|
|
assert(_visited.test(n->_idx), "must be");
|
|
visit(n, n);
|
|
while (_stack.is_nonempty()) {
|
|
Node* n = _stack.node();
|
|
uint idx = _stack.index();
|
|
if (idx == n->req()) { // all inputs are processed
|
|
_stack.pop();
|
|
// n is invariant if it's inputs are all invariant
|
|
bool all_inputs_invariant = true;
|
|
for (uint i = 0; i < n->req(); i++) {
|
|
Node* in = n->in(i);
|
|
if (in == NULL) continue;
|
|
assert(_visited.test(in->_idx), "must have visited input");
|
|
if (!_invariant.test(in->_idx)) { // bad guy
|
|
all_inputs_invariant = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_inputs_invariant) {
|
|
// If n's control is a predicate that was moved out of the
|
|
// loop, it was marked invariant but n is only invariant if
|
|
// it depends only on that test. Otherwise, unless that test
|
|
// is out of the loop, it's not invariant.
|
|
if (n->is_CFG() || n->depends_only_on_test() || n->in(0) == NULL || !_phase->is_member(_lpt, n->in(0))) {
|
|
_invariant.set(n->_idx); // I am a invariant too
|
|
}
|
|
}
|
|
} else { // process next input
|
|
_stack.set_index(idx + 1);
|
|
Node* m = n->in(idx);
|
|
if (m != NULL && !_visited.test_set(m->_idx)) {
|
|
visit(n, m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function to set up _old_new map for clone_nodes.
|
|
// If n is a known invariant, set up directly ("clone" of n == n).
|
|
// Otherwise, push n onto the stack for real cloning.
|
|
void clone_visit(Node* n) {
|
|
assert(_invariant.test(n->_idx), "must be invariant");
|
|
if (_lpt->is_invariant(n)) { // known invariant
|
|
_old_new.map(n->_idx, n);
|
|
} else { // to be cloned
|
|
assert(!n->is_CFG(), "should not see CFG here");
|
|
_stack.push(n, n->in(0) == NULL ? 1 : 0);
|
|
}
|
|
}
|
|
|
|
// Clone "n" and (possibly) all its inputs recursively
|
|
void clone_nodes(Node* n, Node* ctrl) {
|
|
clone_visit(n);
|
|
while (_stack.is_nonempty()) {
|
|
Node* n = _stack.node();
|
|
uint idx = _stack.index();
|
|
if (idx == n->req()) { // all inputs processed, clone n!
|
|
_stack.pop();
|
|
// clone invariant node
|
|
Node* n_cl = n->clone();
|
|
_old_new.map(n->_idx, n_cl);
|
|
_phase->register_new_node(n_cl, ctrl);
|
|
for (uint i = 0; i < n->req(); i++) {
|
|
Node* in = n_cl->in(i);
|
|
if (in == NULL) continue;
|
|
n_cl->set_req(i, _old_new[in->_idx]);
|
|
}
|
|
} else { // process next input
|
|
_stack.set_index(idx + 1);
|
|
Node* m = n->in(idx);
|
|
if (m != NULL && !_clone_visited.test_set(m->_idx)) {
|
|
clone_visit(m); // visit the input
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
Invariance(Arena* area, IdealLoopTree* lpt) :
|
|
_visited(area), _invariant(area),
|
|
_stack(area, 10 /* guess */),
|
|
_clone_visited(area), _old_new(area),
|
|
_lpt(lpt), _phase(lpt->_phase),
|
|
_data_dependency_on(NULL)
|
|
{
|
|
LoopNode* head = _lpt->_head->as_Loop();
|
|
Node* entry = head->skip_strip_mined()->in(LoopNode::EntryControl);
|
|
if (entry->outcnt() != 1) {
|
|
// If a node is pinned between the predicates and the loop
|
|
// entry, we won't be able to move any node in the loop that
|
|
// depends on it above it in a predicate. Mark all those nodes
|
|
// as non-loop-invariant.
|
|
// Loop predication could create new nodes for which the below
|
|
// invariant information is missing. Mark the 'entry' node to
|
|
// later check again if a node needs to be treated as non-loop-
|
|
// invariant as well.
|
|
_data_dependency_on = entry;
|
|
Unique_Node_List wq;
|
|
wq.push(entry);
|
|
for (uint next = 0; next < wq.size(); ++next) {
|
|
Node *n = wq.at(next);
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node* u = n->fast_out(i);
|
|
if (!u->is_CFG()) {
|
|
Node* c = _phase->get_ctrl(u);
|
|
if (_lpt->is_member(_phase->get_loop(c)) || _phase->is_dominator(c, head)) {
|
|
_visited.set(u->_idx);
|
|
wq.push(u);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Did we explicitly mark some nodes non-loop-invariant? If so, return the entry node on which some data nodes
|
|
// are dependent that prevent loop predication. Otherwise, return NULL.
|
|
Node* data_dependency_on() {
|
|
return _data_dependency_on;
|
|
}
|
|
|
|
// Map old to n for invariance computation and clone
|
|
void map_ctrl(Node* old, Node* n) {
|
|
assert(old->is_CFG() && n->is_CFG(), "must be");
|
|
_old_new.map(old->_idx, n); // "clone" of old is n
|
|
_invariant.set(old->_idx); // old is invariant
|
|
_clone_visited.set(old->_idx);
|
|
}
|
|
|
|
// Driver function to compute invariance
|
|
bool is_invariant(Node* n) {
|
|
if (!_visited.test_set(n->_idx))
|
|
compute_invariance(n);
|
|
return (_invariant.test(n->_idx) != 0);
|
|
}
|
|
|
|
// Driver function to clone invariant
|
|
Node* clone(Node* n, Node* ctrl) {
|
|
assert(ctrl->is_CFG(), "must be");
|
|
assert(_invariant.test(n->_idx), "must be an invariant");
|
|
if (!_clone_visited.test(n->_idx))
|
|
clone_nodes(n, ctrl);
|
|
return _old_new[n->_idx];
|
|
}
|
|
};
|
|
|
|
//------------------------------is_range_check_if -----------------------------------
|
|
// Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
|
|
// Note: this function is particularly designed for loop predication. We require load_range
|
|
// and offset to be loop invariant computed on the fly by "invar"
|
|
bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, BasicType bt, Node *iv, Node *&range,
|
|
Node *&offset, jlong &scale) const {
|
|
if (!is_loop_exit(iff)) {
|
|
return false;
|
|
}
|
|
if (!iff->in(1)->is_Bool()) {
|
|
return false;
|
|
}
|
|
const BoolNode *bol = iff->in(1)->as_Bool();
|
|
if (bol->_test._test != BoolTest::lt) {
|
|
return false;
|
|
}
|
|
if (!bol->in(1)->is_Cmp()) {
|
|
return false;
|
|
}
|
|
const CmpNode *cmp = bol->in(1)->as_Cmp();
|
|
if (cmp->Opcode() != Op_Cmp_unsigned(bt)) {
|
|
return false;
|
|
}
|
|
range = cmp->in(2);
|
|
if (range->Opcode() != Op_LoadRange) {
|
|
const TypeInteger* tinteger = phase->_igvn.type(range)->isa_integer(bt);
|
|
if (tinteger == NULL || tinteger->empty() || tinteger->lo_as_long() < 0) {
|
|
// Allow predication on positive values that aren't LoadRanges.
|
|
// This allows optimization of loops where the length of the
|
|
// array is a known value and doesn't need to be loaded back
|
|
// from the array.
|
|
return false;
|
|
}
|
|
} else {
|
|
assert(bt == T_INT, "no LoadRange for longs");
|
|
}
|
|
scale = 0;
|
|
offset = NULL;
|
|
if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset, bt)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar DEBUG_ONLY(COMMA ProjNode *predicate_proj)) const {
|
|
Node* range = NULL;
|
|
Node* offset = NULL;
|
|
jlong scale = 0;
|
|
Node* iv = _head->as_BaseCountedLoop()->phi();
|
|
Compile* C = Compile::current();
|
|
const uint old_unique_idx = C->unique();
|
|
if (!is_range_check_if(iff, phase, T_INT, iv, range, offset, scale)) {
|
|
return false;
|
|
}
|
|
if (!invar.is_invariant(range)) {
|
|
return false;
|
|
}
|
|
if (offset != NULL) {
|
|
if (!invar.is_invariant(offset)) { // offset must be invariant
|
|
return false;
|
|
}
|
|
Node* data_dependency_on = invar.data_dependency_on();
|
|
if (data_dependency_on != NULL && old_unique_idx < C->unique()) {
|
|
// 'offset' node was newly created in is_range_check_if(). Check that it does not depend on the entry projection
|
|
// into the loop. If it does, we cannot perform loop predication (see Invariant::Invariant()).
|
|
assert(!offset->is_CFG(), "offset must be a data node");
|
|
if (_phase->get_ctrl(offset) == data_dependency_on) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
if (offset && phase->has_ctrl(offset)) {
|
|
Node* offset_ctrl = phase->get_ctrl(offset);
|
|
if (phase->get_loop(predicate_proj) == phase->get_loop(offset_ctrl) &&
|
|
phase->is_dominator(predicate_proj, offset_ctrl)) {
|
|
// If the control of offset is loop predication promoted by previous pass,
|
|
// then it will lead to cyclic dependency.
|
|
// Previously promoted loop predication is in the same loop of predication
|
|
// point.
|
|
// This situation can occur when pinning nodes too conservatively - can we do better?
|
|
assert(false, "cyclic dependency prevents range check elimination, idx: offset %d, offset_ctrl %d, predicate_proj %d",
|
|
offset->_idx, offset_ctrl->_idx, predicate_proj->_idx);
|
|
}
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
//------------------------------rc_predicate-----------------------------------
|
|
// Create a range check predicate
|
|
//
|
|
// for (i = init; i < limit; i += stride) {
|
|
// a[scale*i+offset]
|
|
// }
|
|
//
|
|
// Compute max(scale*i + offset) for init <= i < limit and build the predicate
|
|
// as "max(scale*i + offset) u< a.length".
|
|
//
|
|
// There are two cases for max(scale*i + offset):
|
|
// (1) stride*scale > 0
|
|
// max(scale*i + offset) = scale*(limit-stride) + offset
|
|
// (2) stride*scale < 0
|
|
// max(scale*i + offset) = scale*init + offset
|
|
BoolNode* PhaseIdealLoop::rc_predicate(IdealLoopTree *loop, Node* ctrl,
|
|
int scale, Node* offset,
|
|
Node* init, Node* limit, jint stride,
|
|
Node* range, bool upper, bool &overflow, bool negate) {
|
|
jint con_limit = (limit != NULL && limit->is_Con()) ? limit->get_int() : 0;
|
|
jint con_init = init->is_Con() ? init->get_int() : 0;
|
|
jint con_offset = offset->is_Con() ? offset->get_int() : 0;
|
|
|
|
stringStream* predString = NULL;
|
|
if (TraceLoopPredicate) {
|
|
predString = new stringStream();
|
|
predString->print("rc_predicate ");
|
|
}
|
|
|
|
overflow = false;
|
|
Node* max_idx_expr = NULL;
|
|
const TypeInt* idx_type = TypeInt::INT;
|
|
if ((stride > 0) == (scale > 0) == upper) {
|
|
guarantee(limit != NULL, "sanity");
|
|
if (TraceLoopPredicate) {
|
|
if (limit->is_Con()) {
|
|
predString->print("(%d ", con_limit);
|
|
} else {
|
|
predString->print("(limit ");
|
|
}
|
|
predString->print("- %d) ", stride);
|
|
}
|
|
// Check if (limit - stride) may overflow
|
|
const TypeInt* limit_type = _igvn.type(limit)->isa_int();
|
|
jint limit_lo = limit_type->_lo;
|
|
jint limit_hi = limit_type->_hi;
|
|
if ((stride > 0 && (java_subtract(limit_lo, stride) < limit_lo)) ||
|
|
(stride < 0 && (java_subtract(limit_hi, stride) > limit_hi))) {
|
|
// No overflow possible
|
|
ConINode* con_stride = _igvn.intcon(stride);
|
|
set_ctrl(con_stride, C->root());
|
|
max_idx_expr = new SubINode(limit, con_stride);
|
|
idx_type = TypeInt::make(limit_lo - stride, limit_hi - stride, limit_type->_widen);
|
|
} else {
|
|
// May overflow
|
|
overflow = true;
|
|
limit = new ConvI2LNode(limit);
|
|
register_new_node(limit, ctrl);
|
|
ConLNode* con_stride = _igvn.longcon(stride);
|
|
set_ctrl(con_stride, C->root());
|
|
max_idx_expr = new SubLNode(limit, con_stride);
|
|
}
|
|
register_new_node(max_idx_expr, ctrl);
|
|
} else {
|
|
if (TraceLoopPredicate) {
|
|
if (init->is_Con()) {
|
|
predString->print("%d ", con_init);
|
|
} else {
|
|
predString->print("init ");
|
|
}
|
|
}
|
|
idx_type = _igvn.type(init)->isa_int();
|
|
max_idx_expr = init;
|
|
}
|
|
|
|
if (scale != 1) {
|
|
ConNode* con_scale = _igvn.intcon(scale);
|
|
set_ctrl(con_scale, C->root());
|
|
if (TraceLoopPredicate) {
|
|
predString->print("* %d ", scale);
|
|
}
|
|
// Check if (scale * max_idx_expr) may overflow
|
|
const TypeInt* scale_type = TypeInt::make(scale);
|
|
MulINode* mul = new MulINode(max_idx_expr, con_scale);
|
|
idx_type = (TypeInt*)mul->mul_ring(idx_type, scale_type);
|
|
if (overflow || TypeInt::INT->higher_equal(idx_type)) {
|
|
// May overflow
|
|
mul->destruct(&_igvn);
|
|
if (!overflow) {
|
|
max_idx_expr = new ConvI2LNode(max_idx_expr);
|
|
register_new_node(max_idx_expr, ctrl);
|
|
}
|
|
overflow = true;
|
|
con_scale = _igvn.longcon(scale);
|
|
set_ctrl(con_scale, C->root());
|
|
max_idx_expr = new MulLNode(max_idx_expr, con_scale);
|
|
} else {
|
|
// No overflow possible
|
|
max_idx_expr = mul;
|
|
}
|
|
register_new_node(max_idx_expr, ctrl);
|
|
}
|
|
|
|
if (offset && (!offset->is_Con() || con_offset != 0)){
|
|
if (TraceLoopPredicate) {
|
|
if (offset->is_Con()) {
|
|
predString->print("+ %d ", con_offset);
|
|
} else {
|
|
predString->print("+ offset");
|
|
}
|
|
}
|
|
// Check if (max_idx_expr + offset) may overflow
|
|
const TypeInt* offset_type = _igvn.type(offset)->isa_int();
|
|
jint lo = java_add(idx_type->_lo, offset_type->_lo);
|
|
jint hi = java_add(idx_type->_hi, offset_type->_hi);
|
|
if (overflow || (lo > hi) ||
|
|
((idx_type->_lo & offset_type->_lo) < 0 && lo >= 0) ||
|
|
((~(idx_type->_hi | offset_type->_hi)) < 0 && hi < 0)) {
|
|
// May overflow
|
|
if (!overflow) {
|
|
max_idx_expr = new ConvI2LNode(max_idx_expr);
|
|
register_new_node(max_idx_expr, ctrl);
|
|
}
|
|
overflow = true;
|
|
offset = new ConvI2LNode(offset);
|
|
register_new_node(offset, ctrl);
|
|
max_idx_expr = new AddLNode(max_idx_expr, offset);
|
|
} else {
|
|
// No overflow possible
|
|
max_idx_expr = new AddINode(max_idx_expr, offset);
|
|
}
|
|
register_new_node(max_idx_expr, ctrl);
|
|
}
|
|
|
|
CmpNode* cmp = NULL;
|
|
if (overflow) {
|
|
// Integer expressions may overflow, do long comparison
|
|
range = new ConvI2LNode(range);
|
|
register_new_node(range, ctrl);
|
|
cmp = new CmpULNode(max_idx_expr, range);
|
|
} else {
|
|
cmp = new CmpUNode(max_idx_expr, range);
|
|
}
|
|
register_new_node(cmp, ctrl);
|
|
BoolNode* bol = new BoolNode(cmp, negate ? BoolTest::ge : BoolTest::lt);
|
|
register_new_node(bol, ctrl);
|
|
|
|
if (TraceLoopPredicate) {
|
|
predString->print_cr("<u range");
|
|
tty->print("%s", predString->base());
|
|
predString->~stringStream();
|
|
}
|
|
return bol;
|
|
}
|
|
|
|
// Should loop predication look not only in the path from tail to head
|
|
// but also in branches of the loop body?
|
|
bool PhaseIdealLoop::loop_predication_should_follow_branches(IdealLoopTree *loop, ProjNode *predicate_proj, float& loop_trip_cnt) {
|
|
if (!UseProfiledLoopPredicate) {
|
|
return false;
|
|
}
|
|
|
|
if (predicate_proj == NULL) {
|
|
return false;
|
|
}
|
|
|
|
LoopNode* head = loop->_head->as_Loop();
|
|
bool follow_branches = true;
|
|
IdealLoopTree* l = loop->_child;
|
|
// For leaf loops and loops with a single inner loop
|
|
while (l != NULL && follow_branches) {
|
|
IdealLoopTree* child = l;
|
|
if (child->_child != NULL &&
|
|
child->_head->is_OuterStripMinedLoop()) {
|
|
assert(child->_child->_next == NULL, "only one inner loop for strip mined loop");
|
|
assert(child->_child->_head->is_CountedLoop() && child->_child->_head->as_CountedLoop()->is_strip_mined(), "inner loop should be strip mined");
|
|
child = child->_child;
|
|
}
|
|
if (child->_child != NULL || child->_irreducible) {
|
|
follow_branches = false;
|
|
}
|
|
l = l->_next;
|
|
}
|
|
if (follow_branches) {
|
|
loop->compute_profile_trip_cnt(this);
|
|
if (head->is_profile_trip_failed()) {
|
|
follow_branches = false;
|
|
} else {
|
|
loop_trip_cnt = head->profile_trip_cnt();
|
|
if (head->is_CountedLoop()) {
|
|
CountedLoopNode* cl = head->as_CountedLoop();
|
|
if (cl->phi() != NULL) {
|
|
const TypeInt* t = _igvn.type(cl->phi())->is_int();
|
|
float worst_case_trip_cnt = ((float)t->_hi - t->_lo) / ABS(cl->stride_con());
|
|
if (worst_case_trip_cnt < loop_trip_cnt) {
|
|
loop_trip_cnt = worst_case_trip_cnt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return follow_branches;
|
|
}
|
|
|
|
// Compute probability of reaching some CFG node from a fixed
|
|
// dominating CFG node
|
|
class PathFrequency {
|
|
private:
|
|
Node* _dom; // frequencies are computed relative to this node
|
|
Node_Stack _stack;
|
|
GrowableArray<float> _freqs_stack; // keep track of intermediate result at regions
|
|
GrowableArray<float> _freqs; // cache frequencies
|
|
PhaseIdealLoop* _phase;
|
|
|
|
float check_and_truncate_frequency(float f) {
|
|
assert(f >= 0, "Incorrect frequency");
|
|
// We do not perform an exact (f <= 1) check
|
|
// this would be error prone with rounding of floats.
|
|
// Performing a check like (f <= 1+eps) would be of benefit,
|
|
// however, it is not evident how to determine such an eps,
|
|
// given that an arbitrary number of add/mul operations
|
|
// are performed on these frequencies.
|
|
return (f > 1) ? 1 : f;
|
|
}
|
|
|
|
public:
|
|
PathFrequency(Node* dom, PhaseIdealLoop* phase)
|
|
: _dom(dom), _stack(0), _phase(phase) {
|
|
}
|
|
|
|
float to(Node* n) {
|
|
// post order walk on the CFG graph from n to _dom
|
|
IdealLoopTree* loop = _phase->get_loop(_dom);
|
|
Node* c = n;
|
|
for (;;) {
|
|
assert(_phase->get_loop(c) == loop, "have to be in the same loop");
|
|
if (c == _dom || _freqs.at_grow(c->_idx, -1) >= 0) {
|
|
float f = c == _dom ? 1 : _freqs.at(c->_idx);
|
|
Node* prev = c;
|
|
while (_stack.size() > 0 && prev == c) {
|
|
Node* n = _stack.node();
|
|
if (!n->is_Region()) {
|
|
if (_phase->get_loop(n) != _phase->get_loop(n->in(0))) {
|
|
// Found an inner loop: compute frequency of reaching this
|
|
// exit from the loop head by looking at the number of
|
|
// times each loop exit was taken
|
|
IdealLoopTree* inner_loop = _phase->get_loop(n->in(0));
|
|
LoopNode* inner_head = inner_loop->_head->as_Loop();
|
|
assert(_phase->get_loop(n) == loop, "only 1 inner loop");
|
|
if (inner_head->is_OuterStripMinedLoop()) {
|
|
inner_head->verify_strip_mined(1);
|
|
if (n->in(0) == inner_head->in(LoopNode::LoopBackControl)->in(0)) {
|
|
n = n->in(0)->in(0)->in(0);
|
|
}
|
|
inner_loop = inner_loop->_child;
|
|
inner_head = inner_loop->_head->as_Loop();
|
|
inner_head->verify_strip_mined(1);
|
|
}
|
|
float loop_exit_cnt = 0.0f;
|
|
for (uint i = 0; i < inner_loop->_body.size(); i++) {
|
|
Node *n = inner_loop->_body[i];
|
|
float c = inner_loop->compute_profile_trip_cnt_helper(n);
|
|
loop_exit_cnt += c;
|
|
}
|
|
float cnt = -1;
|
|
if (n->in(0)->is_If()) {
|
|
IfNode* iff = n->in(0)->as_If();
|
|
float p = n->in(0)->as_If()->_prob;
|
|
if (n->Opcode() == Op_IfFalse) {
|
|
p = 1 - p;
|
|
}
|
|
if (p > PROB_MIN) {
|
|
cnt = p * iff->_fcnt;
|
|
} else {
|
|
cnt = 0;
|
|
}
|
|
} else {
|
|
assert(n->in(0)->is_Jump(), "unsupported node kind");
|
|
JumpNode* jmp = n->in(0)->as_Jump();
|
|
float p = n->in(0)->as_Jump()->_probs[n->as_JumpProj()->_con];
|
|
cnt = p * jmp->_fcnt;
|
|
}
|
|
float this_exit_f = cnt > 0 ? cnt / loop_exit_cnt : 0;
|
|
this_exit_f = check_and_truncate_frequency(this_exit_f);
|
|
f = f * this_exit_f;
|
|
f = check_and_truncate_frequency(f);
|
|
} else {
|
|
float p = -1;
|
|
if (n->in(0)->is_If()) {
|
|
p = n->in(0)->as_If()->_prob;
|
|
if (n->Opcode() == Op_IfFalse) {
|
|
p = 1 - p;
|
|
}
|
|
} else {
|
|
assert(n->in(0)->is_Jump(), "unsupported node kind");
|
|
p = n->in(0)->as_Jump()->_probs[n->as_JumpProj()->_con];
|
|
}
|
|
f = f * p;
|
|
f = check_and_truncate_frequency(f);
|
|
}
|
|
_freqs.at_put_grow(n->_idx, (float)f, -1);
|
|
_stack.pop();
|
|
} else {
|
|
float prev_f = _freqs_stack.pop();
|
|
float new_f = f;
|
|
f = new_f + prev_f;
|
|
f = check_and_truncate_frequency(f);
|
|
uint i = _stack.index();
|
|
if (i < n->req()) {
|
|
c = n->in(i);
|
|
_stack.set_index(i+1);
|
|
_freqs_stack.push(f);
|
|
} else {
|
|
_freqs.at_put_grow(n->_idx, f, -1);
|
|
_stack.pop();
|
|
}
|
|
}
|
|
}
|
|
if (_stack.size() == 0) {
|
|
return check_and_truncate_frequency(f);
|
|
}
|
|
} else if (c->is_Loop()) {
|
|
ShouldNotReachHere();
|
|
c = c->in(LoopNode::EntryControl);
|
|
} else if (c->is_Region()) {
|
|
_freqs_stack.push(0);
|
|
_stack.push(c, 2);
|
|
c = c->in(1);
|
|
} else {
|
|
if (c->is_IfProj()) {
|
|
IfNode* iff = c->in(0)->as_If();
|
|
if (iff->_prob == PROB_UNKNOWN) {
|
|
// assume never taken
|
|
_freqs.at_put_grow(c->_idx, 0, -1);
|
|
} else if (_phase->get_loop(c) != _phase->get_loop(iff)) {
|
|
if (iff->_fcnt == COUNT_UNKNOWN) {
|
|
// assume never taken
|
|
_freqs.at_put_grow(c->_idx, 0, -1);
|
|
} else {
|
|
// skip over loop
|
|
_stack.push(c, 1);
|
|
c = _phase->get_loop(c->in(0))->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl);
|
|
}
|
|
} else {
|
|
_stack.push(c, 1);
|
|
c = iff;
|
|
}
|
|
} else if (c->is_JumpProj()) {
|
|
JumpNode* jmp = c->in(0)->as_Jump();
|
|
if (_phase->get_loop(c) != _phase->get_loop(jmp)) {
|
|
if (jmp->_fcnt == COUNT_UNKNOWN) {
|
|
// assume never taken
|
|
_freqs.at_put_grow(c->_idx, 0, -1);
|
|
} else {
|
|
// skip over loop
|
|
_stack.push(c, 1);
|
|
c = _phase->get_loop(c->in(0))->_head->as_Loop()->skip_strip_mined()->in(LoopNode::EntryControl);
|
|
}
|
|
} else {
|
|
_stack.push(c, 1);
|
|
c = jmp;
|
|
}
|
|
} else if (c->Opcode() == Op_CatchProj &&
|
|
c->in(0)->Opcode() == Op_Catch &&
|
|
c->in(0)->in(0)->is_Proj() &&
|
|
c->in(0)->in(0)->in(0)->is_Call()) {
|
|
// assume exceptions are never thrown
|
|
uint con = c->as_Proj()->_con;
|
|
if (con == CatchProjNode::fall_through_index) {
|
|
Node* call = c->in(0)->in(0)->in(0)->in(0);
|
|
if (_phase->get_loop(call) != _phase->get_loop(c)) {
|
|
_freqs.at_put_grow(c->_idx, 0, -1);
|
|
} else {
|
|
c = call;
|
|
}
|
|
} else {
|
|
assert(con >= CatchProjNode::catch_all_index, "what else?");
|
|
_freqs.at_put_grow(c->_idx, 0, -1);
|
|
}
|
|
} else if (c->unique_ctrl_out() == NULL && !c->is_If() && !c->is_Jump()) {
|
|
ShouldNotReachHere();
|
|
} else {
|
|
c = c->in(0);
|
|
}
|
|
}
|
|
}
|
|
ShouldNotReachHere();
|
|
return -1;
|
|
}
|
|
};
|
|
|
|
void PhaseIdealLoop::loop_predication_follow_branches(Node *n, IdealLoopTree *loop, float loop_trip_cnt,
|
|
PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
|
|
Node_List& if_proj_list) {
|
|
assert(n->is_Region(), "start from a region");
|
|
Node* tail = loop->tail();
|
|
stack.push(n, 1);
|
|
do {
|
|
Node* c = stack.node();
|
|
assert(c->is_Region() || c->is_IfProj(), "only region here");
|
|
uint i = stack.index();
|
|
|
|
if (i < c->req()) {
|
|
stack.set_index(i+1);
|
|
Node* in = c->in(i);
|
|
while (!is_dominator(in, tail) && !seen.test_set(in->_idx)) {
|
|
IdealLoopTree* in_loop = get_loop(in);
|
|
if (in_loop != loop) {
|
|
in = in_loop->_head->in(LoopNode::EntryControl);
|
|
} else if (in->is_Region()) {
|
|
stack.push(in, 1);
|
|
break;
|
|
} else if (in->is_IfProj() &&
|
|
in->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) &&
|
|
(in->in(0)->Opcode() == Op_If ||
|
|
in->in(0)->Opcode() == Op_RangeCheck)) {
|
|
if (pf.to(in) * loop_trip_cnt >= 1) {
|
|
stack.push(in, 1);
|
|
}
|
|
in = in->in(0);
|
|
} else {
|
|
in = in->in(0);
|
|
}
|
|
}
|
|
} else {
|
|
if (c->is_IfProj()) {
|
|
if_proj_list.push(c);
|
|
}
|
|
stack.pop();
|
|
}
|
|
|
|
} while (stack.size() > 0);
|
|
}
|
|
|
|
|
|
bool PhaseIdealLoop::loop_predication_impl_helper(IdealLoopTree *loop, ProjNode* proj, ProjNode *predicate_proj,
|
|
CountedLoopNode *cl, ConNode* zero, Invariance& invar,
|
|
Deoptimization::DeoptReason reason) {
|
|
// Following are changed to nonnull when a predicate can be hoisted
|
|
ProjNode* new_predicate_proj = NULL;
|
|
IfNode* iff = proj->in(0)->as_If();
|
|
Node* test = iff->in(1);
|
|
if (!test->is_Bool()){ //Conv2B, ...
|
|
return false;
|
|
}
|
|
BoolNode* bol = test->as_Bool();
|
|
if (invar.is_invariant(bol)) {
|
|
// Invariant test
|
|
new_predicate_proj = create_new_if_for_predicate(predicate_proj, NULL,
|
|
reason,
|
|
iff->Opcode());
|
|
Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
|
|
BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
|
|
|
|
// Negate test if necessary
|
|
bool negated = false;
|
|
if (proj->_con != predicate_proj->_con) {
|
|
new_predicate_bol = new BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
|
|
register_new_node(new_predicate_bol, ctrl);
|
|
negated = true;
|
|
}
|
|
IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
|
|
_igvn.hash_delete(new_predicate_iff);
|
|
new_predicate_iff->set_req(1, new_predicate_bol);
|
|
#ifndef PRODUCT
|
|
if (TraceLoopPredicate) {
|
|
tty->print("Predicate invariant if%s: %d ", negated ? " negated" : "", new_predicate_iff->_idx);
|
|
loop->dump_head();
|
|
} else if (TraceLoopOpts) {
|
|
tty->print("Predicate IC ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
} else if (cl != NULL && loop->is_range_check_if(iff, this, invar DEBUG_ONLY(COMMA predicate_proj))) {
|
|
// Range check for counted loops
|
|
const Node* cmp = bol->in(1)->as_Cmp();
|
|
Node* idx = cmp->in(1);
|
|
assert(!invar.is_invariant(idx), "index is variant");
|
|
Node* rng = cmp->in(2);
|
|
assert(rng->Opcode() == Op_LoadRange || iff->is_RangeCheck() || _igvn.type(rng)->is_int()->_lo >= 0, "must be");
|
|
assert(invar.is_invariant(rng), "range must be invariant");
|
|
int scale = 1;
|
|
Node* offset = zero;
|
|
bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
|
|
assert(ok, "must be index expression");
|
|
|
|
Node* init = cl->init_trip();
|
|
// Limit is not exact.
|
|
// Calculate exact limit here.
|
|
// Note, counted loop's test is '<' or '>'.
|
|
loop->compute_trip_count(this);
|
|
Node* limit = exact_limit(loop);
|
|
int stride = cl->stride()->get_int();
|
|
|
|
// Build if's for the upper and lower bound tests. The
|
|
// lower_bound test will dominate the upper bound test and all
|
|
// cloned or created nodes will use the lower bound test as
|
|
// their declared control.
|
|
|
|
// Perform cloning to keep Invariance state correct since the
|
|
// late schedule will place invariant things in the loop.
|
|
Node *ctrl = predicate_proj->in(0)->as_If()->in(0);
|
|
rng = invar.clone(rng, ctrl);
|
|
if (offset && offset != zero) {
|
|
assert(invar.is_invariant(offset), "offset must be loop invariant");
|
|
offset = invar.clone(offset, ctrl);
|
|
}
|
|
// If predicate expressions may overflow in the integer range, longs are used.
|
|
bool overflow = false;
|
|
bool negate = (proj->_con != predicate_proj->_con);
|
|
|
|
// Test the lower bound
|
|
BoolNode* lower_bound_bol = rc_predicate(loop, ctrl, scale, offset, init, limit, stride, rng, false, overflow, negate);
|
|
|
|
ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, reason, overflow ? Op_If : iff->Opcode());
|
|
IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
|
|
_igvn.hash_delete(lower_bound_iff);
|
|
lower_bound_iff->set_req(1, lower_bound_bol);
|
|
if (TraceLoopPredicate) tty->print_cr("lower bound check if: %s %d ", negate ? " negated" : "", lower_bound_iff->_idx);
|
|
|
|
// Test the upper bound
|
|
BoolNode* upper_bound_bol = rc_predicate(loop, lower_bound_proj, scale, offset, init, limit, stride, rng, true, overflow, negate);
|
|
|
|
ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, reason, overflow ? Op_If : iff->Opcode());
|
|
assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
|
|
IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
|
|
_igvn.hash_delete(upper_bound_iff);
|
|
upper_bound_iff->set_req(1, upper_bound_bol);
|
|
if (TraceLoopPredicate) tty->print_cr("upper bound check if: %s %d ", negate ? " negated" : "", lower_bound_iff->_idx);
|
|
|
|
// Fall through into rest of the clean up code which will move
|
|
// any dependent nodes onto the upper bound test.
|
|
new_predicate_proj = upper_bound_proj;
|
|
|
|
if (iff->is_RangeCheck()) {
|
|
new_predicate_proj = insert_initial_skeleton_predicate(iff, loop, proj, predicate_proj, upper_bound_proj, scale, offset, init, limit, stride, rng, overflow, reason);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (TraceLoopOpts && !TraceLoopPredicate) {
|
|
tty->print("Predicate RC ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
} else {
|
|
// Loop variant check (for example, range check in non-counted loop)
|
|
// with uncommon trap.
|
|
return false;
|
|
}
|
|
assert(new_predicate_proj != NULL, "sanity");
|
|
// Success - attach condition (new_predicate_bol) to predicate if
|
|
invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
|
|
|
|
// Eliminate the old If in the loop body
|
|
dominated_by( new_predicate_proj, iff, proj->_con != new_predicate_proj->_con );
|
|
|
|
C->set_major_progress();
|
|
return true;
|
|
}
|
|
|
|
|
|
// After pre/main/post loops are created, we'll put a copy of some
|
|
// range checks between the pre and main loop to validate the value
|
|
// of the main loop induction variable. Make a copy of the predicates
|
|
// here with an opaque node as a place holder for the value (will be
|
|
// updated by PhaseIdealLoop::clone_skeleton_predicate()).
|
|
ProjNode* PhaseIdealLoop::insert_initial_skeleton_predicate(IfNode* iff, IdealLoopTree *loop,
|
|
ProjNode* proj, ProjNode *predicate_proj,
|
|
ProjNode* upper_bound_proj,
|
|
int scale, Node* offset,
|
|
Node* init, Node* limit, jint stride,
|
|
Node* rng, bool &overflow,
|
|
Deoptimization::DeoptReason reason) {
|
|
// First predicate for the initial value on first loop iteration
|
|
Node* opaque_init = new OpaqueLoopInitNode(C, init);
|
|
register_new_node(opaque_init, upper_bound_proj);
|
|
bool negate = (proj->_con != predicate_proj->_con);
|
|
BoolNode* bol = rc_predicate(loop, upper_bound_proj, scale, offset, opaque_init, limit, stride, rng, (stride > 0) != (scale > 0), overflow, negate);
|
|
Node* opaque_bol = new Opaque4Node(C, bol, _igvn.intcon(1)); // This will go away once loop opts are over
|
|
C->add_skeleton_predicate_opaq(opaque_bol);
|
|
register_new_node(opaque_bol, upper_bound_proj);
|
|
ProjNode* new_proj = create_new_if_for_predicate(predicate_proj, NULL, reason, overflow ? Op_If : iff->Opcode());
|
|
_igvn.replace_input_of(new_proj->in(0), 1, opaque_bol);
|
|
assert(opaque_init->outcnt() > 0, "should be used");
|
|
|
|
// Second predicate for init + (current stride - initial stride)
|
|
// This is identical to the previous predicate initially but as
|
|
// unrolling proceeds current stride is updated.
|
|
Node* init_stride = loop->_head->as_CountedLoop()->stride();
|
|
Node* opaque_stride = new OpaqueLoopStrideNode(C, init_stride);
|
|
register_new_node(opaque_stride, new_proj);
|
|
Node* max_value = new SubINode(opaque_stride, init_stride);
|
|
register_new_node(max_value, new_proj);
|
|
max_value = new AddINode(opaque_init, max_value);
|
|
register_new_node(max_value, new_proj);
|
|
bol = rc_predicate(loop, new_proj, scale, offset, max_value, limit, stride, rng, (stride > 0) != (scale > 0), overflow, negate);
|
|
opaque_bol = new Opaque4Node(C, bol, _igvn.intcon(1));
|
|
C->add_skeleton_predicate_opaq(opaque_bol);
|
|
register_new_node(opaque_bol, new_proj);
|
|
new_proj = create_new_if_for_predicate(predicate_proj, NULL, reason, overflow ? Op_If : iff->Opcode());
|
|
_igvn.replace_input_of(new_proj->in(0), 1, opaque_bol);
|
|
assert(max_value->outcnt() > 0, "should be used");
|
|
|
|
return new_proj;
|
|
}
|
|
|
|
//------------------------------ loop_predication_impl--------------------------
|
|
// Insert loop predicates for null checks and range checks
|
|
bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
|
|
if (!UseLoopPredicate) return false;
|
|
|
|
if (!loop->_head->is_Loop()) {
|
|
// Could be a simple region when irreducible loops are present.
|
|
return false;
|
|
}
|
|
LoopNode* head = loop->_head->as_Loop();
|
|
|
|
if (head->unique_ctrl_out()->Opcode() == Op_NeverBranch) {
|
|
// do nothing for infinite loops
|
|
return false;
|
|
}
|
|
|
|
if (head->is_OuterStripMinedLoop()) {
|
|
return false;
|
|
}
|
|
|
|
CountedLoopNode *cl = NULL;
|
|
if (head->is_valid_counted_loop(T_INT)) {
|
|
cl = head->as_CountedLoop();
|
|
// do nothing for iteration-splitted loops
|
|
if (!cl->is_normal_loop()) return false;
|
|
// Avoid RCE if Counted loop's test is '!='.
|
|
BoolTest::mask bt = cl->loopexit()->test_trip();
|
|
if (bt != BoolTest::lt && bt != BoolTest::gt)
|
|
cl = NULL;
|
|
}
|
|
|
|
Node* entry = head->skip_strip_mined()->in(LoopNode::EntryControl);
|
|
ProjNode *loop_limit_proj = NULL;
|
|
ProjNode *predicate_proj = NULL;
|
|
ProjNode *profile_predicate_proj = NULL;
|
|
// Loop limit check predicate should be near the loop.
|
|
loop_limit_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
|
|
if (loop_limit_proj != NULL) {
|
|
entry = skip_loop_predicates(loop_limit_proj);
|
|
}
|
|
bool has_profile_predicates = false;
|
|
profile_predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_profile_predicate);
|
|
if (profile_predicate_proj != NULL) {
|
|
Node* n = skip_loop_predicates(entry);
|
|
// Check if predicates were already added to the profile predicate
|
|
// block
|
|
if (n != entry->in(0)->in(0) || n->outcnt() != 1) {
|
|
has_profile_predicates = true;
|
|
}
|
|
entry = n;
|
|
}
|
|
predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
|
|
|
|
float loop_trip_cnt = -1;
|
|
bool follow_branches = loop_predication_should_follow_branches(loop, profile_predicate_proj, loop_trip_cnt);
|
|
assert(!follow_branches || loop_trip_cnt >= 0, "negative trip count?");
|
|
|
|
if (predicate_proj == NULL && !follow_branches) {
|
|
#ifndef PRODUCT
|
|
if (TraceLoopPredicate) {
|
|
tty->print("missing predicate:");
|
|
loop->dump_head();
|
|
head->dump(1);
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
ConNode* zero = _igvn.intcon(0);
|
|
set_ctrl(zero, C->root());
|
|
|
|
ResourceArea* area = Thread::current()->resource_area();
|
|
Invariance invar(area, loop);
|
|
|
|
// Create list of if-projs such that a newer proj dominates all older
|
|
// projs in the list, and they all dominate loop->tail()
|
|
Node_List if_proj_list;
|
|
Node_List regions;
|
|
Node* current_proj = loop->tail(); // start from tail
|
|
|
|
|
|
Node_List controls;
|
|
while (current_proj != head) {
|
|
if (loop == get_loop(current_proj) && // still in the loop ?
|
|
current_proj->is_Proj() && // is a projection ?
|
|
(current_proj->in(0)->Opcode() == Op_If ||
|
|
current_proj->in(0)->Opcode() == Op_RangeCheck)) { // is a if projection ?
|
|
if_proj_list.push(current_proj);
|
|
}
|
|
if (follow_branches &&
|
|
current_proj->Opcode() == Op_Region &&
|
|
loop == get_loop(current_proj)) {
|
|
regions.push(current_proj);
|
|
}
|
|
current_proj = idom(current_proj);
|
|
}
|
|
|
|
bool hoisted = false; // true if at least one proj is promoted
|
|
|
|
if (!has_profile_predicates) {
|
|
while (if_proj_list.size() > 0) {
|
|
Node* n = if_proj_list.pop();
|
|
|
|
ProjNode* proj = n->as_Proj();
|
|
IfNode* iff = proj->in(0)->as_If();
|
|
|
|
CallStaticJavaNode* call = proj->is_uncommon_trap_if_pattern(Deoptimization::Reason_none);
|
|
if (call == NULL) {
|
|
if (loop->is_loop_exit(iff)) {
|
|
// stop processing the remaining projs in the list because the execution of them
|
|
// depends on the condition of "iff" (iff->in(1)).
|
|
break;
|
|
} else {
|
|
// Both arms are inside the loop. There are two cases:
|
|
// (1) there is one backward branch. In this case, any remaining proj
|
|
// in the if_proj list post-dominates "iff". So, the condition of "iff"
|
|
// does not determine the execution the remining projs directly, and we
|
|
// can safely continue.
|
|
// (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
|
|
// does not dominate loop->tail(), so it can not be in the if_proj list.
|
|
continue;
|
|
}
|
|
}
|
|
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(call->uncommon_trap_request());
|
|
if (reason == Deoptimization::Reason_predicate) {
|
|
break;
|
|
}
|
|
|
|
if (predicate_proj != NULL) {
|
|
hoisted = loop_predication_impl_helper(loop, proj, predicate_proj, cl, zero, invar, Deoptimization::Reason_predicate) | hoisted;
|
|
}
|
|
} // end while
|
|
}
|
|
|
|
if (follow_branches) {
|
|
PathFrequency pf(loop->_head, this);
|
|
|
|
// Some projections were skipped by regular predicates because of
|
|
// an early loop exit. Try them with profile data.
|
|
while (if_proj_list.size() > 0) {
|
|
Node* proj = if_proj_list.pop();
|
|
float f = pf.to(proj);
|
|
if (proj->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none) &&
|
|
f * loop_trip_cnt >= 1) {
|
|
hoisted = loop_predication_impl_helper(loop, proj->as_Proj(), profile_predicate_proj, cl, zero, invar, Deoptimization::Reason_profile_predicate) | hoisted;
|
|
}
|
|
}
|
|
|
|
// And look into all branches
|
|
Node_Stack stack(0);
|
|
VectorSet seen;
|
|
Node_List if_proj_list_freq(area);
|
|
while (regions.size() > 0) {
|
|
Node* c = regions.pop();
|
|
loop_predication_follow_branches(c, loop, loop_trip_cnt, pf, stack, seen, if_proj_list_freq);
|
|
}
|
|
|
|
for (uint i = 0; i < if_proj_list_freq.size(); i++) {
|
|
ProjNode* proj = if_proj_list_freq.at(i)->as_Proj();
|
|
hoisted = loop_predication_impl_helper(loop, proj, profile_predicate_proj, cl, zero, invar, Deoptimization::Reason_profile_predicate) | hoisted;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// report that the loop predication has been actually performed
|
|
// for this loop
|
|
if (TraceLoopPredicate && hoisted) {
|
|
tty->print("Loop Predication Performed:");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
|
|
head->verify_strip_mined(1);
|
|
|
|
return hoisted;
|
|
}
|
|
|
|
//------------------------------loop_predication--------------------------------
|
|
// driver routine for loop predication optimization
|
|
bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
|
|
bool hoisted = false;
|
|
// Recursively promote predicates
|
|
if (_child) {
|
|
hoisted = _child->loop_predication( phase);
|
|
}
|
|
|
|
// self
|
|
if (!_irreducible && !tail()->is_top()) {
|
|
hoisted |= phase->loop_predication_impl(this);
|
|
}
|
|
|
|
if (_next) { //sibling
|
|
hoisted |= _next->loop_predication( phase);
|
|
}
|
|
|
|
return hoisted;
|
|
}
|