fprime/Svc/FrameAccumulator/FrameAccumulator.cpp
Thomas Boyer-Chammard c3b2e04880
Use data return pattern on Uplink and standardize port names (#3546)
* First pass at Svc + TcpClient implementation

* Revert FileUplink changes

* Add copy (with allocation/deallocation) to FprimeRouter to simplify buffer management

* Update FprimeRouter UTs

* Update FprimeDeframer UTs

* Update FrameAccumulator UTs

* Update ComStub UTs

* Update missing Drv and UTs

* Update ComInterface to use ComDataWithContext on output

* Update Ref/RPI topology

* Fix spelling

* Fix test typo

* Update Udp component and UTs

* Rename data ports and standardize "Return" naming pattern

* Fix variable name

* Adapt UTs

* Update Communication Adapter Interface docs

* Full SDD updates

* Spelling &  nits and details

* Put formatting back to original

* Update Deframer interface to include bufferReturn

* Address review comments
2025-05-08 10:54:54 -07:00

174 lines
8.1 KiB
C++

// ======================================================================
// \title FrameAccumulator.cpp
// \author mstarch
// \brief cpp file for FrameAccumulator component implementation class
// ======================================================================
#include "Fw/FPrimeBasicTypes.hpp"
#include "Fw/Types/Assert.hpp"
#include "Svc/FrameAccumulator/FrameAccumulator.hpp"
namespace Svc {
// ----------------------------------------------------------------------
// Component construction and destruction
// ----------------------------------------------------------------------
FrameAccumulator ::FrameAccumulator(const char* const compName)
: FrameAccumulatorComponentBase(compName),
m_detector(nullptr),
m_memoryAllocator(nullptr),
m_memory(nullptr),
m_allocatorId(0) {}
FrameAccumulator ::~FrameAccumulator() {}
void FrameAccumulator ::configure(const FrameDetector& detector,
FwEnumStoreType allocationId,
Fw::MemAllocator& allocator,
FwSizeType store_size) {
bool recoverable = false;
U8* const data = static_cast<U8*>(allocator.allocate(allocationId, store_size, recoverable));
FW_ASSERT(data != nullptr);
m_inRing.setup(data, store_size);
this->m_detector = &detector;
this->m_allocatorId = allocationId;
this->m_memoryAllocator = &allocator;
this->m_memory = data;
}
void FrameAccumulator ::cleanup() {
// If configuration happened, we must deallocate
if (this->m_memoryAllocator != nullptr) {
this->m_memoryAllocator->deallocate(this->m_allocatorId, this->m_memory);
this->m_memory = nullptr;
}
}
// ----------------------------------------------------------------------
// Handler implementations for user-defined typed input ports
// ----------------------------------------------------------------------
void FrameAccumulator ::dataIn_handler(FwIndexType portNum, Fw::Buffer& buffer, const ComCfg::FrameContext& context) {
// Check whether there is data to process
if (buffer.isValid()) {
// The buffer is not necessarily a full frame, so the attached context has no meaning and we ignore it
this->processBuffer(buffer);
}
// Return ownership of the incoming data
this->dataReturnOut_out(0, buffer, context);
}
void FrameAccumulator ::processBuffer(Fw::Buffer& buffer) {
const FwSizeType bufferSize = buffer.getSize();
U8* const bufferData = buffer.getData();
// Current offset into buffer
FwSizeType offset = 0;
// Remaining data in buffer
FwSizeType remaining = bufferSize;
for (FwSizeType i = 0; i < bufferSize; ++i) {
// If there is no data left or no space, exit the loop
if (remaining == 0 || this->m_inRing.get_free_size() == 0) {
break;
}
// Compute the size of data to serialize
const FwSizeType ringFreeSize = this->m_inRing.get_free_size();
const FwSizeType serSize = (ringFreeSize <= remaining) ? ringFreeSize : remaining;
// Serialize data into the ring buffer
const Fw::SerializeStatus status = this->m_inRing.serialize(&bufferData[offset], serSize);
// If data does not fit, there is a coding error
FW_ASSERT(status == Fw::FW_SERIALIZE_OK, static_cast<FwAssertArgType>(status),
static_cast<FwAssertArgType>(offset), static_cast<FwAssertArgType>(serSize));
// Process the data
this->processRing();
// Update buffer offset and remaining
offset += serSize;
remaining -= serSize;
}
// Either all the bytes from the data buffer must be processed, or the ring must be full
FW_ASSERT(remaining == 0 || this->m_inRing.get_free_size() == 0, static_cast<FwAssertArgType>(remaining));
}
void FrameAccumulator ::processRing() {
FW_ASSERT(this->m_detector != nullptr);
// The number of remaining bytes in the ring buffer
FwSizeType remaining = 0;
// The protocol status
FrameDetector::Status status = FrameDetector::Status::FRAME_DETECTED;
// The ring buffer capacity
const FwSizeType ringCapacity = this->m_inRing.get_capacity();
// Process the ring buffer looking for at least the header
for (FwSizeType i = 0; i < ringCapacity; i++) {
// Get the number of bytes remaining in the ring buffer
remaining = this->m_inRing.get_allocated_size();
// If there are none, we are done
if (remaining == 0) {
break;
}
// size_out is a return variable we initialize to zero, but it should be overwritten
FwSizeType size_out = 0;
// Attempt to detect the frame without changing the circular buffer
status = this->m_detector->detect(this->m_inRing, size_out);
// Detect must not consume data in the ring buffer
FW_ASSERT(m_inRing.get_allocated_size() == remaining,
static_cast<FwAssertArgType>(m_inRing.get_allocated_size()), static_cast<FwAssertArgType>(remaining));
// On successful detection, consume data from the ring buffer and place it into an allocated frame
if (status == FrameDetector::FRAME_DETECTED) {
// size_out must be set to the size of the buffer and must fit within the existing data
FW_ASSERT(size_out != 0);
FW_ASSERT(size_out <= remaining, static_cast<FwAssertArgType>(size_out),
static_cast<FwAssertArgType>(remaining));
// check for overflow before casting down to U32
FW_ASSERT(size_out <= std::numeric_limits<U32>::max());
Fw::Buffer buffer = this->bufferAllocate_out(0, static_cast<U32>(size_out));
if (buffer.isValid()) {
// Copy data out of ring buffer into the allocated buffer
Fw::SerializeStatus serialize_status = this->m_inRing.peek(buffer.getData(), size_out);
FW_ASSERT(serialize_status == Fw::SerializeStatus::FW_SERIALIZE_OK);
// Consume (rotate) the data from the ring buffer
serialize_status = this->m_inRing.rotate(size_out);
FW_ASSERT(serialize_status == Fw::SerializeStatus::FW_SERIALIZE_OK);
FW_ASSERT(m_inRing.get_allocated_size() == remaining - size_out,
static_cast<FwAssertArgType>(m_inRing.get_allocated_size()),
static_cast<FwAssertArgType>(remaining), static_cast<FwAssertArgType>(size_out));
ComCfg::FrameContext context;
this->dataOut_out(0, buffer, context);
} else {
// No buffer is available, we need to exit and try again later
this->log_WARNING_HI_NoBufferAvailable();
break;
}
}
// More data needed
else if (status == FrameDetector::MORE_DATA_NEEDED) {
// size_out can never be larger than the capacity of the ring. Otherwise all uplink will fail.
FW_ASSERT(size_out < m_inRing.get_capacity(), static_cast<FwAssertArgType>(size_out));
// Detection should report "more is needed" and set size_out to something larger than available data
FW_ASSERT(size_out > remaining, static_cast<FwAssertArgType>(size_out),
static_cast<FwAssertArgType>(remaining));
// Break out of loop: suspend detection until we receive another buffer
break;
}
// No frame was detected or an unknown status was received
else {
// Discard a single byte of data and start again
(void)this->m_inRing.rotate(1);
FW_ASSERT(m_inRing.get_allocated_size() == remaining - 1,
static_cast<FwAssertArgType>(m_inRing.get_allocated_size()),
static_cast<FwAssertArgType>(remaining));
}
}
}
void FrameAccumulator ::dataReturnIn_handler(FwIndexType portNum, Fw::Buffer& fwBuffer, const ComCfg::FrameContext& context) {
// Frame buffer ownership is returned to the component. Component had allocated with a buffer manager,
// so we return it to the buffer manager for deallocation
this->bufferDeallocate_out(0, fwBuffer);
}
} // namespace Svc