TypeScript/src/services/findAllReferences.ts
2019-06-03 14:06:30 -07:00

2009 lines
106 KiB
TypeScript

/* @internal */
namespace ts.FindAllReferences {
export interface SymbolAndEntries {
readonly definition: Definition | undefined;
readonly references: ReadonlyArray<Entry>;
}
export const enum DefinitionKind { Symbol, Label, Keyword, This, String }
export type Definition =
| { readonly type: DefinitionKind.Symbol; readonly symbol: Symbol }
| { readonly type: DefinitionKind.Label; readonly node: Identifier }
| { readonly type: DefinitionKind.Keyword; readonly node: Node }
| { readonly type: DefinitionKind.This; readonly node: Node }
| { readonly type: DefinitionKind.String; readonly node: StringLiteral };
export const enum EntryKind { Span, Node, StringLiteral, SearchedLocalFoundProperty, SearchedPropertyFoundLocal }
export type NodeEntryKind = EntryKind.Node | EntryKind.StringLiteral | EntryKind.SearchedLocalFoundProperty | EntryKind.SearchedPropertyFoundLocal;
export type Entry = NodeEntry | SpanEntry;
export interface DeclarationNodeWithStartAndEnd {
start: Node;
end: Node;
}
export type DeclarationNode = Node | DeclarationNodeWithStartAndEnd;
export interface NodeEntry {
readonly kind: NodeEntryKind;
readonly node: Node;
readonly declaration?: DeclarationNode;
}
export interface SpanEntry {
readonly kind: EntryKind.Span;
readonly fileName: string;
readonly textSpan: TextSpan;
}
export function nodeEntry(node: Node, kind: NodeEntryKind = EntryKind.Node): NodeEntry {
return {
kind,
node: (node as NamedDeclaration).name || node,
declaration: getDeclarationForDeclarationSpanForNode(node)
};
}
export function isDeclarationNodeWithStartAndEnd(node: DeclarationNode): node is DeclarationNodeWithStartAndEnd {
return node && (node as Node).kind === undefined;
}
function getDeclarationForDeclarationSpanForNode(node: Node): DeclarationNode | undefined {
if (isDeclaration(node)) {
return getDeclarationForDeclarationSpan(node);
}
// TODO(shkamat)::
// JSXOpeningElement or JSXElement for tagName ?
if (!node.parent) return undefined;
if (!isDeclaration(node.parent) && !isExportAssignment(node.parent)) {
// Special property assignment in javascript
if (isInJSFile(node)) {
const binaryExpression = isBinaryExpression(node.parent) ?
node.parent :
isPropertyAccessExpression(node.parent) &&
isBinaryExpression(node.parent.parent) &&
node.parent.parent.left === node.parent ?
node.parent.parent :
undefined;
if (binaryExpression && getAssignmentDeclarationKind(binaryExpression) !== AssignmentDeclarationKind.None) {
return getDeclarationForDeclarationSpan(binaryExpression);
}
}
// Handle computed property name
const propertyName = findAncestor(node, isComputedPropertyName);
return propertyName ?
getDeclarationForDeclarationSpan(propertyName.parent) :
undefined;
}
if (isConstructorDeclaration(node.parent) ||
node.parent.name === node || // node is name of declaration, use parent
// Property name of the import export specifier or binding pattern, use parent
((isImportOrExportSpecifier(node.parent) || isBindingElement(node.parent))
&& node.parent.propertyName === node) ||
isExportAssignment(node.parent) && node.parent.expression === node) {
return getDeclarationForDeclarationSpan(node.parent);
}
return undefined;
}
export function getDeclarationForDeclarationSpan(node: NamedDeclaration | BinaryExpression | ForInOrOfStatement | undefined): DeclarationNode | undefined {
if (!node) return undefined;
switch (node.kind) {
case SyntaxKind.VariableDeclaration:
return !isVariableDeclarationList(node.parent) || node.parent.declarations.length !== 1 ?
node :
isVariableStatement(node.parent.parent) ?
node.parent.parent :
isForInOrOfStatement(node.parent.parent) ?
getDeclarationForDeclarationSpan(node.parent.parent) :
node.parent;
case SyntaxKind.BindingElement:
return getDeclarationForDeclarationSpan(node.parent.parent as NamedDeclaration);
case SyntaxKind.ImportSpecifier:
return node.parent.parent.parent;
case SyntaxKind.ExportSpecifier:
case SyntaxKind.NamespaceImport:
return node.parent.parent;
case SyntaxKind.ImportClause:
return node.parent;
case SyntaxKind.JsxAttribute:
return (node as JsxAttribute).initializer === undefined ?
undefined :
node;
case SyntaxKind.BinaryExpression:
return isExpressionStatement(node.parent) ?
node.parent :
node;
case SyntaxKind.ForOfStatement:
case SyntaxKind.ForInStatement:
return {
start: (node as ForInOrOfStatement).initializer,
end: (node as ForInOrOfStatement).expression
};
case SyntaxKind.PropertyAssignment:
// TODO(shkamat):: Should we show whole object literal instead?
case SyntaxKind.ShorthandPropertyAssignment:
return isArrayLiteralOrObjectLiteralDestructuringPattern(node.parent) ?
getDeclarationForDeclarationSpan(
findAncestor(node.parent, node =>
isBinaryExpression(node) || isForInOrOfStatement(node)
) as BinaryExpression | ForInOrOfStatement
) :
node.kind === SyntaxKind.PropertyAssignment ?
node :
undefined;
default:
return node;
}
}
export interface Options {
readonly findInStrings?: boolean;
readonly findInComments?: boolean;
/**
* True if we are renaming the symbol.
* If so, we will find fewer references -- if it is referenced by several different names, we still only find references for the original name.
*/
readonly isForRename?: boolean;
/** True if we are searching for implementations. We will have a different method of adding references if so. */
readonly implementations?: boolean;
/**
* True to opt in for enhanced renaming of shorthand properties and import/export specifiers.
* The options controls the behavior for the whole rename operation; it cannot be changed on a per-file basis.
* Default is false for backwards compatibility.
*/
readonly providePrefixAndSuffixTextForRename?: boolean;
}
export function findReferencedSymbols(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, sourceFile: SourceFile, position: number): ReferencedSymbol[] | undefined {
const node = getTouchingPropertyName(sourceFile, position);
const referencedSymbols = Core.getReferencedSymbolsForNode(position, node, program, sourceFiles, cancellationToken);
const checker = program.getTypeChecker();
return !referencedSymbols || !referencedSymbols.length ? undefined : mapDefined<SymbolAndEntries, ReferencedSymbol>(referencedSymbols, ({ definition, references }) =>
// Only include referenced symbols that have a valid definition.
definition && {
definition: checker.runWithCancellationToken(cancellationToken, checker => definitionToReferencedSymbolDefinitionInfo(definition, checker, node)),
references: references.map(toReferenceEntry)
});
}
export function getImplementationsAtPosition(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, sourceFile: SourceFile, position: number): ImplementationLocation[] | undefined {
const node = getTouchingPropertyName(sourceFile, position);
const referenceEntries = getImplementationReferenceEntries(program, cancellationToken, sourceFiles, node, position);
const checker = program.getTypeChecker();
return map(referenceEntries, entry => toImplementationLocation(entry, checker));
}
function getImplementationReferenceEntries(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, node: Node, position: number): ReadonlyArray<Entry> | undefined {
if (node.kind === SyntaxKind.SourceFile) {
return undefined;
}
const checker = program.getTypeChecker();
// If invoked directly on a shorthand property assignment, then return
// the declaration of the symbol being assigned (not the symbol being assigned to).
if (node.parent.kind === SyntaxKind.ShorthandPropertyAssignment) {
const result: NodeEntry[] = [];
Core.getReferenceEntriesForShorthandPropertyAssignment(node, checker, node => result.push(nodeEntry(node)));
return result;
}
else if (node.kind === SyntaxKind.SuperKeyword || isSuperProperty(node.parent)) {
// References to and accesses on the super keyword only have one possible implementation, so no
// need to "Find all References"
const symbol = checker.getSymbolAtLocation(node)!;
return symbol.valueDeclaration && [nodeEntry(symbol.valueDeclaration)];
}
else {
// Perform "Find all References" and retrieve only those that are implementations
return getReferenceEntriesForNode(position, node, program, sourceFiles, cancellationToken, { implementations: true });
}
}
export function findReferenceOrRenameEntries<T>(
program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, node: Node, position: number, options: Options | undefined,
convertEntry: ToReferenceOrRenameEntry<T>,
): T[] | undefined {
return map(flattenEntries(Core.getReferencedSymbolsForNode(position, node, program, sourceFiles, cancellationToken, options)), entry => convertEntry(entry, node, program.getTypeChecker()));
}
export type ToReferenceOrRenameEntry<T> = (entry: Entry, originalNode: Node, checker: TypeChecker) => T;
export function getReferenceEntriesForNode(
position: number,
node: Node,
program: Program,
sourceFiles: ReadonlyArray<SourceFile>,
cancellationToken: CancellationToken,
options: Options = {},
sourceFilesSet: ReadonlyMap<true> = arrayToSet(sourceFiles, f => f.fileName),
): ReadonlyArray<Entry> | undefined {
return flattenEntries(Core.getReferencedSymbolsForNode(position, node, program, sourceFiles, cancellationToken, options, sourceFilesSet));
}
function flattenEntries(referenceSymbols: ReadonlyArray<SymbolAndEntries> | undefined): ReadonlyArray<Entry> | undefined {
return referenceSymbols && flatMap(referenceSymbols, r => r.references);
}
function definitionToReferencedSymbolDefinitionInfo(def: Definition, checker: TypeChecker, originalNode: Node): ReferencedSymbolDefinitionInfo {
const info = (() => {
switch (def.type) {
case DefinitionKind.Symbol: {
const { symbol } = def;
const { displayParts, kind } = getDefinitionKindAndDisplayParts(symbol, checker, originalNode);
const name = displayParts.map(p => p.text).join("");
const declaration = symbol.declarations ? first(symbol.declarations) : undefined;
return {
node: declaration ?
getNameOfDeclaration(declaration) || declaration :
originalNode,
name,
kind,
displayParts,
declaration: getDeclarationForDeclarationSpan(declaration)
};
}
case DefinitionKind.Label: {
const { node } = def;
return { node, name: node.text, kind: ScriptElementKind.label, displayParts: [displayPart(node.text, SymbolDisplayPartKind.text)] };
}
case DefinitionKind.Keyword: {
const { node } = def;
const name = tokenToString(node.kind)!;
return { node, name, kind: ScriptElementKind.keyword, displayParts: [{ text: name, kind: ScriptElementKind.keyword }] };
}
case DefinitionKind.This: {
const { node } = def;
const symbol = checker.getSymbolAtLocation(node);
const displayParts = symbol && SymbolDisplay.getSymbolDisplayPartsDocumentationAndSymbolKind(
checker, symbol, node.getSourceFile(), getContainerNode(node), node).displayParts || [textPart("this")];
return { node, name: "this", kind: ScriptElementKind.variableElement, displayParts };
}
case DefinitionKind.String: {
const { node } = def;
return { node, name: node.text, kind: ScriptElementKind.variableElement, displayParts: [displayPart(getTextOfNode(node), SymbolDisplayPartKind.stringLiteral)] };
}
default:
return Debug.assertNever(def);
}
})();
const { node, name, kind, displayParts, declaration } = info;
const sourceFile = node.getSourceFile();
const result: ReferencedSymbolDefinitionInfo = {
containerKind: ScriptElementKind.unknown,
containerName: "",
fileName: sourceFile.fileName,
kind,
name,
textSpan: getTextSpan(isComputedPropertyName(node) ? node.expression : node, sourceFile),
displayParts
};
if (declaration) {
result.declarationSpan = isDeclarationNodeWithStartAndEnd(declaration) ?
getTextSpan(declaration.start, sourceFile, declaration.end) :
getTextSpan(declaration, sourceFile);
}
return result;
}
function getDefinitionKindAndDisplayParts(symbol: Symbol, checker: TypeChecker, node: Node): { displayParts: SymbolDisplayPart[], kind: ScriptElementKind } {
const meaning = Core.getIntersectingMeaningFromDeclarations(node, symbol);
const enclosingDeclaration = symbol.declarations && firstOrUndefined(symbol.declarations) || node;
const { displayParts, symbolKind } =
SymbolDisplay.getSymbolDisplayPartsDocumentationAndSymbolKind(checker, symbol, enclosingDeclaration.getSourceFile(), enclosingDeclaration, enclosingDeclaration, meaning);
return { displayParts, kind: symbolKind };
}
export function toRenameLocation(entry: Entry, originalNode: Node, checker: TypeChecker, providePrefixAndSuffixText: boolean): RenameLocation {
return { ...entryToDocumentSpan(entry), ...(providePrefixAndSuffixText && getPrefixAndSuffixText(entry, originalNode, checker)) };
}
export function toReferenceEntry(entry: Entry): ReferenceEntry {
const documentSpan = entryToDocumentSpan(entry);
if (entry.kind === EntryKind.Span) {
return { ...documentSpan, isWriteAccess: false, isDefinition: false };
}
const { kind, node } = entry;
return {
...documentSpan,
isWriteAccess: isWriteAccessForReference(node),
isDefinition: node.kind === SyntaxKind.DefaultKeyword
|| !!getDeclarationFromName(node)
|| isLiteralComputedPropertyDeclarationName(node),
isInString: kind === EntryKind.StringLiteral ? true : undefined,
};
}
function entryToDocumentSpan(entry: Entry): DocumentSpan {
if (entry.kind === EntryKind.Span) {
return { textSpan: entry.textSpan, fileName: entry.fileName };
}
else {
const sourceFile = entry.node.getSourceFile();
const result: DocumentSpan = { textSpan: getTextSpan(entry.node, sourceFile), fileName: sourceFile.fileName };
if (entry.declaration) {
result.declarationSpan = isDeclarationNodeWithStartAndEnd(entry.declaration) ?
getTextSpan(entry.declaration.start, sourceFile, entry.declaration.end) :
getTextSpan(entry.declaration, sourceFile);
}
return result;
}
}
interface PrefixAndSuffix { readonly prefixText?: string; readonly suffixText?: string; }
function getPrefixAndSuffixText(entry: Entry, originalNode: Node, checker: TypeChecker): PrefixAndSuffix {
if (entry.kind !== EntryKind.Span && isIdentifier(originalNode)) {
const { node, kind } = entry;
const name = originalNode.text;
const isShorthandAssignment = isShorthandPropertyAssignment(node.parent);
if (isShorthandAssignment || isObjectBindingElementWithoutPropertyName(node.parent)) {
const prefixColon: PrefixAndSuffix = { prefixText: name + ": " };
const suffixColon: PrefixAndSuffix = { suffixText: ": " + name };
return kind === EntryKind.SearchedLocalFoundProperty ? prefixColon
: kind === EntryKind.SearchedPropertyFoundLocal ? suffixColon
// In `const o = { x }; o.x`, symbolAtLocation at `x` in `{ x }` is the property symbol.
// For a binding element `const { x } = o;`, symbolAtLocation at `x` is the property symbol.
: isShorthandAssignment ? suffixColon : prefixColon;
}
else if (isImportSpecifier(entry.node.parent) && !entry.node.parent.propertyName) {
// If the original symbol was using this alias, just rename the alias.
const originalSymbol = isExportSpecifier(originalNode.parent) ? checker.getExportSpecifierLocalTargetSymbol(originalNode.parent) : checker.getSymbolAtLocation(originalNode);
return contains(originalSymbol!.declarations, entry.node.parent) ? { prefixText: name + " as " } : emptyOptions;
}
else if (isExportSpecifier(entry.node.parent) && !entry.node.parent.propertyName) {
return originalNode === entry.node ? { prefixText: name + " as " } : { suffixText: " as " + name };
}
}
return emptyOptions;
}
function toImplementationLocation(entry: Entry, checker: TypeChecker): ImplementationLocation {
const documentSpan = entryToDocumentSpan(entry);
if (entry.kind !== EntryKind.Span) {
const { node } = entry;
return {
...documentSpan,
...implementationKindDisplayParts(node, checker)
};
}
else {
return { ...documentSpan, kind: ScriptElementKind.unknown, displayParts: [] };
}
}
function implementationKindDisplayParts(node: Node, checker: TypeChecker): { kind: ScriptElementKind, displayParts: SymbolDisplayPart[] } {
const symbol = checker.getSymbolAtLocation(isDeclaration(node) && node.name ? node.name : node);
if (symbol) {
return getDefinitionKindAndDisplayParts(symbol, checker, node);
}
else if (node.kind === SyntaxKind.ObjectLiteralExpression) {
return {
kind: ScriptElementKind.interfaceElement,
displayParts: [punctuationPart(SyntaxKind.OpenParenToken), textPart("object literal"), punctuationPart(SyntaxKind.CloseParenToken)]
};
}
else if (node.kind === SyntaxKind.ClassExpression) {
return {
kind: ScriptElementKind.localClassElement,
displayParts: [punctuationPart(SyntaxKind.OpenParenToken), textPart("anonymous local class"), punctuationPart(SyntaxKind.CloseParenToken)]
};
}
else {
return { kind: getNodeKind(node), displayParts: [] };
}
}
export function toHighlightSpan(entry: Entry): { fileName: string, span: HighlightSpan } {
const documentSpan = entryToDocumentSpan(entry);
if (entry.kind === EntryKind.Span) {
return {
fileName: documentSpan.fileName,
span: {
textSpan: documentSpan.textSpan,
kind: HighlightSpanKind.reference
}
};
}
const writeAccess = isWriteAccessForReference(entry.node);
const span: HighlightSpan = {
textSpan: documentSpan.textSpan,
kind: writeAccess ? HighlightSpanKind.writtenReference : HighlightSpanKind.reference,
isInString: entry.kind === EntryKind.StringLiteral ? true : undefined,
};
if (documentSpan.declarationSpan) {
span.declarationSpan = documentSpan.declarationSpan;
}
return { fileName: documentSpan.fileName, span };
}
function getTextSpan(node: Node, sourceFile: SourceFile, endNode?: Node): TextSpan {
let start = node.getStart(sourceFile);
let end = (endNode || node).getEnd();
if (node.kind === SyntaxKind.StringLiteral) {
Debug.assert(endNode === undefined);
start += 1;
end -= 1;
}
return createTextSpanFromBounds(start, end);
}
export function getTextSpanOfEntry(entry: Entry) {
return entry.kind === EntryKind.Span ? entry.textSpan :
getTextSpan(entry.node, entry.node.getSourceFile());
}
/** A node is considered a writeAccess iff it is a name of a declaration or a target of an assignment */
function isWriteAccessForReference(node: Node): boolean {
const decl = getDeclarationFromName(node);
return !!decl && declarationIsWriteAccess(decl) || node.kind === SyntaxKind.DefaultKeyword || isWriteAccess(node);
}
/**
* True if 'decl' provides a value, as in `function f() {}`;
* false if 'decl' is just a location for a future write, as in 'let x;'
*/
function declarationIsWriteAccess(decl: Declaration): boolean {
// Consider anything in an ambient declaration to be a write access since it may be coming from JS.
if (!!(decl.flags & NodeFlags.Ambient)) return true;
switch (decl.kind) {
case SyntaxKind.BinaryExpression:
case SyntaxKind.BindingElement:
case SyntaxKind.ClassDeclaration:
case SyntaxKind.ClassExpression:
case SyntaxKind.DefaultKeyword:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.EnumMember:
case SyntaxKind.ExportSpecifier:
case SyntaxKind.ImportClause: // default import
case SyntaxKind.ImportEqualsDeclaration:
case SyntaxKind.ImportSpecifier:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.JSDocCallbackTag:
case SyntaxKind.JSDocTypedefTag:
case SyntaxKind.JsxAttribute:
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.NamespaceExportDeclaration:
case SyntaxKind.NamespaceImport:
case SyntaxKind.Parameter:
case SyntaxKind.ShorthandPropertyAssignment:
case SyntaxKind.TypeAliasDeclaration:
case SyntaxKind.TypeParameter:
return true;
case SyntaxKind.PropertyAssignment:
// In `({ x: y } = 0);`, `x` is not a write access. (Won't call this function for `y`.)
return !isArrayLiteralOrObjectLiteralDestructuringPattern((decl as PropertyAssignment).parent);
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
case SyntaxKind.Constructor:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
return !!(decl as FunctionDeclaration | FunctionExpression | ConstructorDeclaration | MethodDeclaration | GetAccessorDeclaration | SetAccessorDeclaration).body;
case SyntaxKind.VariableDeclaration:
case SyntaxKind.PropertyDeclaration:
return !!(decl as VariableDeclaration | PropertyDeclaration).initializer || isCatchClause(decl.parent);
case SyntaxKind.MethodSignature:
case SyntaxKind.PropertySignature:
case SyntaxKind.JSDocPropertyTag:
case SyntaxKind.JSDocParameterTag:
return false;
default:
return Debug.failBadSyntaxKind(decl);
}
}
}
/** Encapsulates the core find-all-references algorithm. */
/* @internal */
namespace ts.FindAllReferences.Core {
/** Core find-all-references algorithm. Handles special cases before delegating to `getReferencedSymbolsForSymbol`. */
export function getReferencedSymbolsForNode(position: number, node: Node, program: Program, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken, options: Options = {}, sourceFilesSet: ReadonlyMap<true> = arrayToSet(sourceFiles, f => f.fileName)): ReadonlyArray<SymbolAndEntries> | undefined {
if (isSourceFile(node)) {
const reference = GoToDefinition.getReferenceAtPosition(node, position, program);
const moduleSymbol = reference && program.getTypeChecker().getMergedSymbol(reference.file.symbol);
return moduleSymbol && getReferencedSymbolsForModule(program, moduleSymbol, /*excludeImportTypeOfExportEquals*/ false, sourceFiles, sourceFilesSet);
}
if (!options.implementations) {
const special = getReferencedSymbolsSpecial(node, sourceFiles, cancellationToken);
if (special) {
return special;
}
}
const checker = program.getTypeChecker();
const symbol = checker.getSymbolAtLocation(node);
// Could not find a symbol e.g. unknown identifier
if (!symbol) {
// String literal might be a property (and thus have a symbol), so do this here rather than in getReferencedSymbolsSpecial.
return !options.implementations && isStringLiteral(node) ? getReferencesForStringLiteral(node, sourceFiles, cancellationToken) : undefined;
}
if (symbol.escapedName === InternalSymbolName.ExportEquals) {
return getReferencedSymbolsForModule(program, symbol.parent!, /*excludeImportTypeOfExportEquals*/ false, sourceFiles, sourceFilesSet);
}
const moduleReferences = getReferencedSymbolsForModuleIfDeclaredBySourceFile(symbol, program, sourceFiles, cancellationToken, options, sourceFilesSet);
if (moduleReferences && !(symbol.flags & SymbolFlags.Transient)) {
return moduleReferences;
}
const aliasedSymbol = getMergedAliasedSymbolOfNamespaceExportDeclaration(node, symbol, checker);
const moduleReferencesOfExportTarget = aliasedSymbol &&
getReferencedSymbolsForModuleIfDeclaredBySourceFile(aliasedSymbol, program, sourceFiles, cancellationToken, options, sourceFilesSet);
const references = getReferencedSymbolsForSymbol(symbol, node, sourceFiles, sourceFilesSet, checker, cancellationToken, options);
return mergeReferences(program, moduleReferences, references, moduleReferencesOfExportTarget);
}
function getMergedAliasedSymbolOfNamespaceExportDeclaration(node: Node, symbol: Symbol, checker: TypeChecker) {
if (node.parent && isNamespaceExportDeclaration(node.parent)) {
const aliasedSymbol = checker.getAliasedSymbol(symbol);
const targetSymbol = checker.getMergedSymbol(aliasedSymbol);
if (aliasedSymbol !== targetSymbol) {
return targetSymbol;
}
}
return undefined;
}
function getReferencedSymbolsForModuleIfDeclaredBySourceFile(symbol: Symbol, program: Program, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken, options: Options, sourceFilesSet: ReadonlyMap<true>) {
const moduleSourceFile = symbol.flags & SymbolFlags.Module ? find(symbol.declarations, isSourceFile) : undefined;
if (!moduleSourceFile) return undefined;
const exportEquals = symbol.exports!.get(InternalSymbolName.ExportEquals);
// If !!exportEquals, we're about to add references to `import("mod")` anyway, so don't double-count them.
const moduleReferences = getReferencedSymbolsForModule(program, symbol, !!exportEquals, sourceFiles, sourceFilesSet);
if (!exportEquals || !sourceFilesSet.has(moduleSourceFile.fileName)) return moduleReferences;
// Continue to get references to 'export ='.
const checker = program.getTypeChecker();
symbol = skipAlias(exportEquals, checker);
return mergeReferences(program, moduleReferences, getReferencedSymbolsForSymbol(symbol, /*node*/ undefined, sourceFiles, sourceFilesSet, checker, cancellationToken, options));
}
/**
* Merges the references by sorting them (by file index in sourceFiles and their location in it) that point to same definition symbol
*/
function mergeReferences(program: Program, ...referencesToMerge: (SymbolAndEntries[] | undefined)[]): SymbolAndEntries[] | undefined {
let result: SymbolAndEntries[] | undefined;
for (const references of referencesToMerge) {
if (!references || !references.length) continue;
if (!result) {
result = references;
continue;
}
for (const entry of references) {
if (!entry.definition || entry.definition.type !== DefinitionKind.Symbol) {
result.push(entry);
continue;
}
const symbol = entry.definition.symbol;
const refIndex = findIndex(result, ref => !!ref.definition &&
ref.definition.type === DefinitionKind.Symbol &&
ref.definition.symbol === symbol);
if (refIndex === -1) {
result.push(entry);
continue;
}
const reference = result[refIndex];
result[refIndex] = {
definition: reference.definition,
references: reference.references.concat(entry.references).sort((entry1, entry2) => {
const entry1File = getSourceFileIndexOfEntry(program, entry1);
const entry2File = getSourceFileIndexOfEntry(program, entry2);
if (entry1File !== entry2File) {
return compareValues(entry1File, entry2File);
}
const entry1Span = getTextSpanOfEntry(entry1);
const entry2Span = getTextSpanOfEntry(entry2);
return entry1Span.start !== entry2Span.start ?
compareValues(entry1Span.start, entry2Span.start) :
compareValues(entry1Span.length, entry2Span.length);
})
};
}
}
return result;
}
function getSourceFileIndexOfEntry(program: Program, entry: Entry) {
const sourceFile = entry.kind === EntryKind.Span ?
program.getSourceFile(entry.fileName)! :
entry.node.getSourceFile();
return program.getSourceFiles().indexOf(sourceFile);
}
function getReferencedSymbolsForModule(program: Program, symbol: Symbol, excludeImportTypeOfExportEquals: boolean, sourceFiles: ReadonlyArray<SourceFile>, sourceFilesSet: ReadonlyMap<true>): SymbolAndEntries[] {
Debug.assert(!!symbol.valueDeclaration);
const references = mapDefined<ModuleReference, Entry>(findModuleReferences(program, sourceFiles, symbol), reference => {
if (reference.kind === "import") {
const parent = reference.literal.parent;
if (isLiteralTypeNode(parent)) {
const importType = cast(parent.parent, isImportTypeNode);
if (excludeImportTypeOfExportEquals && !importType.qualifier) {
return undefined;
}
}
// import("foo") with no qualifier will reference the `export =` of the module, which may be referenced anyway.
return nodeEntry(reference.literal);
}
else {
return {
kind: EntryKind.Span,
fileName: reference.referencingFile.fileName,
textSpan: createTextSpanFromRange(reference.ref),
};
}
});
for (const decl of symbol.declarations) {
switch (decl.kind) {
case SyntaxKind.SourceFile:
// Don't include the source file itself. (This may not be ideal behavior, but awkward to include an entire file as a reference.)
break;
case SyntaxKind.ModuleDeclaration:
if (sourceFilesSet.has(decl.getSourceFile().fileName)) {
references.push(nodeEntry((decl as ModuleDeclaration).name));
}
break;
default:
// This may be merged with something.
Debug.assert(!!(symbol.flags & SymbolFlags.Transient), "Expected a module symbol to be declared by a SourceFile or ModuleDeclaration.");
}
}
const exported = symbol.exports!.get(InternalSymbolName.ExportEquals);
if (exported) {
for (const decl of exported.declarations) {
const sourceFile = decl.getSourceFile();
if (sourceFilesSet.has(sourceFile.fileName)) {
// At `module.exports = ...`, reference node is `module`
const node = isBinaryExpression(decl) && isPropertyAccessExpression(decl.left)
? decl.left.expression
: isExportAssignment(decl)
? Debug.assertDefined(findChildOfKind(decl, SyntaxKind.ExportKeyword, sourceFile))
: getNameOfDeclaration(decl) || decl;
references.push(nodeEntry(node));
}
}
}
return references.length ? [{ definition: { type: DefinitionKind.Symbol, symbol }, references }] : emptyArray;
}
/** getReferencedSymbols for special node kinds. */
function getReferencedSymbolsSpecial(node: Node, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken): SymbolAndEntries[] | undefined {
if (isTypeKeyword(node.kind)) {
return getAllReferencesForKeyword(sourceFiles, node.kind, cancellationToken);
}
// Labels
if (isJumpStatementTarget(node)) {
const labelDefinition = getTargetLabel(node.parent, node.text);
// if we have a label definition, look within its statement for references, if not, then
// the label is undefined and we have no results..
return labelDefinition && getLabelReferencesInNode(labelDefinition.parent, labelDefinition);
}
else if (isLabelOfLabeledStatement(node)) {
// it is a label definition and not a target, search within the parent labeledStatement
return getLabelReferencesInNode(node.parent, node);
}
if (isThis(node)) {
return getReferencesForThisKeyword(node, sourceFiles, cancellationToken);
}
if (node.kind === SyntaxKind.SuperKeyword) {
return getReferencesForSuperKeyword(node);
}
return undefined;
}
/** Core find-all-references algorithm for a normal symbol. */
function getReferencedSymbolsForSymbol(originalSymbol: Symbol, node: Node | undefined, sourceFiles: ReadonlyArray<SourceFile>, sourceFilesSet: ReadonlyMap<true>, checker: TypeChecker, cancellationToken: CancellationToken, options: Options): SymbolAndEntries[] {
const symbol = node && skipPastExportOrImportSpecifierOrUnion(originalSymbol, node, checker, /*useLocalSymbolForExportSpecifier*/ !isForRenameWithPrefixAndSuffixText(options)) || originalSymbol;
// Compute the meaning from the location and the symbol it references
const searchMeaning = node ? getIntersectingMeaningFromDeclarations(node, symbol) : SemanticMeaning.All;
const result: SymbolAndEntries[] = [];
const state = new State(sourceFiles, sourceFilesSet, node ? getSpecialSearchKind(node) : SpecialSearchKind.None, checker, cancellationToken, searchMeaning, options, result);
const exportSpecifier = !isForRenameWithPrefixAndSuffixText(options) ? undefined : find(symbol.declarations, isExportSpecifier);
if (exportSpecifier) {
// When renaming at an export specifier, rename the export and not the thing being exported.
getReferencesAtExportSpecifier(exportSpecifier.name, symbol, exportSpecifier, state.createSearch(node, originalSymbol, /*comingFrom*/ undefined), state, /*addReferencesHere*/ true, /*alwaysGetReferences*/ true);
}
else if (node && node.kind === SyntaxKind.DefaultKeyword) {
addReference(node, symbol, state);
searchForImportsOfExport(node, symbol, { exportingModuleSymbol: Debug.assertDefined(symbol.parent, "Expected export symbol to have a parent"), exportKind: ExportKind.Default }, state);
}
else {
const search = state.createSearch(node, symbol, /*comingFrom*/ undefined, { allSearchSymbols: node ? populateSearchSymbolSet(symbol, node, checker, !!options.isForRename, !!options.providePrefixAndSuffixTextForRename, !!options.implementations) : [symbol] });
getReferencesInContainerOrFiles(symbol, state, search);
}
return result;
}
function getReferencesInContainerOrFiles(symbol: Symbol, state: State, search: Search): void {
// Try to get the smallest valid scope that we can limit our search to;
// otherwise we'll need to search globally (i.e. include each file).
const scope = getSymbolScope(symbol);
if (scope) {
getReferencesInContainer(scope, scope.getSourceFile(), search, state, /*addReferencesHere*/ !(isSourceFile(scope) && !contains(state.sourceFiles, scope)));
}
else {
// Global search
for (const sourceFile of state.sourceFiles) {
state.cancellationToken.throwIfCancellationRequested();
searchForName(sourceFile, search, state);
}
}
}
function getSpecialSearchKind(node: Node): SpecialSearchKind {
switch (node.kind) {
case SyntaxKind.ConstructorKeyword:
return SpecialSearchKind.Constructor;
case SyntaxKind.Identifier:
if (isClassLike(node.parent)) {
Debug.assert(node.parent.name === node);
return SpecialSearchKind.Class;
}
// falls through
default:
return SpecialSearchKind.None;
}
}
/** Handle a few special cases relating to export/import specifiers. */
function skipPastExportOrImportSpecifierOrUnion(symbol: Symbol, node: Node, checker: TypeChecker, useLocalSymbolForExportSpecifier: boolean): Symbol | undefined {
const { parent } = node;
if (isExportSpecifier(parent) && useLocalSymbolForExportSpecifier) {
return getLocalSymbolForExportSpecifier(node as Identifier, symbol, parent, checker);
}
// If the symbol is declared as part of a declaration like `{ type: "a" } | { type: "b" }`, use the property on the union type to get more references.
return firstDefined(symbol.declarations, decl => {
if (!decl.parent) {
// Ignore UMD module and global merge
if (symbol.flags & SymbolFlags.Transient) return undefined;
// Assertions for GH#21814. We should be handling SourceFile symbols in `getReferencedSymbolsForModule` instead of getting here.
Debug.fail(`Unexpected symbol at ${Debug.formatSyntaxKind(node.kind)}: ${Debug.formatSymbol(symbol)}`);
}
return isTypeLiteralNode(decl.parent) && isUnionTypeNode(decl.parent.parent)
? checker.getPropertyOfType(checker.getTypeFromTypeNode(decl.parent.parent), symbol.name)
: undefined;
});
}
/**
* Symbol that is currently being searched for.
* This will be replaced if we find an alias for the symbol.
*/
interface Search {
/** If coming from an export, we will not recursively search for the imported symbol (since that's where we came from). */
readonly comingFrom?: ImportExport;
readonly symbol: Symbol;
readonly text: string;
readonly escapedText: __String;
/** Only set if `options.implementations` is true. These are the symbols checked to get the implementations of a property access. */
readonly parents: ReadonlyArray<Symbol> | undefined;
readonly allSearchSymbols: ReadonlyArray<Symbol>;
/**
* Whether a symbol is in the search set.
* Do not compare directly to `symbol` because there may be related symbols to search for. See `populateSearchSymbolSet`.
*/
includes(symbol: Symbol): boolean;
}
const enum SpecialSearchKind {
None,
Constructor,
Class,
}
function getNonModuleSymbolOfMergedModuleSymbol(symbol: Symbol) {
if (!(symbol.flags & (SymbolFlags.Module | SymbolFlags.Transient))) return undefined;
const decl = symbol.declarations && find(symbol.declarations, d => !isSourceFile(d) && !isModuleDeclaration(d));
return decl && decl.symbol;
}
/**
* Holds all state needed for the finding references.
* Unlike `Search`, there is only one `State`.
*/
class State {
/** Cache for `explicitlyinheritsFrom`. */
readonly inheritsFromCache = createMap<boolean>();
/**
* Type nodes can contain multiple references to the same type. For example:
* let x: Foo & (Foo & Bar) = ...
* Because we are returning the implementation locations and not the identifier locations,
* duplicate entries would be returned here as each of the type references is part of
* the same implementation. For that reason, check before we add a new entry.
*/
readonly markSeenContainingTypeReference = nodeSeenTracker();
/**
* It's possible that we will encounter the right side of `export { foo as bar } from "x";` more than once.
* For example:
* // b.ts
* export { foo as bar } from "./a";
* import { bar } from "./b";
*
* Normally at `foo as bar` we directly add `foo` and do not locally search for it (since it doesn't declare a local).
* But another reference to it may appear in the same source file.
* See `tests/cases/fourslash/transitiveExportImports3.ts`.
*/
readonly markSeenReExportRHS = nodeSeenTracker();
constructor(
readonly sourceFiles: ReadonlyArray<SourceFile>,
readonly sourceFilesSet: ReadonlyMap<true>,
readonly specialSearchKind: SpecialSearchKind,
readonly checker: TypeChecker,
readonly cancellationToken: CancellationToken,
readonly searchMeaning: SemanticMeaning,
readonly options: Options,
private readonly result: Push<SymbolAndEntries>) {
}
includesSourceFile(sourceFile: SourceFile): boolean {
return this.sourceFilesSet.has(sourceFile.fileName);
}
private importTracker: ImportTracker | undefined;
/** Gets every place to look for references of an exported symbols. See `ImportsResult` in `importTracker.ts` for more documentation. */
getImportSearches(exportSymbol: Symbol, exportInfo: ExportInfo): ImportsResult {
if (!this.importTracker) this.importTracker = createImportTracker(this.sourceFiles, this.sourceFilesSet, this.checker, this.cancellationToken);
return this.importTracker(exportSymbol, exportInfo, !!this.options.isForRename);
}
/** @param allSearchSymbols set of additional symbols for use by `includes`. */
createSearch(location: Node | undefined, symbol: Symbol, comingFrom: ImportExport | undefined, searchOptions: { text?: string, allSearchSymbols?: Symbol[] } = {}): Search {
// Note: if this is an external module symbol, the name doesn't include quotes.
// Note: getLocalSymbolForExportDefault handles `export default class C {}`, but not `export default C` or `export { C as default }`.
// The other two forms seem to be handled downstream (e.g. in `skipPastExportOrImportSpecifier`), so special-casing the first form
// here appears to be intentional).
const {
text = stripQuotes(unescapeLeadingUnderscores((getLocalSymbolForExportDefault(symbol) || getNonModuleSymbolOfMergedModuleSymbol(symbol) || symbol).escapedName)),
allSearchSymbols = [symbol],
} = searchOptions;
const escapedText = escapeLeadingUnderscores(text);
const parents = this.options.implementations && location ? getParentSymbolsOfPropertyAccess(location, symbol, this.checker) : undefined;
return { symbol, comingFrom, text, escapedText, parents, allSearchSymbols, includes: sym => contains(allSearchSymbols, sym) };
}
private readonly symbolIdToReferences: Entry[][] = [];
/**
* Callback to add references for a particular searched symbol.
* This initializes a reference group, so only call this if you will add at least one reference.
*/
referenceAdder(searchSymbol: Symbol): (node: Node, kind?: NodeEntryKind) => void {
const symbolId = getSymbolId(searchSymbol);
let references = this.symbolIdToReferences[symbolId];
if (!references) {
references = this.symbolIdToReferences[symbolId] = [];
this.result.push({ definition: { type: DefinitionKind.Symbol, symbol: searchSymbol }, references });
}
return (node, kind) => references.push(nodeEntry(node, kind));
}
/** Add a reference with no associated definition. */
addStringOrCommentReference(fileName: string, textSpan: TextSpan): void {
this.result.push({
definition: undefined,
references: [{ kind: EntryKind.Span, fileName, textSpan }]
});
}
// Source file ID → symbol ID → Whether the symbol has been searched for in the source file.
private readonly sourceFileToSeenSymbols: Map<true>[] = [];
/** Returns `true` the first time we search for a symbol in a file and `false` afterwards. */
markSearchedSymbols(sourceFile: SourceFile, symbols: ReadonlyArray<Symbol>): boolean {
const sourceId = getNodeId(sourceFile);
const seenSymbols = this.sourceFileToSeenSymbols[sourceId] || (this.sourceFileToSeenSymbols[sourceId] = createMap<true>());
let anyNewSymbols = false;
for (const sym of symbols) {
anyNewSymbols = addToSeen(seenSymbols, getSymbolId(sym)) || anyNewSymbols;
}
return anyNewSymbols;
}
}
/** Search for all imports of a given exported symbol using `State.getImportSearches`. */
function searchForImportsOfExport(exportLocation: Node, exportSymbol: Symbol, exportInfo: ExportInfo, state: State): void {
const { importSearches, singleReferences, indirectUsers } = state.getImportSearches(exportSymbol, exportInfo);
// For `import { foo as bar }` just add the reference to `foo`, and don't otherwise search in the file.
if (singleReferences.length) {
const addRef = state.referenceAdder(exportSymbol);
for (const singleRef of singleReferences) {
if (shouldAddSingleReference(singleRef, state)) addRef(singleRef);
}
}
// For each import, find all references to that import in its source file.
for (const [importLocation, importSymbol] of importSearches) {
getReferencesInSourceFile(importLocation.getSourceFile(), state.createSearch(importLocation, importSymbol, ImportExport.Export), state);
}
if (indirectUsers.length) {
let indirectSearch: Search | undefined;
switch (exportInfo.exportKind) {
case ExportKind.Named:
indirectSearch = state.createSearch(exportLocation, exportSymbol, ImportExport.Export);
break;
case ExportKind.Default:
// Search for a property access to '.default'. This can't be renamed.
indirectSearch = state.options.isForRename ? undefined : state.createSearch(exportLocation, exportSymbol, ImportExport.Export, { text: "default" });
break;
case ExportKind.ExportEquals:
break;
}
if (indirectSearch) {
for (const indirectUser of indirectUsers) {
searchForName(indirectUser, indirectSearch, state);
}
}
}
}
export function eachExportReference(
sourceFiles: ReadonlyArray<SourceFile>,
checker: TypeChecker,
cancellationToken: CancellationToken | undefined,
exportSymbol: Symbol,
exportingModuleSymbol: Symbol,
exportName: string,
isDefaultExport: boolean,
cb: (ref: Identifier) => void,
): void {
const importTracker = createImportTracker(sourceFiles, arrayToSet(sourceFiles, f => f.fileName), checker, cancellationToken);
const { importSearches, indirectUsers } = importTracker(exportSymbol, { exportKind: isDefaultExport ? ExportKind.Default : ExportKind.Named, exportingModuleSymbol }, /*isForRename*/ false);
for (const [importLocation] of importSearches) {
cb(importLocation);
}
for (const indirectUser of indirectUsers) {
for (const node of getPossibleSymbolReferenceNodes(indirectUser, isDefaultExport ? "default" : exportName)) {
// Import specifiers should be handled by importSearches
if (isIdentifier(node) && !isImportOrExportSpecifier(node.parent) && checker.getSymbolAtLocation(node) === exportSymbol) {
cb(node);
}
}
}
}
function shouldAddSingleReference(singleRef: Identifier | StringLiteral, state: State): boolean {
if (!hasMatchingMeaning(singleRef, state)) return false;
if (!state.options.isForRename) return true;
// Don't rename an import type `import("./module-name")` when renaming `name` in `export = name;`
if (!isIdentifier(singleRef)) return false;
// At `default` in `import { default as x }` or `export { default as x }`, do add a reference, but do not rename.
return !(isImportOrExportSpecifier(singleRef.parent) && singleRef.escapedText === InternalSymbolName.Default);
}
// Go to the symbol we imported from and find references for it.
function searchForImportedSymbol(symbol: Symbol, state: State): void {
for (const declaration of symbol.declarations) {
const exportingFile = declaration.getSourceFile();
// Need to search in the file even if it's not in the search-file set, because it might export the symbol.
getReferencesInSourceFile(exportingFile, state.createSearch(declaration, symbol, ImportExport.Import), state, state.includesSourceFile(exportingFile));
}
}
/** Search for all occurences of an identifier in a source file (and filter out the ones that match). */
function searchForName(sourceFile: SourceFile, search: Search, state: State): void {
if (getNameTable(sourceFile).get(search.escapedText) !== undefined) {
getReferencesInSourceFile(sourceFile, search, state);
}
}
function getPropertySymbolOfDestructuringAssignment(location: Node, checker: TypeChecker): Symbol | undefined {
return isArrayLiteralOrObjectLiteralDestructuringPattern(location.parent.parent)
? checker.getPropertySymbolOfDestructuringAssignment(<Identifier>location)
: undefined;
}
/**
* Determines the smallest scope in which a symbol may have named references.
* Note that not every construct has been accounted for. This function can
* probably be improved.
*
* @returns undefined if the scope cannot be determined, implying that
* a reference to a symbol can occur anywhere.
*/
function getSymbolScope(symbol: Symbol): Node | undefined {
// If this is the symbol of a named function expression or named class expression,
// then named references are limited to its own scope.
const { declarations, flags, parent, valueDeclaration } = symbol;
if (valueDeclaration && (valueDeclaration.kind === SyntaxKind.FunctionExpression || valueDeclaration.kind === SyntaxKind.ClassExpression)) {
return valueDeclaration;
}
if (!declarations) {
return undefined;
}
// If this is private property or method, the scope is the containing class
if (flags & (SymbolFlags.Property | SymbolFlags.Method)) {
const privateDeclaration = find(declarations, d => hasModifier(d, ModifierFlags.Private));
if (privateDeclaration) {
return getAncestor(privateDeclaration, SyntaxKind.ClassDeclaration);
}
// Else this is a public property and could be accessed from anywhere.
return undefined;
}
// If symbol is of object binding pattern element without property name we would want to
// look for property too and that could be anywhere
if (declarations.some(isObjectBindingElementWithoutPropertyName)) {
return undefined;
}
/*
If the symbol has a parent, it's globally visible unless:
- It's a private property (handled above).
- It's a type parameter.
- The parent is an external module: then we should only search in the module (and recurse on the export later).
- But if the parent has `export as namespace`, the symbol is globally visible through that namespace.
*/
const exposedByParent = parent && !(symbol.flags & SymbolFlags.TypeParameter);
if (exposedByParent && !(isExternalModuleSymbol(parent!) && !parent!.globalExports)) {
return undefined;
}
let scope: Node | undefined;
for (const declaration of declarations) {
const container = getContainerNode(declaration);
if (scope && scope !== container) {
// Different declarations have different containers, bail out
return undefined;
}
if (!container || container.kind === SyntaxKind.SourceFile && !isExternalOrCommonJsModule(<SourceFile>container)) {
// This is a global variable and not an external module, any declaration defined
// within this scope is visible outside the file
return undefined;
}
// The search scope is the container node
scope = container;
}
// If symbol.parent, this means we are in an export of an external module. (Otherwise we would have returned `undefined` above.)
// For an export of a module, we may be in a declaration file, and it may be accessed elsewhere. E.g.:
// declare module "a" { export type T = number; }
// declare module "b" { import { T } from "a"; export const x: T; }
// So we must search the whole source file. (Because we will mark the source file as seen, we we won't return to it when searching for imports.)
return exposedByParent ? scope!.getSourceFile() : scope; // TODO: GH#18217
}
/** Used as a quick check for whether a symbol is used at all in a file (besides its definition). */
export function isSymbolReferencedInFile(definition: Identifier, checker: TypeChecker, sourceFile: SourceFile): boolean {
return eachSymbolReferenceInFile(definition, checker, sourceFile, () => true) || false;
}
export function eachSymbolReferenceInFile<T>(definition: Identifier, checker: TypeChecker, sourceFile: SourceFile, cb: (token: Identifier) => T): T | undefined {
const symbol = isParameterPropertyDeclaration(definition.parent)
? first(checker.getSymbolsOfParameterPropertyDeclaration(definition.parent, definition.text))
: checker.getSymbolAtLocation(definition);
if (!symbol) return undefined;
for (const token of getPossibleSymbolReferenceNodes(sourceFile, symbol.name)) {
if (!isIdentifier(token) || token === definition || token.escapedText !== definition.escapedText) continue;
const referenceSymbol: Symbol = checker.getSymbolAtLocation(token)!; // See GH#19955 for why the type annotation is necessary
if (referenceSymbol === symbol
|| checker.getShorthandAssignmentValueSymbol(token.parent) === symbol
|| isExportSpecifier(token.parent) && getLocalSymbolForExportSpecifier(token, referenceSymbol, token.parent, checker) === symbol) {
const res = cb(token);
if (res) return res;
}
}
}
export function eachSignatureCall(signature: SignatureDeclaration, sourceFiles: ReadonlyArray<SourceFile>, checker: TypeChecker, cb: (call: CallExpression) => void): void {
if (!signature.name || !isIdentifier(signature.name)) return;
const symbol = Debug.assertDefined(checker.getSymbolAtLocation(signature.name));
for (const sourceFile of sourceFiles) {
for (const name of getPossibleSymbolReferenceNodes(sourceFile, symbol.name)) {
if (!isIdentifier(name) || name === signature.name || name.escapedText !== signature.name.escapedText) continue;
const called = climbPastPropertyAccess(name);
const call = called.parent;
if (!isCallExpression(call) || call.expression !== called) continue;
const referenceSymbol = checker.getSymbolAtLocation(name);
if (referenceSymbol && checker.getRootSymbols(referenceSymbol).some(s => s === symbol)) {
cb(call);
}
}
}
}
function getPossibleSymbolReferenceNodes(sourceFile: SourceFile, symbolName: string, container: Node = sourceFile): ReadonlyArray<Node> {
return getPossibleSymbolReferencePositions(sourceFile, symbolName, container).map(pos => getTouchingPropertyName(sourceFile, pos));
}
function getPossibleSymbolReferencePositions(sourceFile: SourceFile, symbolName: string, container: Node = sourceFile): ReadonlyArray<number> {
const positions: number[] = [];
/// TODO: Cache symbol existence for files to save text search
// Also, need to make this work for unicode escapes.
// Be resilient in the face of a symbol with no name or zero length name
if (!symbolName || !symbolName.length) {
return positions;
}
const text = sourceFile.text;
const sourceLength = text.length;
const symbolNameLength = symbolName.length;
let position = text.indexOf(symbolName, container.pos);
while (position >= 0) {
// If we are past the end, stop looking
if (position > container.end) break;
// We found a match. Make sure it's not part of a larger word (i.e. the char
// before and after it have to be a non-identifier char).
const endPosition = position + symbolNameLength;
if ((position === 0 || !isIdentifierPart(text.charCodeAt(position - 1), ScriptTarget.Latest)) &&
(endPosition === sourceLength || !isIdentifierPart(text.charCodeAt(endPosition), ScriptTarget.Latest))) {
// Found a real match. Keep searching.
positions.push(position);
}
position = text.indexOf(symbolName, position + symbolNameLength + 1);
}
return positions;
}
function getLabelReferencesInNode(container: Node, targetLabel: Identifier): SymbolAndEntries[] {
const sourceFile = container.getSourceFile();
const labelName = targetLabel.text;
const references = mapDefined(getPossibleSymbolReferenceNodes(sourceFile, labelName, container), node =>
// Only pick labels that are either the target label, or have a target that is the target label
node === targetLabel || (isJumpStatementTarget(node) && getTargetLabel(node, labelName) === targetLabel) ? nodeEntry(node) : undefined);
return [{ definition: { type: DefinitionKind.Label, node: targetLabel }, references }];
}
function isValidReferencePosition(node: Node, searchSymbolName: string): boolean {
// Compare the length so we filter out strict superstrings of the symbol we are looking for
switch (node.kind) {
case SyntaxKind.Identifier:
return (node as Identifier).text.length === searchSymbolName.length;
case SyntaxKind.StringLiteral: {
const str = node as StringLiteral;
return (isLiteralNameOfPropertyDeclarationOrIndexAccess(str) || isNameOfModuleDeclaration(node) || isExpressionOfExternalModuleImportEqualsDeclaration(node) || (isCallExpression(node.parent) && isBindableObjectDefinePropertyCall(node.parent) && node.parent.arguments[1] === node)) &&
str.text.length === searchSymbolName.length;
}
case SyntaxKind.NumericLiteral:
return isLiteralNameOfPropertyDeclarationOrIndexAccess(node as NumericLiteral) && (node as NumericLiteral).text.length === searchSymbolName.length;
case SyntaxKind.DefaultKeyword:
return "default".length === searchSymbolName.length;
default:
return false;
}
}
function getAllReferencesForKeyword(sourceFiles: ReadonlyArray<SourceFile>, keywordKind: SyntaxKind, cancellationToken: CancellationToken): SymbolAndEntries[] | undefined {
const references = flatMap(sourceFiles, sourceFile => {
cancellationToken.throwIfCancellationRequested();
return mapDefined(getPossibleSymbolReferenceNodes(sourceFile, tokenToString(keywordKind)!, sourceFile), referenceLocation =>
referenceLocation.kind === keywordKind ? nodeEntry(referenceLocation) : undefined);
});
return references.length ? [{ definition: { type: DefinitionKind.Keyword, node: references[0].node }, references }] : undefined;
}
function getReferencesInSourceFile(sourceFile: SourceFile, search: Search, state: State, addReferencesHere = true): void {
state.cancellationToken.throwIfCancellationRequested();
return getReferencesInContainer(sourceFile, sourceFile, search, state, addReferencesHere);
}
/**
* Search within node "container" for references for a search value, where the search value is defined as a
* tuple of(searchSymbol, searchText, searchLocation, and searchMeaning).
* searchLocation: a node where the search value
*/
function getReferencesInContainer(container: Node, sourceFile: SourceFile, search: Search, state: State, addReferencesHere: boolean): void {
if (!state.markSearchedSymbols(sourceFile, search.allSearchSymbols)) {
return;
}
for (const position of getPossibleSymbolReferencePositions(sourceFile, search.text, container)) {
getReferencesAtLocation(sourceFile, position, search, state, addReferencesHere);
}
}
function hasMatchingMeaning(referenceLocation: Node, state: State): boolean {
return !!(getMeaningFromLocation(referenceLocation) & state.searchMeaning);
}
function getReferencesAtLocation(sourceFile: SourceFile, position: number, search: Search, state: State, addReferencesHere: boolean): void {
const referenceLocation = getTouchingPropertyName(sourceFile, position);
if (!isValidReferencePosition(referenceLocation, search.text)) {
// This wasn't the start of a token. Check to see if it might be a
// match in a comment or string if that's what the caller is asking
// for.
if (!state.options.implementations && (state.options.findInStrings && isInString(sourceFile, position) || state.options.findInComments && isInNonReferenceComment(sourceFile, position))) {
// In the case where we're looking inside comments/strings, we don't have
// an actual definition. So just use 'undefined' here. Features like
// 'Rename' won't care (as they ignore the definitions), and features like
// 'FindReferences' will just filter out these results.
state.addStringOrCommentReference(sourceFile.fileName, createTextSpan(position, search.text.length));
}
return;
}
if (!hasMatchingMeaning(referenceLocation, state)) return;
const referenceSymbol = state.checker.getSymbolAtLocation(referenceLocation);
if (!referenceSymbol) {
return;
}
const parent = referenceLocation.parent;
if (isImportSpecifier(parent) && parent.propertyName === referenceLocation) {
// This is added through `singleReferences` in ImportsResult. If we happen to see it again, don't add it again.
return;
}
if (isExportSpecifier(parent)) {
Debug.assert(referenceLocation.kind === SyntaxKind.Identifier);
getReferencesAtExportSpecifier(referenceLocation as Identifier, referenceSymbol, parent, search, state, addReferencesHere);
return;
}
const relatedSymbol = getRelatedSymbol(search, referenceSymbol, referenceLocation, state);
if (!relatedSymbol) {
getReferenceForShorthandProperty(referenceSymbol, search, state);
return;
}
switch (state.specialSearchKind) {
case SpecialSearchKind.None:
if (addReferencesHere) addReference(referenceLocation, relatedSymbol, state);
break;
case SpecialSearchKind.Constructor:
addConstructorReferences(referenceLocation, sourceFile, search, state);
break;
case SpecialSearchKind.Class:
addClassStaticThisReferences(referenceLocation, search, state);
break;
default:
Debug.assertNever(state.specialSearchKind);
}
getImportOrExportReferences(referenceLocation, referenceSymbol, search, state);
}
function getReferencesAtExportSpecifier(
referenceLocation: Identifier,
referenceSymbol: Symbol,
exportSpecifier: ExportSpecifier,
search: Search,
state: State,
addReferencesHere: boolean,
alwaysGetReferences?: boolean,
): void {
Debug.assert(!alwaysGetReferences || !!state.options.providePrefixAndSuffixTextForRename, "If alwaysGetReferences is true, then prefix/suffix text must be enabled");
const { parent, propertyName, name } = exportSpecifier;
const exportDeclaration = parent.parent;
const localSymbol = getLocalSymbolForExportSpecifier(referenceLocation, referenceSymbol, exportSpecifier, state.checker);
if (!alwaysGetReferences && !search.includes(localSymbol)) {
return;
}
if (!propertyName) {
// Don't rename at `export { default } from "m";`. (but do continue to search for imports of the re-export)
if (!(state.options.isForRename && (name.escapedText === InternalSymbolName.Default))) {
addRef();
}
}
else if (referenceLocation === propertyName) {
// For `export { foo as bar } from "baz"`, "`foo`" will be added from the singleReferences for import searches of the original export.
// For `export { foo as bar };`, where `foo` is a local, so add it now.
if (!exportDeclaration.moduleSpecifier) {
addRef();
}
if (addReferencesHere && !state.options.isForRename && state.markSeenReExportRHS(name)) {
addReference(name, Debug.assertDefined(exportSpecifier.symbol), state);
}
}
else {
if (state.markSeenReExportRHS(referenceLocation)) {
addRef();
}
}
// For `export { foo as bar }`, rename `foo`, but not `bar`.
if (!isForRenameWithPrefixAndSuffixText(state.options) || alwaysGetReferences) {
const isDefaultExport = referenceLocation.originalKeywordKind === SyntaxKind.DefaultKeyword
|| exportSpecifier.name.originalKeywordKind === SyntaxKind.DefaultKeyword;
const exportKind = isDefaultExport ? ExportKind.Default : ExportKind.Named;
const exportSymbol = Debug.assertDefined(exportSpecifier.symbol);
const exportInfo = Debug.assertDefined(getExportInfo(exportSymbol, exportKind, state.checker));
searchForImportsOfExport(referenceLocation, exportSymbol, exportInfo, state);
}
// At `export { x } from "foo"`, also search for the imported symbol `"foo".x`.
if (search.comingFrom !== ImportExport.Export && exportDeclaration.moduleSpecifier && !propertyName && !isForRenameWithPrefixAndSuffixText(state.options)) {
const imported = state.checker.getExportSpecifierLocalTargetSymbol(exportSpecifier);
if (imported) searchForImportedSymbol(imported, state);
}
function addRef() {
if (addReferencesHere) addReference(referenceLocation, localSymbol, state);
}
}
function getLocalSymbolForExportSpecifier(referenceLocation: Identifier, referenceSymbol: Symbol, exportSpecifier: ExportSpecifier, checker: TypeChecker): Symbol {
return isExportSpecifierAlias(referenceLocation, exportSpecifier) && checker.getExportSpecifierLocalTargetSymbol(exportSpecifier) || referenceSymbol;
}
function isExportSpecifierAlias(referenceLocation: Identifier, exportSpecifier: ExportSpecifier): boolean {
const { parent, propertyName, name } = exportSpecifier;
Debug.assert(propertyName === referenceLocation || name === referenceLocation);
if (propertyName) {
// Given `export { foo as bar } [from "someModule"]`: It's an alias at `foo`, but at `bar` it's a new symbol.
return propertyName === referenceLocation;
}
else {
// `export { foo } from "foo"` is a re-export.
// `export { foo };` is not a re-export, it creates an alias for the local variable `foo`.
return !parent.parent.moduleSpecifier;
}
}
function getImportOrExportReferences(referenceLocation: Node, referenceSymbol: Symbol, search: Search, state: State): void {
const importOrExport = getImportOrExportSymbol(referenceLocation, referenceSymbol, state.checker, search.comingFrom === ImportExport.Export);
if (!importOrExport) return;
const { symbol } = importOrExport;
if (importOrExport.kind === ImportExport.Import) {
if (!(isForRenameWithPrefixAndSuffixText(state.options))) {
searchForImportedSymbol(symbol, state);
}
}
else {
searchForImportsOfExport(referenceLocation, symbol, importOrExport.exportInfo, state);
}
}
function getReferenceForShorthandProperty({ flags, valueDeclaration }: Symbol, search: Search, state: State): void {
const shorthandValueSymbol = state.checker.getShorthandAssignmentValueSymbol(valueDeclaration)!;
const name = valueDeclaration && getNameOfDeclaration(valueDeclaration);
/*
* Because in short-hand property assignment, an identifier which stored as name of the short-hand property assignment
* has two meanings: property name and property value. Therefore when we do findAllReference at the position where
* an identifier is declared, the language service should return the position of the variable declaration as well as
* the position in short-hand property assignment excluding property accessing. However, if we do findAllReference at the
* position of property accessing, the referenceEntry of such position will be handled in the first case.
*/
if (!(flags & SymbolFlags.Transient) && name && search.includes(shorthandValueSymbol)) {
addReference(name, shorthandValueSymbol, state);
}
}
function addReference(referenceLocation: Node, relatedSymbol: Symbol | RelatedSymbol, state: State): void {
const { kind, symbol } = "kind" in relatedSymbol ? relatedSymbol : { kind: undefined, symbol: relatedSymbol };
const addRef = state.referenceAdder(symbol);
if (state.options.implementations) {
addImplementationReferences(referenceLocation, addRef, state);
}
else {
addRef(referenceLocation, kind);
}
}
/** Adds references when a constructor is used with `new this()` in its own class and `super()` calls in subclasses. */
function addConstructorReferences(referenceLocation: Node, sourceFile: SourceFile, search: Search, state: State): void {
if (isNewExpressionTarget(referenceLocation)) {
addReference(referenceLocation, search.symbol, state);
}
const pusher = () => state.referenceAdder(search.symbol);
if (isClassLike(referenceLocation.parent)) {
Debug.assert(referenceLocation.kind === SyntaxKind.DefaultKeyword || referenceLocation.parent.name === referenceLocation);
// This is the class declaration containing the constructor.
findOwnConstructorReferences(search.symbol, sourceFile, pusher());
}
else {
// If this class appears in `extends C`, then the extending class' "super" calls are references.
const classExtending = tryGetClassByExtendingIdentifier(referenceLocation);
if (classExtending) {
findSuperConstructorAccesses(classExtending, pusher());
findInheritedConstructorReferences(classExtending, state);
}
}
}
function addClassStaticThisReferences(referenceLocation: Node, search: Search, state: State): void {
addReference(referenceLocation, search.symbol, state);
const classLike = referenceLocation.parent;
if (state.options.isForRename || !isClassLike(classLike)) return;
Debug.assert(classLike.name === referenceLocation);
const addRef = state.referenceAdder(search.symbol);
for (const member of classLike.members) {
if (!(isMethodOrAccessor(member) && hasModifier(member, ModifierFlags.Static))) {
continue;
}
if (member.body) {
member.body.forEachChild(function cb(node) {
if (node.kind === SyntaxKind.ThisKeyword) {
addRef(node);
}
else if (!isFunctionLike(node) && !isClassLike(node)) {
node.forEachChild(cb);
}
});
}
}
}
/**
* `classSymbol` is the class where the constructor was defined.
* Reference the constructor and all calls to `new this()`.
*/
function findOwnConstructorReferences(classSymbol: Symbol, sourceFile: SourceFile, addNode: (node: Node) => void): void {
const constructorSymbol = getClassConstructorSymbol(classSymbol);
if (constructorSymbol) {
for (const decl of constructorSymbol.declarations) {
const ctrKeyword = findChildOfKind(decl, SyntaxKind.ConstructorKeyword, sourceFile)!;
Debug.assert(decl.kind === SyntaxKind.Constructor && !!ctrKeyword);
addNode(ctrKeyword);
}
}
if (classSymbol.exports) {
classSymbol.exports.forEach(member => {
const decl = member.valueDeclaration;
if (decl && decl.kind === SyntaxKind.MethodDeclaration) {
const body = (<MethodDeclaration>decl).body;
if (body) {
forEachDescendantOfKind(body, SyntaxKind.ThisKeyword, thisKeyword => {
if (isNewExpressionTarget(thisKeyword)) {
addNode(thisKeyword);
}
});
}
}
});
}
}
function getClassConstructorSymbol(classSymbol: Symbol): Symbol | undefined {
return classSymbol.members && classSymbol.members.get(InternalSymbolName.Constructor);
}
/** Find references to `super` in the constructor of an extending class. */
function findSuperConstructorAccesses(classDeclaration: ClassLikeDeclaration, addNode: (node: Node) => void): void {
const constructor = getClassConstructorSymbol(classDeclaration.symbol);
if (!constructor) {
return;
}
for (const decl of constructor.declarations) {
Debug.assert(decl.kind === SyntaxKind.Constructor);
const body = (<ConstructorDeclaration>decl).body;
if (body) {
forEachDescendantOfKind(body, SyntaxKind.SuperKeyword, node => {
if (isCallExpressionTarget(node)) {
addNode(node);
}
});
}
}
}
function hasOwnConstructor(classDeclaration: ClassLikeDeclaration): boolean {
return !!getClassConstructorSymbol(classDeclaration.symbol);
}
function findInheritedConstructorReferences(classDeclaration: ClassLikeDeclaration, state: State): void {
if (hasOwnConstructor(classDeclaration)) return;
const classSymbol = classDeclaration.symbol;
const search = state.createSearch(/*location*/ undefined, classSymbol, /*comingFrom*/ undefined);
getReferencesInContainerOrFiles(classSymbol, state, search);
}
function addImplementationReferences(refNode: Node, addReference: (node: Node) => void, state: State): void {
// Check if we found a function/propertyAssignment/method with an implementation or initializer
if (isDeclarationName(refNode) && isImplementation(refNode.parent)) {
addReference(refNode);
return;
}
if (refNode.kind !== SyntaxKind.Identifier) {
return;
}
if (refNode.parent.kind === SyntaxKind.ShorthandPropertyAssignment) {
// Go ahead and dereference the shorthand assignment by going to its definition
getReferenceEntriesForShorthandPropertyAssignment(refNode, state.checker, addReference);
}
// Check if the node is within an extends or implements clause
const containingClass = getContainingClassIfInHeritageClause(refNode);
if (containingClass) {
addReference(containingClass);
return;
}
// If we got a type reference, try and see if the reference applies to any expressions that can implement an interface
// Find the first node whose parent isn't a type node -- i.e., the highest type node.
const typeNode = findAncestor(refNode, a => !isQualifiedName(a.parent) && !isTypeNode(a.parent) && !isTypeElement(a.parent))!;
const typeHavingNode = typeNode.parent;
if (hasType(typeHavingNode) && typeHavingNode.type === typeNode && state.markSeenContainingTypeReference(typeHavingNode)) {
if (hasInitializer(typeHavingNode)) {
addIfImplementation(typeHavingNode.initializer!);
}
else if (isFunctionLike(typeHavingNode) && (typeHavingNode as FunctionLikeDeclaration).body) {
const body = (typeHavingNode as FunctionLikeDeclaration).body!;
if (body.kind === SyntaxKind.Block) {
forEachReturnStatement(<Block>body, returnStatement => {
if (returnStatement.expression) addIfImplementation(returnStatement.expression);
});
}
else {
addIfImplementation(body);
}
}
else if (isAssertionExpression(typeHavingNode)) {
addIfImplementation(typeHavingNode.expression);
}
}
function addIfImplementation(e: Expression): void {
if (isImplementationExpression(e)) addReference(e);
}
}
function getContainingClassIfInHeritageClause(node: Node): ClassLikeDeclaration | InterfaceDeclaration | undefined {
return isIdentifier(node) || isPropertyAccessExpression(node) ? getContainingClassIfInHeritageClause(node.parent)
: isExpressionWithTypeArguments(node) ? tryCast(node.parent.parent, isClassLike) : undefined;
}
/**
* Returns true if this is an expression that can be considered an implementation
*/
function isImplementationExpression(node: Expression): boolean {
switch (node.kind) {
case SyntaxKind.ParenthesizedExpression:
return isImplementationExpression((<ParenthesizedExpression>node).expression);
case SyntaxKind.ArrowFunction:
case SyntaxKind.FunctionExpression:
case SyntaxKind.ObjectLiteralExpression:
case SyntaxKind.ClassExpression:
case SyntaxKind.ArrayLiteralExpression:
return true;
default:
return false;
}
}
/**
* Determines if the parent symbol occurs somewhere in the child's ancestry. If the parent symbol
* is an interface, determines if some ancestor of the child symbol extends or inherits from it.
* Also takes in a cache of previous results which makes this slightly more efficient and is
* necessary to avoid potential loops like so:
* class A extends B { }
* class B extends A { }
*
* We traverse the AST rather than using the type checker because users are typically only interested
* in explicit implementations of an interface/class when calling "Go to Implementation". Sibling
* implementations of types that share a common ancestor with the type whose implementation we are
* searching for need to be filtered out of the results. The type checker doesn't let us make the
* distinction between structurally compatible implementations and explicit implementations, so we
* must use the AST.
*
* @param symbol A class or interface Symbol
* @param parent Another class or interface Symbol
* @param cachedResults A map of symbol id pairs (i.e. "child,parent") to booleans indicating previous results
*/
function explicitlyInheritsFrom(symbol: Symbol, parent: Symbol, cachedResults: Map<boolean>, checker: TypeChecker): boolean {
if (symbol === parent) {
return true;
}
const key = getSymbolId(symbol) + "," + getSymbolId(parent);
const cached = cachedResults.get(key);
if (cached !== undefined) {
return cached;
}
// Set the key so that we don't infinitely recurse
cachedResults.set(key, false);
const inherits = symbol.declarations.some(declaration =>
getAllSuperTypeNodes(declaration).some(typeReference => {
const type = checker.getTypeAtLocation(typeReference);
return !!type && !!type.symbol && explicitlyInheritsFrom(type.symbol, parent, cachedResults, checker);
}));
cachedResults.set(key, inherits);
return inherits;
}
function getReferencesForSuperKeyword(superKeyword: Node): SymbolAndEntries[] | undefined {
let searchSpaceNode = getSuperContainer(superKeyword, /*stopOnFunctions*/ false);
if (!searchSpaceNode) {
return undefined;
}
// Whether 'super' occurs in a static context within a class.
let staticFlag = ModifierFlags.Static;
switch (searchSpaceNode.kind) {
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
staticFlag &= getModifierFlags(searchSpaceNode);
searchSpaceNode = searchSpaceNode.parent; // re-assign to be the owning class
break;
default:
return undefined;
}
const sourceFile = searchSpaceNode.getSourceFile();
const references = mapDefined(getPossibleSymbolReferenceNodes(sourceFile, "super", searchSpaceNode), node => {
if (node.kind !== SyntaxKind.SuperKeyword) {
return;
}
const container = getSuperContainer(node, /*stopOnFunctions*/ false);
// If we have a 'super' container, we must have an enclosing class.
// Now make sure the owning class is the same as the search-space
// and has the same static qualifier as the original 'super's owner.
return container && (ModifierFlags.Static & getModifierFlags(container)) === staticFlag && container.parent.symbol === searchSpaceNode.symbol ? nodeEntry(node) : undefined;
});
return [{ definition: { type: DefinitionKind.Symbol, symbol: searchSpaceNode.symbol }, references }];
}
function isParameterName(node: Node) {
return node.kind === SyntaxKind.Identifier && node.parent.kind === SyntaxKind.Parameter && (<ParameterDeclaration>node.parent).name === node;
}
function getReferencesForThisKeyword(thisOrSuperKeyword: Node, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken): SymbolAndEntries[] | undefined {
let searchSpaceNode = getThisContainer(thisOrSuperKeyword, /* includeArrowFunctions */ false);
// Whether 'this' occurs in a static context within a class.
let staticFlag = ModifierFlags.Static;
switch (searchSpaceNode.kind) {
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
if (isObjectLiteralMethod(searchSpaceNode)) {
break;
}
// falls through
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
staticFlag &= getModifierFlags(searchSpaceNode);
searchSpaceNode = searchSpaceNode.parent; // re-assign to be the owning class
break;
case SyntaxKind.SourceFile:
if (isExternalModule(<SourceFile>searchSpaceNode) || isParameterName(thisOrSuperKeyword)) {
return undefined;
}
// falls through
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
break;
// Computed properties in classes are not handled here because references to this are illegal,
// so there is no point finding references to them.
default:
return undefined;
}
const references = flatMap(searchSpaceNode.kind === SyntaxKind.SourceFile ? sourceFiles : [searchSpaceNode.getSourceFile()], sourceFile => {
cancellationToken.throwIfCancellationRequested();
return getPossibleSymbolReferenceNodes(sourceFile, "this", isSourceFile(searchSpaceNode) ? sourceFile : searchSpaceNode).filter(node => {
if (!isThis(node)) {
return false;
}
const container = getThisContainer(node, /* includeArrowFunctions */ false);
switch (searchSpaceNode.kind) {
case SyntaxKind.FunctionExpression:
case SyntaxKind.FunctionDeclaration:
return searchSpaceNode.symbol === container.symbol;
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
return isObjectLiteralMethod(searchSpaceNode) && searchSpaceNode.symbol === container.symbol;
case SyntaxKind.ClassExpression:
case SyntaxKind.ClassDeclaration:
// Make sure the container belongs to the same class
// and has the appropriate static modifier from the original container.
return container.parent && searchSpaceNode.symbol === container.parent.symbol && (getModifierFlags(container) & ModifierFlags.Static) === staticFlag;
case SyntaxKind.SourceFile:
return container.kind === SyntaxKind.SourceFile && !isExternalModule(<SourceFile>container) && !isParameterName(node);
}
});
}).map(n => nodeEntry(n));
const thisParameter = firstDefined(references, r => isParameter(r.node.parent) ? r.node : undefined);
return [{
definition: { type: DefinitionKind.This, node: thisParameter || thisOrSuperKeyword },
references
}];
}
function getReferencesForStringLiteral(node: StringLiteral, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken): SymbolAndEntries[] {
const references = flatMap(sourceFiles, sourceFile => {
cancellationToken.throwIfCancellationRequested();
return mapDefined(getPossibleSymbolReferenceNodes(sourceFile, node.text), ref =>
isStringLiteral(ref) && ref.text === node.text ? nodeEntry(ref, EntryKind.StringLiteral) : undefined);
});
return [{
definition: { type: DefinitionKind.String, node },
references
}];
}
// For certain symbol kinds, we need to include other symbols in the search set.
// This is not needed when searching for re-exports.
function populateSearchSymbolSet(symbol: Symbol, location: Node, checker: TypeChecker, isForRename: boolean, providePrefixAndSuffixText: boolean, implementations: boolean): Symbol[] {
const result: Symbol[] = [];
forEachRelatedSymbol<void>(symbol, location, checker, isForRename, !(isForRename && providePrefixAndSuffixText),
(sym, root, base) => { result.push(base || root || sym); },
/*allowBaseTypes*/ () => !implementations);
return result;
}
function forEachRelatedSymbol<T>(
symbol: Symbol, location: Node, checker: TypeChecker, isForRenamePopulateSearchSymbolSet: boolean, onlyIncludeBindingElementAtReferenceLocation: boolean,
cbSymbol: (symbol: Symbol, rootSymbol?: Symbol, baseSymbol?: Symbol, kind?: NodeEntryKind) => T | undefined,
allowBaseTypes: (rootSymbol: Symbol) => boolean,
): T | undefined {
const containingObjectLiteralElement = getContainingObjectLiteralElement(location);
if (containingObjectLiteralElement) {
/* Because in short-hand property assignment, location has two meaning : property name and as value of the property
* When we do findAllReference at the position of the short-hand property assignment, we would want to have references to position of
* property name and variable declaration of the identifier.
* Like in below example, when querying for all references for an identifier 'name', of the property assignment, the language service
* should show both 'name' in 'obj' and 'name' in variable declaration
* const name = "Foo";
* const obj = { name };
* In order to do that, we will populate the search set with the value symbol of the identifier as a value of the property assignment
* so that when matching with potential reference symbol, both symbols from property declaration and variable declaration
* will be included correctly.
*/
const shorthandValueSymbol = checker.getShorthandAssignmentValueSymbol(location.parent); // gets the local symbol
if (shorthandValueSymbol && isForRenamePopulateSearchSymbolSet) {
// When renaming 'x' in `const o = { x }`, just rename the local variable, not the property.
return cbSymbol(shorthandValueSymbol, /*rootSymbol*/ undefined, /*baseSymbol*/ undefined, EntryKind.SearchedLocalFoundProperty);
}
// If the location is in a context sensitive location (i.e. in an object literal) try
// to get a contextual type for it, and add the property symbol from the contextual
// type to the search set
const contextualType = checker.getContextualType(containingObjectLiteralElement.parent);
const res = contextualType && firstDefined(
getPropertySymbolsFromContextualType(containingObjectLiteralElement, checker, contextualType, /*unionSymbolOk*/ true),
sym => fromRoot(sym, EntryKind.SearchedPropertyFoundLocal));
if (res) return res;
// If the location is name of property symbol from object literal destructuring pattern
// Search the property symbol
// for ( { property: p2 } of elems) { }
const propertySymbol = getPropertySymbolOfDestructuringAssignment(location, checker);
const res1 = propertySymbol && cbSymbol(propertySymbol, /*rootSymbol*/ undefined, /*baseSymbol*/ undefined, EntryKind.SearchedPropertyFoundLocal);
if (res1) return res1;
const res2 = shorthandValueSymbol && cbSymbol(shorthandValueSymbol, /*rootSymbol*/ undefined, /*baseSymbol*/ undefined, EntryKind.SearchedLocalFoundProperty);
if (res2) return res2;
}
const aliasedSymbol = getMergedAliasedSymbolOfNamespaceExportDeclaration(location, symbol, checker);
if (aliasedSymbol) {
// In case of UMD module and global merging, search for global as well
const res = cbSymbol(aliasedSymbol, /*rootSymbol*/ undefined, /*baseSymbol*/ undefined, EntryKind.Node);
if (res) return res;
}
const res = fromRoot(symbol);
if (res) return res;
if (symbol.valueDeclaration && isParameterPropertyDeclaration(symbol.valueDeclaration)) {
// For a parameter property, now try on the other symbol (property if this was a parameter, parameter if this was a property).
const paramProps = checker.getSymbolsOfParameterPropertyDeclaration(cast(symbol.valueDeclaration, isParameter), symbol.name);
Debug.assert(paramProps.length === 2 && !!(paramProps[0].flags & SymbolFlags.FunctionScopedVariable) && !!(paramProps[1].flags & SymbolFlags.Property)); // is [parameter, property]
return fromRoot(symbol.flags & SymbolFlags.FunctionScopedVariable ? paramProps[1] : paramProps[0]);
}
// symbolAtLocation for a binding element is the local symbol. See if the search symbol is the property.
// Don't do this when populating search set for a rename when prefix and suffix text will be provided -- just rename the local.
if (!isForRenamePopulateSearchSymbolSet) {
let bindingElementPropertySymbol: Symbol | undefined;
if (onlyIncludeBindingElementAtReferenceLocation) {
bindingElementPropertySymbol = isObjectBindingElementWithoutPropertyName(location.parent) ? getPropertySymbolFromBindingElement(checker, location.parent) : undefined;
}
else {
bindingElementPropertySymbol = getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol, checker);
}
return bindingElementPropertySymbol && fromRoot(bindingElementPropertySymbol, EntryKind.SearchedPropertyFoundLocal);
}
Debug.assert(isForRenamePopulateSearchSymbolSet);
// due to the above assert and the arguments at the uses of this function,
// (onlyIncludeBindingElementAtReferenceLocation <=> !providePrefixAndSuffixTextForRename) holds
const includeOriginalSymbolOfBindingElement = onlyIncludeBindingElementAtReferenceLocation;
if (includeOriginalSymbolOfBindingElement) {
const bindingElementPropertySymbol = getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol, checker);
return bindingElementPropertySymbol && fromRoot(bindingElementPropertySymbol, EntryKind.SearchedPropertyFoundLocal);
}
function fromRoot(sym: Symbol, kind?: NodeEntryKind): T | undefined {
// If this is a union property:
// - In populateSearchSymbolsSet we will add all the symbols from all its source symbols in all unioned types.
// - In findRelatedSymbol, we will just use the union symbol if any source symbol is included in the search.
// If the symbol is an instantiation from a another symbol (e.g. widened symbol):
// - In populateSearchSymbolsSet, add the root the list
// - In findRelatedSymbol, return the source symbol if that is in the search. (Do not return the instantiation symbol.)
return firstDefined(checker.getRootSymbols(sym), rootSymbol =>
cbSymbol(sym, rootSymbol, /*baseSymbol*/ undefined, kind)
// Add symbol of properties/methods of the same name in base classes and implemented interfaces definitions
|| (rootSymbol.parent && rootSymbol.parent.flags & (SymbolFlags.Class | SymbolFlags.Interface) && allowBaseTypes(rootSymbol)
? getPropertySymbolsFromBaseTypes(rootSymbol.parent, rootSymbol.name, checker, base => cbSymbol(sym, rootSymbol, base, kind))
: undefined));
}
function getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol: Symbol, checker: TypeChecker): Symbol | undefined {
const bindingElement = getDeclarationOfKind<BindingElement>(symbol, SyntaxKind.BindingElement);
if (bindingElement && isObjectBindingElementWithoutPropertyName(bindingElement)) {
return getPropertySymbolFromBindingElement(checker, bindingElement);
}
}
}
interface RelatedSymbol {
readonly symbol: Symbol;
readonly kind: NodeEntryKind | undefined;
}
function getRelatedSymbol(search: Search, referenceSymbol: Symbol, referenceLocation: Node, state: State): RelatedSymbol | undefined {
const { checker } = state;
return forEachRelatedSymbol(referenceSymbol, referenceLocation, checker, /*isForRenamePopulateSearchSymbolSet*/ false,
/*onlyIncludeBindingElementAtReferenceLocation*/ !state.options.isForRename || !!state.options.providePrefixAndSuffixTextForRename,
(sym, rootSymbol, baseSymbol, kind): RelatedSymbol | undefined => search.includes(baseSymbol || rootSymbol || sym)
// For a base type, use the symbol for the derived type. For a synthetic (e.g. union) property, use the union symbol.
? { symbol: rootSymbol && !(getCheckFlags(sym) & CheckFlags.Synthetic) ? rootSymbol : sym, kind }
: undefined,
/*allowBaseTypes*/ rootSymbol =>
!(search.parents && !search.parents.some(parent => explicitlyInheritsFrom(rootSymbol.parent!, parent, state.inheritsFromCache, checker))));
}
/**
* Given an initial searchMeaning, extracted from a location, widen the search scope based on the declarations
* of the corresponding symbol. e.g. if we are searching for "Foo" in value position, but "Foo" references a class
* then we need to widen the search to include type positions as well.
* On the contrary, if we are searching for "Bar" in type position and we trace bar to an interface, and an uninstantiated
* module, we want to keep the search limited to only types, as the two declarations (interface and uninstantiated module)
* do not intersect in any of the three spaces.
*/
export function getIntersectingMeaningFromDeclarations(node: Node, symbol: Symbol): SemanticMeaning {
let meaning = getMeaningFromLocation(node);
const { declarations } = symbol;
if (declarations) {
let lastIterationMeaning: SemanticMeaning;
do {
// The result is order-sensitive, for instance if initialMeaning === Namespace, and declarations = [class, instantiated module]
// we need to consider both as they initialMeaning intersects with the module in the namespace space, and the module
// intersects with the class in the value space.
// To achieve that we will keep iterating until the result stabilizes.
// Remember the last meaning
lastIterationMeaning = meaning;
for (const declaration of declarations) {
const declarationMeaning = getMeaningFromDeclaration(declaration);
if (declarationMeaning & meaning) {
meaning |= declarationMeaning;
}
}
}
while (meaning !== lastIterationMeaning);
}
return meaning;
}
function isImplementation(node: Node): boolean {
return !!(node.flags & NodeFlags.Ambient)
? !(isInterfaceDeclaration(node) || isTypeAliasDeclaration(node))
: (isVariableLike(node) ? hasInitializer(node)
: isFunctionLikeDeclaration(node) ? !!node.body
: isClassLike(node) || isModuleOrEnumDeclaration(node));
}
export function getReferenceEntriesForShorthandPropertyAssignment(node: Node, checker: TypeChecker, addReference: (node: Node) => void): void {
const refSymbol = checker.getSymbolAtLocation(node)!;
const shorthandSymbol = checker.getShorthandAssignmentValueSymbol(refSymbol.valueDeclaration);
if (shorthandSymbol) {
for (const declaration of shorthandSymbol.getDeclarations()!) {
if (getMeaningFromDeclaration(declaration) & SemanticMeaning.Value) {
addReference(declaration);
}
}
}
}
function forEachDescendantOfKind(node: Node, kind: SyntaxKind, action: (node: Node) => void): void {
forEachChild(node, child => {
if (child.kind === kind) {
action(child);
}
forEachDescendantOfKind(child, kind, action);
});
}
/** Get `C` given `N` if `N` is in the position `class C extends N` or `class C extends foo.N` where `N` is an identifier. */
function tryGetClassByExtendingIdentifier(node: Node): ClassLikeDeclaration | undefined {
return tryGetClassExtendingExpressionWithTypeArguments(climbPastPropertyAccess(node).parent);
}
/**
* If we are just looking for implementations and this is a property access expression, we need to get the
* symbol of the local type of the symbol the property is being accessed on. This is because our search
* symbol may have a different parent symbol if the local type's symbol does not declare the property
* being accessed (i.e. it is declared in some parent class or interface)
*/
function getParentSymbolsOfPropertyAccess(location: Node, symbol: Symbol, checker: TypeChecker): ReadonlyArray<Symbol> | undefined {
const propertyAccessExpression = isRightSideOfPropertyAccess(location) ? <PropertyAccessExpression>location.parent : undefined;
const lhsType = propertyAccessExpression && checker.getTypeAtLocation(propertyAccessExpression.expression);
const res = mapDefined(lhsType && (lhsType.isUnionOrIntersection() ? lhsType.types : lhsType.symbol === symbol.parent ? undefined : [lhsType]), t =>
t.symbol && t.symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface) ? t.symbol : undefined);
return res.length === 0 ? undefined : res;
}
function isForRenameWithPrefixAndSuffixText(options: Options) {
return options.isForRename && options.providePrefixAndSuffixTextForRename;
}
}