mirror of
https://github.com/openjdk/jdk16u.git
synced 2025-12-12 14:45:48 -06:00
1815 lines
61 KiB
C++
1815 lines
61 KiB
C++
/*
|
|
* Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "jvm.h"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "os_posix.inline.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/orderAccess.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/formatBuffer.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
#include <dirent.h>
|
|
#include <dlfcn.h>
|
|
#include <grp.h>
|
|
#include <pwd.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/utsname.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <utmpx.h>
|
|
|
|
#define ROOT_UID 0
|
|
|
|
#ifndef MAP_ANONYMOUS
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
#define check_with_errno(check_type, cond, msg) \
|
|
do { \
|
|
int err = errno; \
|
|
check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err), \
|
|
os::errno_name(err)); \
|
|
} while (false)
|
|
|
|
#define assert_with_errno(cond, msg) check_with_errno(assert, cond, msg)
|
|
#define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
|
|
|
|
// Check core dump limit and report possible place where core can be found
|
|
void os::check_dump_limit(char* buffer, size_t bufferSize) {
|
|
if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
|
|
jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
|
|
VMError::record_coredump_status(buffer, false);
|
|
return;
|
|
}
|
|
|
|
int n;
|
|
struct rlimit rlim;
|
|
bool success;
|
|
|
|
char core_path[PATH_MAX];
|
|
n = get_core_path(core_path, PATH_MAX);
|
|
|
|
if (n <= 0) {
|
|
jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
|
|
success = true;
|
|
#ifdef LINUX
|
|
} else if (core_path[0] == '"') { // redirect to user process
|
|
jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
|
|
success = true;
|
|
#endif
|
|
} else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
|
|
jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
|
|
success = true;
|
|
} else {
|
|
switch(rlim.rlim_cur) {
|
|
case RLIM_INFINITY:
|
|
jio_snprintf(buffer, bufferSize, "%s", core_path);
|
|
success = true;
|
|
break;
|
|
case 0:
|
|
jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
|
|
success = false;
|
|
break;
|
|
default:
|
|
jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
|
|
success = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
VMError::record_coredump_status(buffer, success);
|
|
}
|
|
|
|
int os::get_native_stack(address* stack, int frames, int toSkip) {
|
|
int frame_idx = 0;
|
|
int num_of_frames; // number of frames captured
|
|
frame fr = os::current_frame();
|
|
while (fr.pc() && frame_idx < frames) {
|
|
if (toSkip > 0) {
|
|
toSkip --;
|
|
} else {
|
|
stack[frame_idx ++] = fr.pc();
|
|
}
|
|
if (fr.fp() == NULL || fr.cb() != NULL ||
|
|
fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
|
|
|
|
if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
|
|
fr = os::get_sender_for_C_frame(&fr);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
num_of_frames = frame_idx;
|
|
for (; frame_idx < frames; frame_idx ++) {
|
|
stack[frame_idx] = NULL;
|
|
}
|
|
|
|
return num_of_frames;
|
|
}
|
|
|
|
|
|
bool os::unsetenv(const char* name) {
|
|
assert(name != NULL, "Null pointer");
|
|
return (::unsetenv(name) == 0);
|
|
}
|
|
|
|
int os::get_last_error() {
|
|
return errno;
|
|
}
|
|
|
|
size_t os::lasterror(char *buf, size_t len) {
|
|
if (errno == 0) return 0;
|
|
|
|
const char *s = os::strerror(errno);
|
|
size_t n = ::strlen(s);
|
|
if (n >= len) {
|
|
n = len - 1;
|
|
}
|
|
::strncpy(buf, s, n);
|
|
buf[n] = '\0';
|
|
return n;
|
|
}
|
|
|
|
void os::wait_for_keypress_at_exit(void) {
|
|
// don't do anything on posix platforms
|
|
return;
|
|
}
|
|
|
|
int os::create_file_for_heap(const char* dir) {
|
|
int fd;
|
|
|
|
#if defined(LINUX) && defined(O_TMPFILE)
|
|
char* native_dir = os::strdup(dir);
|
|
if (native_dir == NULL) {
|
|
vm_exit_during_initialization(err_msg("strdup failed during creation of backing file for heap (%s)", os::strerror(errno)));
|
|
return -1;
|
|
}
|
|
os::native_path(native_dir);
|
|
fd = os::open(dir, O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR);
|
|
os::free(native_dir);
|
|
|
|
if (fd == -1)
|
|
#endif
|
|
{
|
|
const char name_template[] = "/jvmheap.XXXXXX";
|
|
|
|
size_t fullname_len = strlen(dir) + strlen(name_template);
|
|
char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
|
|
if (fullname == NULL) {
|
|
vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
|
|
return -1;
|
|
}
|
|
int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
|
|
assert((size_t)n == fullname_len, "Unexpected number of characters in string");
|
|
|
|
os::native_path(fullname);
|
|
|
|
// create a new file.
|
|
fd = mkstemp(fullname);
|
|
|
|
if (fd < 0) {
|
|
warning("Could not create file for heap with template %s", fullname);
|
|
os::free(fullname);
|
|
return -1;
|
|
} else {
|
|
// delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted.
|
|
int ret = unlink(fullname);
|
|
assert_with_errno(ret == 0, "unlink returned error");
|
|
}
|
|
|
|
os::free(fullname);
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) {
|
|
char * addr;
|
|
int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS;
|
|
if (requested_addr != NULL) {
|
|
assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size");
|
|
flags |= MAP_FIXED;
|
|
}
|
|
|
|
// Map reserved/uncommitted pages PROT_NONE so we fail early if we
|
|
// touch an uncommitted page. Otherwise, the read/write might
|
|
// succeed if we have enough swap space to back the physical page.
|
|
addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
|
|
flags, -1, 0);
|
|
|
|
if (addr != MAP_FAILED) {
|
|
MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC);
|
|
return addr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int util_posix_fallocate(int fd, off_t offset, off_t len) {
|
|
#ifdef __APPLE__
|
|
fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len };
|
|
// First we try to get a continuous chunk of disk space
|
|
int ret = fcntl(fd, F_PREALLOCATE, &store);
|
|
if (ret == -1) {
|
|
// Maybe we are too fragmented, try to allocate non-continuous range
|
|
store.fst_flags = F_ALLOCATEALL;
|
|
ret = fcntl(fd, F_PREALLOCATE, &store);
|
|
}
|
|
if(ret != -1) {
|
|
return ftruncate(fd, len);
|
|
}
|
|
return -1;
|
|
#else
|
|
return posix_fallocate(fd, offset, len);
|
|
#endif
|
|
}
|
|
|
|
// Map the given address range to the provided file descriptor.
|
|
char* os::map_memory_to_file(char* base, size_t size, int fd) {
|
|
assert(fd != -1, "File descriptor is not valid");
|
|
|
|
// allocate space for the file
|
|
int ret = util_posix_fallocate(fd, 0, (off_t)size);
|
|
if (ret != 0) {
|
|
vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret));
|
|
return NULL;
|
|
}
|
|
|
|
int prot = PROT_READ | PROT_WRITE;
|
|
int flags = MAP_SHARED;
|
|
if (base != NULL) {
|
|
flags |= MAP_FIXED;
|
|
}
|
|
char* addr = (char*)mmap(base, size, prot, flags, fd, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
warning("Failed mmap to file. (%s)", os::strerror(errno));
|
|
return NULL;
|
|
}
|
|
if (base != NULL && addr != base) {
|
|
if (!os::release_memory(addr, size)) {
|
|
warning("Could not release memory on unsuccessful file mapping");
|
|
}
|
|
return NULL;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
|
|
assert(fd != -1, "File descriptor is not valid");
|
|
assert(base != NULL, "Base cannot be NULL");
|
|
|
|
return map_memory_to_file(base, size, fd);
|
|
}
|
|
|
|
static size_t calculate_aligned_extra_size(size_t size, size_t alignment) {
|
|
assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
|
|
"Alignment must be a multiple of allocation granularity (page size)");
|
|
assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
|
|
|
|
size_t extra_size = size + alignment;
|
|
assert(extra_size >= size, "overflow, size is too large to allow alignment");
|
|
return extra_size;
|
|
}
|
|
|
|
// After a bigger chunk was mapped, unmaps start and end parts to get the requested alignment.
|
|
static char* chop_extra_memory(size_t size, size_t alignment, char* extra_base, size_t extra_size) {
|
|
// Do manual alignment
|
|
char* aligned_base = align_up(extra_base, alignment);
|
|
|
|
// [ | | ]
|
|
// ^ extra_base
|
|
// ^ extra_base + begin_offset == aligned_base
|
|
// extra_base + begin_offset + size ^
|
|
// extra_base + extra_size ^
|
|
// |<>| == begin_offset
|
|
// end_offset == |<>|
|
|
size_t begin_offset = aligned_base - extra_base;
|
|
size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
|
|
|
|
if (begin_offset > 0) {
|
|
os::release_memory(extra_base, begin_offset);
|
|
}
|
|
|
|
if (end_offset > 0) {
|
|
os::release_memory(extra_base + begin_offset + size, end_offset);
|
|
}
|
|
|
|
return aligned_base;
|
|
}
|
|
|
|
// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
|
|
// so on posix, unmap the section at the start and at the end of the chunk that we mapped
|
|
// rather than unmapping and remapping the whole chunk to get requested alignment.
|
|
char* os::reserve_memory_aligned(size_t size, size_t alignment) {
|
|
size_t extra_size = calculate_aligned_extra_size(size, alignment);
|
|
char* extra_base = os::reserve_memory(extra_size);
|
|
if (extra_base == NULL) {
|
|
return NULL;
|
|
}
|
|
return chop_extra_memory(size, alignment, extra_base, extra_size);
|
|
}
|
|
|
|
char* os::map_memory_to_file_aligned(size_t size, size_t alignment, int file_desc) {
|
|
size_t extra_size = calculate_aligned_extra_size(size, alignment);
|
|
// For file mapping, we do not call os:map_memory_to_file(size,fd) since:
|
|
// - we later chop away parts of the mapping using os::release_memory and that could fail if the
|
|
// original mmap call had been tied to an fd.
|
|
// - The memory API os::reserve_memory uses is an implementation detail. It may (and usually is)
|
|
// mmap but it also may System V shared memory which cannot be uncommitted as a whole, so
|
|
// chopping off and unmapping excess bits back and front (see below) would not work.
|
|
char* extra_base = reserve_mmapped_memory(extra_size, NULL);
|
|
if (extra_base == NULL) {
|
|
return NULL;
|
|
}
|
|
char* aligned_base = chop_extra_memory(size, alignment, extra_base, extra_size);
|
|
// After we have an aligned address, we can replace anonymous mapping with file mapping
|
|
if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) {
|
|
vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
|
|
}
|
|
MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC);
|
|
return aligned_base;
|
|
}
|
|
|
|
// On Posix platforms, reservations are done using mmap which can be released in parts. So splitting is a no-op.
|
|
void os::split_reserved_memory(char *base, size_t size, size_t split) {
|
|
char* const split_address = base + split;
|
|
assert(size > 0, "Sanity");
|
|
assert(size > split, "Sanity");
|
|
assert(split > 0, "Sanity");
|
|
assert(is_aligned(base, os::vm_allocation_granularity()), "Sanity");
|
|
assert(is_aligned(split_address, os::vm_allocation_granularity()), "Sanity");
|
|
|
|
// NMT: tell NMT to track both parts individually from now on.
|
|
MemTracker::record_virtual_memory_split_reserved(base, size, split);
|
|
|
|
}
|
|
|
|
int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
|
|
// All supported POSIX platforms provide C99 semantics.
|
|
int result = ::vsnprintf(buf, len, fmt, args);
|
|
// If an encoding error occurred (result < 0) then it's not clear
|
|
// whether the buffer is NUL terminated, so ensure it is.
|
|
if ((result < 0) && (len > 0)) {
|
|
buf[len - 1] = '\0';
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int os::get_fileno(FILE* fp) {
|
|
return NOT_AIX(::)fileno(fp);
|
|
}
|
|
|
|
struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
|
|
return gmtime_r(clock, res);
|
|
}
|
|
|
|
void os::Posix::print_load_average(outputStream* st) {
|
|
st->print("load average: ");
|
|
double loadavg[3];
|
|
int res = os::loadavg(loadavg, 3);
|
|
if (res != -1) {
|
|
st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
|
|
} else {
|
|
st->print(" Unavailable");
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
// boot/uptime information;
|
|
// unfortunately it does not work on macOS and Linux because the utx chain has no entry
|
|
// for reboot at least on my test machines
|
|
void os::Posix::print_uptime_info(outputStream* st) {
|
|
int bootsec = -1;
|
|
int currsec = time(NULL);
|
|
struct utmpx* ent;
|
|
setutxent();
|
|
while ((ent = getutxent())) {
|
|
if (!strcmp("system boot", ent->ut_line)) {
|
|
bootsec = ent->ut_tv.tv_sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bootsec != -1) {
|
|
os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec));
|
|
}
|
|
}
|
|
|
|
static void print_rlimit(outputStream* st, const char* msg,
|
|
int resource, bool output_k = false) {
|
|
struct rlimit rlim;
|
|
|
|
st->print(" %s ", msg);
|
|
int res = getrlimit(resource, &rlim);
|
|
if (res == -1) {
|
|
st->print("could not obtain value");
|
|
} else {
|
|
// soft limit
|
|
if (rlim.rlim_cur == RLIM_INFINITY) { st->print("infinity"); }
|
|
else {
|
|
if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024); }
|
|
else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); }
|
|
}
|
|
// hard limit
|
|
st->print("/");
|
|
if (rlim.rlim_max == RLIM_INFINITY) { st->print("infinity"); }
|
|
else {
|
|
if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_max) / 1024); }
|
|
else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_max)); }
|
|
}
|
|
}
|
|
}
|
|
|
|
void os::Posix::print_rlimit_info(outputStream* st) {
|
|
st->print("rlimit (soft/hard):");
|
|
print_rlimit(st, "STACK", RLIMIT_STACK, true);
|
|
print_rlimit(st, ", CORE", RLIMIT_CORE, true);
|
|
|
|
#if defined(AIX)
|
|
st->print(", NPROC ");
|
|
st->print("%d", sysconf(_SC_CHILD_MAX));
|
|
|
|
print_rlimit(st, ", THREADS", RLIMIT_THREADS);
|
|
#else
|
|
print_rlimit(st, ", NPROC", RLIMIT_NPROC);
|
|
#endif
|
|
|
|
print_rlimit(st, ", NOFILE", RLIMIT_NOFILE);
|
|
print_rlimit(st, ", AS", RLIMIT_AS, true);
|
|
print_rlimit(st, ", CPU", RLIMIT_CPU);
|
|
print_rlimit(st, ", DATA", RLIMIT_DATA, true);
|
|
|
|
// maximum size of files that the process may create
|
|
print_rlimit(st, ", FSIZE", RLIMIT_FSIZE, true);
|
|
|
|
#if defined(LINUX) || defined(__APPLE__)
|
|
// maximum number of bytes of memory that may be locked into RAM
|
|
// (rounded down to the nearest multiple of system pagesize)
|
|
print_rlimit(st, ", MEMLOCK", RLIMIT_MEMLOCK, true);
|
|
#endif
|
|
|
|
// MacOS; The maximum size (in bytes) to which a process's resident set size may grow.
|
|
#if defined(__APPLE__)
|
|
print_rlimit(st, ", RSS", RLIMIT_RSS, true);
|
|
#endif
|
|
|
|
st->cr();
|
|
}
|
|
|
|
void os::Posix::print_uname_info(outputStream* st) {
|
|
// kernel
|
|
st->print("uname: ");
|
|
struct utsname name;
|
|
uname(&name);
|
|
st->print("%s ", name.sysname);
|
|
#ifdef ASSERT
|
|
st->print("%s ", name.nodename);
|
|
#endif
|
|
st->print("%s ", name.release);
|
|
st->print("%s ", name.version);
|
|
st->print("%s", name.machine);
|
|
st->cr();
|
|
}
|
|
|
|
void os::Posix::print_umask(outputStream* st, mode_t umsk) {
|
|
st->print((umsk & S_IRUSR) ? "r" : "-");
|
|
st->print((umsk & S_IWUSR) ? "w" : "-");
|
|
st->print((umsk & S_IXUSR) ? "x" : "-");
|
|
st->print((umsk & S_IRGRP) ? "r" : "-");
|
|
st->print((umsk & S_IWGRP) ? "w" : "-");
|
|
st->print((umsk & S_IXGRP) ? "x" : "-");
|
|
st->print((umsk & S_IROTH) ? "r" : "-");
|
|
st->print((umsk & S_IWOTH) ? "w" : "-");
|
|
st->print((umsk & S_IXOTH) ? "x" : "-");
|
|
}
|
|
|
|
void os::Posix::print_user_info(outputStream* st) {
|
|
unsigned id = (unsigned) ::getuid();
|
|
st->print("uid : %u ", id);
|
|
id = (unsigned) ::geteuid();
|
|
st->print("euid : %u ", id);
|
|
id = (unsigned) ::getgid();
|
|
st->print("gid : %u ", id);
|
|
id = (unsigned) ::getegid();
|
|
st->print_cr("egid : %u", id);
|
|
st->cr();
|
|
|
|
mode_t umsk = ::umask(0);
|
|
::umask(umsk);
|
|
st->print("umask: %04o (", (unsigned) umsk);
|
|
print_umask(st, umsk);
|
|
st->print_cr(")");
|
|
st->cr();
|
|
}
|
|
|
|
|
|
bool os::get_host_name(char* buf, size_t buflen) {
|
|
struct utsname name;
|
|
uname(&name);
|
|
jio_snprintf(buf, buflen, "%s", name.nodename);
|
|
return true;
|
|
}
|
|
|
|
bool os::has_allocatable_memory_limit(julong* limit) {
|
|
struct rlimit rlim;
|
|
int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
|
|
// if there was an error when calling getrlimit, assume that there is no limitation
|
|
// on virtual memory.
|
|
bool result;
|
|
if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
|
|
result = false;
|
|
} else {
|
|
*limit = (julong)rlim.rlim_cur;
|
|
result = true;
|
|
}
|
|
#ifdef _LP64
|
|
return result;
|
|
#else
|
|
// arbitrary virtual space limit for 32 bit Unices found by testing. If
|
|
// getrlimit above returned a limit, bound it with this limit. Otherwise
|
|
// directly use it.
|
|
const julong max_virtual_limit = (julong)3800*M;
|
|
if (result) {
|
|
*limit = MIN2(*limit, max_virtual_limit);
|
|
} else {
|
|
*limit = max_virtual_limit;
|
|
}
|
|
|
|
// bound by actually allocatable memory. The algorithm uses two bounds, an
|
|
// upper and a lower limit. The upper limit is the current highest amount of
|
|
// memory that could not be allocated, the lower limit is the current highest
|
|
// amount of memory that could be allocated.
|
|
// The algorithm iteratively refines the result by halving the difference
|
|
// between these limits, updating either the upper limit (if that value could
|
|
// not be allocated) or the lower limit (if the that value could be allocated)
|
|
// until the difference between these limits is "small".
|
|
|
|
// the minimum amount of memory we care about allocating.
|
|
const julong min_allocation_size = M;
|
|
|
|
julong upper_limit = *limit;
|
|
|
|
// first check a few trivial cases
|
|
if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
|
|
*limit = upper_limit;
|
|
} else if (!is_allocatable(min_allocation_size)) {
|
|
// we found that not even min_allocation_size is allocatable. Return it
|
|
// anyway. There is no point to search for a better value any more.
|
|
*limit = min_allocation_size;
|
|
} else {
|
|
// perform the binary search.
|
|
julong lower_limit = min_allocation_size;
|
|
while ((upper_limit - lower_limit) > min_allocation_size) {
|
|
julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
|
|
temp_limit = align_down(temp_limit, min_allocation_size);
|
|
if (is_allocatable(temp_limit)) {
|
|
lower_limit = temp_limit;
|
|
} else {
|
|
upper_limit = temp_limit;
|
|
}
|
|
}
|
|
*limit = lower_limit;
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
const char* os::get_current_directory(char *buf, size_t buflen) {
|
|
return getcwd(buf, buflen);
|
|
}
|
|
|
|
FILE* os::open(int fd, const char* mode) {
|
|
return ::fdopen(fd, mode);
|
|
}
|
|
|
|
ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
|
|
return ::pread(fd, buf, nBytes, offset);
|
|
}
|
|
|
|
void os::flockfile(FILE* fp) {
|
|
::flockfile(fp);
|
|
}
|
|
|
|
void os::funlockfile(FILE* fp) {
|
|
::funlockfile(fp);
|
|
}
|
|
|
|
DIR* os::opendir(const char* dirname) {
|
|
assert(dirname != NULL, "just checking");
|
|
return ::opendir(dirname);
|
|
}
|
|
|
|
struct dirent* os::readdir(DIR* dirp) {
|
|
assert(dirp != NULL, "just checking");
|
|
return ::readdir(dirp);
|
|
}
|
|
|
|
int os::closedir(DIR *dirp) {
|
|
assert(dirp != NULL, "just checking");
|
|
return ::closedir(dirp);
|
|
}
|
|
|
|
// Builds a platform dependent Agent_OnLoad_<lib_name> function name
|
|
// which is used to find statically linked in agents.
|
|
// Parameters:
|
|
// sym_name: Symbol in library we are looking for
|
|
// lib_name: Name of library to look in, NULL for shared libs.
|
|
// is_absolute_path == true if lib_name is absolute path to agent
|
|
// such as "/a/b/libL.so"
|
|
// == false if only the base name of the library is passed in
|
|
// such as "L"
|
|
char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
|
|
bool is_absolute_path) {
|
|
char *agent_entry_name;
|
|
size_t len;
|
|
size_t name_len;
|
|
size_t prefix_len = strlen(JNI_LIB_PREFIX);
|
|
size_t suffix_len = strlen(JNI_LIB_SUFFIX);
|
|
const char *start;
|
|
|
|
if (lib_name != NULL) {
|
|
name_len = strlen(lib_name);
|
|
if (is_absolute_path) {
|
|
// Need to strip path, prefix and suffix
|
|
if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
|
|
lib_name = ++start;
|
|
}
|
|
if (strlen(lib_name) <= (prefix_len + suffix_len)) {
|
|
return NULL;
|
|
}
|
|
lib_name += prefix_len;
|
|
name_len = strlen(lib_name) - suffix_len;
|
|
}
|
|
}
|
|
len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
|
|
agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
|
|
if (agent_entry_name == NULL) {
|
|
return NULL;
|
|
}
|
|
strcpy(agent_entry_name, sym_name);
|
|
if (lib_name != NULL) {
|
|
strcat(agent_entry_name, "_");
|
|
strncat(agent_entry_name, lib_name, name_len);
|
|
}
|
|
return agent_entry_name;
|
|
}
|
|
|
|
|
|
void os::naked_short_nanosleep(jlong ns) {
|
|
struct timespec req;
|
|
assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
|
|
req.tv_sec = 0;
|
|
req.tv_nsec = ns;
|
|
::nanosleep(&req, NULL);
|
|
return;
|
|
}
|
|
|
|
void os::naked_short_sleep(jlong ms) {
|
|
assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only");
|
|
os::naked_short_nanosleep(millis_to_nanos(ms));
|
|
return;
|
|
}
|
|
|
|
char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
|
|
size_t stack_size = 0;
|
|
size_t guard_size = 0;
|
|
int detachstate = 0;
|
|
pthread_attr_getstacksize(attr, &stack_size);
|
|
pthread_attr_getguardsize(attr, &guard_size);
|
|
// Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
|
|
LINUX_ONLY(stack_size -= guard_size);
|
|
pthread_attr_getdetachstate(attr, &detachstate);
|
|
jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
|
|
stack_size / 1024, guard_size / 1024,
|
|
(detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
|
|
return buf;
|
|
}
|
|
|
|
char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
|
|
|
|
if (filename == NULL || outbuf == NULL || outbuflen < 1) {
|
|
assert(false, "os::Posix::realpath: invalid arguments.");
|
|
errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
char* result = NULL;
|
|
|
|
// This assumes platform realpath() is implemented according to POSIX.1-2008.
|
|
// POSIX.1-2008 allows to specify NULL for the output buffer, in which case
|
|
// output buffer is dynamically allocated and must be ::free()'d by the caller.
|
|
char* p = ::realpath(filename, NULL);
|
|
if (p != NULL) {
|
|
if (strlen(p) < outbuflen) {
|
|
strcpy(outbuf, p);
|
|
result = outbuf;
|
|
} else {
|
|
errno = ENAMETOOLONG;
|
|
}
|
|
::free(p); // *not* os::free
|
|
} else {
|
|
// Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
|
|
// returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
|
|
// that it complains about the NULL we handed down as user buffer.
|
|
// In this case, use the user provided buffer but at least check whether realpath caused
|
|
// a memory overwrite.
|
|
if (errno == EINVAL) {
|
|
outbuf[outbuflen - 1] = '\0';
|
|
p = ::realpath(filename, outbuf);
|
|
if (p != NULL) {
|
|
guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
|
|
result = p;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
|
|
}
|
|
|
|
int os::stat(const char *path, struct stat *sbuf) {
|
|
return ::stat(path, sbuf);
|
|
}
|
|
|
|
char * os::native_path(char *path) {
|
|
return path;
|
|
}
|
|
|
|
bool os::same_files(const char* file1, const char* file2) {
|
|
if (strcmp(file1, file2) == 0) {
|
|
return true;
|
|
}
|
|
|
|
bool is_same = false;
|
|
struct stat st1;
|
|
struct stat st2;
|
|
|
|
if (os::stat(file1, &st1) < 0) {
|
|
return false;
|
|
}
|
|
|
|
if (os::stat(file2, &st2) < 0) {
|
|
return false;
|
|
}
|
|
|
|
if (st1.st_dev == st2.st_dev && st1.st_ino == st2.st_ino) {
|
|
// same files
|
|
is_same = true;
|
|
}
|
|
return is_same;
|
|
}
|
|
|
|
// Check minimum allowable stack sizes for thread creation and to initialize
|
|
// the java system classes, including StackOverflowError - depends on page
|
|
// size.
|
|
// The space needed for frames during startup is platform dependent. It
|
|
// depends on word size, platform calling conventions, C frame layout and
|
|
// interpreter/C1/C2 design decisions. Therefore this is given in a
|
|
// platform (os/cpu) dependent constant.
|
|
// To this, space for guard mechanisms is added, which depends on the
|
|
// page size which again depends on the concrete system the VM is running
|
|
// on. Space for libc guard pages is not included in this size.
|
|
jint os::Posix::set_minimum_stack_sizes() {
|
|
size_t os_min_stack_allowed = PTHREAD_STACK_MIN;
|
|
|
|
_java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
|
|
StackOverflow::stack_guard_zone_size() +
|
|
StackOverflow::stack_shadow_zone_size();
|
|
|
|
_java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
|
|
_java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
|
|
|
|
size_t stack_size_in_bytes = ThreadStackSize * K;
|
|
if (stack_size_in_bytes != 0 &&
|
|
stack_size_in_bytes < _java_thread_min_stack_allowed) {
|
|
// The '-Xss' and '-XX:ThreadStackSize=N' options both set
|
|
// ThreadStackSize so we go with "Java thread stack size" instead
|
|
// of "ThreadStackSize" to be more friendly.
|
|
tty->print_cr("\nThe Java thread stack size specified is too small. "
|
|
"Specify at least " SIZE_FORMAT "k",
|
|
_java_thread_min_stack_allowed / K);
|
|
return JNI_ERR;
|
|
}
|
|
|
|
// Make the stack size a multiple of the page size so that
|
|
// the yellow/red zones can be guarded.
|
|
JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
|
|
|
|
// Reminder: a compiler thread is a Java thread.
|
|
_compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
|
|
StackOverflow::stack_guard_zone_size() +
|
|
StackOverflow::stack_shadow_zone_size();
|
|
|
|
_compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
|
|
_compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
|
|
|
|
stack_size_in_bytes = CompilerThreadStackSize * K;
|
|
if (stack_size_in_bytes != 0 &&
|
|
stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
|
|
tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
|
|
"Specify at least " SIZE_FORMAT "k",
|
|
_compiler_thread_min_stack_allowed / K);
|
|
return JNI_ERR;
|
|
}
|
|
|
|
_vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
|
|
_vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
|
|
|
|
stack_size_in_bytes = VMThreadStackSize * K;
|
|
if (stack_size_in_bytes != 0 &&
|
|
stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
|
|
tty->print_cr("\nThe VMThreadStackSize specified is too small. "
|
|
"Specify at least " SIZE_FORMAT "k",
|
|
_vm_internal_thread_min_stack_allowed / K);
|
|
return JNI_ERR;
|
|
}
|
|
return JNI_OK;
|
|
}
|
|
|
|
// Called when creating the thread. The minimum stack sizes have already been calculated
|
|
size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
|
|
size_t stack_size;
|
|
if (req_stack_size == 0) {
|
|
stack_size = default_stack_size(thr_type);
|
|
} else {
|
|
stack_size = req_stack_size;
|
|
}
|
|
|
|
switch (thr_type) {
|
|
case os::java_thread:
|
|
// Java threads use ThreadStackSize which default value can be
|
|
// changed with the flag -Xss
|
|
if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
|
|
// no requested size and we have a more specific default value
|
|
stack_size = JavaThread::stack_size_at_create();
|
|
}
|
|
stack_size = MAX2(stack_size,
|
|
_java_thread_min_stack_allowed);
|
|
break;
|
|
case os::compiler_thread:
|
|
if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
|
|
// no requested size and we have a more specific default value
|
|
stack_size = (size_t)(CompilerThreadStackSize * K);
|
|
}
|
|
stack_size = MAX2(stack_size,
|
|
_compiler_thread_min_stack_allowed);
|
|
break;
|
|
case os::vm_thread:
|
|
case os::pgc_thread:
|
|
case os::cgc_thread:
|
|
case os::watcher_thread:
|
|
default: // presume the unknown thr_type is a VM internal
|
|
if (req_stack_size == 0 && VMThreadStackSize > 0) {
|
|
// no requested size and we have a more specific default value
|
|
stack_size = (size_t)(VMThreadStackSize * K);
|
|
}
|
|
|
|
stack_size = MAX2(stack_size,
|
|
_vm_internal_thread_min_stack_allowed);
|
|
break;
|
|
}
|
|
|
|
// pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
|
|
// Be careful not to round up to 0. Align down in that case.
|
|
if (stack_size <= SIZE_MAX - vm_page_size()) {
|
|
stack_size = align_up(stack_size, vm_page_size());
|
|
} else {
|
|
stack_size = align_down(stack_size, vm_page_size());
|
|
}
|
|
|
|
return stack_size;
|
|
}
|
|
|
|
#ifndef ZERO
|
|
#ifndef ARM
|
|
static bool get_frame_at_stack_banging_point(JavaThread* thread, address pc, const void* ucVoid, frame* fr) {
|
|
if (Interpreter::contains(pc)) {
|
|
// interpreter performs stack banging after the fixed frame header has
|
|
// been generated while the compilers perform it before. To maintain
|
|
// semantic consistency between interpreted and compiled frames, the
|
|
// method returns the Java sender of the current frame.
|
|
*fr = os::fetch_frame_from_context(ucVoid);
|
|
if (!fr->is_first_java_frame()) {
|
|
// get_frame_at_stack_banging_point() is only called when we
|
|
// have well defined stacks so java_sender() calls do not need
|
|
// to assert safe_for_sender() first.
|
|
*fr = fr->java_sender();
|
|
}
|
|
} else {
|
|
// more complex code with compiled code
|
|
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
|
|
CodeBlob* cb = CodeCache::find_blob(pc);
|
|
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
|
|
// Not sure where the pc points to, fallback to default
|
|
// stack overflow handling
|
|
return false;
|
|
} else {
|
|
// in compiled code, the stack banging is performed just after the return pc
|
|
// has been pushed on the stack
|
|
*fr = os::fetch_compiled_frame_from_context(ucVoid);
|
|
if (!fr->is_java_frame()) {
|
|
assert(!fr->is_first_frame(), "Safety check");
|
|
// See java_sender() comment above.
|
|
*fr = fr->java_sender();
|
|
}
|
|
}
|
|
}
|
|
assert(fr->is_java_frame(), "Safety check");
|
|
return true;
|
|
}
|
|
#endif // ARM
|
|
|
|
// This return true if the signal handler should just continue, ie. return after calling this
|
|
bool os::Posix::handle_stack_overflow(JavaThread* thread, address addr, address pc,
|
|
const void* ucVoid, address* stub) {
|
|
// stack overflow
|
|
StackOverflow* overflow_state = thread->stack_overflow_state();
|
|
if (overflow_state->in_stack_yellow_reserved_zone(addr)) {
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
#ifndef ARM
|
|
// arm32 doesn't have this
|
|
if (overflow_state->in_stack_reserved_zone(addr)) {
|
|
frame fr;
|
|
if (get_frame_at_stack_banging_point(thread, pc, ucVoid, &fr)) {
|
|
assert(fr.is_java_frame(), "Must be a Java frame");
|
|
frame activation =
|
|
SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
|
|
if (activation.sp() != NULL) {
|
|
overflow_state->disable_stack_reserved_zone();
|
|
if (activation.is_interpreted_frame()) {
|
|
overflow_state->set_reserved_stack_activation((address)(activation.fp()
|
|
// Some platforms use frame pointers for interpreter frames, others use initial sp.
|
|
#if !defined(PPC64) && !defined(S390)
|
|
+ frame::interpreter_frame_initial_sp_offset
|
|
#endif
|
|
));
|
|
} else {
|
|
overflow_state->set_reserved_stack_activation((address)activation.unextended_sp());
|
|
}
|
|
return true; // just continue
|
|
}
|
|
}
|
|
}
|
|
#endif // ARM
|
|
// Throw a stack overflow exception. Guard pages will be reenabled
|
|
// while unwinding the stack.
|
|
overflow_state->disable_stack_yellow_reserved_zone();
|
|
*stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
|
|
} else {
|
|
// Thread was in the vm or native code. Return and try to finish.
|
|
overflow_state->disable_stack_yellow_reserved_zone();
|
|
return true; // just continue
|
|
}
|
|
} else if (overflow_state->in_stack_red_zone(addr)) {
|
|
// Fatal red zone violation. Disable the guard pages and fall through
|
|
// to handle_unexpected_exception way down below.
|
|
overflow_state->disable_stack_red_zone();
|
|
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
|
|
|
|
// This is a likely cause, but hard to verify. Let's just print
|
|
// it as a hint.
|
|
tty->print_raw_cr("Please check if any of your loaded .so files has "
|
|
"enabled executable stack (see man page execstack(8))");
|
|
|
|
} else {
|
|
#if !defined(AIX) && !defined(__APPLE__)
|
|
// bsd and aix don't have this
|
|
|
|
// Accessing stack address below sp may cause SEGV if current
|
|
// thread has MAP_GROWSDOWN stack. This should only happen when
|
|
// current thread was created by user code with MAP_GROWSDOWN flag
|
|
// and then attached to VM. See notes in os_linux.cpp.
|
|
if (thread->osthread()->expanding_stack() == 0) {
|
|
thread->osthread()->set_expanding_stack();
|
|
if (os::Linux::manually_expand_stack(thread, addr)) {
|
|
thread->osthread()->clear_expanding_stack();
|
|
return true; // just continue
|
|
}
|
|
thread->osthread()->clear_expanding_stack();
|
|
} else {
|
|
fatal("recursive segv. expanding stack.");
|
|
}
|
|
#else
|
|
tty->print_raw_cr("SIGSEGV happened inside stack but outside yellow and red zone.");
|
|
#endif // AIX or BSD
|
|
}
|
|
return false;
|
|
}
|
|
#endif // ZERO
|
|
|
|
bool os::Posix::is_root(uid_t uid){
|
|
return ROOT_UID == uid;
|
|
}
|
|
|
|
bool os::Posix::matches_effective_uid_or_root(uid_t uid) {
|
|
return is_root(uid) || geteuid() == uid;
|
|
}
|
|
|
|
bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) {
|
|
return is_root(uid) || (geteuid() == uid && getegid() == gid);
|
|
}
|
|
|
|
Thread* os::ThreadCrashProtection::_protected_thread = NULL;
|
|
os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
|
|
|
|
os::ThreadCrashProtection::ThreadCrashProtection() {
|
|
_protected_thread = Thread::current();
|
|
assert(_protected_thread->is_JfrSampler_thread(), "should be JFRSampler");
|
|
}
|
|
|
|
/*
|
|
* See the caveats for this class in os_posix.hpp
|
|
* Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
|
|
* method and returns false. If none of the signals are raised, returns true.
|
|
* The callback is supposed to provide the method that should be protected.
|
|
*/
|
|
bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
|
|
sigset_t saved_sig_mask;
|
|
|
|
// we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
|
|
// since on at least some systems (OS X) siglongjmp will restore the mask
|
|
// for the process, not the thread
|
|
pthread_sigmask(0, NULL, &saved_sig_mask);
|
|
if (sigsetjmp(_jmpbuf, 0) == 0) {
|
|
// make sure we can see in the signal handler that we have crash protection
|
|
// installed
|
|
_crash_protection = this;
|
|
cb.call();
|
|
// and clear the crash protection
|
|
_crash_protection = NULL;
|
|
_protected_thread = NULL;
|
|
return true;
|
|
}
|
|
// this happens when we siglongjmp() back
|
|
pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
|
|
_crash_protection = NULL;
|
|
_protected_thread = NULL;
|
|
return false;
|
|
}
|
|
|
|
void os::ThreadCrashProtection::restore() {
|
|
assert(_crash_protection != NULL, "must have crash protection");
|
|
siglongjmp(_jmpbuf, 1);
|
|
}
|
|
|
|
void os::ThreadCrashProtection::check_crash_protection(int sig,
|
|
Thread* thread) {
|
|
|
|
if (thread != NULL &&
|
|
thread == _protected_thread &&
|
|
_crash_protection != NULL) {
|
|
|
|
if (sig == SIGSEGV || sig == SIGBUS) {
|
|
_crash_protection->restore();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Shared clock/time and other supporting routines for pthread_mutex/cond
|
|
// initialization. This is enabled on Solaris but only some of the clock/time
|
|
// functionality is actually used there.
|
|
|
|
// Shared condattr object for use with relative timed-waits. Will be associated
|
|
// with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
|
|
// but otherwise whatever default is used by the platform - generally the
|
|
// time-of-day clock.
|
|
static pthread_condattr_t _condAttr[1];
|
|
|
|
// Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
|
|
// all systems (e.g. FreeBSD) map the default to "normal".
|
|
static pthread_mutexattr_t _mutexAttr[1];
|
|
|
|
// common basic initialization that is always supported
|
|
static void pthread_init_common(void) {
|
|
int status;
|
|
if ((status = pthread_condattr_init(_condAttr)) != 0) {
|
|
fatal("pthread_condattr_init: %s", os::strerror(status));
|
|
}
|
|
if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
|
|
fatal("pthread_mutexattr_init: %s", os::strerror(status));
|
|
}
|
|
if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
|
|
fatal("pthread_mutexattr_settype: %s", os::strerror(status));
|
|
}
|
|
os::PlatformMutex::init();
|
|
}
|
|
|
|
// Not all POSIX types and API's are available on all notionally "posix"
|
|
// platforms. If we have build-time support then we will check for actual
|
|
// runtime support via dlopen/dlsym lookup. This allows for running on an
|
|
// older OS version compared to the build platform. But if there is no
|
|
// build time support then there cannot be any runtime support as we do not
|
|
// know what the runtime types would be (for example clockid_t might be an
|
|
// int or int64_t).
|
|
//
|
|
#ifdef SUPPORTS_CLOCK_MONOTONIC
|
|
|
|
// This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
|
|
|
|
int (*os::Posix::_clock_gettime)(clockid_t, struct timespec *) = NULL;
|
|
int (*os::Posix::_clock_getres)(clockid_t, struct timespec *) = NULL;
|
|
|
|
bool os::Posix::_supports_monotonic_clock = false;
|
|
|
|
static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = NULL;
|
|
|
|
static bool _use_clock_monotonic_condattr = false;
|
|
|
|
// Determine what POSIX API's are present and do appropriate
|
|
// configuration.
|
|
void os::Posix::init(void) {
|
|
|
|
// NOTE: no logging available when this is called. Put logging
|
|
// statements in init_2().
|
|
|
|
// 1. Check for CLOCK_MONOTONIC support.
|
|
|
|
void* handle = NULL;
|
|
|
|
// For older linux we need librt, for other OS we can find
|
|
// this function in regular libc.
|
|
#ifdef NEEDS_LIBRT
|
|
// We do dlopen's in this particular order due to bug in linux
|
|
// dynamic loader (see 6348968) leading to crash on exit.
|
|
handle = dlopen("librt.so.1", RTLD_LAZY);
|
|
if (handle == NULL) {
|
|
handle = dlopen("librt.so", RTLD_LAZY);
|
|
}
|
|
#endif
|
|
|
|
if (handle == NULL) {
|
|
handle = RTLD_DEFAULT;
|
|
}
|
|
|
|
int (*clock_getres_func)(clockid_t, struct timespec*) =
|
|
(int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
|
|
int (*clock_gettime_func)(clockid_t, struct timespec*) =
|
|
(int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
|
|
if (clock_getres_func != NULL && clock_gettime_func != NULL) {
|
|
_clock_gettime = clock_gettime_func;
|
|
_clock_getres = clock_getres_func;
|
|
// We assume that if both clock_gettime and clock_getres support
|
|
// CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
|
|
struct timespec res;
|
|
struct timespec tp;
|
|
if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
|
|
clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
|
|
// Yes, monotonic clock is supported.
|
|
_supports_monotonic_clock = true;
|
|
}
|
|
}
|
|
|
|
// 2. Check for pthread_condattr_setclock support.
|
|
|
|
// libpthread is already loaded.
|
|
int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
|
|
(int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
|
|
"pthread_condattr_setclock");
|
|
if (condattr_setclock_func != NULL) {
|
|
_pthread_condattr_setclock = condattr_setclock_func;
|
|
}
|
|
|
|
// Now do general initialization.
|
|
|
|
pthread_init_common();
|
|
|
|
int status;
|
|
if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
|
|
if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
|
|
if (status == EINVAL) {
|
|
_use_clock_monotonic_condattr = false;
|
|
warning("Unable to use monotonic clock with relative timed-waits" \
|
|
" - changes to the time-of-day clock may have adverse affects");
|
|
} else {
|
|
fatal("pthread_condattr_setclock: %s", os::strerror(status));
|
|
}
|
|
} else {
|
|
_use_clock_monotonic_condattr = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void os::Posix::init_2(void) {
|
|
log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
|
|
(_clock_gettime != NULL ? "" : " not"));
|
|
log_info(os)("Use of pthread_condattr_setclock is%s supported",
|
|
(_pthread_condattr_setclock != NULL ? "" : " not"));
|
|
log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
|
|
_use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
|
|
}
|
|
|
|
#else // !SUPPORTS_CLOCK_MONOTONIC
|
|
|
|
void os::Posix::init(void) {
|
|
pthread_init_common();
|
|
}
|
|
|
|
void os::Posix::init_2(void) {
|
|
log_info(os)("Use of CLOCK_MONOTONIC is not supported");
|
|
log_info(os)("Use of pthread_condattr_setclock is not supported");
|
|
log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
|
|
}
|
|
|
|
#endif // SUPPORTS_CLOCK_MONOTONIC
|
|
|
|
// Utility to convert the given timeout to an absolute timespec
|
|
// (based on the appropriate clock) to use with pthread_cond_timewait,
|
|
// and sem_timedwait().
|
|
// The clock queried here must be the clock used to manage the
|
|
// timeout of the condition variable or semaphore.
|
|
//
|
|
// The passed in timeout value is either a relative time in nanoseconds
|
|
// or an absolute time in milliseconds. A relative timeout will be
|
|
// associated with CLOCK_MONOTONIC if available, unless the real-time clock
|
|
// is explicitly requested; otherwise, or if absolute,
|
|
// the default time-of-day clock will be used.
|
|
|
|
// Given time is a 64-bit value and the time_t used in the timespec is
|
|
// sometimes a signed-32-bit value we have to watch for overflow if times
|
|
// way in the future are given. Further on Solaris versions
|
|
// prior to 10 there is a restriction (see cond_timedwait) that the specified
|
|
// number of seconds, in abstime, is less than current_time + 100000000.
|
|
// As it will be over 20 years before "now + 100000000" will overflow we can
|
|
// ignore overflow and just impose a hard-limit on seconds using the value
|
|
// of "now + 100000000". This places a limit on the timeout of about 3.17
|
|
// years from "now".
|
|
//
|
|
#define MAX_SECS 100000000
|
|
|
|
// Calculate a new absolute time that is "timeout" nanoseconds from "now".
|
|
// "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
|
|
// on which clock API is being used).
|
|
static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
|
|
jlong now_part_sec, jlong unit) {
|
|
time_t max_secs = now_sec + MAX_SECS;
|
|
|
|
jlong seconds = timeout / NANOUNITS;
|
|
timeout %= NANOUNITS; // remaining nanos
|
|
|
|
if (seconds >= MAX_SECS) {
|
|
// More seconds than we can add, so pin to max_secs.
|
|
abstime->tv_sec = max_secs;
|
|
abstime->tv_nsec = 0;
|
|
} else {
|
|
abstime->tv_sec = now_sec + seconds;
|
|
long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
|
|
if (nanos >= NANOUNITS) { // overflow
|
|
abstime->tv_sec += 1;
|
|
nanos -= NANOUNITS;
|
|
}
|
|
abstime->tv_nsec = nanos;
|
|
}
|
|
}
|
|
|
|
// Unpack the given deadline in milliseconds since the epoch, into the given timespec.
|
|
// The current time in seconds is also passed in to enforce an upper bound as discussed above.
|
|
// This is only used with gettimeofday, when clock_gettime is not available.
|
|
static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
|
|
time_t max_secs = now_sec + MAX_SECS;
|
|
|
|
jlong seconds = deadline / MILLIUNITS;
|
|
jlong millis = deadline % MILLIUNITS;
|
|
|
|
if (seconds >= max_secs) {
|
|
// Absolute seconds exceeds allowed max, so pin to max_secs.
|
|
abstime->tv_sec = max_secs;
|
|
abstime->tv_nsec = 0;
|
|
} else {
|
|
abstime->tv_sec = seconds;
|
|
abstime->tv_nsec = millis_to_nanos(millis);
|
|
}
|
|
}
|
|
|
|
static jlong millis_to_nanos_bounded(jlong millis) {
|
|
// We have to watch for overflow when converting millis to nanos,
|
|
// but if millis is that large then we will end up limiting to
|
|
// MAX_SECS anyway, so just do that here.
|
|
if (millis / MILLIUNITS > MAX_SECS) {
|
|
millis = jlong(MAX_SECS) * MILLIUNITS;
|
|
}
|
|
return millis_to_nanos(millis);
|
|
}
|
|
|
|
static void to_abstime(timespec* abstime, jlong timeout,
|
|
bool isAbsolute, bool isRealtime) {
|
|
DEBUG_ONLY(int max_secs = MAX_SECS;)
|
|
|
|
if (timeout < 0) {
|
|
timeout = 0;
|
|
}
|
|
|
|
#ifdef SUPPORTS_CLOCK_MONOTONIC
|
|
|
|
clockid_t clock = CLOCK_MONOTONIC;
|
|
// need to ensure we have a runtime check for clock_gettime support
|
|
if (!isAbsolute && os::Posix::supports_monotonic_clock()) {
|
|
if (!_use_clock_monotonic_condattr || isRealtime) {
|
|
clock = CLOCK_REALTIME;
|
|
}
|
|
struct timespec now;
|
|
int status = os::Posix::clock_gettime(clock, &now);
|
|
assert_status(status == 0, status, "clock_gettime");
|
|
calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
|
|
DEBUG_ONLY(max_secs += now.tv_sec;)
|
|
} else {
|
|
|
|
#else
|
|
|
|
{ // Match the block scope.
|
|
|
|
#endif // SUPPORTS_CLOCK_MONOTONIC
|
|
|
|
// Time-of-day clock is all we can reliably use.
|
|
struct timeval now;
|
|
int status = gettimeofday(&now, NULL);
|
|
assert_status(status == 0, errno, "gettimeofday");
|
|
if (isAbsolute) {
|
|
unpack_abs_time(abstime, timeout, now.tv_sec);
|
|
} else {
|
|
calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
|
|
}
|
|
DEBUG_ONLY(max_secs += now.tv_sec;)
|
|
}
|
|
|
|
assert(abstime->tv_sec >= 0, "tv_sec < 0");
|
|
assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
|
|
assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
|
|
assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
|
|
}
|
|
|
|
// Create an absolute time 'millis' milliseconds in the future, using the
|
|
// real-time (time-of-day) clock. Used by PosixSemaphore.
|
|
void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) {
|
|
to_abstime(abstime, millis_to_nanos_bounded(millis),
|
|
false /* not absolute */,
|
|
true /* use real-time clock */);
|
|
}
|
|
|
|
// Shared pthread_mutex/cond based PlatformEvent implementation.
|
|
// Not currently usable by Solaris.
|
|
|
|
|
|
// PlatformEvent
|
|
//
|
|
// Assumption:
|
|
// Only one parker can exist on an event, which is why we allocate
|
|
// them per-thread. Multiple unparkers can coexist.
|
|
//
|
|
// _event serves as a restricted-range semaphore.
|
|
// -1 : thread is blocked, i.e. there is a waiter
|
|
// 0 : neutral: thread is running or ready,
|
|
// could have been signaled after a wait started
|
|
// 1 : signaled - thread is running or ready
|
|
//
|
|
// Having three states allows for some detection of bad usage - see
|
|
// comments on unpark().
|
|
|
|
os::PlatformEvent::PlatformEvent() {
|
|
int status = pthread_cond_init(_cond, _condAttr);
|
|
assert_status(status == 0, status, "cond_init");
|
|
status = pthread_mutex_init(_mutex, _mutexAttr);
|
|
assert_status(status == 0, status, "mutex_init");
|
|
_event = 0;
|
|
_nParked = 0;
|
|
}
|
|
|
|
void os::PlatformEvent::park() { // AKA "down()"
|
|
// Transitions for _event:
|
|
// -1 => -1 : illegal
|
|
// 1 => 0 : pass - return immediately
|
|
// 0 => -1 : block; then set _event to 0 before returning
|
|
|
|
// Invariant: Only the thread associated with the PlatformEvent
|
|
// may call park().
|
|
assert(_nParked == 0, "invariant");
|
|
|
|
int v;
|
|
|
|
// atomically decrement _event
|
|
for (;;) {
|
|
v = _event;
|
|
if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
|
|
}
|
|
guarantee(v >= 0, "invariant");
|
|
|
|
if (v == 0) { // Do this the hard way by blocking ...
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
guarantee(_nParked == 0, "invariant");
|
|
++_nParked;
|
|
while (_event < 0) {
|
|
// OS-level "spurious wakeups" are ignored
|
|
status = pthread_cond_wait(_cond, _mutex);
|
|
assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT),
|
|
status, "cond_wait");
|
|
}
|
|
--_nParked;
|
|
|
|
_event = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other.
|
|
OrderAccess::fence();
|
|
}
|
|
guarantee(_event >= 0, "invariant");
|
|
}
|
|
|
|
int os::PlatformEvent::park(jlong millis) {
|
|
// Transitions for _event:
|
|
// -1 => -1 : illegal
|
|
// 1 => 0 : pass - return immediately
|
|
// 0 => -1 : block; then set _event to 0 before returning
|
|
|
|
// Invariant: Only the thread associated with the Event/PlatformEvent
|
|
// may call park().
|
|
assert(_nParked == 0, "invariant");
|
|
|
|
int v;
|
|
// atomically decrement _event
|
|
for (;;) {
|
|
v = _event;
|
|
if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
|
|
}
|
|
guarantee(v >= 0, "invariant");
|
|
|
|
if (v == 0) { // Do this the hard way by blocking ...
|
|
struct timespec abst;
|
|
to_abstime(&abst, millis_to_nanos_bounded(millis), false, false);
|
|
|
|
int ret = OS_TIMEOUT;
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
guarantee(_nParked == 0, "invariant");
|
|
++_nParked;
|
|
|
|
while (_event < 0) {
|
|
status = pthread_cond_timedwait(_cond, _mutex, &abst);
|
|
assert_status(status == 0 || status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
// OS-level "spurious wakeups" are ignored unless the archaic
|
|
// FilterSpuriousWakeups is set false. That flag should be obsoleted.
|
|
if (!FilterSpuriousWakeups) break;
|
|
if (status == ETIMEDOUT) break;
|
|
}
|
|
--_nParked;
|
|
|
|
if (_event >= 0) {
|
|
ret = OS_OK;
|
|
}
|
|
|
|
_event = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other.
|
|
OrderAccess::fence();
|
|
return ret;
|
|
}
|
|
return OS_OK;
|
|
}
|
|
|
|
void os::PlatformEvent::unpark() {
|
|
// Transitions for _event:
|
|
// 0 => 1 : just return
|
|
// 1 => 1 : just return
|
|
// -1 => either 0 or 1; must signal target thread
|
|
// That is, we can safely transition _event from -1 to either
|
|
// 0 or 1.
|
|
// See also: "Semaphores in Plan 9" by Mullender & Cox
|
|
//
|
|
// Note: Forcing a transition from "-1" to "1" on an unpark() means
|
|
// that it will take two back-to-back park() calls for the owning
|
|
// thread to block. This has the benefit of forcing a spurious return
|
|
// from the first park() call after an unpark() call which will help
|
|
// shake out uses of park() and unpark() without checking state conditions
|
|
// properly. This spurious return doesn't manifest itself in any user code
|
|
// but only in the correctly written condition checking loops of ObjectMonitor,
|
|
// Mutex/Monitor, and JavaThread::sleep
|
|
|
|
if (Atomic::xchg(&_event, 1) >= 0) return;
|
|
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "mutex_lock");
|
|
int anyWaiters = _nParked;
|
|
assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "mutex_unlock");
|
|
|
|
// Note that we signal() *after* dropping the lock for "immortal" Events.
|
|
// This is safe and avoids a common class of futile wakeups. In rare
|
|
// circumstances this can cause a thread to return prematurely from
|
|
// cond_{timed}wait() but the spurious wakeup is benign and the victim
|
|
// will simply re-test the condition and re-park itself.
|
|
// This provides particular benefit if the underlying platform does not
|
|
// provide wait morphing.
|
|
|
|
if (anyWaiters != 0) {
|
|
status = pthread_cond_signal(_cond);
|
|
assert_status(status == 0, status, "cond_signal");
|
|
}
|
|
}
|
|
|
|
// JSR166 support
|
|
|
|
os::PlatformParker::PlatformParker() {
|
|
int status;
|
|
status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
|
|
assert_status(status == 0, status, "cond_init rel");
|
|
status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
|
|
assert_status(status == 0, status, "cond_init abs");
|
|
status = pthread_mutex_init(_mutex, _mutexAttr);
|
|
assert_status(status == 0, status, "mutex_init");
|
|
_cur_index = -1; // mark as unused
|
|
}
|
|
|
|
// Parker::park decrements count if > 0, else does a condvar wait. Unpark
|
|
// sets count to 1 and signals condvar. Only one thread ever waits
|
|
// on the condvar. Contention seen when trying to park implies that someone
|
|
// is unparking you, so don't wait. And spurious returns are fine, so there
|
|
// is no need to track notifications.
|
|
|
|
void Parker::park(bool isAbsolute, jlong time) {
|
|
|
|
// Optional fast-path check:
|
|
// Return immediately if a permit is available.
|
|
// We depend on Atomic::xchg() having full barrier semantics
|
|
// since we are doing a lock-free update to _counter.
|
|
if (Atomic::xchg(&_counter, 0) > 0) return;
|
|
|
|
JavaThread *jt = JavaThread::current();
|
|
|
|
// Optional optimization -- avoid state transitions if there's
|
|
// an interrupt pending.
|
|
if (jt->is_interrupted(false)) {
|
|
return;
|
|
}
|
|
|
|
// Next, demultiplex/decode time arguments
|
|
struct timespec absTime;
|
|
if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
|
|
return;
|
|
}
|
|
if (time > 0) {
|
|
to_abstime(&absTime, time, isAbsolute, false);
|
|
}
|
|
|
|
// Enter safepoint region
|
|
// Beware of deadlocks such as 6317397.
|
|
// The per-thread Parker:: mutex is a classic leaf-lock.
|
|
// In particular a thread must never block on the Threads_lock while
|
|
// holding the Parker:: mutex. If safepoints are pending both the
|
|
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
|
|
ThreadBlockInVM tbivm(jt);
|
|
|
|
// Can't access interrupt state now that we are _thread_blocked. If we've
|
|
// been interrupted since we checked above then _counter will be > 0.
|
|
|
|
// Don't wait if cannot get lock since interference arises from
|
|
// unparking.
|
|
if (pthread_mutex_trylock(_mutex) != 0) {
|
|
return;
|
|
}
|
|
|
|
int status;
|
|
if (_counter > 0) { // no wait needed
|
|
_counter = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "invariant");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other and Java-level accesses.
|
|
OrderAccess::fence();
|
|
return;
|
|
}
|
|
|
|
OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
|
|
jt->set_suspend_equivalent();
|
|
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
|
|
|
|
assert(_cur_index == -1, "invariant");
|
|
if (time == 0) {
|
|
_cur_index = REL_INDEX; // arbitrary choice when not timed
|
|
status = pthread_cond_wait(&_cond[_cur_index], _mutex);
|
|
assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT),
|
|
status, "cond_wait");
|
|
}
|
|
else {
|
|
_cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
|
|
status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
|
|
assert_status(status == 0 || status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
}
|
|
_cur_index = -1;
|
|
|
|
_counter = 0;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "invariant");
|
|
// Paranoia to ensure our locked and lock-free paths interact
|
|
// correctly with each other and Java-level accesses.
|
|
OrderAccess::fence();
|
|
|
|
// If externally suspended while waiting, re-suspend
|
|
if (jt->handle_special_suspend_equivalent_condition()) {
|
|
jt->java_suspend_self();
|
|
}
|
|
}
|
|
|
|
void Parker::unpark() {
|
|
int status = pthread_mutex_lock(_mutex);
|
|
assert_status(status == 0, status, "invariant");
|
|
const int s = _counter;
|
|
_counter = 1;
|
|
// must capture correct index before unlocking
|
|
int index = _cur_index;
|
|
status = pthread_mutex_unlock(_mutex);
|
|
assert_status(status == 0, status, "invariant");
|
|
|
|
// Note that we signal() *after* dropping the lock for "immortal" Events.
|
|
// This is safe and avoids a common class of futile wakeups. In rare
|
|
// circumstances this can cause a thread to return prematurely from
|
|
// cond_{timed}wait() but the spurious wakeup is benign and the victim
|
|
// will simply re-test the condition and re-park itself.
|
|
// This provides particular benefit if the underlying platform does not
|
|
// provide wait morphing.
|
|
|
|
if (s < 1 && index != -1) {
|
|
// thread is definitely parked
|
|
status = pthread_cond_signal(&_cond[index]);
|
|
assert_status(status == 0, status, "invariant");
|
|
}
|
|
}
|
|
|
|
// Platform Mutex/Monitor implementation
|
|
|
|
#if PLATFORM_MONITOR_IMPL_INDIRECT
|
|
|
|
os::PlatformMutex::Mutex::Mutex() : _next(NULL) {
|
|
int status = pthread_mutex_init(&_mutex, _mutexAttr);
|
|
assert_status(status == 0, status, "mutex_init");
|
|
}
|
|
|
|
os::PlatformMutex::Mutex::~Mutex() {
|
|
int status = pthread_mutex_destroy(&_mutex);
|
|
assert_status(status == 0, status, "mutex_destroy");
|
|
}
|
|
|
|
pthread_mutex_t os::PlatformMutex::_freelist_lock;
|
|
os::PlatformMutex::Mutex* os::PlatformMutex::_mutex_freelist = NULL;
|
|
|
|
void os::PlatformMutex::init() {
|
|
int status = pthread_mutex_init(&_freelist_lock, _mutexAttr);
|
|
assert_status(status == 0, status, "freelist lock init");
|
|
}
|
|
|
|
struct os::PlatformMutex::WithFreeListLocked : public StackObj {
|
|
WithFreeListLocked() {
|
|
int status = pthread_mutex_lock(&_freelist_lock);
|
|
assert_status(status == 0, status, "freelist lock");
|
|
}
|
|
|
|
~WithFreeListLocked() {
|
|
int status = pthread_mutex_unlock(&_freelist_lock);
|
|
assert_status(status == 0, status, "freelist unlock");
|
|
}
|
|
};
|
|
|
|
os::PlatformMutex::PlatformMutex() {
|
|
{
|
|
WithFreeListLocked wfl;
|
|
_impl = _mutex_freelist;
|
|
if (_impl != NULL) {
|
|
_mutex_freelist = _impl->_next;
|
|
_impl->_next = NULL;
|
|
return;
|
|
}
|
|
}
|
|
_impl = new Mutex();
|
|
}
|
|
|
|
os::PlatformMutex::~PlatformMutex() {
|
|
WithFreeListLocked wfl;
|
|
assert(_impl->_next == NULL, "invariant");
|
|
_impl->_next = _mutex_freelist;
|
|
_mutex_freelist = _impl;
|
|
}
|
|
|
|
os::PlatformMonitor::Cond::Cond() : _next(NULL) {
|
|
int status = pthread_cond_init(&_cond, _condAttr);
|
|
assert_status(status == 0, status, "cond_init");
|
|
}
|
|
|
|
os::PlatformMonitor::Cond::~Cond() {
|
|
int status = pthread_cond_destroy(&_cond);
|
|
assert_status(status == 0, status, "cond_destroy");
|
|
}
|
|
|
|
os::PlatformMonitor::Cond* os::PlatformMonitor::_cond_freelist = NULL;
|
|
|
|
os::PlatformMonitor::PlatformMonitor() {
|
|
{
|
|
WithFreeListLocked wfl;
|
|
_impl = _cond_freelist;
|
|
if (_impl != NULL) {
|
|
_cond_freelist = _impl->_next;
|
|
_impl->_next = NULL;
|
|
return;
|
|
}
|
|
}
|
|
_impl = new Cond();
|
|
}
|
|
|
|
os::PlatformMonitor::~PlatformMonitor() {
|
|
WithFreeListLocked wfl;
|
|
assert(_impl->_next == NULL, "invariant");
|
|
_impl->_next = _cond_freelist;
|
|
_cond_freelist = _impl;
|
|
}
|
|
|
|
#else
|
|
|
|
os::PlatformMutex::PlatformMutex() {
|
|
int status = pthread_mutex_init(&_mutex, _mutexAttr);
|
|
assert_status(status == 0, status, "mutex_init");
|
|
}
|
|
|
|
os::PlatformMutex::~PlatformMutex() {
|
|
int status = pthread_mutex_destroy(&_mutex);
|
|
assert_status(status == 0, status, "mutex_destroy");
|
|
}
|
|
|
|
os::PlatformMonitor::PlatformMonitor() {
|
|
int status = pthread_cond_init(&_cond, _condAttr);
|
|
assert_status(status == 0, status, "cond_init");
|
|
}
|
|
|
|
os::PlatformMonitor::~PlatformMonitor() {
|
|
int status = pthread_cond_destroy(&_cond);
|
|
assert_status(status == 0, status, "cond_destroy");
|
|
}
|
|
|
|
#endif // PLATFORM_MONITOR_IMPL_INDIRECT
|
|
|
|
// Must already be locked
|
|
int os::PlatformMonitor::wait(jlong millis) {
|
|
assert(millis >= 0, "negative timeout");
|
|
if (millis > 0) {
|
|
struct timespec abst;
|
|
// We have to watch for overflow when converting millis to nanos,
|
|
// but if millis is that large then we will end up limiting to
|
|
// MAX_SECS anyway, so just do that here.
|
|
if (millis / MILLIUNITS > MAX_SECS) {
|
|
millis = jlong(MAX_SECS) * MILLIUNITS;
|
|
}
|
|
to_abstime(&abst, millis_to_nanos(millis), false, false);
|
|
|
|
int ret = OS_TIMEOUT;
|
|
int status = pthread_cond_timedwait(cond(), mutex(), &abst);
|
|
assert_status(status == 0 || status == ETIMEDOUT,
|
|
status, "cond_timedwait");
|
|
if (status == 0) {
|
|
ret = OS_OK;
|
|
}
|
|
return ret;
|
|
} else {
|
|
int status = pthread_cond_wait(cond(), mutex());
|
|
assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT),
|
|
status, "cond_wait");
|
|
return OS_OK;
|
|
}
|
|
}
|