Add support for querying the DECCTR color table report (#17708)

This PR introduces the framework for the `DECRQTSR` sequence which is
used to query terminal state reports. But for now I've just implemented
the `DECCTR` color table report, which provides a way for applications
to query the terminal's color scheme.

## References and Relevant Issues

This is the counterpart to the the `DECRSTS` sequence, which is used to
restore a color table report. That was implemented in PR #13139, but it
only became practical to report the color table once conpty passthrough
was added in PR #17510.

## Detailed Description of the Pull Request / Additional comments

This sequence has the option of reporting the colors as either HLS or
RGB, but in both cases the resolution is lower than 24 bits, so the
colors won't necessarily round-trip exactly when saving and restoring.
The HLS model in particular can accumulate rounding errors over time.

## Validation Steps Performed

I've added a basic unit test that confirms the colors are reported as
expected for both color models. The color values in these tests were
obtained from color reports on a real VT525 terminal.

## PR Checklist
- [x] Tests added/passed
This commit is contained in:
James Holderness 2024-08-14 00:53:26 +01:00 committed by GitHub
parent 06c07ab50d
commit 4a40c4329a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 290 additions and 0 deletions

View File

@ -171,6 +171,7 @@ public:
const DispatchTypes::MacroEncoding encoding) = 0; // DECDMAC
virtual bool InvokeMacro(const VTInt macroId) = 0; // DECINVM
virtual bool RequestTerminalStateReport(const DispatchTypes::ReportFormat format, const VTParameter formatOption) = 0; // DECRQTSR
virtual StringHandler RestoreTerminalState(const DispatchTypes::ReportFormat format) = 0; // DECRSTS
virtual StringHandler RequestSetting() = 0; // DECRQSS

View File

@ -4166,6 +4166,27 @@ bool AdaptDispatch::InvokeMacro(const VTInt macroId)
return true;
}
// Routine Description:
// - DECRQTSR - Queries the state of the terminal. This can either be a terminal
// state report, generally covering all settable state in the terminal (with
// the exception of large data items), or a color table report.
// Arguments:
// - format - the format of the report being requested.
// - formatOption - a format-specific option.
// Return Value:
// - True if handled successfully. False otherwise.
bool AdaptDispatch::RequestTerminalStateReport(const DispatchTypes::ReportFormat format, const VTParameter formatOption)
{
switch (format)
{
case DispatchTypes::ReportFormat::ColorTableReport:
_ReportColorTable(formatOption);
return true;
default:
return false;
}
}
// Method Description:
// - DECRSTS - Restores the terminal state from a stream of data previously
// saved with a DECRQTSR query.
@ -4184,6 +4205,48 @@ ITermDispatch::StringHandler AdaptDispatch::RestoreTerminalState(const DispatchT
}
}
// Method Description:
// - DECCTR - Returns the Color Table Report in response to a DECRQTSR query.
// Arguments:
// - colorModel - the color model to use in the report (1 = HLS, 2 = RGB).
// Return Value:
// - None
void AdaptDispatch::_ReportColorTable(const DispatchTypes::ColorModel colorModel) const
{
using namespace std::string_view_literals;
// A valid response always starts with DCS 2 $ s.
fmt::basic_memory_buffer<wchar_t, TextColor::TABLE_SIZE * 18> response;
response.append(L"\033P2$s"sv);
const auto modelNumber = static_cast<int>(colorModel);
for (size_t colorNumber = 0; colorNumber < TextColor::TABLE_SIZE; colorNumber++)
{
const auto color = _renderSettings.GetColorTableEntry(colorNumber);
if (color != INVALID_COLOR)
{
response.append(colorNumber > 0 ? L"/"sv : L""sv);
auto x = 0, y = 0, z = 0;
switch (colorModel)
{
case DispatchTypes::ColorModel::HLS:
std::tie(x, y, z) = Utils::ColorToHLS(color);
break;
case DispatchTypes::ColorModel::RGB:
std::tie(x, y, z) = Utils::ColorToRGB100(color);
break;
default:
return;
}
fmt::format_to(std::back_inserter(response), FMT_COMPILE(L"{};{};{};{};{}"), colorNumber, modelNumber, x, y, z);
}
}
// An ST ends the sequence.
response.append(L"\033\\"sv);
_api.ReturnResponse({ response.data(), response.size() });
}
// Method Description:
// - DECCTR - This is a parser for the Color Table Report received via DECRSTS.
// The report contains a list of color definitions separated with a slash

View File

@ -174,6 +174,7 @@ namespace Microsoft::Console::VirtualTerminal
const DispatchTypes::MacroEncoding encoding) override; // DECDMAC
bool InvokeMacro(const VTInt macroId) override; // DECINVM
bool RequestTerminalStateReport(const DispatchTypes::ReportFormat format, const VTParameter formatOption) override; // DECRQTSR
StringHandler RestoreTerminalState(const DispatchTypes::ReportFormat format) override; // DECRSTS
StringHandler RequestSetting() override; // DECRQSS
@ -272,6 +273,7 @@ namespace Microsoft::Console::VirtualTerminal
void _ClearAllTabStops() noexcept;
void _InitTabStopsForWidth(const VTInt width);
void _ReportColorTable(const DispatchTypes::ColorModel colorModel) const;
StringHandler _RestoreColorTable();
void _ReportSGRSetting() const;

View File

@ -164,6 +164,7 @@ public:
const DispatchTypes::MacroEncoding /*encoding*/) override { return nullptr; } // DECDMAC
bool InvokeMacro(const VTInt /*macroId*/) override { return false; } // DECINVM
bool RequestTerminalStateReport(const DispatchTypes::ReportFormat /*format*/, const VTParameter /*formatOption*/) override { return false; } // DECRQTSR
StringHandler RestoreTerminalState(const DispatchTypes::ReportFormat /*format*/) override { return nullptr; }; // DECRSTS
StringHandler RequestSetting() override { return nullptr; }; // DECRQSS

View File

@ -2263,6 +2263,141 @@ public:
verifyChecksumReport(L"FF8B");
}
TEST_METHOD(ColorTableReportTests)
{
_testGetSet->PrepData();
// The test cases below are copied from the VT525 default color table,
// but our color table holds many more values, so we're just filling the
// remaining slots with black for the purposes of this test.
auto& renderSettings = _testGetSet->_renderer._renderSettings;
renderSettings.SetColorTableEntry(0, RGB(0, 0, 0));
renderSettings.SetColorTableEntry(1, RGB(204, 36, 36));
renderSettings.SetColorTableEntry(2, RGB(51, 204, 51));
renderSettings.SetColorTableEntry(3, RGB(204, 204, 51));
renderSettings.SetColorTableEntry(4, RGB(51, 51, 204));
renderSettings.SetColorTableEntry(5, RGB(204, 51, 204));
renderSettings.SetColorTableEntry(6, RGB(51, 204, 204));
renderSettings.SetColorTableEntry(7, RGB(120, 120, 120));
renderSettings.SetColorTableEntry(8, RGB(69, 69, 69));
renderSettings.SetColorTableEntry(9, RGB(255, 0, 0));
renderSettings.SetColorTableEntry(10, RGB(0, 255, 0));
renderSettings.SetColorTableEntry(11, RGB(255, 255, 0));
renderSettings.SetColorTableEntry(12, RGB(0, 0, 255));
renderSettings.SetColorTableEntry(13, RGB(255, 0, 255));
renderSettings.SetColorTableEntry(14, RGB(0, 255, 255));
renderSettings.SetColorTableEntry(15, RGB(255, 255, 255));
for (size_t i = 16; i < TextColor::TABLE_SIZE; i++)
{
renderSettings.SetColorTableEntry(i, RGB(0, 0, 0));
}
// Color table reports start with a DCS $s introducer with a parameter
// value of 2, and end with an ST terminator.
const auto DECCTR = L"\033P2$s";
const auto ST = L"\033\\";
Log::Comment(L"HLS color model");
const auto hlsColorModel = static_cast<int>(DispatchTypes::ColorModel::HLS);
_pDispatch->RequestTerminalStateReport(DispatchTypes::ReportFormat::ColorTableReport, hlsColorModel);
std::wstring expectedResponse = DECCTR;
// RGB(0,0,0) -> HLS(0°,0%,0%)
expectedResponse += L"0;1;0;0;0/";
// RGB(204,36,36) -> HLS(120°,47%,70%)
expectedResponse += L"1;1;120;47;70/";
// RGB(51,204,51) -> HLS(240°,50%,60%)
expectedResponse += L"2;1;240;50;60/";
// RGB(204,204,51) -> HLS(180°,50%,60%)
expectedResponse += L"3;1;180;50;60/";
// RGB(51,51,204) -> HLS(0°,50%,60%)
expectedResponse += L"4;1;0;50;60/";
// RGB(204,51,204) -> HLS(60°,50%,60%)
expectedResponse += L"5;1;60;50;60/";
// RGB(51,204,204) -> HLS(300°,50%,60%)
expectedResponse += L"6;1;300;50;60/";
// RGB(120,120,120) -> HLS(0°,47%,0%)
expectedResponse += L"7;1;0;47;0/";
// RGB(69,69,69) -> HLS(0°,27%,0%)
expectedResponse += L"8;1;0;27;0/";
// RGB(255,0,0) -> HLS(120°,50%,100%)
expectedResponse += L"9;1;120;50;100/";
// RGB(0,255,0) -> HLS(240°,50%,100%)
expectedResponse += L"10;1;240;50;100/";
// RGB(255,255,0) -> HLS(180°,50%,100%)
expectedResponse += L"11;1;180;50;100/";
// RGB(0,0,255) -> HLS(0°,50%,100%)
expectedResponse += L"12;1;0;50;100/";
// RGB(255,0,255) -> HLS(60°,50%,100%)
expectedResponse += L"13;1;60;50;100/";
// RGB(0,255,255) -> HLS(300°,50%,100%)
expectedResponse += L"14;1;300;50;100/";
// RGB(255,255,255) -> HLS(0°,100%,0%)
expectedResponse += L"15;1;0;100;0/";
// Remaining slots are black, i.e. HLS(0°,0%,0%)
for (size_t i = 16; i < TextColor::TABLE_SIZE; i++)
{
expectedResponse += std::to_wstring(i) + L";1;0;0;0";
if (i + 1 < TextColor::TABLE_SIZE)
{
expectedResponse += L'/';
}
}
expectedResponse += ST;
_testGetSet->ValidateInputEvent(expectedResponse.c_str());
Log::Comment(L"RGB color model");
const auto rgbColorModel = static_cast<int>(DispatchTypes::ColorModel::RGB);
_pDispatch->RequestTerminalStateReport(DispatchTypes::ReportFormat::ColorTableReport, rgbColorModel);
expectedResponse = DECCTR;
// RGB(0,0,0) -> RGB(0%,0%,0%)
expectedResponse += L"0;2;0;0;0/";
// RGB(204,36,36) -> RGB(80%,14%,14%)
expectedResponse += L"1;2;80;14;14/";
// RGB(51,204,51) -> RGB(20%,80%,20%)
expectedResponse += L"2;2;20;80;20/";
// RGB(204,204,51) -> RGB(80%,80%,20%)
expectedResponse += L"3;2;80;80;20/";
// RGB(51,51,204) -> RGB(20%,20%,80%)
expectedResponse += L"4;2;20;20;80/";
// RGB(204,51,204) -> RGB(80%,20%,80%)
expectedResponse += L"5;2;80;20;80/";
// RGB(51,204,204) -> RGB(20%,80%,80%)
expectedResponse += L"6;2;20;80;80/";
// RGB(120,120,120) -> RGB(47%,47%,47%)
expectedResponse += L"7;2;47;47;47/";
// RGB(69,69,69) -> RGB(27%,27%,27%)
expectedResponse += L"8;2;27;27;27/";
// RGB(255,0,0) -> RGB(100%,0%,0%)
expectedResponse += L"9;2;100;0;0/";
// RGB(0,255,0) -> RGB(0%,100%,0%)
expectedResponse += L"10;2;0;100;0/";
// RGB(255,255,0) -> RGB(100%,100%,0%)
expectedResponse += L"11;2;100;100;0/";
// RGB(0,0,255) -> RGB(0%,0%,100%)
expectedResponse += L"12;2;0;0;100/";
// RGB(255,0,255) -> RGB(100%,0%,100%)
expectedResponse += L"13;2;100;0;100/";
// RGB(0,255,255) -> RGB(0%,100%,100%)
expectedResponse += L"14;2;0;100;100/";
// RGB(255,255,255) -> RGB(100%,100%,100%)
expectedResponse += L"15;2;100;100;100/";
// Remaining slots are black, i.e. RGB(0%,0%,0%)
for (size_t i = 16; i < TextColor::TABLE_SIZE; i++)
{
expectedResponse += std::to_wstring(i) + L";2;0;0;0";
if (i + 1 < TextColor::TABLE_SIZE)
{
expectedResponse += L'/';
}
}
expectedResponse += ST;
_testGetSet->ValidateInputEvent(expectedResponse.c_str());
}
TEST_METHOD(TabulationStopReportTests)
{
_testGetSet->PrepData();

View File

@ -626,6 +626,9 @@ bool OutputStateMachineEngine::ActionCsiDispatch(const VTID id, const VTParamete
case CsiActionCodes::DECCRA_CopyRectangularArea:
success = _dispatch->CopyRectangularArea(parameters.at(0), parameters.at(1), parameters.at(2).value_or(0), parameters.at(3).value_or(0), parameters.at(4), parameters.at(5), parameters.at(6), parameters.at(7));
break;
case CsiActionCodes::DECRQTSR_RequestTerminalStateReport:
success = _dispatch->RequestTerminalStateReport(parameters.at(0), parameters.at(1));
break;
case CsiActionCodes::DECRQPSR_RequestPresentationStateReport:
success = _dispatch->RequestPresentationStateReport(parameters.at(0));
break;

View File

@ -154,6 +154,7 @@ namespace Microsoft::Console::VirtualTerminal
DECRQM_PrivateRequestMode = VTID("?$p"),
DECCARA_ChangeAttributesRectangularArea = VTID("$r"),
DECRARA_ReverseAttributesRectangularArea = VTID("$t"),
DECRQTSR_RequestTerminalStateReport = VTID("$u"),
DECCRA_CopyRectangularArea = VTID("$v"),
DECRQPSR_RequestPresentationStateReport = VTID("$w"),
DECFRA_FillRectangularArea = VTID("$x"),

View File

@ -60,7 +60,9 @@ namespace Microsoft::Console::Utils
std::optional<til::color> ColorFromXTermColor(const std::wstring_view wstr) noexcept;
std::optional<til::color> ColorFromXParseColorSpec(const std::wstring_view wstr) noexcept;
til::color ColorFromHLS(const int h, const int l, const int s) noexcept;
std::tuple<int, int, int> ColorToHLS(const til::color color) noexcept;
til::color ColorFromRGB100(const int r, const int g, const int b) noexcept;
std::tuple<int, int, int> ColorToRGB100(const til::color color) noexcept;
bool HexToUint(const wchar_t wch, unsigned int& value) noexcept;
bool StringToUint(const std::wstring_view wstr, unsigned int& value);

View File

@ -374,6 +374,32 @@ til::color Utils::ColorFromRGB100(const int r, const int g, const int b) noexcep
return { red, green, blue };
}
// Function Description:
// - Returns the RGB percentage components of a given til::color value.
// Arguments:
// - color: the color being queried
// Return Value:
// - a tuple containing the three components
std::tuple<int, int, int> Utils::ColorToRGB100(const til::color color) noexcept
{
// The color class components are in the range 0 to 255, so we
// need to scale them by 100/255 to obtain percentage values. We
// can optimise this conversion with a pre-created lookup table.
static constexpr auto scale255To100 = [] {
std::array<int8_t, 256> lut{};
for (size_t i = 0; i < std::size(lut); i++)
{
lut.at(i) = gsl::narrow_cast<uint8_t>((i * 100 + 128) / 255);
}
return lut;
}();
const auto red = til::at(scale255To100, color.r);
const auto green = til::at(scale255To100, color.g);
const auto blue = til::at(scale255To100, color.b);
return { red, green, blue };
}
// Routine Description:
// - Constructs a til::color value from HLS components.
// Arguments:
@ -424,6 +450,62 @@ til::color Utils::ColorFromHLS(const int h, const int l, const int s) noexcept
return { comp3, comp2, comp1 }; // cyan to blue
}
// Function Description:
// - Returns the HLS components of a given til::color value.
// Arguments:
// - color: the color being queried
// Return Value:
// - a tuple containing the three components
std::tuple<int, int, int> Utils::ColorToHLS(const til::color color) noexcept
{
const auto red = color.r / 255.f;
const auto green = color.g / 255.f;
const auto blue = color.b / 255.f;
// This calculation is based on the RGB to HSL algorithm described in
// Wikipedia: https://en.wikipedia.org/wiki/HSL_and_HSV#From_RGB
// We start by calculating the maximum and minimum component values.
const auto maxComp = std::max({ red, green, blue });
const auto minComp = std::min({ red, green, blue });
// The chroma value is the range of those components.
const auto chroma = maxComp - minComp;
// And the luma is the middle of the range. But we're actually calculating
// double that value here to save on a division.
const auto luma2 = (maxComp + minComp);
// The saturation is half the chroma value divided by min(luma, 1-luma),
// but since the luma is already doubled, we can use the chroma as is.
const auto divisor = std::min(luma2, 2.f - luma2);
const auto sat = divisor > 0 ? chroma / divisor : 0.f;
// Finally we calculate the hue, which is represented by the angle of a
// vector to a point in a color hexagon with blue, magenta, red, yellow,
// green, and cyan at its corners. As noted above, the DEC standard has
// blue at 0°, red at 120°, and green at 240°, which is slightly different
// from the way that hue is typically mapped in modern color models.
auto hue = 0.f;
if (chroma != 0)
{
if (maxComp == red)
hue = (green - blue) / chroma + 2.f; // magenta to yellow
else if (maxComp == green)
hue = (blue - red) / chroma + 4.f; // yellow to cyan
else if (maxComp == blue)
hue = (red - green) / chroma + 6.f; // cyan to magenta
}
// The hue value calculated above is essentially a fractional offset from the
// six hexagon corners, so it has to be scaled by 60 to get the angle value.
// Luma and saturation are percentages so must be scaled by 100, but our luma
// value is already doubled, so only needs to be scaled by 50.
const auto h = static_cast<int>(hue * 60.f + 0.5f) % 360;
const auto l = static_cast<int>(luma2 * 50.f + 0.5f);
const auto s = static_cast<int>(sat * 100.f + 0.5f);
return { h, l, s };
}
// Routine Description:
// - Converts a hex character to its equivalent integer value.
// Arguments: