TypeScript/src/services/services.ts
Kagami Sascha Rosylight cbfbfe1aa6 make rules optional
2016-06-27 16:04:53 +09:00

8708 lines
417 KiB
TypeScript

/// <reference path="..\compiler\program.ts"/>
/// <reference path="..\compiler\commandLineParser.ts"/>
/// <reference path='breakpoints.ts' />
/// <reference path='outliningElementsCollector.ts' />
/// <reference path='navigateTo.ts' />
/// <reference path='navigationBar.ts' />
/// <reference path='patternMatcher.ts' />
/// <reference path='signatureHelp.ts' />
/// <reference path='utilities.ts' />
/// <reference path='jsTyping.ts' />
/// <reference path='formatting\formatting.ts' />
/// <reference path='formatting\smartIndenter.ts' />
namespace ts {
/** The version of the language service API */
export const servicesVersion = "0.5";
export interface Node {
getSourceFile(): SourceFile;
getChildCount(sourceFile?: SourceFile): number;
getChildAt(index: number, sourceFile?: SourceFile): Node;
getChildren(sourceFile?: SourceFile): Node[];
getStart(sourceFile?: SourceFile, includeJsDocComment?: boolean): number;
getFullStart(): number;
getEnd(): number;
getWidth(sourceFile?: SourceFile): number;
getFullWidth(): number;
getLeadingTriviaWidth(sourceFile?: SourceFile): number;
getFullText(sourceFile?: SourceFile): string;
getText(sourceFile?: SourceFile): string;
getFirstToken(sourceFile?: SourceFile): Node;
getLastToken(sourceFile?: SourceFile): Node;
}
export interface Symbol {
getFlags(): SymbolFlags;
getName(): string;
getDeclarations(): Declaration[];
getDocumentationComment(): SymbolDisplayPart[];
}
export interface Type {
getFlags(): TypeFlags;
getSymbol(): Symbol;
getProperties(): Symbol[];
getProperty(propertyName: string): Symbol;
getApparentProperties(): Symbol[];
getCallSignatures(): Signature[];
getConstructSignatures(): Signature[];
getStringIndexType(): Type;
getNumberIndexType(): Type;
getBaseTypes(): ObjectType[];
getNonNullableType(): Type;
}
export interface Signature {
getDeclaration(): SignatureDeclaration;
getTypeParameters(): Type[];
getParameters(): Symbol[];
getReturnType(): Type;
getDocumentationComment(): SymbolDisplayPart[];
}
export interface SourceFile {
/* @internal */ version: string;
/* @internal */ scriptSnapshot: IScriptSnapshot;
/* @internal */ nameTable: Map<number>;
/* @internal */ getNamedDeclarations(): Map<Declaration[]>;
getLineAndCharacterOfPosition(pos: number): LineAndCharacter;
getLineStarts(): number[];
getPositionOfLineAndCharacter(line: number, character: number): number;
update(newText: string, textChangeRange: TextChangeRange): SourceFile;
}
/**
* Represents an immutable snapshot of a script at a specified time.Once acquired, the
* snapshot is observably immutable. i.e. the same calls with the same parameters will return
* the same values.
*/
export interface IScriptSnapshot {
/** Gets a portion of the script snapshot specified by [start, end). */
getText(start: number, end: number): string;
/** Gets the length of this script snapshot. */
getLength(): number;
/**
* Gets the TextChangeRange that describe how the text changed between this text and
* an older version. This information is used by the incremental parser to determine
* what sections of the script need to be re-parsed. 'undefined' can be returned if the
* change range cannot be determined. However, in that case, incremental parsing will
* not happen and the entire document will be re - parsed.
*/
getChangeRange(oldSnapshot: IScriptSnapshot): TextChangeRange;
/** Releases all resources held by this script snapshot */
dispose?(): void;
}
export namespace ScriptSnapshot {
class StringScriptSnapshot implements IScriptSnapshot {
constructor(private text: string) {
}
public getText(start: number, end: number): string {
return this.text.substring(start, end);
}
public getLength(): number {
return this.text.length;
}
public getChangeRange(oldSnapshot: IScriptSnapshot): TextChangeRange {
// Text-based snapshots do not support incremental parsing. Return undefined
// to signal that to the caller.
return undefined;
}
}
export function fromString(text: string): IScriptSnapshot {
return new StringScriptSnapshot(text);
}
}
export interface PreProcessedFileInfo {
referencedFiles: FileReference[];
typeReferenceDirectives: FileReference[];
importedFiles: FileReference[];
ambientExternalModules: string[];
isLibFile: boolean;
}
const scanner: Scanner = createScanner(ScriptTarget.Latest, /*skipTrivia*/ true);
const emptyArray: any[] = [];
const jsDocTagNames = [
"augments",
"author",
"argument",
"borrows",
"class",
"constant",
"constructor",
"constructs",
"default",
"deprecated",
"description",
"event",
"example",
"extends",
"field",
"fileOverview",
"function",
"ignore",
"inner",
"lends",
"link",
"memberOf",
"name",
"namespace",
"param",
"private",
"property",
"public",
"requires",
"returns",
"see",
"since",
"static",
"throws",
"type",
"typedef",
"property",
"prop",
"version"
];
let jsDocCompletionEntries: CompletionEntry[];
function createNode(kind: SyntaxKind, pos: number, end: number, flags: NodeFlags, parent?: Node): NodeObject {
const node = new NodeObject(kind, pos, end);
node.flags = flags;
node.parent = parent;
return node;
}
class NodeObject implements Node {
public kind: SyntaxKind;
public pos: number;
public end: number;
public flags: NodeFlags;
public parent: Node;
public jsDocComments: JSDocComment[];
private _children: Node[];
constructor(kind: SyntaxKind, pos: number, end: number) {
this.kind = kind;
this.pos = pos;
this.end = end;
this.flags = NodeFlags.None;
this.parent = undefined;
}
public getSourceFile(): SourceFile {
return getSourceFileOfNode(this);
}
public getStart(sourceFile?: SourceFile, includeJsDocComment?: boolean): number {
return getTokenPosOfNode(this, sourceFile, includeJsDocComment);
}
public getFullStart(): number {
return this.pos;
}
public getEnd(): number {
return this.end;
}
public getWidth(sourceFile?: SourceFile): number {
return this.getEnd() - this.getStart(sourceFile);
}
public getFullWidth(): number {
return this.end - this.pos;
}
public getLeadingTriviaWidth(sourceFile?: SourceFile): number {
return this.getStart(sourceFile) - this.pos;
}
public getFullText(sourceFile?: SourceFile): string {
return (sourceFile || this.getSourceFile()).text.substring(this.pos, this.end);
}
public getText(sourceFile?: SourceFile): string {
return (sourceFile || this.getSourceFile()).text.substring(this.getStart(), this.getEnd());
}
private addSyntheticNodes(nodes: Node[], pos: number, end: number, useJSDocScanner?: boolean): number {
scanner.setTextPos(pos);
while (pos < end) {
const token = useJSDocScanner ? scanner.scanJSDocToken() : scanner.scan();
const textPos = scanner.getTextPos();
if (textPos <= end) {
nodes.push(createNode(token, pos, textPos, 0, this));
}
pos = textPos;
}
return pos;
}
private createSyntaxList(nodes: NodeArray<Node>): Node {
const list = createNode(SyntaxKind.SyntaxList, nodes.pos, nodes.end, 0, this);
list._children = [];
let pos = nodes.pos;
for (const node of nodes) {
if (pos < node.pos) {
pos = this.addSyntheticNodes(list._children, pos, node.pos);
}
list._children.push(node);
pos = node.end;
}
if (pos < nodes.end) {
this.addSyntheticNodes(list._children, pos, nodes.end);
}
return list;
}
private createChildren(sourceFile?: SourceFile) {
let children: Node[];
if (this.kind >= SyntaxKind.FirstNode) {
scanner.setText((sourceFile || this.getSourceFile()).text);
children = [];
let pos = this.pos;
const useJSDocScanner = this.kind >= SyntaxKind.FirstJSDocTagNode && this.kind <= SyntaxKind.LastJSDocTagNode;
const processNode = (node: Node) => {
if (pos < node.pos) {
pos = this.addSyntheticNodes(children, pos, node.pos, useJSDocScanner);
}
children.push(node);
pos = node.end;
};
const processNodes = (nodes: NodeArray<Node>) => {
if (pos < nodes.pos) {
pos = this.addSyntheticNodes(children, pos, nodes.pos, useJSDocScanner);
}
children.push(this.createSyntaxList(<NodeArray<Node>>nodes));
pos = nodes.end;
};
// jsDocComments need to be the first children
if (this.jsDocComments) {
for (const jsDocComment of this.jsDocComments) {
processNode(jsDocComment);
}
}
forEachChild(this, processNode, processNodes);
if (pos < this.end) {
this.addSyntheticNodes(children, pos, this.end);
}
scanner.setText(undefined);
}
this._children = children || emptyArray;
}
public getChildCount(sourceFile?: SourceFile): number {
if (!this._children) this.createChildren(sourceFile);
return this._children.length;
}
public getChildAt(index: number, sourceFile?: SourceFile): Node {
if (!this._children) this.createChildren(sourceFile);
return this._children[index];
}
public getChildren(sourceFile?: SourceFile): Node[] {
if (!this._children) this.createChildren(sourceFile);
return this._children;
}
public getFirstToken(sourceFile?: SourceFile): Node {
const children = this.getChildren(sourceFile);
if (!children.length) {
return undefined;
}
const child = children[0];
return child.kind < SyntaxKind.FirstNode ? child : child.getFirstToken(sourceFile);
}
public getLastToken(sourceFile?: SourceFile): Node {
const children = this.getChildren(sourceFile);
const child = lastOrUndefined(children);
if (!child) {
return undefined;
}
return child.kind < SyntaxKind.FirstNode ? child : child.getLastToken(sourceFile);
}
}
class SymbolObject implements Symbol {
flags: SymbolFlags;
name: string;
declarations: Declaration[];
// Undefined is used to indicate the value has not been computed. If, after computing, the
// symbol has no doc comment, then the empty string will be returned.
documentationComment: SymbolDisplayPart[];
constructor(flags: SymbolFlags, name: string) {
this.flags = flags;
this.name = name;
}
getFlags(): SymbolFlags {
return this.flags;
}
getName(): string {
return this.name;
}
getDeclarations(): Declaration[] {
return this.declarations;
}
getDocumentationComment(): SymbolDisplayPart[] {
if (this.documentationComment === undefined) {
this.documentationComment = getJsDocCommentsFromDeclarations(this.declarations, this.name, !(this.flags & SymbolFlags.Property));
}
return this.documentationComment;
}
}
function getJsDocCommentsFromDeclarations(declarations: Declaration[], name: string, canUseParsedParamTagComments: boolean) {
const documentationComment = <SymbolDisplayPart[]>[];
const docComments = getJsDocCommentsSeparatedByNewLines();
ts.forEach(docComments, docComment => {
if (documentationComment.length) {
documentationComment.push(lineBreakPart());
}
documentationComment.push(docComment);
});
return documentationComment;
function getJsDocCommentsSeparatedByNewLines() {
const paramTag = "@param";
const jsDocCommentParts: SymbolDisplayPart[] = [];
ts.forEach(declarations, (declaration, indexOfDeclaration) => {
// Make sure we are collecting doc comment from declaration once,
// In case of union property there might be same declaration multiple times
// which only varies in type parameter
// Eg. const a: Array<string> | Array<number>; a.length
// The property length will have two declarations of property length coming
// from Array<T> - Array<string> and Array<number>
if (indexOf(declarations, declaration) === indexOfDeclaration) {
const sourceFileOfDeclaration = getSourceFileOfNode(declaration);
// If it is parameter - try and get the jsDoc comment with @param tag from function declaration's jsDoc comments
if (canUseParsedParamTagComments && declaration.kind === SyntaxKind.Parameter) {
if ((declaration.parent.kind === SyntaxKind.FunctionExpression || declaration.parent.kind === SyntaxKind.ArrowFunction) &&
declaration.parent.parent.kind === SyntaxKind.VariableDeclaration) {
addCommentParts(declaration.parent.parent.parent, sourceFileOfDeclaration, getCleanedParamJsDocComment);
}
addCommentParts(declaration.parent, sourceFileOfDeclaration, getCleanedParamJsDocComment);
}
// If this is left side of dotted module declaration, there is no doc comments associated with this node
if (declaration.kind === SyntaxKind.ModuleDeclaration && (<ModuleDeclaration>declaration).body && (<ModuleDeclaration>declaration).body.kind === SyntaxKind.ModuleDeclaration) {
return;
}
if ((declaration.kind === SyntaxKind.FunctionExpression || declaration.kind === SyntaxKind.ArrowFunction) &&
declaration.parent.kind === SyntaxKind.VariableDeclaration) {
addCommentParts(declaration.parent.parent, sourceFileOfDeclaration, getCleanedJsDocComment);
}
// If this is dotted module name, get the doc comments from the parent
while (declaration.kind === SyntaxKind.ModuleDeclaration && declaration.parent.kind === SyntaxKind.ModuleDeclaration) {
declaration = <ModuleDeclaration>declaration.parent;
}
addCommentParts(declaration.kind === SyntaxKind.VariableDeclaration ? declaration.parent.parent : declaration,
sourceFileOfDeclaration,
getCleanedJsDocComment);
if (declaration.kind === SyntaxKind.VariableDeclaration) {
const init = (declaration as VariableDeclaration).initializer;
if (init && (init.kind === SyntaxKind.FunctionExpression || init.kind === SyntaxKind.ArrowFunction)) {
// Get the cleaned js doc comment text from the initializer
addCommentParts(init, sourceFileOfDeclaration, getCleanedJsDocComment);
}
}
}
});
return jsDocCommentParts;
function addCommentParts(commented: Node,
sourceFileOfDeclaration: SourceFile,
getCommentPart: (pos: number, end: number, file: SourceFile) => SymbolDisplayPart[]): void {
const ranges = getJsDocCommentTextRange(commented, sourceFileOfDeclaration);
// Get the cleaned js doc comment text from the declaration
ts.forEach(ranges, jsDocCommentTextRange => {
const cleanedComment = getCommentPart(jsDocCommentTextRange.pos, jsDocCommentTextRange.end, sourceFileOfDeclaration);
if (cleanedComment) {
addRange(jsDocCommentParts, cleanedComment);
}
});
}
function getJsDocCommentTextRange(node: Node, sourceFile: SourceFile): TextRange[] {
return ts.map(getJsDocComments(node, sourceFile),
jsDocComment => {
return {
pos: jsDocComment.pos + "/*".length, // Consume /* from the comment
end: jsDocComment.end - "*/".length // Trim off comment end indicator
};
});
}
function consumeWhiteSpacesOnTheLine(pos: number, end: number, sourceFile: SourceFile, maxSpacesToRemove?: number) {
if (maxSpacesToRemove !== undefined) {
end = Math.min(end, pos + maxSpacesToRemove);
}
for (; pos < end; pos++) {
const ch = sourceFile.text.charCodeAt(pos);
if (!isWhiteSpace(ch) || isLineBreak(ch)) {
// Either found lineBreak or non whiteSpace
return pos;
}
}
return end;
}
function consumeLineBreaks(pos: number, end: number, sourceFile: SourceFile) {
while (pos < end && isLineBreak(sourceFile.text.charCodeAt(pos))) {
pos++;
}
return pos;
}
function isName(pos: number, end: number, sourceFile: SourceFile, name: string) {
return pos + name.length < end &&
sourceFile.text.substr(pos, name.length) === name &&
(isWhiteSpace(sourceFile.text.charCodeAt(pos + name.length)) ||
isLineBreak(sourceFile.text.charCodeAt(pos + name.length)));
}
function isParamTag(pos: number, end: number, sourceFile: SourceFile) {
// If it is @param tag
return isName(pos, end, sourceFile, paramTag);
}
function pushDocCommentLineText(docComments: SymbolDisplayPart[], text: string, blankLineCount: number) {
// Add the empty lines in between texts
while (blankLineCount) {
blankLineCount--;
docComments.push(textPart(""));
}
docComments.push(textPart(text));
}
function getCleanedJsDocComment(pos: number, end: number, sourceFile: SourceFile) {
let spacesToRemoveAfterAsterisk: number;
const docComments: SymbolDisplayPart[] = [];
let blankLineCount = 0;
let isInParamTag = false;
while (pos < end) {
let docCommentTextOfLine = "";
// First consume leading white space
pos = consumeWhiteSpacesOnTheLine(pos, end, sourceFile);
// If the comment starts with '*' consume the spaces on this line
if (pos < end && sourceFile.text.charCodeAt(pos) === CharacterCodes.asterisk) {
const lineStartPos = pos + 1;
pos = consumeWhiteSpacesOnTheLine(pos + 1, end, sourceFile, spacesToRemoveAfterAsterisk);
// Set the spaces to remove after asterisk as margin if not already set
if (spacesToRemoveAfterAsterisk === undefined && pos < end && !isLineBreak(sourceFile.text.charCodeAt(pos))) {
spacesToRemoveAfterAsterisk = pos - lineStartPos;
}
}
else if (spacesToRemoveAfterAsterisk === undefined) {
spacesToRemoveAfterAsterisk = 0;
}
// Analyze text on this line
while (pos < end && !isLineBreak(sourceFile.text.charCodeAt(pos))) {
const ch = sourceFile.text.charAt(pos);
if (ch === "@") {
// If it is @param tag
if (isParamTag(pos, end, sourceFile)) {
isInParamTag = true;
pos += paramTag.length;
continue;
}
else {
isInParamTag = false;
}
}
// Add the ch to doc text if we arent in param tag
if (!isInParamTag) {
docCommentTextOfLine += ch;
}
// Scan next character
pos++;
}
// Continue with next line
pos = consumeLineBreaks(pos, end, sourceFile);
if (docCommentTextOfLine) {
pushDocCommentLineText(docComments, docCommentTextOfLine, blankLineCount);
blankLineCount = 0;
}
else if (!isInParamTag && docComments.length) {
// This is blank line when there is text already parsed
blankLineCount++;
}
}
return docComments;
}
function getCleanedParamJsDocComment(pos: number, end: number, sourceFile: SourceFile) {
let paramHelpStringMargin: number;
const paramDocComments: SymbolDisplayPart[] = [];
while (pos < end) {
if (isParamTag(pos, end, sourceFile)) {
let blankLineCount = 0;
let recordedParamTag = false;
// Consume leading spaces
pos = consumeWhiteSpaces(pos + paramTag.length);
if (pos >= end) {
break;
}
// Ignore type expression
if (sourceFile.text.charCodeAt(pos) === CharacterCodes.openBrace) {
pos++;
for (let curlies = 1; pos < end; pos++) {
const charCode = sourceFile.text.charCodeAt(pos);
// { character means we need to find another } to match the found one
if (charCode === CharacterCodes.openBrace) {
curlies++;
continue;
}
// } char
if (charCode === CharacterCodes.closeBrace) {
curlies--;
if (curlies === 0) {
// We do not have any more } to match the type expression is ignored completely
pos++;
break;
}
else {
// there are more { to be matched with }
continue;
}
}
// Found start of another tag
if (charCode === CharacterCodes.at) {
break;
}
}
// Consume white spaces
pos = consumeWhiteSpaces(pos);
if (pos >= end) {
break;
}
}
// Parameter name
if (isName(pos, end, sourceFile, name)) {
// Found the parameter we are looking for consume white spaces
pos = consumeWhiteSpaces(pos + name.length);
if (pos >= end) {
break;
}
let paramHelpString = "";
const firstLineParamHelpStringPos = pos;
while (pos < end) {
const ch = sourceFile.text.charCodeAt(pos);
// at line break, set this comment line text and go to next line
if (isLineBreak(ch)) {
if (paramHelpString) {
pushDocCommentLineText(paramDocComments, paramHelpString, blankLineCount);
paramHelpString = "";
blankLineCount = 0;
recordedParamTag = true;
}
else if (recordedParamTag) {
blankLineCount++;
}
// Get the pos after cleaning start of the line
setPosForParamHelpStringOnNextLine(firstLineParamHelpStringPos);
continue;
}
// Done scanning param help string - next tag found
if (ch === CharacterCodes.at) {
break;
}
paramHelpString += sourceFile.text.charAt(pos);
// Go to next character
pos++;
}
// If there is param help text, add it top the doc comments
if (paramHelpString) {
pushDocCommentLineText(paramDocComments, paramHelpString, blankLineCount);
}
paramHelpStringMargin = undefined;
}
// If this is the start of another tag, continue with the loop in search of param tag with symbol name
if (sourceFile.text.charCodeAt(pos) === CharacterCodes.at) {
continue;
}
}
// Next character
pos++;
}
return paramDocComments;
function consumeWhiteSpaces(pos: number) {
while (pos < end && isWhiteSpace(sourceFile.text.charCodeAt(pos))) {
pos++;
}
return pos;
}
function setPosForParamHelpStringOnNextLine(firstLineParamHelpStringPos: number) {
// Get the pos after consuming line breaks
pos = consumeLineBreaks(pos, end, sourceFile);
if (pos >= end) {
return;
}
if (paramHelpStringMargin === undefined) {
paramHelpStringMargin = sourceFile.getLineAndCharacterOfPosition(firstLineParamHelpStringPos).character;
}
// Now consume white spaces max
const startOfLinePos = pos;
pos = consumeWhiteSpacesOnTheLine(pos, end, sourceFile, paramHelpStringMargin);
if (pos >= end) {
return;
}
const consumedSpaces = pos - startOfLinePos;
if (consumedSpaces < paramHelpStringMargin) {
const ch = sourceFile.text.charCodeAt(pos);
if (ch === CharacterCodes.asterisk) {
// Consume more spaces after asterisk
pos = consumeWhiteSpacesOnTheLine(pos + 1, end, sourceFile, paramHelpStringMargin - consumedSpaces - 1);
}
}
}
}
}
}
class TypeObject implements Type {
checker: TypeChecker;
flags: TypeFlags;
id: number;
symbol: Symbol;
constructor(checker: TypeChecker, flags: TypeFlags) {
this.checker = checker;
this.flags = flags;
}
getFlags(): TypeFlags {
return this.flags;
}
getSymbol(): Symbol {
return this.symbol;
}
getProperties(): Symbol[] {
return this.checker.getPropertiesOfType(this);
}
getProperty(propertyName: string): Symbol {
return this.checker.getPropertyOfType(this, propertyName);
}
getApparentProperties(): Symbol[] {
return this.checker.getAugmentedPropertiesOfType(this);
}
getCallSignatures(): Signature[] {
return this.checker.getSignaturesOfType(this, SignatureKind.Call);
}
getConstructSignatures(): Signature[] {
return this.checker.getSignaturesOfType(this, SignatureKind.Construct);
}
getStringIndexType(): Type {
return this.checker.getIndexTypeOfType(this, IndexKind.String);
}
getNumberIndexType(): Type {
return this.checker.getIndexTypeOfType(this, IndexKind.Number);
}
getBaseTypes(): ObjectType[] {
return this.flags & (TypeFlags.Class | TypeFlags.Interface)
? this.checker.getBaseTypes(<InterfaceType><Type>this)
: undefined;
}
getNonNullableType(): Type {
return this.checker.getNonNullableType(this);
}
}
class SignatureObject implements Signature {
checker: TypeChecker;
declaration: SignatureDeclaration;
typeParameters: TypeParameter[];
parameters: Symbol[];
thisParameter: Symbol;
resolvedReturnType: Type;
minArgumentCount: number;
hasRestParameter: boolean;
hasStringLiterals: boolean;
// Undefined is used to indicate the value has not been computed. If, after computing, the
// symbol has no doc comment, then the empty string will be returned.
documentationComment: SymbolDisplayPart[];
constructor(checker: TypeChecker) {
this.checker = checker;
}
getDeclaration(): SignatureDeclaration {
return this.declaration;
}
getTypeParameters(): Type[] {
return this.typeParameters;
}
getParameters(): Symbol[] {
return this.parameters;
}
getReturnType(): Type {
return this.checker.getReturnTypeOfSignature(this);
}
getDocumentationComment(): SymbolDisplayPart[] {
if (this.documentationComment === undefined) {
this.documentationComment = this.declaration ? getJsDocCommentsFromDeclarations(
[this.declaration],
/*name*/ undefined,
/*canUseParsedParamTagComments*/ false) : [];
}
return this.documentationComment;
}
}
class SourceFileObject extends NodeObject implements SourceFile {
public _declarationBrand: any;
public fileName: string;
public path: Path;
public text: string;
public scriptSnapshot: IScriptSnapshot;
public lineMap: number[];
public statements: NodeArray<Statement>;
public endOfFileToken: Node;
public amdDependencies: { name: string; path: string }[];
public moduleName: string;
public referencedFiles: FileReference[];
public typeReferenceDirectives: FileReference[];
public syntacticDiagnostics: Diagnostic[];
public referenceDiagnostics: Diagnostic[];
public parseDiagnostics: Diagnostic[];
public bindDiagnostics: Diagnostic[];
public isDeclarationFile: boolean;
public isDefaultLib: boolean;
public hasNoDefaultLib: boolean;
public externalModuleIndicator: Node; // The first node that causes this file to be an external module
public commonJsModuleIndicator: Node; // The first node that causes this file to be a CommonJS module
public nodeCount: number;
public identifierCount: number;
public symbolCount: number;
public version: string;
public scriptKind: ScriptKind;
public languageVersion: ScriptTarget;
public languageVariant: LanguageVariant;
public identifiers: Map<string>;
public nameTable: Map<number>;
public resolvedModules: Map<ResolvedModule>;
public resolvedTypeReferenceDirectiveNames: Map<ResolvedTypeReferenceDirective>;
public imports: LiteralExpression[];
public moduleAugmentations: LiteralExpression[];
private namedDeclarations: Map<Declaration[]>;
constructor(kind: SyntaxKind, pos: number, end: number) {
super(kind, pos, end);
}
public update(newText: string, textChangeRange: TextChangeRange): SourceFile {
return updateSourceFile(this, newText, textChangeRange);
}
public getLineAndCharacterOfPosition(position: number): LineAndCharacter {
return ts.getLineAndCharacterOfPosition(this, position);
}
public getLineStarts(): number[] {
return getLineStarts(this);
}
public getPositionOfLineAndCharacter(line: number, character: number): number {
return ts.getPositionOfLineAndCharacter(this, line, character);
}
public getNamedDeclarations(): Map<Declaration[]> {
if (!this.namedDeclarations) {
this.namedDeclarations = this.computeNamedDeclarations();
}
return this.namedDeclarations;
}
private computeNamedDeclarations(): Map<Declaration[]> {
const result: Map<Declaration[]> = {};
forEachChild(this, visit);
return result;
function addDeclaration(declaration: Declaration) {
const name = getDeclarationName(declaration);
if (name) {
const declarations = getDeclarations(name);
declarations.push(declaration);
}
}
function getDeclarations(name: string) {
return getProperty(result, name) || (result[name] = []);
}
function getDeclarationName(declaration: Declaration) {
if (declaration.name) {
const result = getTextOfIdentifierOrLiteral(declaration.name);
if (result !== undefined) {
return result;
}
if (declaration.name.kind === SyntaxKind.ComputedPropertyName) {
const expr = (<ComputedPropertyName>declaration.name).expression;
if (expr.kind === SyntaxKind.PropertyAccessExpression) {
return (<PropertyAccessExpression>expr).name.text;
}
return getTextOfIdentifierOrLiteral(expr);
}
}
return undefined;
}
function getTextOfIdentifierOrLiteral(node: Node) {
if (node) {
if (node.kind === SyntaxKind.Identifier ||
node.kind === SyntaxKind.StringLiteral ||
node.kind === SyntaxKind.NumericLiteral) {
return (<Identifier | LiteralExpression>node).text;
}
}
return undefined;
}
function visit(node: Node): void {
switch (node.kind) {
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
const functionDeclaration = <FunctionLikeDeclaration>node;
const declarationName = getDeclarationName(functionDeclaration);
if (declarationName) {
const declarations = getDeclarations(declarationName);
const lastDeclaration = lastOrUndefined(declarations);
// Check whether this declaration belongs to an "overload group".
if (lastDeclaration && functionDeclaration.parent === lastDeclaration.parent && functionDeclaration.symbol === lastDeclaration.symbol) {
// Overwrite the last declaration if it was an overload
// and this one is an implementation.
if (functionDeclaration.body && !(<FunctionLikeDeclaration>lastDeclaration).body) {
declarations[declarations.length - 1] = functionDeclaration;
}
}
else {
declarations.push(functionDeclaration);
}
forEachChild(node, visit);
}
break;
case SyntaxKind.ClassDeclaration:
case SyntaxKind.ClassExpression:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.TypeAliasDeclaration:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.ImportEqualsDeclaration:
case SyntaxKind.ExportSpecifier:
case SyntaxKind.ImportSpecifier:
case SyntaxKind.ImportEqualsDeclaration:
case SyntaxKind.ImportClause:
case SyntaxKind.NamespaceImport:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.TypeLiteral:
addDeclaration(<Declaration>node);
forEachChild(node, visit);
break;
case SyntaxKind.Parameter:
// Only consider parameter properties
if (!(node.flags & NodeFlags.ParameterPropertyModifier)) {
break;
}
// fall through
case SyntaxKind.VariableDeclaration:
case SyntaxKind.BindingElement: {
const decl = <VariableDeclaration> node;
if (isBindingPattern(decl.name)) {
forEachChild(decl.name, visit);
break;
}
if (decl.initializer)
visit(decl.initializer);
}
case SyntaxKind.EnumMember:
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
addDeclaration(<Declaration>node);
break;
case SyntaxKind.ExportDeclaration:
// Handle named exports case e.g.:
// export {a, b as B} from "mod";
if ((<ExportDeclaration>node).exportClause) {
forEach((<ExportDeclaration>node).exportClause.elements, visit);
}
break;
case SyntaxKind.ImportDeclaration:
const importClause = (<ImportDeclaration>node).importClause;
if (importClause) {
// Handle default import case e.g.:
// import d from "mod";
if (importClause.name) {
addDeclaration(importClause);
}
// Handle named bindings in imports e.g.:
// import * as NS from "mod";
// import {a, b as B} from "mod";
if (importClause.namedBindings) {
if (importClause.namedBindings.kind === SyntaxKind.NamespaceImport) {
addDeclaration(<NamespaceImport>importClause.namedBindings);
}
else {
forEach((<NamedImports>importClause.namedBindings).elements, visit);
}
}
}
break;
default:
forEachChild(node, visit);
}
}
}
}
export interface HostCancellationToken {
isCancellationRequested(): boolean;
}
//
// Public interface of the host of a language service instance.
//
export interface LanguageServiceHost {
getCompilationSettings(): CompilerOptions;
getNewLine?(): string;
getProjectVersion?(): string;
getScriptFileNames(): string[];
getScriptKind?(fileName: string): ScriptKind;
getScriptVersion(fileName: string): string;
getScriptSnapshot(fileName: string): IScriptSnapshot | undefined;
getLocalizedDiagnosticMessages?(): any;
getCancellationToken?(): HostCancellationToken;
getCurrentDirectory(): string;
getDefaultLibFileName(options: CompilerOptions): string;
log?(s: string): void;
trace?(s: string): void;
error?(s: string): void;
useCaseSensitiveFileNames?(): boolean;
/*
* LS host can optionally implement this method if it wants to be completely in charge of module name resolution.
* if implementation is omitted then language service will use built-in module resolution logic and get answers to
* host specific questions using 'getScriptSnapshot'.
*/
resolveModuleNames?(moduleNames: string[], containingFile: string): ResolvedModule[];
resolveTypeReferenceDirectives?(typeDirectiveNames: string[], containingFile: string): ResolvedTypeReferenceDirective[];
directoryExists?(directoryName: string): boolean;
getDirectories?(directoryName: string): string[];
}
//
// Public services of a language service instance associated
// with a language service host instance
//
export interface LanguageService {
cleanupSemanticCache(): void;
getSyntacticDiagnostics(fileName: string): Diagnostic[];
getSemanticDiagnostics(fileName: string): Diagnostic[];
// TODO: Rename this to getProgramDiagnostics to better indicate that these are any
// diagnostics present for the program level, and not just 'options' diagnostics.
getCompilerOptionsDiagnostics(): Diagnostic[];
/**
* @deprecated Use getEncodedSyntacticClassifications instead.
*/
getSyntacticClassifications(fileName: string, span: TextSpan): ClassifiedSpan[];
/**
* @deprecated Use getEncodedSemanticClassifications instead.
*/
getSemanticClassifications(fileName: string, span: TextSpan): ClassifiedSpan[];
// Encoded as triples of [start, length, ClassificationType].
getEncodedSyntacticClassifications(fileName: string, span: TextSpan): Classifications;
getEncodedSemanticClassifications(fileName: string, span: TextSpan): Classifications;
getCompletionsAtPosition(fileName: string, position: number): CompletionInfo;
getCompletionEntryDetails(fileName: string, position: number, entryName: string): CompletionEntryDetails;
getQuickInfoAtPosition(fileName: string, position: number): QuickInfo;
getNameOrDottedNameSpan(fileName: string, startPos: number, endPos: number): TextSpan;
getBreakpointStatementAtPosition(fileName: string, position: number): TextSpan;
getSignatureHelpItems(fileName: string, position: number): SignatureHelpItems;
getRenameInfo(fileName: string, position: number): RenameInfo;
findRenameLocations(fileName: string, position: number, findInStrings: boolean, findInComments: boolean): RenameLocation[];
getDefinitionAtPosition(fileName: string, position: number): DefinitionInfo[];
getTypeDefinitionAtPosition(fileName: string, position: number): DefinitionInfo[];
getReferencesAtPosition(fileName: string, position: number): ReferenceEntry[];
findReferences(fileName: string, position: number): ReferencedSymbol[];
getDocumentHighlights(fileName: string, position: number, filesToSearch: string[]): DocumentHighlights[];
/** @deprecated */
getOccurrencesAtPosition(fileName: string, position: number): ReferenceEntry[];
getNavigateToItems(searchValue: string, maxResultCount?: number): NavigateToItem[];
getNavigationBarItems(fileName: string): NavigationBarItem[];
getOutliningSpans(fileName: string): OutliningSpan[];
getTodoComments(fileName: string, descriptors: TodoCommentDescriptor[]): TodoComment[];
getBraceMatchingAtPosition(fileName: string, position: number): TextSpan[];
getIndentationAtPosition(fileName: string, position: number, options: EditorOptions): number;
getFormattingEditsForRange(fileName: string, start: number, end: number, options: FormatCodeOptions): TextChange[];
getFormattingEditsForDocument(fileName: string, options: FormatCodeOptions): TextChange[];
getFormattingEditsAfterKeystroke(fileName: string, position: number, key: string, options: FormatCodeOptions): TextChange[];
getDocCommentTemplateAtPosition(fileName: string, position: number): TextInsertion;
isValidBraceCompletionAtPosition(fileName: string, position: number, openingBrace: number): boolean;
getEmitOutput(fileName: string): EmitOutput;
getProgram(): Program;
/* @internal */ getNonBoundSourceFile(fileName: string): SourceFile;
dispose(): void;
}
export interface Classifications {
spans: number[];
endOfLineState: EndOfLineState;
}
export interface ClassifiedSpan {
textSpan: TextSpan;
classificationType: string; // ClassificationTypeNames
}
export interface NavigationBarItem {
text: string;
kind: string;
kindModifiers: string;
spans: TextSpan[];
childItems: NavigationBarItem[];
indent: number;
bolded: boolean;
grayed: boolean;
}
export interface TodoCommentDescriptor {
text: string;
priority: number;
}
export interface TodoComment {
descriptor: TodoCommentDescriptor;
message: string;
position: number;
}
export class TextChange {
span: TextSpan;
newText: string;
}
export interface TextInsertion {
newText: string;
/** The position in newText the caret should point to after the insertion. */
caretOffset: number;
}
export interface RenameLocation {
textSpan: TextSpan;
fileName: string;
}
export interface ReferenceEntry {
textSpan: TextSpan;
fileName: string;
isWriteAccess: boolean;
isDefinition: boolean;
}
export interface DocumentHighlights {
fileName: string;
highlightSpans: HighlightSpan[];
}
export namespace HighlightSpanKind {
export const none = "none";
export const definition = "definition";
export const reference = "reference";
export const writtenReference = "writtenReference";
}
export interface HighlightSpan {
fileName?: string;
textSpan: TextSpan;
kind: string;
}
export interface NavigateToItem {
name: string;
kind: string;
kindModifiers: string;
matchKind: string;
isCaseSensitive: boolean;
fileName: string;
textSpan: TextSpan;
containerName: string;
containerKind: string;
}
export interface EditorOptions {
BaseIndentSize?: number;
IndentSize: number;
TabSize: number;
NewLineCharacter: string;
ConvertTabsToSpaces: boolean;
IndentStyle: IndentStyle;
}
export enum IndentStyle {
None = 0,
Block = 1,
Smart = 2,
}
export interface FormatCodeOptions extends EditorOptions {
InsertSpaceAfterCommaDelimiter: boolean;
InsertSpaceAfterSemicolonInForStatements: boolean;
InsertSpaceBeforeAndAfterBinaryOperators: boolean;
InsertSpaceAfterKeywordsInControlFlowStatements: boolean;
InsertSpaceAfterFunctionKeywordForAnonymousFunctions: boolean;
InsertSpaceAfterOpeningAndBeforeClosingNonemptyParenthesis: boolean;
InsertSpaceAfterOpeningAndBeforeClosingNonemptyBrackets: boolean;
InsertSpaceAfterOpeningAndBeforeClosingTemplateStringBraces: boolean;
InsertSpaceAfterOpeningAndBeforeClosingJsxExpressionBraces: boolean;
PlaceOpenBraceOnNewLineForFunctions: boolean;
PlaceOpenBraceOnNewLineForControlBlocks: boolean;
[s: string]: boolean | number | string | undefined;
}
export interface DefinitionInfo {
fileName: string;
textSpan: TextSpan;
kind: string;
name: string;
containerKind: string;
containerName: string;
}
export interface ReferencedSymbol {
definition: DefinitionInfo;
references: ReferenceEntry[];
}
export enum SymbolDisplayPartKind {
aliasName,
className,
enumName,
fieldName,
interfaceName,
keyword,
lineBreak,
numericLiteral,
stringLiteral,
localName,
methodName,
moduleName,
operator,
parameterName,
propertyName,
punctuation,
space,
text,
typeParameterName,
enumMemberName,
functionName,
regularExpressionLiteral,
}
export interface SymbolDisplayPart {
text: string;
kind: string;
}
export interface QuickInfo {
kind: string;
kindModifiers: string;
textSpan: TextSpan;
displayParts: SymbolDisplayPart[];
documentation: SymbolDisplayPart[];
}
export interface RenameInfo {
canRename: boolean;
localizedErrorMessage: string;
displayName: string;
fullDisplayName: string;
kind: string;
kindModifiers: string;
triggerSpan: TextSpan;
}
export interface SignatureHelpParameter {
name: string;
documentation: SymbolDisplayPart[];
displayParts: SymbolDisplayPart[];
isOptional: boolean;
}
/**
* Represents a single signature to show in signature help.
* The id is used for subsequent calls into the language service to ask questions about the
* signature help item in the context of any documents that have been updated. i.e. after
* an edit has happened, while signature help is still active, the host can ask important
* questions like 'what parameter is the user currently contained within?'.
*/
export interface SignatureHelpItem {
isVariadic: boolean;
prefixDisplayParts: SymbolDisplayPart[];
suffixDisplayParts: SymbolDisplayPart[];
separatorDisplayParts: SymbolDisplayPart[];
parameters: SignatureHelpParameter[];
documentation: SymbolDisplayPart[];
}
/**
* Represents a set of signature help items, and the preferred item that should be selected.
*/
export interface SignatureHelpItems {
items: SignatureHelpItem[];
applicableSpan: TextSpan;
selectedItemIndex: number;
argumentIndex: number;
argumentCount: number;
}
export interface CompletionInfo {
isMemberCompletion: boolean;
isNewIdentifierLocation: boolean; // true when the current location also allows for a new identifier
entries: CompletionEntry[];
}
export interface CompletionEntry {
name: string;
kind: string; // see ScriptElementKind
kindModifiers: string; // see ScriptElementKindModifier, comma separated
sortText: string;
}
export interface CompletionEntryDetails {
name: string;
kind: string; // see ScriptElementKind
kindModifiers: string; // see ScriptElementKindModifier, comma separated
displayParts: SymbolDisplayPart[];
documentation: SymbolDisplayPart[];
}
export interface OutliningSpan {
/** The span of the document to actually collapse. */
textSpan: TextSpan;
/** The span of the document to display when the user hovers over the collapsed span. */
hintSpan: TextSpan;
/** The text to display in the editor for the collapsed region. */
bannerText: string;
/**
* Whether or not this region should be automatically collapsed when
* the 'Collapse to Definitions' command is invoked.
*/
autoCollapse: boolean;
}
export interface EmitOutput {
outputFiles: OutputFile[];
emitSkipped: boolean;
}
export const enum OutputFileType {
JavaScript,
SourceMap,
Declaration
}
export interface OutputFile {
name: string;
writeByteOrderMark: boolean;
text: string;
}
export const enum EndOfLineState {
None,
InMultiLineCommentTrivia,
InSingleQuoteStringLiteral,
InDoubleQuoteStringLiteral,
InTemplateHeadOrNoSubstitutionTemplate,
InTemplateMiddleOrTail,
InTemplateSubstitutionPosition,
}
export enum TokenClass {
Punctuation,
Keyword,
Operator,
Comment,
Whitespace,
Identifier,
NumberLiteral,
StringLiteral,
RegExpLiteral,
}
export interface ClassificationResult {
finalLexState: EndOfLineState;
entries: ClassificationInfo[];
}
export interface ClassificationInfo {
length: number;
classification: TokenClass;
}
export interface Classifier {
/**
* Gives lexical classifications of tokens on a line without any syntactic context.
* For instance, a token consisting of the text 'string' can be either an identifier
* named 'string' or the keyword 'string', however, because this classifier is not aware,
* it relies on certain heuristics to give acceptable results. For classifications where
* speed trumps accuracy, this function is preferable; however, for true accuracy, the
* syntactic classifier is ideal. In fact, in certain editing scenarios, combining the
* lexical, syntactic, and semantic classifiers may issue the best user experience.
*
* @param text The text of a line to classify.
* @param lexState The state of the lexical classifier at the end of the previous line.
* @param syntacticClassifierAbsent Whether the client is *not* using a syntactic classifier.
* If there is no syntactic classifier (syntacticClassifierAbsent=true),
* certain heuristics may be used in its place; however, if there is a
* syntactic classifier (syntacticClassifierAbsent=false), certain
* classifications which may be incorrectly categorized will be given
* back as Identifiers in order to allow the syntactic classifier to
* subsume the classification.
* @deprecated Use getLexicalClassifications instead.
*/
getClassificationsForLine(text: string, lexState: EndOfLineState, syntacticClassifierAbsent: boolean): ClassificationResult;
getEncodedLexicalClassifications(text: string, endOfLineState: EndOfLineState, syntacticClassifierAbsent: boolean): Classifications;
}
/**
* The document registry represents a store of SourceFile objects that can be shared between
* multiple LanguageService instances. A LanguageService instance holds on the SourceFile (AST)
* of files in the context.
* SourceFile objects account for most of the memory usage by the language service. Sharing
* the same DocumentRegistry instance between different instances of LanguageService allow
* for more efficient memory utilization since all projects will share at least the library
* file (lib.d.ts).
*
* A more advanced use of the document registry is to serialize sourceFile objects to disk
* and re-hydrate them when needed.
*
* To create a default DocumentRegistry, use createDocumentRegistry to create one, and pass it
* to all subsequent createLanguageService calls.
*/
export interface DocumentRegistry {
/**
* Request a stored SourceFile with a given fileName and compilationSettings.
* The first call to acquire will call createLanguageServiceSourceFile to generate
* the SourceFile if was not found in the registry.
*
* @param fileName The name of the file requested
* @param compilationSettings Some compilation settings like target affects the
* shape of a the resulting SourceFile. This allows the DocumentRegistry to store
* multiple copies of the same file for different compilation settings.
* @parm scriptSnapshot Text of the file. Only used if the file was not found
* in the registry and a new one was created.
* @parm version Current version of the file. Only used if the file was not found
* in the registry and a new one was created.
*/
acquireDocument(
fileName: string,
compilationSettings: CompilerOptions,
scriptSnapshot: IScriptSnapshot,
version: string,
scriptKind?: ScriptKind): SourceFile;
acquireDocumentWithKey(
fileName: string,
path: Path,
compilationSettings: CompilerOptions,
key: DocumentRegistryBucketKey,
scriptSnapshot: IScriptSnapshot,
version: string,
scriptKind?: ScriptKind): SourceFile;
/**
* Request an updated version of an already existing SourceFile with a given fileName
* and compilationSettings. The update will in-turn call updateLanguageServiceSourceFile
* to get an updated SourceFile.
*
* @param fileName The name of the file requested
* @param compilationSettings Some compilation settings like target affects the
* shape of a the resulting SourceFile. This allows the DocumentRegistry to store
* multiple copies of the same file for different compilation settings.
* @param scriptSnapshot Text of the file.
* @param version Current version of the file.
*/
updateDocument(
fileName: string,
compilationSettings: CompilerOptions,
scriptSnapshot: IScriptSnapshot,
version: string,
scriptKind?: ScriptKind): SourceFile;
updateDocumentWithKey(
fileName: string,
path: Path,
compilationSettings: CompilerOptions,
key: DocumentRegistryBucketKey,
scriptSnapshot: IScriptSnapshot,
version: string,
scriptKind?: ScriptKind): SourceFile;
getKeyForCompilationSettings(settings: CompilerOptions): DocumentRegistryBucketKey;
/**
* Informs the DocumentRegistry that a file is not needed any longer.
*
* Note: It is not allowed to call release on a SourceFile that was not acquired from
* this registry originally.
*
* @param fileName The name of the file to be released
* @param compilationSettings The compilation settings used to acquire the file
*/
releaseDocument(fileName: string, compilationSettings: CompilerOptions): void;
releaseDocumentWithKey(path: Path, key: DocumentRegistryBucketKey): void;
reportStats(): string;
}
export type DocumentRegistryBucketKey = string & { __bucketKey: any };
// TODO: move these to enums
export namespace ScriptElementKind {
export const unknown = "";
export const warning = "warning";
/** predefined type (void) or keyword (class) */
export const keyword = "keyword";
/** top level script node */
export const scriptElement = "script";
/** module foo {} */
export const moduleElement = "module";
/** class X {} */
export const classElement = "class";
/** var x = class X {} */
export const localClassElement = "local class";
/** interface Y {} */
export const interfaceElement = "interface";
/** type T = ... */
export const typeElement = "type";
/** enum E */
export const enumElement = "enum";
/**
* Inside module and script only
* const v = ..
*/
export const variableElement = "var";
/** Inside function */
export const localVariableElement = "local var";
/**
* Inside module and script only
* function f() { }
*/
export const functionElement = "function";
/** Inside function */
export const localFunctionElement = "local function";
/** class X { [public|private]* foo() {} } */
export const memberFunctionElement = "method";
/** class X { [public|private]* [get|set] foo:number; } */
export const memberGetAccessorElement = "getter";
export const memberSetAccessorElement = "setter";
/**
* class X { [public|private]* foo:number; }
* interface Y { foo:number; }
*/
export const memberVariableElement = "property";
/** class X { constructor() { } } */
export const constructorImplementationElement = "constructor";
/** interface Y { ():number; } */
export const callSignatureElement = "call";
/** interface Y { []:number; } */
export const indexSignatureElement = "index";
/** interface Y { new():Y; } */
export const constructSignatureElement = "construct";
/** function foo(*Y*: string) */
export const parameterElement = "parameter";
export const typeParameterElement = "type parameter";
export const primitiveType = "primitive type";
export const label = "label";
export const alias = "alias";
export const constElement = "const";
export const letElement = "let";
}
export namespace ScriptElementKindModifier {
export const none = "";
export const publicMemberModifier = "public";
export const privateMemberModifier = "private";
export const protectedMemberModifier = "protected";
export const exportedModifier = "export";
export const ambientModifier = "declare";
export const staticModifier = "static";
export const abstractModifier = "abstract";
}
export class ClassificationTypeNames {
public static comment = "comment";
public static identifier = "identifier";
public static keyword = "keyword";
public static numericLiteral = "number";
public static operator = "operator";
public static stringLiteral = "string";
public static whiteSpace = "whitespace";
public static text = "text";
public static punctuation = "punctuation";
public static className = "class name";
public static enumName = "enum name";
public static interfaceName = "interface name";
public static moduleName = "module name";
public static typeParameterName = "type parameter name";
public static typeAliasName = "type alias name";
public static parameterName = "parameter name";
public static docCommentTagName = "doc comment tag name";
public static jsxOpenTagName = "jsx open tag name";
public static jsxCloseTagName = "jsx close tag name";
public static jsxSelfClosingTagName = "jsx self closing tag name";
public static jsxAttribute = "jsx attribute";
public static jsxText = "jsx text";
public static jsxAttributeStringLiteralValue = "jsx attribute string literal value";
}
export const enum ClassificationType {
comment = 1,
identifier = 2,
keyword = 3,
numericLiteral = 4,
operator = 5,
stringLiteral = 6,
regularExpressionLiteral = 7,
whiteSpace = 8,
text = 9,
punctuation = 10,
className = 11,
enumName = 12,
interfaceName = 13,
moduleName = 14,
typeParameterName = 15,
typeAliasName = 16,
parameterName = 17,
docCommentTagName = 18,
jsxOpenTagName = 19,
jsxCloseTagName = 20,
jsxSelfClosingTagName = 21,
jsxAttribute = 22,
jsxText = 23,
jsxAttributeStringLiteralValue = 24,
}
/// Language Service
// Information about a specific host file.
interface HostFileInformation {
hostFileName: string;
version: string;
scriptSnapshot: IScriptSnapshot;
scriptKind: ScriptKind;
}
interface DocumentRegistryEntry {
sourceFile: SourceFile;
// The number of language services that this source file is referenced in. When no more
// language services are referencing the file, then the file can be removed from the
// registry.
languageServiceRefCount: number;
owners: string[];
}
export interface DisplayPartsSymbolWriter extends SymbolWriter {
displayParts(): SymbolDisplayPart[];
}
export function displayPartsToString(displayParts: SymbolDisplayPart[]) {
if (displayParts) {
return map(displayParts, displayPart => displayPart.text).join("");
}
return "";
}
function isLocalVariableOrFunction(symbol: Symbol) {
if (symbol.parent) {
return false; // This is exported symbol
}
return ts.forEach(symbol.declarations, declaration => {
// Function expressions are local
if (declaration.kind === SyntaxKind.FunctionExpression) {
return true;
}
if (declaration.kind !== SyntaxKind.VariableDeclaration && declaration.kind !== SyntaxKind.FunctionDeclaration) {
return false;
}
// If the parent is not sourceFile or module block it is local variable
for (let parent = declaration.parent; !isFunctionBlock(parent); parent = parent.parent) {
// Reached source file or module block
if (parent.kind === SyntaxKind.SourceFile || parent.kind === SyntaxKind.ModuleBlock) {
return false;
}
}
// parent is in function block
return true;
});
}
export function getDefaultCompilerOptions(): CompilerOptions {
// Always default to "ScriptTarget.ES5" for the language service
return {
target: ScriptTarget.ES5,
jsx: JsxEmit.Preserve
};
}
// Cache host information about scrip Should be refreshed
// at each language service public entry point, since we don't know when
// set of scripts handled by the host changes.
class HostCache {
private fileNameToEntry: FileMap<HostFileInformation>;
private _compilationSettings: CompilerOptions;
private currentDirectory: string;
constructor(private host: LanguageServiceHost, private getCanonicalFileName: (fileName: string) => string) {
// script id => script index
this.currentDirectory = host.getCurrentDirectory();
this.fileNameToEntry = createFileMap<HostFileInformation>();
// Initialize the list with the root file names
const rootFileNames = host.getScriptFileNames();
for (const fileName of rootFileNames) {
this.createEntry(fileName, toPath(fileName, this.currentDirectory, getCanonicalFileName));
}
// store the compilation settings
this._compilationSettings = host.getCompilationSettings() || getDefaultCompilerOptions();
}
public compilationSettings() {
return this._compilationSettings;
}
private createEntry(fileName: string, path: Path) {
let entry: HostFileInformation;
const scriptSnapshot = this.host.getScriptSnapshot(fileName);
if (scriptSnapshot) {
entry = {
hostFileName: fileName,
version: this.host.getScriptVersion(fileName),
scriptSnapshot: scriptSnapshot,
scriptKind: getScriptKind(fileName, this.host)
};
}
this.fileNameToEntry.set(path, entry);
return entry;
}
private getEntry(path: Path): HostFileInformation {
return this.fileNameToEntry.get(path);
}
private contains(path: Path): boolean {
return this.fileNameToEntry.contains(path);
}
public getOrCreateEntry(fileName: string): HostFileInformation {
const path = toPath(fileName, this.currentDirectory, this.getCanonicalFileName);
return this.getOrCreateEntryByPath(fileName, path);
}
public getOrCreateEntryByPath(fileName: string, path: Path): HostFileInformation {
return this.contains(path)
? this.getEntry(path)
: this.createEntry(fileName, path);
}
public getRootFileNames(): string[] {
const fileNames: string[] = [];
this.fileNameToEntry.forEachValue((path, value) => {
if (value) {
fileNames.push(value.hostFileName);
}
});
return fileNames;
}
public getVersion(path: Path): string {
const file = this.getEntry(path);
return file && file.version;
}
public getScriptSnapshot(path: Path): IScriptSnapshot {
const file = this.getEntry(path);
return file && file.scriptSnapshot;
}
}
class SyntaxTreeCache {
// For our syntactic only features, we also keep a cache of the syntax tree for the
// currently edited file.
private currentFileName: string;
private currentFileVersion: string;
private currentFileScriptSnapshot: IScriptSnapshot;
private currentSourceFile: SourceFile;
constructor(private host: LanguageServiceHost) {
}
public getCurrentSourceFile(fileName: string): SourceFile {
const scriptSnapshot = this.host.getScriptSnapshot(fileName);
if (!scriptSnapshot) {
// The host does not know about this file.
throw new Error("Could not find file: '" + fileName + "'.");
}
const scriptKind = getScriptKind(fileName, this.host);
const version = this.host.getScriptVersion(fileName);
let sourceFile: SourceFile;
if (this.currentFileName !== fileName) {
// This is a new file, just parse it
sourceFile = createLanguageServiceSourceFile(fileName, scriptSnapshot, ScriptTarget.Latest, version, /*setNodeParents*/ true, scriptKind);
}
else if (this.currentFileVersion !== version) {
// This is the same file, just a newer version. Incrementally parse the file.
const editRange = scriptSnapshot.getChangeRange(this.currentFileScriptSnapshot);
sourceFile = updateLanguageServiceSourceFile(this.currentSourceFile, scriptSnapshot, version, editRange);
}
if (sourceFile) {
// All done, ensure state is up to date
this.currentFileVersion = version;
this.currentFileName = fileName;
this.currentFileScriptSnapshot = scriptSnapshot;
this.currentSourceFile = sourceFile;
}
return this.currentSourceFile;
}
}
function setSourceFileFields(sourceFile: SourceFile, scriptSnapshot: IScriptSnapshot, version: string) {
sourceFile.version = version;
sourceFile.scriptSnapshot = scriptSnapshot;
}
export interface TranspileOptions {
compilerOptions?: CompilerOptions;
fileName?: string;
reportDiagnostics?: boolean;
moduleName?: string;
renamedDependencies?: Map<string>;
}
export interface TranspileOutput {
outputText: string;
diagnostics?: Diagnostic[];
sourceMapText?: string;
}
let commandLineOptionsStringToEnum: CommandLineOptionOfCustomType[];
/** JS users may pass in string values for enum compiler options (such as ModuleKind), so convert. */
function fixupCompilerOptions(options: CompilerOptions, diagnostics: Diagnostic[]): CompilerOptions {
// Lazily create this value to fix module loading errors.
commandLineOptionsStringToEnum = commandLineOptionsStringToEnum || <CommandLineOptionOfCustomType[]>filter(optionDeclarations, o =>
typeof o.type === "object" && !forEachValue(<Map<any>> o.type, v => typeof v !== "number"));
options = clone(options);
for (const opt of commandLineOptionsStringToEnum) {
if (!hasProperty(options, opt.name)) {
continue;
}
const value = options[opt.name];
// Value should be a key of opt.type
if (typeof value === "string") {
// If value is not a string, this will fail
options[opt.name] = parseCustomTypeOption(opt, value, diagnostics);
}
else {
if (!forEachValue(opt.type, v => v === value)) {
// Supplied value isn't a valid enum value.
diagnostics.push(createCompilerDiagnosticForInvalidCustomType(opt));
}
}
}
return options;
}
/*
* This function will compile source text from 'input' argument using specified compiler options.
* If not options are provided - it will use a set of default compiler options.
* Extra compiler options that will unconditionally be used by this function are:
* - isolatedModules = true
* - allowNonTsExtensions = true
* - noLib = true
* - noResolve = true
*/
export function transpileModule(input: string, transpileOptions: TranspileOptions): TranspileOutput {
const diagnostics: Diagnostic[] = [];
const options: CompilerOptions = transpileOptions.compilerOptions ? fixupCompilerOptions(transpileOptions.compilerOptions, diagnostics) : getDefaultCompilerOptions();
options.isolatedModules = true;
// transpileModule does not write anything to disk so there is no need to verify that there are no conflicts between input and output paths.
options.suppressOutputPathCheck = true;
// Filename can be non-ts file.
options.allowNonTsExtensions = true;
// We are not returning a sourceFile for lib file when asked by the program,
// so pass --noLib to avoid reporting a file not found error.
options.noLib = true;
// Clear out other settings that would not be used in transpiling this module
options.lib = undefined;
options.types = undefined;
options.noEmit = undefined;
options.noEmitOnError = undefined;
options.paths = undefined;
options.rootDirs = undefined;
options.declaration = undefined;
options.declarationDir = undefined;
options.out = undefined;
options.outFile = undefined;
// We are not doing a full typecheck, we are not resolving the whole context,
// so pass --noResolve to avoid reporting missing file errors.
options.noResolve = true;
// if jsx is specified then treat file as .tsx
const inputFileName = transpileOptions.fileName || (options.jsx ? "module.tsx" : "module.ts");
const sourceFile = createSourceFile(inputFileName, input, options.target);
if (transpileOptions.moduleName) {
sourceFile.moduleName = transpileOptions.moduleName;
}
sourceFile.renamedDependencies = transpileOptions.renamedDependencies;
const newLine = getNewLineCharacter(options);
// Output
let outputText: string;
let sourceMapText: string;
// Create a compilerHost object to allow the compiler to read and write files
const compilerHost: CompilerHost = {
getSourceFile: (fileName, target) => fileName === normalizePath(inputFileName) ? sourceFile : undefined,
writeFile: (name, text, writeByteOrderMark) => {
if (fileExtensionIs(name, ".map")) {
Debug.assert(sourceMapText === undefined, `Unexpected multiple source map outputs for the file '${name}'`);
sourceMapText = text;
}
else {
Debug.assert(outputText === undefined, `Unexpected multiple outputs for the file: '${name}'`);
outputText = text;
}
},
getDefaultLibFileName: () => "lib.d.ts",
useCaseSensitiveFileNames: () => false,
getCanonicalFileName: fileName => fileName,
getCurrentDirectory: () => "",
getNewLine: () => newLine,
fileExists: (fileName): boolean => fileName === inputFileName,
readFile: (fileName): string => "",
directoryExists: directoryExists => true,
getDirectories: (path: string) => []
};
const program = createProgram([inputFileName], options, compilerHost);
if (transpileOptions.reportDiagnostics) {
addRange(/*to*/ diagnostics, /*from*/ program.getSyntacticDiagnostics(sourceFile));
addRange(/*to*/ diagnostics, /*from*/ program.getOptionsDiagnostics());
}
// Emit
program.emit();
Debug.assert(outputText !== undefined, "Output generation failed");
return { outputText, diagnostics, sourceMapText };
}
/*
* This is a shortcut function for transpileModule - it accepts transpileOptions as parameters and returns only outputText part of the result.
*/
export function transpile(input: string, compilerOptions?: CompilerOptions, fileName?: string, diagnostics?: Diagnostic[], moduleName?: string): string {
const output = transpileModule(input, { compilerOptions, fileName, reportDiagnostics: !!diagnostics, moduleName });
// addRange correctly handles cases when wither 'from' or 'to' argument is missing
addRange(diagnostics, output.diagnostics);
return output.outputText;
}
export function createLanguageServiceSourceFile(fileName: string, scriptSnapshot: IScriptSnapshot, scriptTarget: ScriptTarget, version: string, setNodeParents: boolean, scriptKind?: ScriptKind): SourceFile {
const text = scriptSnapshot.getText(0, scriptSnapshot.getLength());
const sourceFile = createSourceFile(fileName, text, scriptTarget, setNodeParents, scriptKind);
setSourceFileFields(sourceFile, scriptSnapshot, version);
return sourceFile;
}
export let disableIncrementalParsing = false;
export function updateLanguageServiceSourceFile(sourceFile: SourceFile, scriptSnapshot: IScriptSnapshot, version: string, textChangeRange: TextChangeRange, aggressiveChecks?: boolean): SourceFile {
// If we were given a text change range, and our version or open-ness changed, then
// incrementally parse this file.
if (textChangeRange) {
if (version !== sourceFile.version) {
// Once incremental parsing is ready, then just call into this function.
if (!disableIncrementalParsing) {
let newText: string;
// grab the fragment from the beginning of the original text to the beginning of the span
const prefix = textChangeRange.span.start !== 0
? sourceFile.text.substr(0, textChangeRange.span.start)
: "";
// grab the fragment from the end of the span till the end of the original text
const suffix = textSpanEnd(textChangeRange.span) !== sourceFile.text.length
? sourceFile.text.substr(textSpanEnd(textChangeRange.span))
: "";
if (textChangeRange.newLength === 0) {
// edit was a deletion - just combine prefix and suffix
newText = prefix && suffix ? prefix + suffix : prefix || suffix;
}
else {
// it was actual edit, fetch the fragment of new text that correspond to new span
const changedText = scriptSnapshot.getText(textChangeRange.span.start, textChangeRange.span.start + textChangeRange.newLength);
// combine prefix, changed text and suffix
newText = prefix && suffix
? prefix + changedText + suffix
: prefix
? (prefix + changedText)
: (changedText + suffix);
}
const newSourceFile = updateSourceFile(sourceFile, newText, textChangeRange, aggressiveChecks);
setSourceFileFields(newSourceFile, scriptSnapshot, version);
// after incremental parsing nameTable might not be up-to-date
// drop it so it can be lazily recreated later
newSourceFile.nameTable = undefined;
// dispose all resources held by old script snapshot
if (sourceFile !== newSourceFile && sourceFile.scriptSnapshot) {
if (sourceFile.scriptSnapshot.dispose) {
sourceFile.scriptSnapshot.dispose();
}
sourceFile.scriptSnapshot = undefined;
}
return newSourceFile;
}
}
}
// Otherwise, just create a new source file.
return createLanguageServiceSourceFile(sourceFile.fileName, scriptSnapshot, sourceFile.languageVersion, version, /*setNodeParents*/ true, sourceFile.scriptKind);
}
export function createDocumentRegistry(useCaseSensitiveFileNames?: boolean, currentDirectory = ""): DocumentRegistry {
// Maps from compiler setting target (ES3, ES5, etc.) to all the cached documents we have
// for those settings.
const buckets: Map<FileMap<DocumentRegistryEntry>> = {};
const getCanonicalFileName = createGetCanonicalFileName(!!useCaseSensitiveFileNames);
function getKeyForCompilationSettings(settings: CompilerOptions): DocumentRegistryBucketKey {
return <DocumentRegistryBucketKey>`_${settings.target}|${settings.module}|${settings.noResolve}|${settings.jsx}|${settings.allowJs}|${settings.baseUrl}|${JSON.stringify(settings.typeRoots)}|${JSON.stringify(settings.rootDirs)}|${JSON.stringify(settings.paths)}`;
}
function getBucketForCompilationSettings(key: DocumentRegistryBucketKey, createIfMissing: boolean): FileMap<DocumentRegistryEntry> {
let bucket = lookUp(buckets, key);
if (!bucket && createIfMissing) {
buckets[key] = bucket = createFileMap<DocumentRegistryEntry>();
}
return bucket;
}
function reportStats() {
const bucketInfoArray = Object.keys(buckets).filter(name => name && name.charAt(0) === "_").map(name => {
const entries = lookUp(buckets, name);
const sourceFiles: { name: string; refCount: number; references: string[]; }[] = [];
entries.forEachValue((key, entry) => {
sourceFiles.push({
name: key,
refCount: entry.languageServiceRefCount,
references: entry.owners.slice(0)
});
});
sourceFiles.sort((x, y) => y.refCount - x.refCount);
return {
bucket: name,
sourceFiles
};
});
return JSON.stringify(bucketInfoArray, undefined, 2);
}
function acquireDocument(fileName: string, compilationSettings: CompilerOptions, scriptSnapshot: IScriptSnapshot, version: string, scriptKind?: ScriptKind): SourceFile {
const path = toPath(fileName, currentDirectory, getCanonicalFileName);
const key = getKeyForCompilationSettings(compilationSettings);
return acquireDocumentWithKey(fileName, path, compilationSettings, key, scriptSnapshot, version, scriptKind);
}
function acquireDocumentWithKey(fileName: string, path: Path, compilationSettings: CompilerOptions, key: DocumentRegistryBucketKey, scriptSnapshot: IScriptSnapshot, version: string, scriptKind?: ScriptKind): SourceFile {
return acquireOrUpdateDocument(fileName, path, compilationSettings, key, scriptSnapshot, version, /*acquiring*/ true, scriptKind);
}
function updateDocument(fileName: string, compilationSettings: CompilerOptions, scriptSnapshot: IScriptSnapshot, version: string, scriptKind?: ScriptKind): SourceFile {
const path = toPath(fileName, currentDirectory, getCanonicalFileName);
const key = getKeyForCompilationSettings(compilationSettings);
return updateDocumentWithKey(fileName, path, compilationSettings, key, scriptSnapshot, version, scriptKind);
}
function updateDocumentWithKey(fileName: string, path: Path, compilationSettings: CompilerOptions, key: DocumentRegistryBucketKey, scriptSnapshot: IScriptSnapshot, version: string, scriptKind?: ScriptKind): SourceFile {
return acquireOrUpdateDocument(fileName, path, compilationSettings, key, scriptSnapshot, version, /*acquiring*/ false, scriptKind);
}
function acquireOrUpdateDocument(
fileName: string,
path: Path,
compilationSettings: CompilerOptions,
key: DocumentRegistryBucketKey,
scriptSnapshot: IScriptSnapshot,
version: string,
acquiring: boolean,
scriptKind?: ScriptKind): SourceFile {
const bucket = getBucketForCompilationSettings(key, /*createIfMissing*/ true);
let entry = bucket.get(path);
if (!entry) {
Debug.assert(acquiring, "How could we be trying to update a document that the registry doesn't have?");
// Have never seen this file with these settings. Create a new source file for it.
const sourceFile = createLanguageServiceSourceFile(fileName, scriptSnapshot, compilationSettings.target, version, /*setNodeParents*/ false, scriptKind);
entry = {
sourceFile: sourceFile,
languageServiceRefCount: 0,
owners: []
};
bucket.set(path, entry);
}
else {
// We have an entry for this file. However, it may be for a different version of
// the script snapshot. If so, update it appropriately. Otherwise, we can just
// return it as is.
if (entry.sourceFile.version !== version) {
entry.sourceFile = updateLanguageServiceSourceFile(entry.sourceFile, scriptSnapshot, version,
scriptSnapshot.getChangeRange(entry.sourceFile.scriptSnapshot));
}
}
// If we're acquiring, then this is the first time this LS is asking for this document.
// Increase our ref count so we know there's another LS using the document. If we're
// not acquiring, then that means the LS is 'updating' the file instead, and that means
// it has already acquired the document previously. As such, we do not need to increase
// the ref count.
if (acquiring) {
entry.languageServiceRefCount++;
}
return entry.sourceFile;
}
function releaseDocument(fileName: string, compilationSettings: CompilerOptions): void {
const path = toPath(fileName, currentDirectory, getCanonicalFileName);
const key = getKeyForCompilationSettings(compilationSettings);
return releaseDocumentWithKey(path, key);
}
function releaseDocumentWithKey(path: Path, key: DocumentRegistryBucketKey): void {
const bucket = getBucketForCompilationSettings(key, /*createIfMissing*/false);
Debug.assert(bucket !== undefined);
const entry = bucket.get(path);
entry.languageServiceRefCount--;
Debug.assert(entry.languageServiceRefCount >= 0);
if (entry.languageServiceRefCount === 0) {
bucket.remove(path);
}
}
return {
acquireDocument,
acquireDocumentWithKey,
updateDocument,
updateDocumentWithKey,
releaseDocument,
releaseDocumentWithKey,
reportStats,
getKeyForCompilationSettings
};
}
export function preProcessFile(sourceText: string, readImportFiles = true, detectJavaScriptImports = false): PreProcessedFileInfo {
const referencedFiles: FileReference[] = [];
const typeReferenceDirectives: FileReference[] = [];
const importedFiles: FileReference[] = [];
let ambientExternalModules: { ref: FileReference, depth: number }[];
let isNoDefaultLib = false;
let braceNesting = 0;
// assume that text represent an external module if it contains at least one top level import/export
// ambient modules that are found inside external modules are interpreted as module augmentations
let externalModule = false;
function nextToken() {
const token = scanner.scan();
if (token === SyntaxKind.OpenBraceToken) {
braceNesting++;
}
else if (token === SyntaxKind.CloseBraceToken) {
braceNesting--;
}
return token;
}
function processTripleSlashDirectives(): void {
const commentRanges = getLeadingCommentRanges(sourceText, 0);
forEach(commentRanges, commentRange => {
const comment = sourceText.substring(commentRange.pos, commentRange.end);
const referencePathMatchResult = getFileReferenceFromReferencePath(comment, commentRange);
if (referencePathMatchResult) {
isNoDefaultLib = referencePathMatchResult.isNoDefaultLib;
const fileReference = referencePathMatchResult.fileReference;
if (fileReference) {
const collection = referencePathMatchResult.isTypeReferenceDirective
? typeReferenceDirectives
: referencedFiles;
collection.push(fileReference);
}
}
});
}
function getFileReference() {
const file = scanner.getTokenValue();
const pos = scanner.getTokenPos();
return {
fileName: file,
pos: pos,
end: pos + file.length
};
}
function recordAmbientExternalModule(): void {
if (!ambientExternalModules) {
ambientExternalModules = [];
}
ambientExternalModules.push({ ref: getFileReference(), depth: braceNesting });
}
function recordModuleName() {
importedFiles.push(getFileReference());
markAsExternalModuleIfTopLevel();
}
function markAsExternalModuleIfTopLevel() {
if (braceNesting === 0) {
externalModule = true;
}
}
/**
* Returns true if at least one token was consumed from the stream
*/
function tryConsumeDeclare(): boolean {
let token = scanner.getToken();
if (token === SyntaxKind.DeclareKeyword) {
// declare module "mod"
token = nextToken();
if (token === SyntaxKind.ModuleKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
recordAmbientExternalModule();
}
}
return true;
}
return false;
}
/**
* Returns true if at least one token was consumed from the stream
*/
function tryConsumeImport(): boolean {
let token = scanner.getToken();
if (token === SyntaxKind.ImportKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// import "mod";
recordModuleName();
return true;
}
else {
if (token === SyntaxKind.Identifier || isKeyword(token)) {
token = nextToken();
if (token === SyntaxKind.FromKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// import d from "mod";
recordModuleName();
return true;
}
}
else if (token === SyntaxKind.EqualsToken) {
if (tryConsumeRequireCall(/*skipCurrentToken*/ true)) {
return true;
}
}
else if (token === SyntaxKind.CommaToken) {
// consume comma and keep going
token = nextToken();
}
else {
// unknown syntax
return true;
}
}
if (token === SyntaxKind.OpenBraceToken) {
token = nextToken();
// consume "{ a as B, c, d as D}" clauses
// make sure that it stops on EOF
while (token !== SyntaxKind.CloseBraceToken && token !== SyntaxKind.EndOfFileToken) {
token = nextToken();
}
if (token === SyntaxKind.CloseBraceToken) {
token = nextToken();
if (token === SyntaxKind.FromKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// import {a as A} from "mod";
// import d, {a, b as B} from "mod"
recordModuleName();
}
}
}
}
else if (token === SyntaxKind.AsteriskToken) {
token = nextToken();
if (token === SyntaxKind.AsKeyword) {
token = nextToken();
if (token === SyntaxKind.Identifier || isKeyword(token)) {
token = nextToken();
if (token === SyntaxKind.FromKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// import * as NS from "mod"
// import d, * as NS from "mod"
recordModuleName();
}
}
}
}
}
}
return true;
}
return false;
}
function tryConsumeExport(): boolean {
let token = scanner.getToken();
if (token === SyntaxKind.ExportKeyword) {
markAsExternalModuleIfTopLevel();
token = nextToken();
if (token === SyntaxKind.OpenBraceToken) {
token = nextToken();
// consume "{ a as B, c, d as D}" clauses
// make sure it stops on EOF
while (token !== SyntaxKind.CloseBraceToken && token !== SyntaxKind.EndOfFileToken) {
token = nextToken();
}
if (token === SyntaxKind.CloseBraceToken) {
token = nextToken();
if (token === SyntaxKind.FromKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// export {a as A} from "mod";
// export {a, b as B} from "mod"
recordModuleName();
}
}
}
}
else if (token === SyntaxKind.AsteriskToken) {
token = nextToken();
if (token === SyntaxKind.FromKeyword) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// export * from "mod"
recordModuleName();
}
}
}
else if (token === SyntaxKind.ImportKeyword) {
token = nextToken();
if (token === SyntaxKind.Identifier || isKeyword(token)) {
token = nextToken();
if (token === SyntaxKind.EqualsToken) {
if (tryConsumeRequireCall(/*skipCurrentToken*/ true)) {
return true;
}
}
}
}
return true;
}
return false;
}
function tryConsumeRequireCall(skipCurrentToken: boolean): boolean {
let token = skipCurrentToken ? nextToken() : scanner.getToken();
if (token === SyntaxKind.RequireKeyword) {
token = nextToken();
if (token === SyntaxKind.OpenParenToken) {
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// require("mod");
recordModuleName();
}
}
return true;
}
return false;
}
function tryConsumeDefine(): boolean {
let token = scanner.getToken();
if (token === SyntaxKind.Identifier && scanner.getTokenValue() === "define") {
token = nextToken();
if (token !== SyntaxKind.OpenParenToken) {
return true;
}
token = nextToken();
if (token === SyntaxKind.StringLiteral) {
// looks like define ("modname", ... - skip string literal and comma
token = nextToken();
if (token === SyntaxKind.CommaToken) {
token = nextToken();
}
else {
// unexpected token
return true;
}
}
// should be start of dependency list
if (token !== SyntaxKind.OpenBracketToken) {
return true;
}
// skip open bracket
token = nextToken();
let i = 0;
// scan until ']' or EOF
while (token !== SyntaxKind.CloseBracketToken && token !== SyntaxKind.EndOfFileToken) {
// record string literals as module names
if (token === SyntaxKind.StringLiteral) {
recordModuleName();
i++;
}
token = nextToken();
}
return true;
}
return false;
}
function processImports(): void {
scanner.setText(sourceText);
nextToken();
// Look for:
// import "mod";
// import d from "mod"
// import {a as A } from "mod";
// import * as NS from "mod"
// import d, {a, b as B} from "mod"
// import i = require("mod");
//
// export * from "mod"
// export {a as b} from "mod"
// export import i = require("mod")
// (for JavaScript files) require("mod")
while (true) {
if (scanner.getToken() === SyntaxKind.EndOfFileToken) {
break;
}
// check if at least one of alternative have moved scanner forward
if (tryConsumeDeclare() ||
tryConsumeImport() ||
tryConsumeExport() ||
(detectJavaScriptImports && (tryConsumeRequireCall(/*skipCurrentToken*/ false) || tryConsumeDefine()))) {
continue;
}
else {
nextToken();
}
}
scanner.setText(undefined);
}
if (readImportFiles) {
processImports();
}
processTripleSlashDirectives();
if (externalModule) {
// for external modules module all nested ambient modules are augmentations
if (ambientExternalModules) {
// move all detected ambient modules to imported files since they need to be resolved
for (const decl of ambientExternalModules) {
importedFiles.push(decl.ref);
}
}
return { referencedFiles, typeReferenceDirectives, importedFiles, isLibFile: isNoDefaultLib, ambientExternalModules: undefined };
}
else {
// for global scripts ambient modules still can have augmentations - look for ambient modules with depth > 0
let ambientModuleNames: string[];
if (ambientExternalModules) {
for (const decl of ambientExternalModules) {
if (decl.depth === 0) {
if (!ambientModuleNames) {
ambientModuleNames = [];
}
ambientModuleNames.push(decl.ref.fileName);
}
else {
importedFiles.push(decl.ref);
}
}
}
return { referencedFiles, typeReferenceDirectives, importedFiles, isLibFile: isNoDefaultLib, ambientExternalModules: ambientModuleNames };
}
}
/// Helpers
function getTargetLabel(referenceNode: Node, labelName: string): Identifier {
while (referenceNode) {
if (referenceNode.kind === SyntaxKind.LabeledStatement && (<LabeledStatement>referenceNode).label.text === labelName) {
return (<LabeledStatement>referenceNode).label;
}
referenceNode = referenceNode.parent;
}
return undefined;
}
function isJumpStatementTarget(node: Node): boolean {
return node.kind === SyntaxKind.Identifier &&
(node.parent.kind === SyntaxKind.BreakStatement || node.parent.kind === SyntaxKind.ContinueStatement) &&
(<BreakOrContinueStatement>node.parent).label === node;
}
function isLabelOfLabeledStatement(node: Node): boolean {
return node.kind === SyntaxKind.Identifier &&
node.parent.kind === SyntaxKind.LabeledStatement &&
(<LabeledStatement>node.parent).label === node;
}
/**
* Whether or not a 'node' is preceded by a label of the given string.
* Note: 'node' cannot be a SourceFile.
*/
function isLabeledBy(node: Node, labelName: string) {
for (let owner = node.parent; owner.kind === SyntaxKind.LabeledStatement; owner = owner.parent) {
if ((<LabeledStatement>owner).label.text === labelName) {
return true;
}
}
return false;
}
function isLabelName(node: Node): boolean {
return isLabelOfLabeledStatement(node) || isJumpStatementTarget(node);
}
function isRightSideOfQualifiedName(node: Node) {
return node.parent.kind === SyntaxKind.QualifiedName && (<QualifiedName>node.parent).right === node;
}
function isRightSideOfPropertyAccess(node: Node) {
return node && node.parent && node.parent.kind === SyntaxKind.PropertyAccessExpression && (<PropertyAccessExpression>node.parent).name === node;
}
function isCallExpressionTarget(node: Node): boolean {
if (isRightSideOfPropertyAccess(node)) {
node = node.parent;
}
return node && node.parent && node.parent.kind === SyntaxKind.CallExpression && (<CallExpression>node.parent).expression === node;
}
function isNewExpressionTarget(node: Node): boolean {
if (isRightSideOfPropertyAccess(node)) {
node = node.parent;
}
return node && node.parent && node.parent.kind === SyntaxKind.NewExpression && (<CallExpression>node.parent).expression === node;
}
function isNameOfModuleDeclaration(node: Node) {
return node.parent.kind === SyntaxKind.ModuleDeclaration && (<ModuleDeclaration>node.parent).name === node;
}
function isNameOfFunctionDeclaration(node: Node): boolean {
return node.kind === SyntaxKind.Identifier &&
isFunctionLike(node.parent) && (<FunctionLikeDeclaration>node.parent).name === node;
}
function isObjectLiteralPropertyDeclaration(node: Node): node is ObjectLiteralElement {
switch (node.kind) {
case SyntaxKind.PropertyAssignment:
case SyntaxKind.ShorthandPropertyAssignment:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
return true;
}
return false;
}
/**
* Returns the containing object literal property declaration given a possible name node, e.g. "a" in x = { "a": 1 }
*/
function getContainingObjectLiteralElement(node: Node): ObjectLiteralElement {
switch (node.kind) {
case SyntaxKind.StringLiteral:
case SyntaxKind.NumericLiteral:
if (node.parent.kind === SyntaxKind.ComputedPropertyName) {
return isObjectLiteralPropertyDeclaration(node.parent.parent) ? node.parent.parent : undefined;
}
// intential fall through
case SyntaxKind.Identifier:
return isObjectLiteralPropertyDeclaration(node.parent) && node.parent.name === node ? node.parent : undefined;
}
return undefined;
}
function isLiteralNameOfPropertyDeclarationOrIndexAccess(node: Node): boolean {
if (node.kind === SyntaxKind.StringLiteral || node.kind === SyntaxKind.NumericLiteral) {
switch (node.parent.kind) {
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.PropertyAssignment:
case SyntaxKind.EnumMember:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.ModuleDeclaration:
return (<Declaration>node.parent).name === node;
case SyntaxKind.ElementAccessExpression:
return (<ElementAccessExpression>node.parent).argumentExpression === node;
case SyntaxKind.ComputedPropertyName:
return true;
}
}
return false;
}
function isNameOfExternalModuleImportOrDeclaration(node: Node): boolean {
if (node.kind === SyntaxKind.StringLiteral) {
return isNameOfModuleDeclaration(node) ||
(isExternalModuleImportEqualsDeclaration(node.parent.parent) && getExternalModuleImportEqualsDeclarationExpression(node.parent.parent) === node);
}
return false;
}
/** Returns true if the position is within a comment */
function isInsideComment(sourceFile: SourceFile, token: Node, position: number): boolean {
// The position has to be: 1. in the leading trivia (before token.getStart()), and 2. within a comment
return position <= token.getStart(sourceFile) &&
(isInsideCommentRange(getTrailingCommentRanges(sourceFile.text, token.getFullStart())) ||
isInsideCommentRange(getLeadingCommentRanges(sourceFile.text, token.getFullStart())));
function isInsideCommentRange(comments: CommentRange[]): boolean {
return forEach(comments, comment => {
// either we are 1. completely inside the comment, or 2. at the end of the comment
if (comment.pos < position && position < comment.end) {
return true;
}
else if (position === comment.end) {
const text = sourceFile.text;
const width = comment.end - comment.pos;
// is single line comment or just /*
if (width <= 2 || text.charCodeAt(comment.pos + 1) === CharacterCodes.slash) {
return true;
}
else {
// is unterminated multi-line comment
return !(text.charCodeAt(comment.end - 1) === CharacterCodes.slash &&
text.charCodeAt(comment.end - 2) === CharacterCodes.asterisk);
}
}
return false;
});
}
}
const enum SemanticMeaning {
None = 0x0,
Value = 0x1,
Type = 0x2,
Namespace = 0x4,
All = Value | Type | Namespace
}
const enum BreakContinueSearchType {
None = 0x0,
Unlabeled = 0x1,
Labeled = 0x2,
All = Unlabeled | Labeled
}
// A cache of completion entries for keywords, these do not change between sessions
const keywordCompletions: CompletionEntry[] = [];
for (let i = SyntaxKind.FirstKeyword; i <= SyntaxKind.LastKeyword; i++) {
keywordCompletions.push({
name: tokenToString(i),
kind: ScriptElementKind.keyword,
kindModifiers: ScriptElementKindModifier.none,
sortText: "0"
});
}
/* @internal */ export function getContainerNode(node: Node): Declaration {
while (true) {
node = node.parent;
if (!node) {
return undefined;
}
switch (node.kind) {
case SyntaxKind.SourceFile:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.ClassDeclaration:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.ModuleDeclaration:
return <Declaration>node;
}
}
}
/* @internal */ export function getNodeKind(node: Node): string {
switch (node.kind) {
case SyntaxKind.ModuleDeclaration: return ScriptElementKind.moduleElement;
case SyntaxKind.ClassDeclaration:
case SyntaxKind.ClassExpression:
return ScriptElementKind.classElement;
case SyntaxKind.InterfaceDeclaration: return ScriptElementKind.interfaceElement;
case SyntaxKind.TypeAliasDeclaration: return ScriptElementKind.typeElement;
case SyntaxKind.EnumDeclaration: return ScriptElementKind.enumElement;
case SyntaxKind.VariableDeclaration:
return isConst(node)
? ScriptElementKind.constElement
: isLet(node)
? ScriptElementKind.letElement
: ScriptElementKind.variableElement;
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
return ScriptElementKind.functionElement;
case SyntaxKind.GetAccessor: return ScriptElementKind.memberGetAccessorElement;
case SyntaxKind.SetAccessor: return ScriptElementKind.memberSetAccessorElement;
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
return ScriptElementKind.memberFunctionElement;
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
return ScriptElementKind.memberVariableElement;
case SyntaxKind.IndexSignature: return ScriptElementKind.indexSignatureElement;
case SyntaxKind.ConstructSignature: return ScriptElementKind.constructSignatureElement;
case SyntaxKind.CallSignature: return ScriptElementKind.callSignatureElement;
case SyntaxKind.Constructor: return ScriptElementKind.constructorImplementationElement;
case SyntaxKind.TypeParameter: return ScriptElementKind.typeParameterElement;
case SyntaxKind.EnumMember: return ScriptElementKind.variableElement;
case SyntaxKind.Parameter: return (node.flags & NodeFlags.ParameterPropertyModifier) ? ScriptElementKind.memberVariableElement : ScriptElementKind.parameterElement;
case SyntaxKind.ImportEqualsDeclaration:
case SyntaxKind.ImportSpecifier:
case SyntaxKind.ImportClause:
case SyntaxKind.ExportSpecifier:
case SyntaxKind.NamespaceImport:
return ScriptElementKind.alias;
}
return ScriptElementKind.unknown;
}
class CancellationTokenObject implements CancellationToken {
constructor(private cancellationToken: HostCancellationToken) {
}
public isCancellationRequested() {
return this.cancellationToken && this.cancellationToken.isCancellationRequested();
}
public throwIfCancellationRequested(): void {
if (this.isCancellationRequested()) {
throw new OperationCanceledException();
}
}
}
export function createLanguageService(host: LanguageServiceHost,
documentRegistry: DocumentRegistry = createDocumentRegistry(host.useCaseSensitiveFileNames && host.useCaseSensitiveFileNames(), host.getCurrentDirectory())): LanguageService {
const syntaxTreeCache: SyntaxTreeCache = new SyntaxTreeCache(host);
let ruleProvider: formatting.RulesProvider;
let program: Program;
let lastProjectVersion: string;
const useCaseSensitivefileNames = false;
const cancellationToken = new CancellationTokenObject(host.getCancellationToken && host.getCancellationToken());
const currentDirectory = host.getCurrentDirectory();
// Check if the localized messages json is set, otherwise query the host for it
if (!localizedDiagnosticMessages && host.getLocalizedDiagnosticMessages) {
localizedDiagnosticMessages = host.getLocalizedDiagnosticMessages();
}
function log(message: string) {
if (host.log) {
host.log(message);
}
}
const getCanonicalFileName = createGetCanonicalFileName(useCaseSensitivefileNames);
function getValidSourceFile(fileName: string): SourceFile {
const sourceFile = program.getSourceFile(fileName);
if (!sourceFile) {
throw new Error("Could not find file: '" + fileName + "'.");
}
return sourceFile;
}
function getRuleProvider(options: FormatCodeOptions) {
// Ensure rules are initialized and up to date wrt to formatting options
if (!ruleProvider) {
ruleProvider = new formatting.RulesProvider();
}
ruleProvider.ensureUpToDate(options);
return ruleProvider;
}
function synchronizeHostData(): void {
// perform fast check if host supports it
if (host.getProjectVersion) {
const hostProjectVersion = host.getProjectVersion();
if (hostProjectVersion) {
if (lastProjectVersion === hostProjectVersion) {
return;
}
lastProjectVersion = hostProjectVersion;
}
}
// Get a fresh cache of the host information
let hostCache = new HostCache(host, getCanonicalFileName);
// If the program is already up-to-date, we can reuse it
if (programUpToDate()) {
return;
}
// IMPORTANT - It is critical from this moment onward that we do not check
// cancellation tokens. We are about to mutate source files from a previous program
// instance. If we cancel midway through, we may end up in an inconsistent state where
// the program points to old source files that have been invalidated because of
// incremental parsing.
const oldSettings = program && program.getCompilerOptions();
const newSettings = hostCache.compilationSettings();
const changesInCompilationSettingsAffectSyntax = oldSettings &&
(oldSettings.target !== newSettings.target ||
oldSettings.module !== newSettings.module ||
oldSettings.moduleResolution !== newSettings.moduleResolution ||
oldSettings.noResolve !== newSettings.noResolve ||
oldSettings.jsx !== newSettings.jsx ||
oldSettings.allowJs !== newSettings.allowJs ||
oldSettings.disableSizeLimit !== oldSettings.disableSizeLimit);
// Now create a new compiler
const compilerHost: CompilerHost = {
getSourceFile: getOrCreateSourceFile,
getSourceFileByPath: getOrCreateSourceFileByPath,
getCancellationToken: () => cancellationToken,
getCanonicalFileName,
useCaseSensitiveFileNames: () => useCaseSensitivefileNames,
getNewLine: () => getNewLineOrDefaultFromHost(host),
getDefaultLibFileName: (options) => host.getDefaultLibFileName(options),
writeFile: (fileName, data, writeByteOrderMark) => { },
getCurrentDirectory: () => currentDirectory,
fileExists: (fileName): boolean => {
// stub missing host functionality
Debug.assert(!host.resolveModuleNames || !host.resolveTypeReferenceDirectives);
return hostCache.getOrCreateEntry(fileName) !== undefined;
},
readFile: (fileName): string => {
// stub missing host functionality
const entry = hostCache.getOrCreateEntry(fileName);
return entry && entry.scriptSnapshot.getText(0, entry.scriptSnapshot.getLength());
},
directoryExists: directoryName => {
return directoryProbablyExists(directoryName, host);
},
getDirectories: path => {
return host.getDirectories ? host.getDirectories(path) : [];
}
};
if (host.trace) {
compilerHost.trace = message => host.trace(message);
}
if (host.resolveModuleNames) {
compilerHost.resolveModuleNames = (moduleNames, containingFile) => host.resolveModuleNames(moduleNames, containingFile);
}
if (host.resolveTypeReferenceDirectives) {
compilerHost.resolveTypeReferenceDirectives = (typeReferenceDirectiveNames, containingFile) => {
return host.resolveTypeReferenceDirectives(typeReferenceDirectiveNames, containingFile);
};
}
const documentRegistryBucketKey = documentRegistry.getKeyForCompilationSettings(newSettings);
const newProgram = createProgram(hostCache.getRootFileNames(), newSettings, compilerHost, program);
// Release any files we have acquired in the old program but are
// not part of the new program.
if (program) {
const oldSourceFiles = program.getSourceFiles();
const oldSettingsKey = documentRegistry.getKeyForCompilationSettings(oldSettings);
for (const oldSourceFile of oldSourceFiles) {
if (!newProgram.getSourceFile(oldSourceFile.fileName) || changesInCompilationSettingsAffectSyntax) {
documentRegistry.releaseDocumentWithKey(oldSourceFile.path, oldSettingsKey);
}
}
}
// hostCache is captured in the closure for 'getOrCreateSourceFile' but it should not be used past this point.
// It needs to be cleared to allow all collected snapshots to be released
hostCache = undefined;
program = newProgram;
// Make sure all the nodes in the program are both bound, and have their parent
// pointers set property.
program.getTypeChecker();
return;
function getOrCreateSourceFile(fileName: string): SourceFile {
return getOrCreateSourceFileByPath(fileName, toPath(fileName, currentDirectory, getCanonicalFileName));
}
function getOrCreateSourceFileByPath(fileName: string, path: Path): SourceFile {
Debug.assert(hostCache !== undefined);
// The program is asking for this file, check first if the host can locate it.
// If the host can not locate the file, then it does not exist. return undefined
// to the program to allow reporting of errors for missing files.
const hostFileInformation = hostCache.getOrCreateEntryByPath(fileName, path);
if (!hostFileInformation) {
return undefined;
}
// Check if the language version has changed since we last created a program; if they are the same,
// it is safe to reuse the sourceFiles; if not, then the shape of the AST can change, and the oldSourceFile
// can not be reused. we have to dump all syntax trees and create new ones.
if (!changesInCompilationSettingsAffectSyntax) {
// Check if the old program had this file already
const oldSourceFile = program && program.getSourceFileByPath(path);
if (oldSourceFile) {
// We already had a source file for this file name. Go to the registry to
// ensure that we get the right up to date version of it. We need this to
// address the following race-condition. Specifically, say we have the following:
//
// LS1
// \
// DocumentRegistry
// /
// LS2
//
// Each LS has a reference to file 'foo.ts' at version 1. LS2 then updates
// it's version of 'foo.ts' to version 2. This will cause LS2 and the
// DocumentRegistry to have version 2 of the document. HOwever, LS1 will
// have version 1. And *importantly* this source file will be *corrupt*.
// The act of creating version 2 of the file irrevocably damages the version
// 1 file.
//
// So, later when we call into LS1, we need to make sure that it doesn't use
// it's source file any more, and instead defers to DocumentRegistry to get
// either version 1, version 2 (or some other version) depending on what the
// host says should be used.
// We do not support the scenario where a host can modify a registered
// file's script kind, i.e. in one project some file is treated as ".ts"
// and in another as ".js"
Debug.assert(hostFileInformation.scriptKind === oldSourceFile.scriptKind, "Registered script kind (" + oldSourceFile.scriptKind + ") should match new script kind (" + hostFileInformation.scriptKind + ") for file: " + path);
return documentRegistry.updateDocumentWithKey(fileName, path, newSettings, documentRegistryBucketKey, hostFileInformation.scriptSnapshot, hostFileInformation.version, hostFileInformation.scriptKind);
}
// We didn't already have the file. Fall through and acquire it from the registry.
}
// Could not find this file in the old program, create a new SourceFile for it.
return documentRegistry.acquireDocumentWithKey(fileName, path, newSettings, documentRegistryBucketKey, hostFileInformation.scriptSnapshot, hostFileInformation.version, hostFileInformation.scriptKind);
}
function sourceFileUpToDate(sourceFile: SourceFile): boolean {
if (!sourceFile) {
return false;
}
const path = sourceFile.path || toPath(sourceFile.fileName, currentDirectory, getCanonicalFileName);
return sourceFile.version === hostCache.getVersion(path);
}
function programUpToDate(): boolean {
// If we haven't create a program yet, then it is not up-to-date
if (!program) {
return false;
}
// If number of files in the program do not match, it is not up-to-date
const rootFileNames = hostCache.getRootFileNames();
if (program.getSourceFiles().length !== rootFileNames.length) {
return false;
}
// If any file is not up-to-date, then the whole program is not up-to-date
for (const fileName of rootFileNames) {
if (!sourceFileUpToDate(program.getSourceFile(fileName))) {
return false;
}
}
// If the compilation settings do no match, then the program is not up-to-date
return compareDataObjects(program.getCompilerOptions(), hostCache.compilationSettings());
}
}
function getProgram(): Program {
synchronizeHostData();
return program;
}
function cleanupSemanticCache(): void {
// TODO: Should we jettison the program (or it's type checker) here?
}
function dispose(): void {
if (program) {
forEach(program.getSourceFiles(), f =>
documentRegistry.releaseDocument(f.fileName, program.getCompilerOptions()));
}
}
/// Diagnostics
function getSyntacticDiagnostics(fileName: string) {
synchronizeHostData();
return program.getSyntacticDiagnostics(getValidSourceFile(fileName), cancellationToken);
}
/**
* getSemanticDiagnostics return array of Diagnostics. If '-d' is not enabled, only report semantic errors
* If '-d' enabled, report both semantic and emitter errors
*/
function getSemanticDiagnostics(fileName: string): Diagnostic[] {
synchronizeHostData();
const targetSourceFile = getValidSourceFile(fileName);
// Only perform the action per file regardless of '-out' flag as LanguageServiceHost is expected to call this function per file.
// Therefore only get diagnostics for given file.
const semanticDiagnostics = program.getSemanticDiagnostics(targetSourceFile, cancellationToken);
if (!program.getCompilerOptions().declaration) {
return semanticDiagnostics;
}
// If '-d' is enabled, check for emitter error. One example of emitter error is export class implements non-export interface
const declarationDiagnostics = program.getDeclarationDiagnostics(targetSourceFile, cancellationToken);
return concatenate(semanticDiagnostics, declarationDiagnostics);
}
function getCompilerOptionsDiagnostics() {
synchronizeHostData();
return program.getOptionsDiagnostics(cancellationToken).concat(
program.getGlobalDiagnostics(cancellationToken));
}
/**
* Get the name to be display in completion from a given symbol.
*
* @return undefined if the name is of external module otherwise a name with striped of any quote
*/
function getCompletionEntryDisplayNameForSymbol(symbol: Symbol, target: ScriptTarget, performCharacterChecks: boolean, location: Node): string {
const displayName: string = getDeclaredName(program.getTypeChecker(), symbol, location);
if (displayName) {
const firstCharCode = displayName.charCodeAt(0);
// First check of the displayName is not external module; if it is an external module, it is not valid entry
if ((symbol.flags & SymbolFlags.Namespace) && (firstCharCode === CharacterCodes.singleQuote || firstCharCode === CharacterCodes.doubleQuote)) {
// If the symbol is external module, don't show it in the completion list
// (i.e declare module "http" { const x; } | // <= request completion here, "http" should not be there)
return undefined;
}
}
return getCompletionEntryDisplayName(displayName, target, performCharacterChecks);
}
/**
* Get a displayName from a given for completion list, performing any necessary quotes stripping
* and checking whether the name is valid identifier name.
*/
function getCompletionEntryDisplayName(name: string, target: ScriptTarget, performCharacterChecks: boolean): string {
if (!name) {
return undefined;
}
name = stripQuotes(name);
if (!name) {
return undefined;
}
// If the user entered name for the symbol was quoted, removing the quotes is not enough, as the name could be an
// invalid identifier name. We need to check if whatever was inside the quotes is actually a valid identifier name.
// e.g "b a" is valid quoted name but when we strip off the quotes, it is invalid.
// We, thus, need to check if whatever was inside the quotes is actually a valid identifier name.
if (performCharacterChecks) {
if (!isIdentifier(name, target)) {
return undefined;
}
}
return name;
}
function getCompletionData(fileName: string, position: number) {
const typeChecker = program.getTypeChecker();
const sourceFile = getValidSourceFile(fileName);
const isJavaScriptFile = isSourceFileJavaScript(sourceFile);
let isJsDocTagName = false;
let start = new Date().getTime();
const currentToken = getTokenAtPosition(sourceFile, position);
log("getCompletionData: Get current token: " + (new Date().getTime() - start));
start = new Date().getTime();
// Completion not allowed inside comments, bail out if this is the case
const insideComment = isInsideComment(sourceFile, currentToken, position);
log("getCompletionData: Is inside comment: " + (new Date().getTime() - start));
if (insideComment) {
// The current position is next to the '@' sign, when no tag name being provided yet.
// Provide a full list of tag names
if (hasDocComment(sourceFile, position) && sourceFile.text.charCodeAt(position - 1) === CharacterCodes.at) {
isJsDocTagName = true;
}
// Completion should work inside certain JsDoc tags. For example:
// /** @type {number | string} */
// Completion should work in the brackets
let insideJsDocTagExpression = false;
const tag = getJsDocTagAtPosition(sourceFile, position);
if (tag) {
if (tag.tagName.pos <= position && position <= tag.tagName.end) {
isJsDocTagName = true;
}
switch (tag.kind) {
case SyntaxKind.JSDocTypeTag:
case SyntaxKind.JSDocParameterTag:
case SyntaxKind.JSDocReturnTag:
const tagWithExpression = <JSDocTypeTag | JSDocParameterTag | JSDocReturnTag>tag;
if (tagWithExpression.typeExpression) {
insideJsDocTagExpression = tagWithExpression.typeExpression.pos < position && position < tagWithExpression.typeExpression.end;
}
break;
}
}
if (isJsDocTagName) {
return { symbols: undefined, isMemberCompletion: false, isNewIdentifierLocation: false, location: undefined, isRightOfDot: false, isJsDocTagName };
}
if (!insideJsDocTagExpression) {
// Proceed if the current position is in jsDoc tag expression; otherwise it is a normal
// comment or the plain text part of a jsDoc comment, so no completion should be available
log("Returning an empty list because completion was inside a regular comment or plain text part of a JsDoc comment.");
return undefined;
}
}
start = new Date().getTime();
const previousToken = findPrecedingToken(position, sourceFile);
log("getCompletionData: Get previous token 1: " + (new Date().getTime() - start));
// The decision to provide completion depends on the contextToken, which is determined through the previousToken.
// Note: 'previousToken' (and thus 'contextToken') can be undefined if we are the beginning of the file
let contextToken = previousToken;
// Check if the caret is at the end of an identifier; this is a partial identifier that we want to complete: e.g. a.toS|
// Skip this partial identifier and adjust the contextToken to the token that precedes it.
if (contextToken && position <= contextToken.end && isWord(contextToken.kind)) {
const start = new Date().getTime();
contextToken = findPrecedingToken(contextToken.getFullStart(), sourceFile);
log("getCompletionData: Get previous token 2: " + (new Date().getTime() - start));
}
// Find the node where completion is requested on.
// Also determine whether we are trying to complete with members of that node
// or attributes of a JSX tag.
let node = currentToken;
let isRightOfDot = false;
let isRightOfOpenTag = false;
let isStartingCloseTag = false;
let location = getTouchingPropertyName(sourceFile, position);
if (contextToken) {
// Bail out if this is a known invalid completion location
if (isCompletionListBlocker(contextToken)) {
log("Returning an empty list because completion was requested in an invalid position.");
return undefined;
}
const { parent, kind } = contextToken;
if (kind === SyntaxKind.DotToken) {
if (parent.kind === SyntaxKind.PropertyAccessExpression) {
node = (<PropertyAccessExpression>contextToken.parent).expression;
isRightOfDot = true;
}
else if (parent.kind === SyntaxKind.QualifiedName) {
node = (<QualifiedName>contextToken.parent).left;
isRightOfDot = true;
}
else {
// There is nothing that precedes the dot, so this likely just a stray character
// or leading into a '...' token. Just bail out instead.
return undefined;
}
}
else if (sourceFile.languageVariant === LanguageVariant.JSX) {
if (kind === SyntaxKind.LessThanToken) {
isRightOfOpenTag = true;
location = contextToken;
}
else if (kind === SyntaxKind.SlashToken && contextToken.parent.kind === SyntaxKind.JsxClosingElement) {
isStartingCloseTag = true;
location = contextToken;
}
}
}
const semanticStart = new Date().getTime();
let isMemberCompletion: boolean;
let isNewIdentifierLocation: boolean;
let symbols: Symbol[] = [];
if (isRightOfDot) {
getTypeScriptMemberSymbols();
}
else if (isRightOfOpenTag) {
const tagSymbols = typeChecker.getJsxIntrinsicTagNames();
if (tryGetGlobalSymbols()) {
symbols = tagSymbols.concat(symbols.filter(s => !!(s.flags & (SymbolFlags.Value | SymbolFlags.Alias))));
}
else {
symbols = tagSymbols;
}
isMemberCompletion = true;
isNewIdentifierLocation = false;
}
else if (isStartingCloseTag) {
const tagName = (<JsxElement>contextToken.parent.parent).openingElement.tagName;
const tagSymbol = typeChecker.getSymbolAtLocation(tagName);
if (!typeChecker.isUnknownSymbol(tagSymbol)) {
symbols = [tagSymbol];
}
isMemberCompletion = true;
isNewIdentifierLocation = false;
}
else {
// For JavaScript or TypeScript, if we're not after a dot, then just try to get the
// global symbols in scope. These results should be valid for either language as
// the set of symbols that can be referenced from this location.
if (!tryGetGlobalSymbols()) {
return undefined;
}
}
log("getCompletionData: Semantic work: " + (new Date().getTime() - semanticStart));
return { symbols, isMemberCompletion, isNewIdentifierLocation, location, isRightOfDot: (isRightOfDot || isRightOfOpenTag), isJsDocTagName };
function getTypeScriptMemberSymbols(): void {
// Right of dot member completion list
isMemberCompletion = true;
isNewIdentifierLocation = false;
if (node.kind === SyntaxKind.Identifier || node.kind === SyntaxKind.QualifiedName || node.kind === SyntaxKind.PropertyAccessExpression) {
let symbol = typeChecker.getSymbolAtLocation(node);
// This is an alias, follow what it aliases
if (symbol && symbol.flags & SymbolFlags.Alias) {
symbol = typeChecker.getAliasedSymbol(symbol);
}
if (symbol && symbol.flags & SymbolFlags.HasExports) {
// Extract module or enum members
const exportedSymbols = typeChecker.getExportsOfModule(symbol);
forEach(exportedSymbols, symbol => {
if (typeChecker.isValidPropertyAccess(<PropertyAccessExpression>(node.parent), symbol.name)) {
symbols.push(symbol);
}
});
}
}
const type = typeChecker.getTypeAtLocation(node);
addTypeProperties(type);
}
function addTypeProperties(type: Type) {
if (type) {
// Filter private properties
for (const symbol of type.getApparentProperties()) {
if (typeChecker.isValidPropertyAccess(<PropertyAccessExpression>(node.parent), symbol.name)) {
symbols.push(symbol);
}
}
if (isJavaScriptFile && type.flags & TypeFlags.Union) {
// In javascript files, for union types, we don't just get the members that
// the individual types have in common, we also include all the members that
// each individual type has. This is because we're going to add all identifiers
// anyways. So we might as well elevate the members that were at least part
// of the individual types to a higher status since we know what they are.
const unionType = <UnionType>type;
for (const elementType of unionType.types) {
addTypeProperties(elementType);
}
}
}
}
function tryGetGlobalSymbols(): boolean {
let objectLikeContainer: ObjectLiteralExpression | BindingPattern;
let namedImportsOrExports: NamedImportsOrExports;
let jsxContainer: JsxOpeningLikeElement;
if (objectLikeContainer = tryGetObjectLikeCompletionContainer(contextToken)) {
return tryGetObjectLikeCompletionSymbols(objectLikeContainer);
}
if (namedImportsOrExports = tryGetNamedImportsOrExportsForCompletion(contextToken)) {
// cursor is in an import clause
// try to show exported member for imported module
return tryGetImportOrExportClauseCompletionSymbols(namedImportsOrExports);
}
if (jsxContainer = tryGetContainingJsxElement(contextToken)) {
let attrsType: Type;
if ((jsxContainer.kind === SyntaxKind.JsxSelfClosingElement) || (jsxContainer.kind === SyntaxKind.JsxOpeningElement)) {
// Cursor is inside a JSX self-closing element or opening element
attrsType = typeChecker.getJsxElementAttributesType(<JsxOpeningLikeElement>jsxContainer);
if (attrsType) {
symbols = filterJsxAttributes(typeChecker.getPropertiesOfType(attrsType), (<JsxOpeningLikeElement>jsxContainer).attributes);
isMemberCompletion = true;
isNewIdentifierLocation = false;
return true;
}
}
}
// Get all entities in the current scope.
isMemberCompletion = false;
isNewIdentifierLocation = isNewIdentifierDefinitionLocation(contextToken);
if (previousToken !== contextToken) {
Debug.assert(!!previousToken, "Expected 'contextToken' to be defined when different from 'previousToken'.");
}
// We need to find the node that will give us an appropriate scope to begin
// aggregating completion candidates. This is achieved in 'getScopeNode'
// by finding the first node that encompasses a position, accounting for whether a node
// is "complete" to decide whether a position belongs to the node.
//
// However, at the end of an identifier, we are interested in the scope of the identifier
// itself, but fall outside of the identifier. For instance:
//
// xyz => x$
//
// the cursor is outside of both the 'x' and the arrow function 'xyz => x',
// so 'xyz' is not returned in our results.
//
// We define 'adjustedPosition' so that we may appropriately account for
// being at the end of an identifier. The intention is that if requesting completion
// at the end of an identifier, it should be effectively equivalent to requesting completion
// anywhere inside/at the beginning of the identifier. So in the previous case, the
// 'adjustedPosition' will work as if requesting completion in the following:
//
// xyz => $x
//
// If previousToken !== contextToken, then
// - 'contextToken' was adjusted to the token prior to 'previousToken'
// because we were at the end of an identifier.
// - 'previousToken' is defined.
const adjustedPosition = previousToken !== contextToken ?
previousToken.getStart() :
position;
const scopeNode = getScopeNode(contextToken, adjustedPosition, sourceFile) || sourceFile;
/// TODO filter meaning based on the current context
const symbolMeanings = SymbolFlags.Type | SymbolFlags.Value | SymbolFlags.Namespace | SymbolFlags.Alias;
symbols = typeChecker.getSymbolsInScope(scopeNode, symbolMeanings);
return true;
}
/**
* Finds the first node that "embraces" the position, so that one may
* accurately aggregate locals from the closest containing scope.
*/
function getScopeNode(initialToken: Node, position: number, sourceFile: SourceFile) {
let scope = initialToken;
while (scope && !positionBelongsToNode(scope, position, sourceFile)) {
scope = scope.parent;
}
return scope;
}
function isCompletionListBlocker(contextToken: Node): boolean {
const start = new Date().getTime();
const result = isInStringOrRegularExpressionOrTemplateLiteral(contextToken) ||
isSolelyIdentifierDefinitionLocation(contextToken) ||
isDotOfNumericLiteral(contextToken) ||
isInJsxText(contextToken);
log("getCompletionsAtPosition: isCompletionListBlocker: " + (new Date().getTime() - start));
return result;
}
function isInJsxText(contextToken: Node): boolean {
if (contextToken.kind === SyntaxKind.JsxText) {
return true;
}
if (contextToken.kind === SyntaxKind.GreaterThanToken && contextToken.parent) {
if (contextToken.parent.kind === SyntaxKind.JsxOpeningElement) {
return true;
}
if (contextToken.parent.kind === SyntaxKind.JsxClosingElement || contextToken.parent.kind === SyntaxKind.JsxSelfClosingElement) {
return contextToken.parent.parent && contextToken.parent.parent.kind === SyntaxKind.JsxElement;
}
}
return false;
}
function isNewIdentifierDefinitionLocation(previousToken: Node): boolean {
if (previousToken) {
const containingNodeKind = previousToken.parent.kind;
switch (previousToken.kind) {
case SyntaxKind.CommaToken:
return containingNodeKind === SyntaxKind.CallExpression // func( a, |
|| containingNodeKind === SyntaxKind.Constructor // constructor( a, | /* public, protected, private keywords are allowed here, so show completion */
|| containingNodeKind === SyntaxKind.NewExpression // new C(a, |
|| containingNodeKind === SyntaxKind.ArrayLiteralExpression // [a, |
|| containingNodeKind === SyntaxKind.BinaryExpression // const x = (a, |
|| containingNodeKind === SyntaxKind.FunctionType; // var x: (s: string, list|
case SyntaxKind.OpenParenToken:
return containingNodeKind === SyntaxKind.CallExpression // func( |
|| containingNodeKind === SyntaxKind.Constructor // constructor( |
|| containingNodeKind === SyntaxKind.NewExpression // new C(a|
|| containingNodeKind === SyntaxKind.ParenthesizedExpression // const x = (a|
|| containingNodeKind === SyntaxKind.ParenthesizedType; // function F(pred: (a| /* this can become an arrow function, where 'a' is the argument */
case SyntaxKind.OpenBracketToken:
return containingNodeKind === SyntaxKind.ArrayLiteralExpression // [ |
|| containingNodeKind === SyntaxKind.IndexSignature // [ | : string ]
|| containingNodeKind === SyntaxKind.ComputedPropertyName; // [ | /* this can become an index signature */
case SyntaxKind.ModuleKeyword: // module |
case SyntaxKind.NamespaceKeyword: // namespace |
return true;
case SyntaxKind.DotToken:
return containingNodeKind === SyntaxKind.ModuleDeclaration; // module A.|
case SyntaxKind.OpenBraceToken:
return containingNodeKind === SyntaxKind.ClassDeclaration; // class A{ |
case SyntaxKind.EqualsToken:
return containingNodeKind === SyntaxKind.VariableDeclaration // const x = a|
|| containingNodeKind === SyntaxKind.BinaryExpression; // x = a|
case SyntaxKind.TemplateHead:
return containingNodeKind === SyntaxKind.TemplateExpression; // `aa ${|
case SyntaxKind.TemplateMiddle:
return containingNodeKind === SyntaxKind.TemplateSpan; // `aa ${10} dd ${|
case SyntaxKind.PublicKeyword:
case SyntaxKind.PrivateKeyword:
case SyntaxKind.ProtectedKeyword:
return containingNodeKind === SyntaxKind.PropertyDeclaration; // class A{ public |
}
// Previous token may have been a keyword that was converted to an identifier.
switch (previousToken.getText()) {
case "public":
case "protected":
case "private":
return true;
}
}
return false;
}
function isInStringOrRegularExpressionOrTemplateLiteral(contextToken: Node): boolean {
if (contextToken.kind === SyntaxKind.StringLiteral
|| contextToken.kind === SyntaxKind.StringLiteralType
|| contextToken.kind === SyntaxKind.RegularExpressionLiteral
|| isTemplateLiteralKind(contextToken.kind)) {
const start = contextToken.getStart();
const end = contextToken.getEnd();
// To be "in" one of these literals, the position has to be:
// 1. entirely within the token text.
// 2. at the end position of an unterminated token.
// 3. at the end of a regular expression (due to trailing flags like '/foo/g').
if (start < position && position < end) {
return true;
}
if (position === end) {
return !!(<LiteralExpression>contextToken).isUnterminated
|| contextToken.kind === SyntaxKind.RegularExpressionLiteral;
}
}
return false;
}
/**
* Aggregates relevant symbols for completion in object literals and object binding patterns.
* Relevant symbols are stored in the captured 'symbols' variable.
*
* @returns true if 'symbols' was successfully populated; false otherwise.
*/
function tryGetObjectLikeCompletionSymbols(objectLikeContainer: ObjectLiteralExpression | BindingPattern): boolean {
// We're looking up possible property names from contextual/inferred/declared type.
isMemberCompletion = true;
let typeForObject: Type;
let existingMembers: Declaration[];
if (objectLikeContainer.kind === SyntaxKind.ObjectLiteralExpression) {
// We are completing on contextual types, but may also include properties
// other than those within the declared type.
isNewIdentifierLocation = true;
typeForObject = typeChecker.getContextualType(<ObjectLiteralExpression>objectLikeContainer);
existingMembers = (<ObjectLiteralExpression>objectLikeContainer).properties;
}
else if (objectLikeContainer.kind === SyntaxKind.ObjectBindingPattern) {
// We are *only* completing on properties from the type being destructured.
isNewIdentifierLocation = false;
const rootDeclaration = getRootDeclaration(objectLikeContainer.parent);
if (isVariableLike(rootDeclaration)) {
// We don't want to complete using the type acquired by the shape
// of the binding pattern; we are only interested in types acquired
// through type declaration or inference.
// Also proceed if rootDeclaration is parameter and if its containing function expression\arrow function is contextually typed -
// type of parameter will flow in from the contextual type of the function
let canGetType = !!(rootDeclaration.initializer || rootDeclaration.type);
if (!canGetType && rootDeclaration.kind === SyntaxKind.Parameter) {
if (isExpression(rootDeclaration.parent)) {
canGetType = !!typeChecker.getContextualType(<Expression>rootDeclaration.parent);
}
else if (rootDeclaration.parent.kind === SyntaxKind.MethodDeclaration || rootDeclaration.parent.kind === SyntaxKind.SetAccessor) {
canGetType = isExpression(rootDeclaration.parent.parent) && !!typeChecker.getContextualType(<Expression>rootDeclaration.parent.parent);
}
}
if (canGetType) {
typeForObject = typeChecker.getTypeAtLocation(objectLikeContainer);
existingMembers = (<BindingPattern>objectLikeContainer).elements;
}
}
else {
Debug.fail("Root declaration is not variable-like.");
}
}
else {
Debug.fail("Expected object literal or binding pattern, got " + objectLikeContainer.kind);
}
if (!typeForObject) {
return false;
}
const typeMembers = typeChecker.getPropertiesOfType(typeForObject);
if (typeMembers && typeMembers.length > 0) {
// Add filtered items to the completion list
symbols = filterObjectMembersList(typeMembers, existingMembers);
}
return true;
}
/**
* Aggregates relevant symbols for completion in import clauses and export clauses
* whose declarations have a module specifier; for instance, symbols will be aggregated for
*
* import { | } from "moduleName";
* export { a as foo, | } from "moduleName";
*
* but not for
*
* export { | };
*
* Relevant symbols are stored in the captured 'symbols' variable.
*
* @returns true if 'symbols' was successfully populated; false otherwise.
*/
function tryGetImportOrExportClauseCompletionSymbols(namedImportsOrExports: NamedImportsOrExports): boolean {
const declarationKind = namedImportsOrExports.kind === SyntaxKind.NamedImports ?
SyntaxKind.ImportDeclaration :
SyntaxKind.ExportDeclaration;
const importOrExportDeclaration = <ImportDeclaration | ExportDeclaration>getAncestor(namedImportsOrExports, declarationKind);
const moduleSpecifier = importOrExportDeclaration.moduleSpecifier;
if (!moduleSpecifier) {
return false;
}
isMemberCompletion = true;
isNewIdentifierLocation = false;
let exports: Symbol[];
const moduleSpecifierSymbol = typeChecker.getSymbolAtLocation(importOrExportDeclaration.moduleSpecifier);
if (moduleSpecifierSymbol) {
exports = typeChecker.getExportsOfModule(moduleSpecifierSymbol);
}
symbols = exports ? filterNamedImportOrExportCompletionItems(exports, namedImportsOrExports.elements) : emptyArray;
return true;
}
/**
* Returns the immediate owning object literal or binding pattern of a context token,
* on the condition that one exists and that the context implies completion should be given.
*/
function tryGetObjectLikeCompletionContainer(contextToken: Node): ObjectLiteralExpression | BindingPattern {
if (contextToken) {
switch (contextToken.kind) {
case SyntaxKind.OpenBraceToken: // const x = { |
case SyntaxKind.CommaToken: // const x = { a: 0, |
const parent = contextToken.parent;
if (parent && (parent.kind === SyntaxKind.ObjectLiteralExpression || parent.kind === SyntaxKind.ObjectBindingPattern)) {
return <ObjectLiteralExpression | BindingPattern>parent;
}
break;
}
}
return undefined;
}
/**
* Returns the containing list of named imports or exports of a context token,
* on the condition that one exists and that the context implies completion should be given.
*/
function tryGetNamedImportsOrExportsForCompletion(contextToken: Node): NamedImportsOrExports {
if (contextToken) {
switch (contextToken.kind) {
case SyntaxKind.OpenBraceToken: // import { |
case SyntaxKind.CommaToken: // import { a as 0, |
switch (contextToken.parent.kind) {
case SyntaxKind.NamedImports:
case SyntaxKind.NamedExports:
return <NamedImportsOrExports>contextToken.parent;
}
}
}
return undefined;
}
function tryGetContainingJsxElement(contextToken: Node): JsxOpeningLikeElement {
if (contextToken) {
const parent = contextToken.parent;
switch (contextToken.kind) {
case SyntaxKind.LessThanSlashToken:
case SyntaxKind.SlashToken:
case SyntaxKind.Identifier:
case SyntaxKind.JsxAttribute:
case SyntaxKind.JsxSpreadAttribute:
if (parent && (parent.kind === SyntaxKind.JsxSelfClosingElement || parent.kind === SyntaxKind.JsxOpeningElement)) {
return <JsxOpeningLikeElement>parent;
}
else if (parent.kind === SyntaxKind.JsxAttribute) {
return <JsxOpeningLikeElement>parent.parent;
}
break;
// The context token is the closing } or " of an attribute, which means
// its parent is a JsxExpression, whose parent is a JsxAttribute,
// whose parent is a JsxOpeningLikeElement
case SyntaxKind.StringLiteral:
if (parent && ((parent.kind === SyntaxKind.JsxAttribute) || (parent.kind === SyntaxKind.JsxSpreadAttribute))) {
return <JsxOpeningLikeElement>parent.parent;
}
break;
case SyntaxKind.CloseBraceToken:
if (parent &&
parent.kind === SyntaxKind.JsxExpression &&
parent.parent &&
(parent.parent.kind === SyntaxKind.JsxAttribute)) {
return <JsxOpeningLikeElement>parent.parent.parent;
}
if (parent && parent.kind === SyntaxKind.JsxSpreadAttribute) {
return <JsxOpeningLikeElement>parent.parent;
}
break;
}
}
return undefined;
}
function isFunction(kind: SyntaxKind): boolean {
switch (kind) {
case SyntaxKind.FunctionExpression:
case SyntaxKind.ArrowFunction:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.CallSignature:
case SyntaxKind.ConstructSignature:
case SyntaxKind.IndexSignature:
return true;
}
return false;
}
/**
* @returns true if we are certain that the currently edited location must define a new location; false otherwise.
*/
function isSolelyIdentifierDefinitionLocation(contextToken: Node): boolean {
const containingNodeKind = contextToken.parent.kind;
switch (contextToken.kind) {
case SyntaxKind.CommaToken:
return containingNodeKind === SyntaxKind.VariableDeclaration ||
containingNodeKind === SyntaxKind.VariableDeclarationList ||
containingNodeKind === SyntaxKind.VariableStatement ||
containingNodeKind === SyntaxKind.EnumDeclaration || // enum a { foo, |
isFunction(containingNodeKind) ||
containingNodeKind === SyntaxKind.ClassDeclaration || // class A<T, |
containingNodeKind === SyntaxKind.ClassExpression || // var C = class D<T, |
containingNodeKind === SyntaxKind.InterfaceDeclaration || // interface A<T, |
containingNodeKind === SyntaxKind.ArrayBindingPattern || // var [x, y|
containingNodeKind === SyntaxKind.TypeAliasDeclaration; // type Map, K, |
case SyntaxKind.DotToken:
return containingNodeKind === SyntaxKind.ArrayBindingPattern; // var [.|
case SyntaxKind.ColonToken:
return containingNodeKind === SyntaxKind.BindingElement; // var {x :html|
case SyntaxKind.OpenBracketToken:
return containingNodeKind === SyntaxKind.ArrayBindingPattern; // var [x|
case SyntaxKind.OpenParenToken:
return containingNodeKind === SyntaxKind.CatchClause ||
isFunction(containingNodeKind);
case SyntaxKind.OpenBraceToken:
return containingNodeKind === SyntaxKind.EnumDeclaration || // enum a { |
containingNodeKind === SyntaxKind.InterfaceDeclaration || // interface a { |
containingNodeKind === SyntaxKind.TypeLiteral; // const x : { |
case SyntaxKind.SemicolonToken:
return containingNodeKind === SyntaxKind.PropertySignature &&
contextToken.parent && contextToken.parent.parent &&
(contextToken.parent.parent.kind === SyntaxKind.InterfaceDeclaration || // interface a { f; |
contextToken.parent.parent.kind === SyntaxKind.TypeLiteral); // const x : { a; |
case SyntaxKind.LessThanToken:
return containingNodeKind === SyntaxKind.ClassDeclaration || // class A< |
containingNodeKind === SyntaxKind.ClassExpression || // var C = class D< |
containingNodeKind === SyntaxKind.InterfaceDeclaration || // interface A< |
containingNodeKind === SyntaxKind.TypeAliasDeclaration || // type List< |
isFunction(containingNodeKind);
case SyntaxKind.StaticKeyword:
return containingNodeKind === SyntaxKind.PropertyDeclaration;
case SyntaxKind.DotDotDotToken:
return containingNodeKind === SyntaxKind.Parameter ||
(contextToken.parent && contextToken.parent.parent &&
contextToken.parent.parent.kind === SyntaxKind.ArrayBindingPattern); // var [...z|
case SyntaxKind.PublicKeyword:
case SyntaxKind.PrivateKeyword:
case SyntaxKind.ProtectedKeyword:
return containingNodeKind === SyntaxKind.Parameter;
case SyntaxKind.AsKeyword:
return containingNodeKind === SyntaxKind.ImportSpecifier ||
containingNodeKind === SyntaxKind.ExportSpecifier ||
containingNodeKind === SyntaxKind.NamespaceImport;
case SyntaxKind.ClassKeyword:
case SyntaxKind.EnumKeyword:
case SyntaxKind.InterfaceKeyword:
case SyntaxKind.FunctionKeyword:
case SyntaxKind.VarKeyword:
case SyntaxKind.GetKeyword:
case SyntaxKind.SetKeyword:
case SyntaxKind.ImportKeyword:
case SyntaxKind.LetKeyword:
case SyntaxKind.ConstKeyword:
case SyntaxKind.YieldKeyword:
case SyntaxKind.TypeKeyword: // type htm|
return true;
}
// Previous token may have been a keyword that was converted to an identifier.
switch (contextToken.getText()) {
case "abstract":
case "async":
case "class":
case "const":
case "declare":
case "enum":
case "function":
case "interface":
case "let":
case "private":
case "protected":
case "public":
case "static":
case "var":
case "yield":
return true;
}
return false;
}
function isDotOfNumericLiteral(contextToken: Node): boolean {
if (contextToken.kind === SyntaxKind.NumericLiteral) {
const text = contextToken.getFullText();
return text.charAt(text.length - 1) === ".";
}
return false;
}
/**
* Filters out completion suggestions for named imports or exports.
*
* @param exportsOfModule The list of symbols which a module exposes.
* @param namedImportsOrExports The list of existing import/export specifiers in the import/export clause.
*
* @returns Symbols to be suggested at an import/export clause, barring those whose named imports/exports
* do not occur at the current position and have not otherwise been typed.
*/
function filterNamedImportOrExportCompletionItems(exportsOfModule: Symbol[], namedImportsOrExports: ImportOrExportSpecifier[]): Symbol[] {
const existingImportsOrExports: Map<boolean> = {};
for (const element of namedImportsOrExports) {
// If this is the current item we are editing right now, do not filter it out
if (element.getStart() <= position && position <= element.getEnd()) {
continue;
}
const name = element.propertyName || element.name;
existingImportsOrExports[name.text] = true;
}
if (isEmpty(existingImportsOrExports)) {
return filter(exportsOfModule, e => e.name !== "default");
}
return filter(exportsOfModule, e => e.name !== "default" && !lookUp(existingImportsOrExports, e.name));
}
/**
* Filters out completion suggestions for named imports or exports.
*
* @returns Symbols to be suggested in an object binding pattern or object literal expression, barring those whose declarations
* do not occur at the current position and have not otherwise been typed.
*/
function filterObjectMembersList(contextualMemberSymbols: Symbol[], existingMembers: Declaration[]): Symbol[] {
if (!existingMembers || existingMembers.length === 0) {
return contextualMemberSymbols;
}
const existingMemberNames: Map<boolean> = {};
for (const m of existingMembers) {
// Ignore omitted expressions for missing members
if (m.kind !== SyntaxKind.PropertyAssignment &&
m.kind !== SyntaxKind.ShorthandPropertyAssignment &&
m.kind !== SyntaxKind.BindingElement &&
m.kind !== SyntaxKind.MethodDeclaration) {
continue;
}
// If this is the current item we are editing right now, do not filter it out
if (m.getStart() <= position && position <= m.getEnd()) {
continue;
}
let existingName: string;
if (m.kind === SyntaxKind.BindingElement && (<BindingElement>m).propertyName) {
// include only identifiers in completion list
if ((<BindingElement>m).propertyName.kind === SyntaxKind.Identifier) {
existingName = (<Identifier>(<BindingElement>m).propertyName).text;
}
}
else {
// TODO(jfreeman): Account for computed property name
// NOTE: if one only performs this step when m.name is an identifier,
// things like '__proto__' are not filtered out.
existingName = (<Identifier>m.name).text;
}
existingMemberNames[existingName] = true;
}
return filter(contextualMemberSymbols, m => !lookUp(existingMemberNames, m.name));
}
/**
* Filters out completion suggestions from 'symbols' according to existing JSX attributes.
*
* @returns Symbols to be suggested in a JSX element, barring those whose attributes
* do not occur at the current position and have not otherwise been typed.
*/
function filterJsxAttributes(symbols: Symbol[], attributes: NodeArray<JsxAttribute | JsxSpreadAttribute>): Symbol[] {
const seenNames: Map<boolean> = {};
for (const attr of attributes) {
// If this is the current item we are editing right now, do not filter it out
if (attr.getStart() <= position && position <= attr.getEnd()) {
continue;
}
if (attr.kind === SyntaxKind.JsxAttribute) {
seenNames[(<JsxAttribute>attr).name.text] = true;
}
}
return filter(symbols, a => !lookUp(seenNames, a.name));
}
}
function getCompletionsAtPosition(fileName: string, position: number): CompletionInfo {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
if (isInString(sourceFile, position)) {
return getStringLiteralCompletionEntries(sourceFile, position);
}
const completionData = getCompletionData(fileName, position);
if (!completionData) {
return undefined;
}
const { symbols, isMemberCompletion, isNewIdentifierLocation, location, isJsDocTagName } = completionData;
if (isJsDocTagName) {
// If the current position is a jsDoc tag name, only tag names should be provided for completion
return { isMemberCompletion: false, isNewIdentifierLocation: false, entries: getAllJsDocCompletionEntries() };
}
const entries: CompletionEntry[] = [];
if (isSourceFileJavaScript(sourceFile)) {
const uniqueNames = getCompletionEntriesFromSymbols(symbols, entries, location, /*performCharacterChecks*/ false);
addRange(entries, getJavaScriptCompletionEntries(sourceFile, location.pos, uniqueNames));
}
else {
if (!symbols || symbols.length === 0) {
if (sourceFile.languageVariant === LanguageVariant.JSX &&
location.parent && location.parent.kind === SyntaxKind.JsxClosingElement) {
// In the TypeScript JSX element, if such element is not defined. When users query for completion at closing tag,
// instead of simply giving unknown value, the completion will return the tag-name of an associated opening-element.
// For example:
// var x = <div> </ /*1*/> completion list at "1" will contain "div" with type any
const tagName = (<JsxElement>location.parent.parent).openingElement.tagName;
entries.push({
name: (<Identifier>tagName).text,
kind: undefined,
kindModifiers: undefined,
sortText: "0",
});
}
else {
return undefined;
}
}
getCompletionEntriesFromSymbols(symbols, entries, location, /*performCharacterChecks*/ true);
}
// Add keywords if this is not a member completion list
if (!isMemberCompletion && !isJsDocTagName) {
addRange(entries, keywordCompletions);
}
return { isMemberCompletion, isNewIdentifierLocation, entries };
function getJavaScriptCompletionEntries(sourceFile: SourceFile, position: number, uniqueNames: Map<string>): CompletionEntry[] {
const entries: CompletionEntry[] = [];
const target = program.getCompilerOptions().target;
const nameTable = getNameTable(sourceFile);
for (const name in nameTable) {
// Skip identifiers produced only from the current location
if (nameTable[name] === position) {
continue;
}
if (!uniqueNames[name]) {
uniqueNames[name] = name;
const displayName = getCompletionEntryDisplayName(unescapeIdentifier(name), target, /*performCharacterChecks*/ true);
if (displayName) {
const entry = {
name: displayName,
kind: ScriptElementKind.warning,
kindModifiers: "",
sortText: "1"
};
entries.push(entry);
}
}
}
return entries;
}
function getAllJsDocCompletionEntries(): CompletionEntry[] {
return jsDocCompletionEntries || (jsDocCompletionEntries = ts.map(jsDocTagNames, tagName => {
return {
name: tagName,
kind: ScriptElementKind.keyword,
kindModifiers: "",
sortText: "0",
};
}));
}
function createCompletionEntry(symbol: Symbol, location: Node, performCharacterChecks: boolean): CompletionEntry {
// Try to get a valid display name for this symbol, if we could not find one, then ignore it.
// We would like to only show things that can be added after a dot, so for instance numeric properties can
// not be accessed with a dot (a.1 <- invalid)
const displayName = getCompletionEntryDisplayNameForSymbol(symbol, program.getCompilerOptions().target, performCharacterChecks, location);
if (!displayName) {
return undefined;
}
// TODO(drosen): Right now we just permit *all* semantic meanings when calling
// 'getSymbolKind' which is permissible given that it is backwards compatible; but
// really we should consider passing the meaning for the node so that we don't report
// that a suggestion for a value is an interface. We COULD also just do what
// 'getSymbolModifiers' does, which is to use the first declaration.
// Use a 'sortText' of 0' so that all symbol completion entries come before any other
// entries (like JavaScript identifier entries).
return {
name: displayName,
kind: getSymbolKind(symbol, location),
kindModifiers: getSymbolModifiers(symbol),
sortText: "0",
};
}
function getCompletionEntriesFromSymbols(symbols: Symbol[], entries: CompletionEntry[], location: Node, performCharacterChecks: boolean): Map<string> {
const start = new Date().getTime();
const uniqueNames: Map<string> = {};
if (symbols) {
for (const symbol of symbols) {
const entry = createCompletionEntry(symbol, location, performCharacterChecks);
if (entry) {
const id = escapeIdentifier(entry.name);
if (!lookUp(uniqueNames, id)) {
entries.push(entry);
uniqueNames[id] = id;
}
}
}
}
log("getCompletionsAtPosition: getCompletionEntriesFromSymbols: " + (new Date().getTime() - start));
return uniqueNames;
}
function getStringLiteralCompletionEntries(sourceFile: SourceFile, position: number) {
const node = findPrecedingToken(position, sourceFile);
if (!node || node.kind !== SyntaxKind.StringLiteral) {
return undefined;
}
const argumentInfo = SignatureHelp.getContainingArgumentInfo(node, position, sourceFile);
if (argumentInfo) {
// Get string literal completions from specialized signatures of the target
return getStringLiteralCompletionEntriesFromCallExpression(argumentInfo);
}
else if (isElementAccessExpression(node.parent) && node.parent.argumentExpression === node) {
// Get all names of properties on the expression
return getStringLiteralCompletionEntriesFromElementAccess(node.parent);
}
else {
// Otherwise, get the completions from the contextual type if one exists
return getStringLiteralCompletionEntriesFromContextualType(<StringLiteral>node);
}
}
function getStringLiteralCompletionEntriesFromCallExpression(argumentInfo: SignatureHelp.ArgumentListInfo) {
const typeChecker = program.getTypeChecker();
const candidates: Signature[] = [];
const entries: CompletionEntry[] = [];
typeChecker.getResolvedSignature(argumentInfo.invocation, candidates);
for (const candidate of candidates) {
if (candidate.parameters.length > argumentInfo.argumentIndex) {
const parameter = candidate.parameters[argumentInfo.argumentIndex];
addStringLiteralCompletionsFromType(typeChecker.getTypeAtLocation(parameter.valueDeclaration), entries);
}
}
if (entries.length) {
return { isMemberCompletion: false, isNewIdentifierLocation: true, entries };
}
return undefined;
}
function getStringLiteralCompletionEntriesFromElementAccess(node: ElementAccessExpression) {
const typeChecker = program.getTypeChecker();
const type = typeChecker.getTypeAtLocation(node.expression);
const entries: CompletionEntry[] = [];
if (type) {
getCompletionEntriesFromSymbols(type.getApparentProperties(), entries, node, /*performCharacterChecks*/false);
if (entries.length) {
return { isMemberCompletion: true, isNewIdentifierLocation: true, entries };
}
}
return undefined;
}
function getStringLiteralCompletionEntriesFromContextualType(node: StringLiteral) {
const typeChecker = program.getTypeChecker();
const type = typeChecker.getContextualType(node);
if (type) {
const entries: CompletionEntry[] = [];
addStringLiteralCompletionsFromType(type, entries);
if (entries.length) {
return { isMemberCompletion: false, isNewIdentifierLocation: false, entries };
}
}
return undefined;
}
function addStringLiteralCompletionsFromType(type: Type, result: CompletionEntry[]): void {
if (!type) {
return;
}
if (type.flags & TypeFlags.Union) {
forEach((<UnionType>type).types, t => addStringLiteralCompletionsFromType(t, result));
}
else {
if (type.flags & TypeFlags.StringLiteral) {
result.push({
name: (<StringLiteralType>type).text,
kindModifiers: ScriptElementKindModifier.none,
kind: ScriptElementKind.variableElement,
sortText: "0"
});
}
}
}
}
function getCompletionEntryDetails(fileName: string, position: number, entryName: string): CompletionEntryDetails {
synchronizeHostData();
// Compute all the completion symbols again.
const completionData = getCompletionData(fileName, position);
if (completionData) {
const { symbols, location } = completionData;
// Find the symbol with the matching entry name.
const target = program.getCompilerOptions().target;
// We don't need to perform character checks here because we're only comparing the
// name against 'entryName' (which is known to be good), not building a new
// completion entry.
const symbol = forEach(symbols, s => getCompletionEntryDisplayNameForSymbol(s, target, /*performCharacterChecks*/ false, location) === entryName ? s : undefined);
if (symbol) {
const { displayParts, documentation, symbolKind } = getSymbolDisplayPartsDocumentationAndSymbolKind(symbol, getValidSourceFile(fileName), location, location, SemanticMeaning.All);
return {
name: entryName,
kindModifiers: getSymbolModifiers(symbol),
kind: symbolKind,
displayParts,
documentation
};
}
}
// Didn't find a symbol with this name. See if we can find a keyword instead.
const keywordCompletion = forEach(keywordCompletions, c => c.name === entryName);
if (keywordCompletion) {
return {
name: entryName,
kind: ScriptElementKind.keyword,
kindModifiers: ScriptElementKindModifier.none,
displayParts: [displayPart(entryName, SymbolDisplayPartKind.keyword)],
documentation: undefined
};
}
return undefined;
}
// TODO(drosen): use contextual SemanticMeaning.
function getSymbolKind(symbol: Symbol, location: Node): string {
const flags = symbol.getFlags();
if (flags & SymbolFlags.Class) return getDeclarationOfKind(symbol, SyntaxKind.ClassExpression) ?
ScriptElementKind.localClassElement : ScriptElementKind.classElement;
if (flags & SymbolFlags.Enum) return ScriptElementKind.enumElement;
if (flags & SymbolFlags.TypeAlias) return ScriptElementKind.typeElement;
if (flags & SymbolFlags.Interface) return ScriptElementKind.interfaceElement;
if (flags & SymbolFlags.TypeParameter) return ScriptElementKind.typeParameterElement;
const result = getSymbolKindOfConstructorPropertyMethodAccessorFunctionOrVar(symbol, flags, location);
if (result === ScriptElementKind.unknown) {
if (flags & SymbolFlags.TypeParameter) return ScriptElementKind.typeParameterElement;
if (flags & SymbolFlags.EnumMember) return ScriptElementKind.variableElement;
if (flags & SymbolFlags.Alias) return ScriptElementKind.alias;
if (flags & SymbolFlags.Module) return ScriptElementKind.moduleElement;
}
return result;
}
function getSymbolKindOfConstructorPropertyMethodAccessorFunctionOrVar(symbol: Symbol, flags: SymbolFlags, location: Node) {
const typeChecker = program.getTypeChecker();
if (typeChecker.isUndefinedSymbol(symbol)) {
return ScriptElementKind.variableElement;
}
if (typeChecker.isArgumentsSymbol(symbol)) {
return ScriptElementKind.localVariableElement;
}
if (location.kind === SyntaxKind.ThisKeyword && isExpression(location)) {
return ScriptElementKind.parameterElement;
}
if (flags & SymbolFlags.Variable) {
if (isFirstDeclarationOfSymbolParameter(symbol)) {
return ScriptElementKind.parameterElement;
}
else if (symbol.valueDeclaration && isConst(symbol.valueDeclaration)) {
return ScriptElementKind.constElement;
}
else if (forEach(symbol.declarations, isLet)) {
return ScriptElementKind.letElement;
}
return isLocalVariableOrFunction(symbol) ? ScriptElementKind.localVariableElement : ScriptElementKind.variableElement;
}
if (flags & SymbolFlags.Function) return isLocalVariableOrFunction(symbol) ? ScriptElementKind.localFunctionElement : ScriptElementKind.functionElement;
if (flags & SymbolFlags.GetAccessor) return ScriptElementKind.memberGetAccessorElement;
if (flags & SymbolFlags.SetAccessor) return ScriptElementKind.memberSetAccessorElement;
if (flags & SymbolFlags.Method) return ScriptElementKind.memberFunctionElement;
if (flags & SymbolFlags.Constructor) return ScriptElementKind.constructorImplementationElement;
if (flags & SymbolFlags.Property) {
if (flags & SymbolFlags.SyntheticProperty) {
// If union property is result of union of non method (property/accessors/variables), it is labeled as property
const unionPropertyKind = forEach(typeChecker.getRootSymbols(symbol), rootSymbol => {
const rootSymbolFlags = rootSymbol.getFlags();
if (rootSymbolFlags & (SymbolFlags.PropertyOrAccessor | SymbolFlags.Variable)) {
return ScriptElementKind.memberVariableElement;
}
Debug.assert(!!(rootSymbolFlags & SymbolFlags.Method));
});
if (!unionPropertyKind) {
// If this was union of all methods,
// make sure it has call signatures before we can label it as method
const typeOfUnionProperty = typeChecker.getTypeOfSymbolAtLocation(symbol, location);
if (typeOfUnionProperty.getCallSignatures().length) {
return ScriptElementKind.memberFunctionElement;
}
return ScriptElementKind.memberVariableElement;
}
return unionPropertyKind;
}
return ScriptElementKind.memberVariableElement;
}
return ScriptElementKind.unknown;
}
function getSymbolModifiers(symbol: Symbol): string {
return symbol && symbol.declarations && symbol.declarations.length > 0
? getNodeModifiers(symbol.declarations[0])
: ScriptElementKindModifier.none;
}
// TODO(drosen): Currently completion entry details passes the SemanticMeaning.All instead of using semanticMeaning of location
function getSymbolDisplayPartsDocumentationAndSymbolKind(symbol: Symbol, sourceFile: SourceFile, enclosingDeclaration: Node,
location: Node, semanticMeaning = getMeaningFromLocation(location)) {
const typeChecker = program.getTypeChecker();
const displayParts: SymbolDisplayPart[] = [];
let documentation: SymbolDisplayPart[];
const symbolFlags = symbol.flags;
let symbolKind = getSymbolKindOfConstructorPropertyMethodAccessorFunctionOrVar(symbol, symbolFlags, location);
let hasAddedSymbolInfo: boolean;
const isThisExpression: boolean = location.kind === SyntaxKind.ThisKeyword && isExpression(location);
let type: Type;
// Class at constructor site need to be shown as constructor apart from property,method, vars
if (symbolKind !== ScriptElementKind.unknown || symbolFlags & SymbolFlags.Class || symbolFlags & SymbolFlags.Alias) {
// If it is accessor they are allowed only if location is at name of the accessor
if (symbolKind === ScriptElementKind.memberGetAccessorElement || symbolKind === ScriptElementKind.memberSetAccessorElement) {
symbolKind = ScriptElementKind.memberVariableElement;
}
let signature: Signature;
type = isThisExpression ? typeChecker.getTypeAtLocation(location) : typeChecker.getTypeOfSymbolAtLocation(symbol, location);
if (type) {
if (location.parent && location.parent.kind === SyntaxKind.PropertyAccessExpression) {
const right = (<PropertyAccessExpression>location.parent).name;
// Either the location is on the right of a property access, or on the left and the right is missing
if (right === location || (right && right.getFullWidth() === 0)) {
location = location.parent;
}
}
// try get the call/construct signature from the type if it matches
let callExpression: CallExpression;
if (location.kind === SyntaxKind.CallExpression || location.kind === SyntaxKind.NewExpression) {
callExpression = <CallExpression>location;
}
else if (isCallExpressionTarget(location) || isNewExpressionTarget(location)) {
callExpression = <CallExpression>location.parent;
}
if (callExpression) {
const candidateSignatures: Signature[] = [];
signature = typeChecker.getResolvedSignature(callExpression, candidateSignatures);
if (!signature && candidateSignatures.length) {
// Use the first candidate:
signature = candidateSignatures[0];
}
const useConstructSignatures = callExpression.kind === SyntaxKind.NewExpression || callExpression.expression.kind === SyntaxKind.SuperKeyword;
const allSignatures = useConstructSignatures ? type.getConstructSignatures() : type.getCallSignatures();
if (!contains(allSignatures, signature.target) && !contains(allSignatures, signature)) {
// Get the first signature if there is one -- allSignatures may contain
// either the original signature or its target, so check for either
signature = allSignatures.length ? allSignatures[0] : undefined;
}
if (signature) {
if (useConstructSignatures && (symbolFlags & SymbolFlags.Class)) {
// Constructor
symbolKind = ScriptElementKind.constructorImplementationElement;
addPrefixForAnyFunctionOrVar(type.symbol, symbolKind);
}
else if (symbolFlags & SymbolFlags.Alias) {
symbolKind = ScriptElementKind.alias;
pushTypePart(symbolKind);
displayParts.push(spacePart());
if (useConstructSignatures) {
displayParts.push(keywordPart(SyntaxKind.NewKeyword));
displayParts.push(spacePart());
}
addFullSymbolName(symbol);
}
else {
addPrefixForAnyFunctionOrVar(symbol, symbolKind);
}
switch (symbolKind) {
case ScriptElementKind.memberVariableElement:
case ScriptElementKind.variableElement:
case ScriptElementKind.constElement:
case ScriptElementKind.letElement:
case ScriptElementKind.parameterElement:
case ScriptElementKind.localVariableElement:
// If it is call or construct signature of lambda's write type name
displayParts.push(punctuationPart(SyntaxKind.ColonToken));
displayParts.push(spacePart());
if (useConstructSignatures) {
displayParts.push(keywordPart(SyntaxKind.NewKeyword));
displayParts.push(spacePart());
}
if (!(type.flags & TypeFlags.Anonymous) && type.symbol) {
addRange(displayParts, symbolToDisplayParts(typeChecker, type.symbol, enclosingDeclaration, /*meaning*/ undefined, SymbolFormatFlags.WriteTypeParametersOrArguments));
}
addSignatureDisplayParts(signature, allSignatures, TypeFormatFlags.WriteArrowStyleSignature);
break;
default:
// Just signature
addSignatureDisplayParts(signature, allSignatures);
}
hasAddedSymbolInfo = true;
}
}
else if ((isNameOfFunctionDeclaration(location) && !(symbol.flags & SymbolFlags.Accessor)) || // name of function declaration
(location.kind === SyntaxKind.ConstructorKeyword && location.parent.kind === SyntaxKind.Constructor)) { // At constructor keyword of constructor declaration
// get the signature from the declaration and write it
const functionDeclaration = <FunctionLikeDeclaration>location.parent;
const allSignatures = functionDeclaration.kind === SyntaxKind.Constructor ? type.getNonNullableType().getConstructSignatures() : type.getNonNullableType().getCallSignatures();
if (!typeChecker.isImplementationOfOverload(functionDeclaration)) {
signature = typeChecker.getSignatureFromDeclaration(functionDeclaration);
}
else {
signature = allSignatures[0];
}
if (functionDeclaration.kind === SyntaxKind.Constructor) {
// show (constructor) Type(...) signature
symbolKind = ScriptElementKind.constructorImplementationElement;
addPrefixForAnyFunctionOrVar(type.symbol, symbolKind);
}
else {
// (function/method) symbol(..signature)
addPrefixForAnyFunctionOrVar(functionDeclaration.kind === SyntaxKind.CallSignature &&
!(type.symbol.flags & SymbolFlags.TypeLiteral || type.symbol.flags & SymbolFlags.ObjectLiteral) ? type.symbol : symbol, symbolKind);
}
addSignatureDisplayParts(signature, allSignatures);
hasAddedSymbolInfo = true;
}
}
}
if (symbolFlags & SymbolFlags.Class && !hasAddedSymbolInfo && !isThisExpression) {
if (getDeclarationOfKind(symbol, SyntaxKind.ClassExpression)) {
// Special case for class expressions because we would like to indicate that
// the class name is local to the class body (similar to function expression)
// (local class) class <className>
pushTypePart(ScriptElementKind.localClassElement);
}
else {
// Class declaration has name which is not local.
displayParts.push(keywordPart(SyntaxKind.ClassKeyword));
}
displayParts.push(spacePart());
addFullSymbolName(symbol);
writeTypeParametersOfSymbol(symbol, sourceFile);
}
if ((symbolFlags & SymbolFlags.Interface) && (semanticMeaning & SemanticMeaning.Type)) {
addNewLineIfDisplayPartsExist();
displayParts.push(keywordPart(SyntaxKind.InterfaceKeyword));
displayParts.push(spacePart());
addFullSymbolName(symbol);
writeTypeParametersOfSymbol(symbol, sourceFile);
}
if (symbolFlags & SymbolFlags.TypeAlias) {
addNewLineIfDisplayPartsExist();
displayParts.push(keywordPart(SyntaxKind.TypeKeyword));
displayParts.push(spacePart());
addFullSymbolName(symbol);
writeTypeParametersOfSymbol(symbol, sourceFile);
displayParts.push(spacePart());
displayParts.push(operatorPart(SyntaxKind.EqualsToken));
displayParts.push(spacePart());
addRange(displayParts, typeToDisplayParts(typeChecker, typeChecker.getDeclaredTypeOfSymbol(symbol), enclosingDeclaration));
}
if (symbolFlags & SymbolFlags.Enum) {
addNewLineIfDisplayPartsExist();
if (forEach(symbol.declarations, isConstEnumDeclaration)) {
displayParts.push(keywordPart(SyntaxKind.ConstKeyword));
displayParts.push(spacePart());
}
displayParts.push(keywordPart(SyntaxKind.EnumKeyword));
displayParts.push(spacePart());
addFullSymbolName(symbol);
}
if (symbolFlags & SymbolFlags.Module) {
addNewLineIfDisplayPartsExist();
const declaration = <ModuleDeclaration>getDeclarationOfKind(symbol, SyntaxKind.ModuleDeclaration);
const isNamespace = declaration && declaration.name && declaration.name.kind === SyntaxKind.Identifier;
displayParts.push(keywordPart(isNamespace ? SyntaxKind.NamespaceKeyword : SyntaxKind.ModuleKeyword));
displayParts.push(spacePart());
addFullSymbolName(symbol);
}
if ((symbolFlags & SymbolFlags.TypeParameter) && (semanticMeaning & SemanticMeaning.Type)) {
addNewLineIfDisplayPartsExist();
displayParts.push(punctuationPart(SyntaxKind.OpenParenToken));
displayParts.push(textPart("type parameter"));
displayParts.push(punctuationPart(SyntaxKind.CloseParenToken));
displayParts.push(spacePart());
addFullSymbolName(symbol);
displayParts.push(spacePart());
displayParts.push(keywordPart(SyntaxKind.InKeyword));
displayParts.push(spacePart());
if (symbol.parent) {
// Class/Interface type parameter
addFullSymbolName(symbol.parent, enclosingDeclaration);
writeTypeParametersOfSymbol(symbol.parent, enclosingDeclaration);
}
else {
// Method/function type parameter
let declaration = <Node>getDeclarationOfKind(symbol, SyntaxKind.TypeParameter);
Debug.assert(declaration !== undefined);
declaration = declaration.parent;
if (declaration) {
if (isFunctionLikeKind(declaration.kind)) {
const signature = typeChecker.getSignatureFromDeclaration(<SignatureDeclaration>declaration);
if (declaration.kind === SyntaxKind.ConstructSignature) {
displayParts.push(keywordPart(SyntaxKind.NewKeyword));
displayParts.push(spacePart());
}
else if (declaration.kind !== SyntaxKind.CallSignature && (<SignatureDeclaration>declaration).name) {
addFullSymbolName(declaration.symbol);
}
addRange(displayParts, signatureToDisplayParts(typeChecker, signature, sourceFile, TypeFormatFlags.WriteTypeArgumentsOfSignature));
}
else {
// Type alias type parameter
// For example
// type list<T> = T[]; // Both T will go through same code path
displayParts.push(keywordPart(SyntaxKind.TypeKeyword));
displayParts.push(spacePart());
addFullSymbolName(declaration.symbol);
writeTypeParametersOfSymbol(declaration.symbol, sourceFile);
}
}
}
}
if (symbolFlags & SymbolFlags.EnumMember) {
addPrefixForAnyFunctionOrVar(symbol, "enum member");
const declaration = symbol.declarations[0];
if (declaration.kind === SyntaxKind.EnumMember) {
const constantValue = typeChecker.getConstantValue(<EnumMember>declaration);
if (constantValue !== undefined) {
displayParts.push(spacePart());
displayParts.push(operatorPart(SyntaxKind.EqualsToken));
displayParts.push(spacePart());
displayParts.push(displayPart(constantValue.toString(), SymbolDisplayPartKind.numericLiteral));
}
}
}
if (symbolFlags & SymbolFlags.Alias) {
addNewLineIfDisplayPartsExist();
displayParts.push(keywordPart(SyntaxKind.ImportKeyword));
displayParts.push(spacePart());
addFullSymbolName(symbol);
ts.forEach(symbol.declarations, declaration => {
if (declaration.kind === SyntaxKind.ImportEqualsDeclaration) {
const importEqualsDeclaration = <ImportEqualsDeclaration>declaration;
if (isExternalModuleImportEqualsDeclaration(importEqualsDeclaration)) {
displayParts.push(spacePart());
displayParts.push(operatorPart(SyntaxKind.EqualsToken));
displayParts.push(spacePart());
displayParts.push(keywordPart(SyntaxKind.RequireKeyword));
displayParts.push(punctuationPart(SyntaxKind.OpenParenToken));
displayParts.push(displayPart(getTextOfNode(getExternalModuleImportEqualsDeclarationExpression(importEqualsDeclaration)), SymbolDisplayPartKind.stringLiteral));
displayParts.push(punctuationPart(SyntaxKind.CloseParenToken));
}
else {
const internalAliasSymbol = typeChecker.getSymbolAtLocation(importEqualsDeclaration.moduleReference);
if (internalAliasSymbol) {
displayParts.push(spacePart());
displayParts.push(operatorPart(SyntaxKind.EqualsToken));
displayParts.push(spacePart());
addFullSymbolName(internalAliasSymbol, enclosingDeclaration);
}
}
return true;
}
});
}
if (!hasAddedSymbolInfo) {
if (symbolKind !== ScriptElementKind.unknown) {
if (type) {
if (isThisExpression) {
addNewLineIfDisplayPartsExist();
displayParts.push(keywordPart(SyntaxKind.ThisKeyword));
}
else {
addPrefixForAnyFunctionOrVar(symbol, symbolKind);
}
// For properties, variables and local vars: show the type
if (symbolKind === ScriptElementKind.memberVariableElement ||
symbolFlags & SymbolFlags.Variable ||
symbolKind === ScriptElementKind.localVariableElement ||
isThisExpression) {
displayParts.push(punctuationPart(SyntaxKind.ColonToken));
displayParts.push(spacePart());
// If the type is type parameter, format it specially
if (type.symbol && type.symbol.flags & SymbolFlags.TypeParameter) {
const typeParameterParts = mapToDisplayParts(writer => {
typeChecker.getSymbolDisplayBuilder().buildTypeParameterDisplay(<TypeParameter>type, writer, enclosingDeclaration);
});
addRange(displayParts, typeParameterParts);
}
else {
addRange(displayParts, typeToDisplayParts(typeChecker, type, enclosingDeclaration));
}
}
else if (symbolFlags & SymbolFlags.Function ||
symbolFlags & SymbolFlags.Method ||
symbolFlags & SymbolFlags.Constructor ||
symbolFlags & SymbolFlags.Signature ||
symbolFlags & SymbolFlags.Accessor ||
symbolKind === ScriptElementKind.memberFunctionElement) {
const allSignatures = type.getNonNullableType().getCallSignatures();
addSignatureDisplayParts(allSignatures[0], allSignatures);
}
}
}
else {
symbolKind = getSymbolKind(symbol, location);
}
}
if (!documentation) {
documentation = symbol.getDocumentationComment();
}
return { displayParts, documentation, symbolKind };
function addNewLineIfDisplayPartsExist() {
if (displayParts.length) {
displayParts.push(lineBreakPart());
}
}
function addFullSymbolName(symbol: Symbol, enclosingDeclaration?: Node) {
const fullSymbolDisplayParts = symbolToDisplayParts(typeChecker, symbol, enclosingDeclaration || sourceFile, /*meaning*/ undefined,
SymbolFormatFlags.WriteTypeParametersOrArguments | SymbolFormatFlags.UseOnlyExternalAliasing);
addRange(displayParts, fullSymbolDisplayParts);
}
function addPrefixForAnyFunctionOrVar(symbol: Symbol, symbolKind: string) {
addNewLineIfDisplayPartsExist();
if (symbolKind) {
pushTypePart(symbolKind);
displayParts.push(spacePart());
addFullSymbolName(symbol);
}
}
function pushTypePart(symbolKind: string) {
switch (symbolKind) {
case ScriptElementKind.variableElement:
case ScriptElementKind.functionElement:
case ScriptElementKind.letElement:
case ScriptElementKind.constElement:
case ScriptElementKind.constructorImplementationElement:
displayParts.push(textOrKeywordPart(symbolKind));
return;
default:
displayParts.push(punctuationPart(SyntaxKind.OpenParenToken));
displayParts.push(textOrKeywordPart(symbolKind));
displayParts.push(punctuationPart(SyntaxKind.CloseParenToken));
return;
}
}
function addSignatureDisplayParts(signature: Signature, allSignatures: Signature[], flags?: TypeFormatFlags) {
addRange(displayParts, signatureToDisplayParts(typeChecker, signature, enclosingDeclaration, flags | TypeFormatFlags.WriteTypeArgumentsOfSignature));
if (allSignatures.length > 1) {
displayParts.push(spacePart());
displayParts.push(punctuationPart(SyntaxKind.OpenParenToken));
displayParts.push(operatorPart(SyntaxKind.PlusToken));
displayParts.push(displayPart((allSignatures.length - 1).toString(), SymbolDisplayPartKind.numericLiteral));
displayParts.push(spacePart());
displayParts.push(textPart(allSignatures.length === 2 ? "overload" : "overloads"));
displayParts.push(punctuationPart(SyntaxKind.CloseParenToken));
}
documentation = signature.getDocumentationComment();
}
function writeTypeParametersOfSymbol(symbol: Symbol, enclosingDeclaration: Node) {
const typeParameterParts = mapToDisplayParts(writer => {
typeChecker.getSymbolDisplayBuilder().buildTypeParameterDisplayFromSymbol(symbol, writer, enclosingDeclaration);
});
addRange(displayParts, typeParameterParts);
}
}
function getQuickInfoAtPosition(fileName: string, position: number): QuickInfo {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
const node = getTouchingPropertyName(sourceFile, position);
if (node === sourceFile) {
return undefined;
}
if (isLabelName(node)) {
return undefined;
}
const typeChecker = program.getTypeChecker();
const symbol = typeChecker.getSymbolAtLocation(node);
if (!symbol || typeChecker.isUnknownSymbol(symbol)) {
// Try getting just type at this position and show
switch (node.kind) {
case SyntaxKind.Identifier:
case SyntaxKind.PropertyAccessExpression:
case SyntaxKind.QualifiedName:
case SyntaxKind.ThisKeyword:
case SyntaxKind.ThisType:
case SyntaxKind.SuperKeyword:
// For the identifiers/this/super etc get the type at position
const type = typeChecker.getTypeAtLocation(node);
if (type) {
return {
kind: ScriptElementKind.unknown,
kindModifiers: ScriptElementKindModifier.none,
textSpan: createTextSpan(node.getStart(), node.getWidth()),
displayParts: typeToDisplayParts(typeChecker, type, getContainerNode(node)),
documentation: type.symbol ? type.symbol.getDocumentationComment() : undefined
};
}
}
return undefined;
}
const displayPartsDocumentationsAndKind = getSymbolDisplayPartsDocumentationAndSymbolKind(symbol, sourceFile, getContainerNode(node), node);
return {
kind: displayPartsDocumentationsAndKind.symbolKind,
kindModifiers: getSymbolModifiers(symbol),
textSpan: createTextSpan(node.getStart(), node.getWidth()),
displayParts: displayPartsDocumentationsAndKind.displayParts,
documentation: displayPartsDocumentationsAndKind.documentation
};
}
function createDefinitionInfo(node: Node, symbolKind: string, symbolName: string, containerName: string): DefinitionInfo {
return {
fileName: node.getSourceFile().fileName,
textSpan: createTextSpanFromBounds(node.getStart(), node.getEnd()),
kind: symbolKind,
name: symbolName,
containerKind: undefined,
containerName
};
}
function getDefinitionFromSymbol(symbol: Symbol, node: Node): DefinitionInfo[] {
const typeChecker = program.getTypeChecker();
const result: DefinitionInfo[] = [];
const declarations = symbol.getDeclarations();
const symbolName = typeChecker.symbolToString(symbol); // Do not get scoped name, just the name of the symbol
const symbolKind = getSymbolKind(symbol, node);
const containerSymbol = symbol.parent;
const containerName = containerSymbol ? typeChecker.symbolToString(containerSymbol, node) : "";
if (!tryAddConstructSignature(symbol, node, symbolKind, symbolName, containerName, result) &&
!tryAddCallSignature(symbol, node, symbolKind, symbolName, containerName, result)) {
// Just add all the declarations.
forEach(declarations, declaration => {
result.push(createDefinitionInfo(declaration, symbolKind, symbolName, containerName));
});
}
return result;
function tryAddConstructSignature(symbol: Symbol, location: Node, symbolKind: string, symbolName: string, containerName: string, result: DefinitionInfo[]) {
// Applicable only if we are in a new expression, or we are on a constructor declaration
// and in either case the symbol has a construct signature definition, i.e. class
if (isNewExpressionTarget(location) || location.kind === SyntaxKind.ConstructorKeyword) {
if (symbol.flags & SymbolFlags.Class) {
// Find the first class-like declaration and try to get the construct signature.
for (const declaration of symbol.getDeclarations()) {
if (isClassLike(declaration)) {
return tryAddSignature(declaration.members,
/*selectConstructors*/ true,
symbolKind,
symbolName,
containerName,
result);
}
}
Debug.fail("Expected declaration to have at least one class-like declaration");
}
}
return false;
}
function tryAddCallSignature(symbol: Symbol, location: Node, symbolKind: string, symbolName: string, containerName: string, result: DefinitionInfo[]) {
if (isCallExpressionTarget(location) || isNewExpressionTarget(location) || isNameOfFunctionDeclaration(location)) {
return tryAddSignature(symbol.declarations, /*selectConstructors*/ false, symbolKind, symbolName, containerName, result);
}
return false;
}
function tryAddSignature(signatureDeclarations: Declaration[], selectConstructors: boolean, symbolKind: string, symbolName: string, containerName: string, result: DefinitionInfo[]) {
const declarations: Declaration[] = [];
let definition: Declaration;
forEach(signatureDeclarations, d => {
if ((selectConstructors && d.kind === SyntaxKind.Constructor) ||
(!selectConstructors && (d.kind === SyntaxKind.FunctionDeclaration || d.kind === SyntaxKind.MethodDeclaration || d.kind === SyntaxKind.MethodSignature))) {
declarations.push(d);
if ((<FunctionLikeDeclaration>d).body) definition = d;
}
});
if (definition) {
result.push(createDefinitionInfo(definition, symbolKind, symbolName, containerName));
return true;
}
else if (declarations.length) {
result.push(createDefinitionInfo(lastOrUndefined(declarations), symbolKind, symbolName, containerName));
return true;
}
return false;
}
}
function findReferenceInPosition(refs: FileReference[], pos: number): FileReference {
for (const ref of refs) {
if (ref.pos <= pos && pos < ref.end) {
return ref;
}
}
return undefined;
}
function getDefinitionInfoForFileReference(name: string, targetFileName: string): DefinitionInfo {
return {
fileName: targetFileName,
textSpan: createTextSpanFromBounds(0, 0),
kind: ScriptElementKind.scriptElement,
name: name,
containerName: undefined,
containerKind: undefined
};
}
/// Goto definition
function getDefinitionAtPosition(fileName: string, position: number): DefinitionInfo[] {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
/// Triple slash reference comments
const comment = findReferenceInPosition(sourceFile.referencedFiles, position);
if (comment) {
const referenceFile = tryResolveScriptReference(program, sourceFile, comment);
if (referenceFile) {
return [getDefinitionInfoForFileReference(comment.fileName, referenceFile.fileName)];
}
return undefined;
}
// Type reference directives
const typeReferenceDirective = findReferenceInPosition(sourceFile.typeReferenceDirectives, position);
if (typeReferenceDirective) {
const referenceFile = lookUp(program.getResolvedTypeReferenceDirectives(), typeReferenceDirective.fileName);
if (referenceFile && referenceFile.resolvedFileName) {
return [getDefinitionInfoForFileReference(typeReferenceDirective.fileName, referenceFile.resolvedFileName)];
}
return undefined;
}
const node = getTouchingPropertyName(sourceFile, position);
if (node === sourceFile) {
return undefined;
}
// Labels
if (isJumpStatementTarget(node)) {
const labelName = (<Identifier>node).text;
const label = getTargetLabel((<BreakOrContinueStatement>node.parent), (<Identifier>node).text);
return label ? [createDefinitionInfo(label, ScriptElementKind.label, labelName, /*containerName*/ undefined)] : undefined;
}
const typeChecker = program.getTypeChecker();
let symbol = typeChecker.getSymbolAtLocation(node);
// Could not find a symbol e.g. node is string or number keyword,
// or the symbol was an internal symbol and does not have a declaration e.g. undefined symbol
if (!symbol) {
return undefined;
}
// If this is an alias, and the request came at the declaration location
// get the aliased symbol instead. This allows for goto def on an import e.g.
// import {A, B} from "mod";
// to jump to the implementation directly.
if (symbol.flags & SymbolFlags.Alias) {
const declaration = symbol.declarations[0];
// Go to the original declaration for cases:
//
// (1) when the aliased symbol was declared in the location(parent).
// (2) when the aliased symbol is originating from a named import.
//
if (node.kind === SyntaxKind.Identifier &&
(node.parent === declaration ||
(declaration.kind === SyntaxKind.ImportSpecifier && declaration.parent && declaration.parent.kind === SyntaxKind.NamedImports))) {
symbol = typeChecker.getAliasedSymbol(symbol);
}
}
// Because name in short-hand property assignment has two different meanings: property name and property value,
// using go-to-definition at such position should go to the variable declaration of the property value rather than
// go to the declaration of the property name (in this case stay at the same position). However, if go-to-definition
// is performed at the location of property access, we would like to go to definition of the property in the short-hand
// assignment. This case and others are handled by the following code.
if (node.parent.kind === SyntaxKind.ShorthandPropertyAssignment) {
const shorthandSymbol = typeChecker.getShorthandAssignmentValueSymbol(symbol.valueDeclaration);
if (!shorthandSymbol) {
return [];
}
const shorthandDeclarations = shorthandSymbol.getDeclarations();
const shorthandSymbolKind = getSymbolKind(shorthandSymbol, node);
const shorthandSymbolName = typeChecker.symbolToString(shorthandSymbol);
const shorthandContainerName = typeChecker.symbolToString(symbol.parent, node);
return map(shorthandDeclarations,
declaration => createDefinitionInfo(declaration, shorthandSymbolKind, shorthandSymbolName, shorthandContainerName));
}
return getDefinitionFromSymbol(symbol, node);
}
/// Goto type
function getTypeDefinitionAtPosition(fileName: string, position: number): DefinitionInfo[] {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
const node = getTouchingPropertyName(sourceFile, position);
if (node === sourceFile) {
return undefined;
}
const typeChecker = program.getTypeChecker();
const symbol = typeChecker.getSymbolAtLocation(node);
if (!symbol) {
return undefined;
}
const type = typeChecker.getTypeOfSymbolAtLocation(symbol, node);
if (!type) {
return undefined;
}
if (type.flags & TypeFlags.Union) {
const result: DefinitionInfo[] = [];
forEach((<UnionType>type).types, t => {
if (t.symbol) {
addRange(/*to*/ result, /*from*/ getDefinitionFromSymbol(t.symbol, node));
}
});
return result;
}
if (!type.symbol) {
return undefined;
}
return getDefinitionFromSymbol(type.symbol, node);
}
function getOccurrencesAtPosition(fileName: string, position: number): ReferenceEntry[] {
let results = getOccurrencesAtPositionCore(fileName, position);
if (results) {
const sourceFile = getCanonicalFileName(normalizeSlashes(fileName));
// Get occurrences only supports reporting occurrences for the file queried. So
// filter down to that list.
results = filter(results, r => getCanonicalFileName(ts.normalizeSlashes(r.fileName)) === sourceFile);
}
return results;
}
function getDocumentHighlights(fileName: string, position: number, filesToSearch: string[]): DocumentHighlights[] {
synchronizeHostData();
const sourceFilesToSearch = map(filesToSearch, f => program.getSourceFile(f));
const sourceFile = getValidSourceFile(fileName);
const node = getTouchingWord(sourceFile, position);
if (!node) {
return undefined;
}
return getSemanticDocumentHighlights(node) || getSyntacticDocumentHighlights(node);
function getHighlightSpanForNode(node: Node): HighlightSpan {
const start = node.getStart();
const end = node.getEnd();
return {
fileName: sourceFile.fileName,
textSpan: createTextSpanFromBounds(start, end),
kind: HighlightSpanKind.none
};
}
function getSemanticDocumentHighlights(node: Node): DocumentHighlights[] {
if (node.kind === SyntaxKind.Identifier ||
node.kind === SyntaxKind.ThisKeyword ||
node.kind === SyntaxKind.ThisType ||
node.kind === SyntaxKind.SuperKeyword ||
node.kind === SyntaxKind.StringLiteral ||
isLiteralNameOfPropertyDeclarationOrIndexAccess(node)) {
const referencedSymbols = getReferencedSymbolsForNode(node, sourceFilesToSearch, /*findInStrings*/ false, /*findInComments*/ false);
return convertReferencedSymbols(referencedSymbols);
}
return undefined;
function convertReferencedSymbols(referencedSymbols: ReferencedSymbol[]): DocumentHighlights[] {
if (!referencedSymbols) {
return undefined;
}
const fileNameToDocumentHighlights: Map<DocumentHighlights> = {};
const result: DocumentHighlights[] = [];
for (const referencedSymbol of referencedSymbols) {
for (const referenceEntry of referencedSymbol.references) {
const fileName = referenceEntry.fileName;
let documentHighlights = getProperty(fileNameToDocumentHighlights, fileName);
if (!documentHighlights) {
documentHighlights = { fileName, highlightSpans: [] };
fileNameToDocumentHighlights[fileName] = documentHighlights;
result.push(documentHighlights);
}
documentHighlights.highlightSpans.push({
textSpan: referenceEntry.textSpan,
kind: referenceEntry.isWriteAccess ? HighlightSpanKind.writtenReference : HighlightSpanKind.reference
});
}
}
return result;
}
}
function getSyntacticDocumentHighlights(node: Node): DocumentHighlights[] {
const fileName = sourceFile.fileName;
const highlightSpans = getHighlightSpans(node);
if (!highlightSpans || highlightSpans.length === 0) {
return undefined;
}
return [{ fileName, highlightSpans }];
// returns true if 'node' is defined and has a matching 'kind'.
function hasKind(node: Node, kind: SyntaxKind) {
return node !== undefined && node.kind === kind;
}
// Null-propagating 'parent' function.
function parent(node: Node): Node {
return node && node.parent;
}
function getHighlightSpans(node: Node): HighlightSpan[] {
if (node) {
switch (node.kind) {
case SyntaxKind.IfKeyword:
case SyntaxKind.ElseKeyword:
if (hasKind(node.parent, SyntaxKind.IfStatement)) {
return getIfElseOccurrences(<IfStatement>node.parent);
}
break;
case SyntaxKind.ReturnKeyword:
if (hasKind(node.parent, SyntaxKind.ReturnStatement)) {
return getReturnOccurrences(<ReturnStatement>node.parent);
}
break;
case SyntaxKind.ThrowKeyword:
if (hasKind(node.parent, SyntaxKind.ThrowStatement)) {
return getThrowOccurrences(<ThrowStatement>node.parent);
}
break;
case SyntaxKind.CatchKeyword:
if (hasKind(parent(parent(node)), SyntaxKind.TryStatement)) {
return getTryCatchFinallyOccurrences(<TryStatement>node.parent.parent);
}
break;
case SyntaxKind.TryKeyword:
case SyntaxKind.FinallyKeyword:
if (hasKind(parent(node), SyntaxKind.TryStatement)) {
return getTryCatchFinallyOccurrences(<TryStatement>node.parent);
}
break;
case SyntaxKind.SwitchKeyword:
if (hasKind(node.parent, SyntaxKind.SwitchStatement)) {
return getSwitchCaseDefaultOccurrences(<SwitchStatement>node.parent);
}
break;
case SyntaxKind.CaseKeyword:
case SyntaxKind.DefaultKeyword:
if (hasKind(parent(parent(parent(node))), SyntaxKind.SwitchStatement)) {
return getSwitchCaseDefaultOccurrences(<SwitchStatement>node.parent.parent.parent);
}
break;
case SyntaxKind.BreakKeyword:
case SyntaxKind.ContinueKeyword:
if (hasKind(node.parent, SyntaxKind.BreakStatement) || hasKind(node.parent, SyntaxKind.ContinueStatement)) {
return getBreakOrContinueStatementOccurrences(<BreakOrContinueStatement>node.parent);
}
break;
case SyntaxKind.ForKeyword:
if (hasKind(node.parent, SyntaxKind.ForStatement) ||
hasKind(node.parent, SyntaxKind.ForInStatement) ||
hasKind(node.parent, SyntaxKind.ForOfStatement)) {
return getLoopBreakContinueOccurrences(<IterationStatement>node.parent);
}
break;
case SyntaxKind.WhileKeyword:
case SyntaxKind.DoKeyword:
if (hasKind(node.parent, SyntaxKind.WhileStatement) || hasKind(node.parent, SyntaxKind.DoStatement)) {
return getLoopBreakContinueOccurrences(<IterationStatement>node.parent);
}
break;
case SyntaxKind.ConstructorKeyword:
if (hasKind(node.parent, SyntaxKind.Constructor)) {
return getConstructorOccurrences(<ConstructorDeclaration>node.parent);
}
break;
case SyntaxKind.GetKeyword:
case SyntaxKind.SetKeyword:
if (hasKind(node.parent, SyntaxKind.GetAccessor) || hasKind(node.parent, SyntaxKind.SetAccessor)) {
return getGetAndSetOccurrences(<AccessorDeclaration>node.parent);
}
break;
default:
if (isModifierKind(node.kind) && node.parent &&
(isDeclaration(node.parent) || node.parent.kind === SyntaxKind.VariableStatement)) {
return getModifierOccurrences(node.kind, node.parent);
}
}
}
return undefined;
}
/**
* Aggregates all throw-statements within this node *without* crossing
* into function boundaries and try-blocks with catch-clauses.
*/
function aggregateOwnedThrowStatements(node: Node): ThrowStatement[] {
const statementAccumulator: ThrowStatement[] = [];
aggregate(node);
return statementAccumulator;
function aggregate(node: Node): void {
if (node.kind === SyntaxKind.ThrowStatement) {
statementAccumulator.push(<ThrowStatement>node);
}
else if (node.kind === SyntaxKind.TryStatement) {
const tryStatement = <TryStatement>node;
if (tryStatement.catchClause) {
aggregate(tryStatement.catchClause);
}
else {
// Exceptions thrown within a try block lacking a catch clause
// are "owned" in the current context.
aggregate(tryStatement.tryBlock);
}
if (tryStatement.finallyBlock) {
aggregate(tryStatement.finallyBlock);
}
}
// Do not cross function boundaries.
else if (!isFunctionLike(node)) {
forEachChild(node, aggregate);
}
}
}
/**
* For lack of a better name, this function takes a throw statement and returns the
* nearest ancestor that is a try-block (whose try statement has a catch clause),
* function-block, or source file.
*/
function getThrowStatementOwner(throwStatement: ThrowStatement): Node {
let child: Node = throwStatement;
while (child.parent) {
const parent = child.parent;
if (isFunctionBlock(parent) || parent.kind === SyntaxKind.SourceFile) {
return parent;
}
// A throw-statement is only owned by a try-statement if the try-statement has
// a catch clause, and if the throw-statement occurs within the try block.
if (parent.kind === SyntaxKind.TryStatement) {
const tryStatement = <TryStatement>parent;
if (tryStatement.tryBlock === child && tryStatement.catchClause) {
return child;
}
}
child = parent;
}
return undefined;
}
function aggregateAllBreakAndContinueStatements(node: Node): BreakOrContinueStatement[] {
const statementAccumulator: BreakOrContinueStatement[] = [];
aggregate(node);
return statementAccumulator;
function aggregate(node: Node): void {
if (node.kind === SyntaxKind.BreakStatement || node.kind === SyntaxKind.ContinueStatement) {
statementAccumulator.push(<BreakOrContinueStatement>node);
}
// Do not cross function boundaries.
else if (!isFunctionLike(node)) {
forEachChild(node, aggregate);
}
}
}
function ownsBreakOrContinueStatement(owner: Node, statement: BreakOrContinueStatement): boolean {
const actualOwner = getBreakOrContinueOwner(statement);
return actualOwner && actualOwner === owner;
}
function getBreakOrContinueOwner(statement: BreakOrContinueStatement): Node {
for (let node = statement.parent; node; node = node.parent) {
switch (node.kind) {
case SyntaxKind.SwitchStatement:
if (statement.kind === SyntaxKind.ContinueStatement) {
continue;
}
// Fall through.
case SyntaxKind.ForStatement:
case SyntaxKind.ForInStatement:
case SyntaxKind.ForOfStatement:
case SyntaxKind.WhileStatement:
case SyntaxKind.DoStatement:
if (!statement.label || isLabeledBy(node, statement.label.text)) {
return node;
}
break;
default:
// Don't cross function boundaries.
if (isFunctionLike(node)) {
return undefined;
}
break;
}
}
return undefined;
}
function getModifierOccurrences(modifier: SyntaxKind, declaration: Node): HighlightSpan[] {
const container = declaration.parent;
// Make sure we only highlight the keyword when it makes sense to do so.
if (isAccessibilityModifier(modifier)) {
if (!(container.kind === SyntaxKind.ClassDeclaration ||
container.kind === SyntaxKind.ClassExpression ||
(declaration.kind === SyntaxKind.Parameter && hasKind(container, SyntaxKind.Constructor)))) {
return undefined;
}
}
else if (modifier === SyntaxKind.StaticKeyword) {
if (!(container.kind === SyntaxKind.ClassDeclaration || container.kind === SyntaxKind.ClassExpression)) {
return undefined;
}
}
else if (modifier === SyntaxKind.ExportKeyword || modifier === SyntaxKind.DeclareKeyword) {
if (!(container.kind === SyntaxKind.ModuleBlock || container.kind === SyntaxKind.SourceFile)) {
return undefined;
}
}
else if (modifier === SyntaxKind.AbstractKeyword) {
if (!(container.kind === SyntaxKind.ClassDeclaration || declaration.kind === SyntaxKind.ClassDeclaration)) {
return undefined;
}
}
else {
// unsupported modifier
return undefined;
}
const keywords: Node[] = [];
const modifierFlag: NodeFlags = getFlagFromModifier(modifier);
let nodes: Node[];
switch (container.kind) {
case SyntaxKind.ModuleBlock:
case SyntaxKind.SourceFile:
// Container is either a class declaration or the declaration is a classDeclaration
if (modifierFlag & NodeFlags.Abstract) {
nodes = (<Node[]>(<ClassDeclaration>declaration).members).concat(declaration);
}
else {
nodes = (<Block>container).statements;
}
break;
case SyntaxKind.Constructor:
nodes = (<Node[]>(<ConstructorDeclaration>container).parameters).concat(
(<ClassDeclaration>container.parent).members);
break;
case SyntaxKind.ClassDeclaration:
case SyntaxKind.ClassExpression:
nodes = (<ClassLikeDeclaration>container).members;
// If we're an accessibility modifier, we're in an instance member and should search
// the constructor's parameter list for instance members as well.
if (modifierFlag & NodeFlags.AccessibilityModifier) {
const constructor = forEach((<ClassLikeDeclaration>container).members, member => {
return member.kind === SyntaxKind.Constructor && <ConstructorDeclaration>member;
});
if (constructor) {
nodes = nodes.concat(constructor.parameters);
}
}
else if (modifierFlag & NodeFlags.Abstract) {
nodes = nodes.concat(container);
}
break;
default:
Debug.fail("Invalid container kind.");
}
forEach(nodes, node => {
if (node.modifiers && node.flags & modifierFlag) {
forEach(node.modifiers, child => pushKeywordIf(keywords, child, modifier));
}
});
return map(keywords, getHighlightSpanForNode);
function getFlagFromModifier(modifier: SyntaxKind) {
switch (modifier) {
case SyntaxKind.PublicKeyword:
return NodeFlags.Public;
case SyntaxKind.PrivateKeyword:
return NodeFlags.Private;
case SyntaxKind.ProtectedKeyword:
return NodeFlags.Protected;
case SyntaxKind.StaticKeyword:
return NodeFlags.Static;
case SyntaxKind.ExportKeyword:
return NodeFlags.Export;
case SyntaxKind.DeclareKeyword:
return NodeFlags.Ambient;
case SyntaxKind.AbstractKeyword:
return NodeFlags.Abstract;
default:
Debug.fail();
}
}
}
function pushKeywordIf(keywordList: Node[], token: Node, ...expected: SyntaxKind[]): boolean {
if (token && contains(expected, token.kind)) {
keywordList.push(token);
return true;
}
return false;
}
function getGetAndSetOccurrences(accessorDeclaration: AccessorDeclaration): HighlightSpan[] {
const keywords: Node[] = [];
tryPushAccessorKeyword(accessorDeclaration.symbol, SyntaxKind.GetAccessor);
tryPushAccessorKeyword(accessorDeclaration.symbol, SyntaxKind.SetAccessor);
return map(keywords, getHighlightSpanForNode);
function tryPushAccessorKeyword(accessorSymbol: Symbol, accessorKind: SyntaxKind): void {
const accessor = getDeclarationOfKind(accessorSymbol, accessorKind);
if (accessor) {
forEach(accessor.getChildren(), child => pushKeywordIf(keywords, child, SyntaxKind.GetKeyword, SyntaxKind.SetKeyword));
}
}
}
function getConstructorOccurrences(constructorDeclaration: ConstructorDeclaration): HighlightSpan[] {
const declarations = constructorDeclaration.symbol.getDeclarations();
const keywords: Node[] = [];
forEach(declarations, declaration => {
forEach(declaration.getChildren(), token => {
return pushKeywordIf(keywords, token, SyntaxKind.ConstructorKeyword);
});
});
return map(keywords, getHighlightSpanForNode);
}
function getLoopBreakContinueOccurrences(loopNode: IterationStatement): HighlightSpan[] {
const keywords: Node[] = [];
if (pushKeywordIf(keywords, loopNode.getFirstToken(), SyntaxKind.ForKeyword, SyntaxKind.WhileKeyword, SyntaxKind.DoKeyword)) {
// If we succeeded and got a do-while loop, then start looking for a 'while' keyword.
if (loopNode.kind === SyntaxKind.DoStatement) {
const loopTokens = loopNode.getChildren();
for (let i = loopTokens.length - 1; i >= 0; i--) {
if (pushKeywordIf(keywords, loopTokens[i], SyntaxKind.WhileKeyword)) {
break;
}
}
}
}
const breaksAndContinues = aggregateAllBreakAndContinueStatements(loopNode.statement);
forEach(breaksAndContinues, statement => {
if (ownsBreakOrContinueStatement(loopNode, statement)) {
pushKeywordIf(keywords, statement.getFirstToken(), SyntaxKind.BreakKeyword, SyntaxKind.ContinueKeyword);
}
});
return map(keywords, getHighlightSpanForNode);
}
function getBreakOrContinueStatementOccurrences(breakOrContinueStatement: BreakOrContinueStatement): HighlightSpan[] {
const owner = getBreakOrContinueOwner(breakOrContinueStatement);
if (owner) {
switch (owner.kind) {
case SyntaxKind.ForStatement:
case SyntaxKind.ForInStatement:
case SyntaxKind.ForOfStatement:
case SyntaxKind.DoStatement:
case SyntaxKind.WhileStatement:
return getLoopBreakContinueOccurrences(<IterationStatement>owner);
case SyntaxKind.SwitchStatement:
return getSwitchCaseDefaultOccurrences(<SwitchStatement>owner);
}
}
return undefined;
}
function getSwitchCaseDefaultOccurrences(switchStatement: SwitchStatement): HighlightSpan[] {
const keywords: Node[] = [];
pushKeywordIf(keywords, switchStatement.getFirstToken(), SyntaxKind.SwitchKeyword);
// Go through each clause in the switch statement, collecting the 'case'/'default' keywords.
forEach(switchStatement.caseBlock.clauses, clause => {
pushKeywordIf(keywords, clause.getFirstToken(), SyntaxKind.CaseKeyword, SyntaxKind.DefaultKeyword);
const breaksAndContinues = aggregateAllBreakAndContinueStatements(clause);
forEach(breaksAndContinues, statement => {
if (ownsBreakOrContinueStatement(switchStatement, statement)) {
pushKeywordIf(keywords, statement.getFirstToken(), SyntaxKind.BreakKeyword);
}
});
});
return map(keywords, getHighlightSpanForNode);
}
function getTryCatchFinallyOccurrences(tryStatement: TryStatement): HighlightSpan[] {
const keywords: Node[] = [];
pushKeywordIf(keywords, tryStatement.getFirstToken(), SyntaxKind.TryKeyword);
if (tryStatement.catchClause) {
pushKeywordIf(keywords, tryStatement.catchClause.getFirstToken(), SyntaxKind.CatchKeyword);
}
if (tryStatement.finallyBlock) {
const finallyKeyword = findChildOfKind(tryStatement, SyntaxKind.FinallyKeyword, sourceFile);
pushKeywordIf(keywords, finallyKeyword, SyntaxKind.FinallyKeyword);
}
return map(keywords, getHighlightSpanForNode);
}
function getThrowOccurrences(throwStatement: ThrowStatement): HighlightSpan[] {
const owner = getThrowStatementOwner(throwStatement);
if (!owner) {
return undefined;
}
const keywords: Node[] = [];
forEach(aggregateOwnedThrowStatements(owner), throwStatement => {
pushKeywordIf(keywords, throwStatement.getFirstToken(), SyntaxKind.ThrowKeyword);
});
// If the "owner" is a function, then we equate 'return' and 'throw' statements in their
// ability to "jump out" of the function, and include occurrences for both.
if (isFunctionBlock(owner)) {
forEachReturnStatement(<Block>owner, returnStatement => {
pushKeywordIf(keywords, returnStatement.getFirstToken(), SyntaxKind.ReturnKeyword);
});
}
return map(keywords, getHighlightSpanForNode);
}
function getReturnOccurrences(returnStatement: ReturnStatement): HighlightSpan[] {
const func = <FunctionLikeDeclaration>getContainingFunction(returnStatement);
// If we didn't find a containing function with a block body, bail out.
if (!(func && hasKind(func.body, SyntaxKind.Block))) {
return undefined;
}
const keywords: Node[] = [];
forEachReturnStatement(<Block>func.body, returnStatement => {
pushKeywordIf(keywords, returnStatement.getFirstToken(), SyntaxKind.ReturnKeyword);
});
// Include 'throw' statements that do not occur within a try block.
forEach(aggregateOwnedThrowStatements(func.body), throwStatement => {
pushKeywordIf(keywords, throwStatement.getFirstToken(), SyntaxKind.ThrowKeyword);
});
return map(keywords, getHighlightSpanForNode);
}
function getIfElseOccurrences(ifStatement: IfStatement): HighlightSpan[] {
const keywords: Node[] = [];
// Traverse upwards through all parent if-statements linked by their else-branches.
while (hasKind(ifStatement.parent, SyntaxKind.IfStatement) && (<IfStatement>ifStatement.parent).elseStatement === ifStatement) {
ifStatement = <IfStatement>ifStatement.parent;
}
// Now traverse back down through the else branches, aggregating if/else keywords of if-statements.
while (ifStatement) {
const children = ifStatement.getChildren();
pushKeywordIf(keywords, children[0], SyntaxKind.IfKeyword);
// Generally the 'else' keyword is second-to-last, so we traverse backwards.
for (let i = children.length - 1; i >= 0; i--) {
if (pushKeywordIf(keywords, children[i], SyntaxKind.ElseKeyword)) {
break;
}
}
if (!hasKind(ifStatement.elseStatement, SyntaxKind.IfStatement)) {
break;
}
ifStatement = <IfStatement>ifStatement.elseStatement;
}
const result: HighlightSpan[] = [];
// We'd like to highlight else/ifs together if they are only separated by whitespace
// (i.e. the keywords are separated by no comments, no newlines).
for (let i = 0; i < keywords.length; i++) {
if (keywords[i].kind === SyntaxKind.ElseKeyword && i < keywords.length - 1) {
const elseKeyword = keywords[i];
const ifKeyword = keywords[i + 1]; // this *should* always be an 'if' keyword.
let shouldCombindElseAndIf = true;
// Avoid recalculating getStart() by iterating backwards.
for (let j = ifKeyword.getStart() - 1; j >= elseKeyword.end; j--) {
if (!isWhiteSpace(sourceFile.text.charCodeAt(j))) {
shouldCombindElseAndIf = false;
break;
}
}
if (shouldCombindElseAndIf) {
result.push({
fileName: fileName,
textSpan: createTextSpanFromBounds(elseKeyword.getStart(), ifKeyword.end),
kind: HighlightSpanKind.reference
});
i++; // skip the next keyword
continue;
}
}
// Ordinary case: just highlight the keyword.
result.push(getHighlightSpanForNode(keywords[i]));
}
return result;
}
}
}
/// References and Occurrences
function getOccurrencesAtPositionCore(fileName: string, position: number): ReferenceEntry[] {
synchronizeHostData();
return convertDocumentHighlights(getDocumentHighlights(fileName, position, [fileName]));
function convertDocumentHighlights(documentHighlights: DocumentHighlights[]): ReferenceEntry[] {
if (!documentHighlights) {
return undefined;
}
const result: ReferenceEntry[] = [];
for (const entry of documentHighlights) {
for (const highlightSpan of entry.highlightSpans) {
result.push({
fileName: entry.fileName,
textSpan: highlightSpan.textSpan,
isWriteAccess: highlightSpan.kind === HighlightSpanKind.writtenReference,
isDefinition: false
});
}
}
return result;
}
}
function convertReferences(referenceSymbols: ReferencedSymbol[]): ReferenceEntry[] {
if (!referenceSymbols) {
return undefined;
}
const referenceEntries: ReferenceEntry[] = [];
for (const referenceSymbol of referenceSymbols) {
addRange(referenceEntries, referenceSymbol.references);
}
return referenceEntries;
}
function findRenameLocations(fileName: string, position: number, findInStrings: boolean, findInComments: boolean): RenameLocation[] {
const referencedSymbols = findReferencedSymbols(fileName, position, findInStrings, findInComments);
return convertReferences(referencedSymbols);
}
function getReferencesAtPosition(fileName: string, position: number): ReferenceEntry[] {
const referencedSymbols = findReferencedSymbols(fileName, position, /*findInStrings*/ false, /*findInComments*/ false);
return convertReferences(referencedSymbols);
}
function findReferences(fileName: string, position: number): ReferencedSymbol[] {
const referencedSymbols = findReferencedSymbols(fileName, position, /*findInStrings*/ false, /*findInComments*/ false);
// Only include referenced symbols that have a valid definition.
return filter(referencedSymbols, rs => !!rs.definition);
}
function findReferencedSymbols(fileName: string, position: number, findInStrings: boolean, findInComments: boolean): ReferencedSymbol[] {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
const node = getTouchingPropertyName(sourceFile, position, /*includeJsDocComment*/ true);
if (node === sourceFile) {
return undefined;
}
switch (node.kind) {
case SyntaxKind.NumericLiteral:
if (!isLiteralNameOfPropertyDeclarationOrIndexAccess(node)) {
break;
}
// Fallthrough
case SyntaxKind.Identifier:
case SyntaxKind.ThisKeyword:
// case SyntaxKind.SuperKeyword: TODO:GH#9268
case SyntaxKind.StringLiteral:
return getReferencedSymbolsForNode(node, program.getSourceFiles(), findInStrings, findInComments);
}
return undefined;
}
function isThis(node: Node): boolean {
switch (node.kind) {
case SyntaxKind.ThisKeyword:
// case SyntaxKind.ThisType: TODO: GH#9267
return true;
case SyntaxKind.Identifier:
// 'this' as a parameter
return (node as Identifier).originalKeywordKind === SyntaxKind.ThisKeyword && node.parent.kind === SyntaxKind.Parameter;
default:
return false;
}
}
function getReferencedSymbolsForNode(node: Node, sourceFiles: SourceFile[], findInStrings: boolean, findInComments: boolean): ReferencedSymbol[] {
const typeChecker = program.getTypeChecker();
// Labels
if (isLabelName(node)) {
if (isJumpStatementTarget(node)) {
const labelDefinition = getTargetLabel((<BreakOrContinueStatement>node.parent), (<Identifier>node).text);
// if we have a label definition, look within its statement for references, if not, then
// the label is undefined and we have no results..
return labelDefinition ? getLabelReferencesInNode(labelDefinition.parent, labelDefinition) : undefined;
}
else {
// it is a label definition and not a target, search within the parent labeledStatement
return getLabelReferencesInNode(node.parent, <Identifier>node);
}
}
if (isThis(node)) {
return getReferencesForThisKeyword(node, sourceFiles);
}
if (node.kind === SyntaxKind.SuperKeyword) {
return getReferencesForSuperKeyword(node);
}
const symbol = typeChecker.getSymbolAtLocation(node);
if (!symbol && node.kind === SyntaxKind.StringLiteral) {
return getReferencesForStringLiteral(<StringLiteral>node, sourceFiles);
}
// Could not find a symbol e.g. unknown identifier
if (!symbol) {
// Can't have references to something that we have no symbol for.
return undefined;
}
const declarations = symbol.declarations;
// The symbol was an internal symbol and does not have a declaration e.g. undefined symbol
if (!declarations || !declarations.length) {
return undefined;
}
let result: ReferencedSymbol[];
// Compute the meaning from the location and the symbol it references
const searchMeaning = getIntersectingMeaningFromDeclarations(getMeaningFromLocation(node), declarations);
// Get the text to search for.
// Note: if this is an external module symbol, the name doesn't include quotes.
const declaredName = stripQuotes(getDeclaredName(typeChecker, symbol, node));
// Try to get the smallest valid scope that we can limit our search to;
// otherwise we'll need to search globally (i.e. include each file).
const scope = getSymbolScope(symbol);
// Maps from a symbol ID to the ReferencedSymbol entry in 'result'.
const symbolToIndex: number[] = [];
if (scope) {
result = [];
getReferencesInNode(scope, symbol, declaredName, node, searchMeaning, findInStrings, findInComments, result, symbolToIndex);
}
else {
const internedName = getInternedName(symbol, node, declarations);
for (const sourceFile of sourceFiles) {
cancellationToken.throwIfCancellationRequested();
const nameTable = getNameTable(sourceFile);
if (lookUp(nameTable, internedName) !== undefined) {
result = result || [];
getReferencesInNode(sourceFile, symbol, declaredName, node, searchMeaning, findInStrings, findInComments, result, symbolToIndex);
}
}
}
return result;
function getDefinition(symbol: Symbol): DefinitionInfo {
const info = getSymbolDisplayPartsDocumentationAndSymbolKind(symbol, node.getSourceFile(), getContainerNode(node), node);
const name = map(info.displayParts, p => p.text).join("");
const declarations = symbol.declarations;
if (!declarations || declarations.length === 0) {
return undefined;
}
return {
containerKind: "",
containerName: "",
name,
kind: info.symbolKind,
fileName: declarations[0].getSourceFile().fileName,
textSpan: createTextSpan(declarations[0].getStart(), 0)
};
}
function getAliasSymbolForPropertyNameSymbol(symbol: Symbol, location: Node): Symbol {
if (symbol.flags & SymbolFlags.Alias) {
// Default import get alias
const defaultImport = getDeclarationOfKind(symbol, SyntaxKind.ImportClause);
if (defaultImport) {
return typeChecker.getAliasedSymbol(symbol);
}
const importOrExportSpecifier = <ImportOrExportSpecifier>forEach(symbol.declarations,
declaration => (declaration.kind === SyntaxKind.ImportSpecifier ||
declaration.kind === SyntaxKind.ExportSpecifier) ? declaration : undefined);
if (importOrExportSpecifier &&
// export { a }
(!importOrExportSpecifier.propertyName ||
// export {a as class } where a is location
importOrExportSpecifier.propertyName === location)) {
// If Import specifier -> get alias
// else Export specifier -> get local target
return importOrExportSpecifier.kind === SyntaxKind.ImportSpecifier ?
typeChecker.getAliasedSymbol(symbol) :
typeChecker.getExportSpecifierLocalTargetSymbol(importOrExportSpecifier);
}
}
return undefined;
}
function getPropertySymbolOfDestructuringAssignment(location: Node) {
return isArrayLiteralOrObjectLiteralDestructuringPattern(location.parent.parent) &&
typeChecker.getPropertySymbolOfDestructuringAssignment(<Identifier>location);
}
function isObjectBindingPatternElementWithoutPropertyName(symbol: Symbol) {
const bindingElement = <BindingElement>getDeclarationOfKind(symbol, SyntaxKind.BindingElement);
return bindingElement &&
bindingElement.parent.kind === SyntaxKind.ObjectBindingPattern &&
!bindingElement.propertyName;
}
function getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol: Symbol) {
if (isObjectBindingPatternElementWithoutPropertyName(symbol)) {
const bindingElement = <BindingElement>getDeclarationOfKind(symbol, SyntaxKind.BindingElement);
const typeOfPattern = typeChecker.getTypeAtLocation(bindingElement.parent);
return typeOfPattern && typeChecker.getPropertyOfType(typeOfPattern, (<Identifier>bindingElement.name).text);
}
return undefined;
}
function getInternedName(symbol: Symbol, location: Node, declarations: Declaration[]): string {
// If this is an export or import specifier it could have been renamed using the 'as' syntax.
// If so we want to search for whatever under the cursor.
if (isImportOrExportSpecifierName(location)) {
return location.getText();
}
// Try to get the local symbol if we're dealing with an 'export default'
// since that symbol has the "true" name.
const localExportDefaultSymbol = getLocalSymbolForExportDefault(symbol);
symbol = localExportDefaultSymbol || symbol;
return stripQuotes(symbol.name);
}
/**
* Determines the smallest scope in which a symbol may have named references.
* Note that not every construct has been accounted for. This function can
* probably be improved.
*
* @returns undefined if the scope cannot be determined, implying that
* a reference to a symbol can occur anywhere.
*/
function getSymbolScope(symbol: Symbol): Node {
// If this is the symbol of a named function expression or named class expression,
// then named references are limited to its own scope.
const valueDeclaration = symbol.valueDeclaration;
if (valueDeclaration && (valueDeclaration.kind === SyntaxKind.FunctionExpression || valueDeclaration.kind === SyntaxKind.ClassExpression)) {
return valueDeclaration;
}
// If this is private property or method, the scope is the containing class
if (symbol.flags & (SymbolFlags.Property | SymbolFlags.Method)) {
const privateDeclaration = forEach(symbol.getDeclarations(), d => (d.flags & NodeFlags.Private) ? d : undefined);
if (privateDeclaration) {
return getAncestor(privateDeclaration, SyntaxKind.ClassDeclaration);
}
}
// If the symbol is an import we would like to find it if we are looking for what it imports.
// So consider it visible outside its declaration scope.
if (symbol.flags & SymbolFlags.Alias) {
return undefined;
}
// If symbol is of object binding pattern element without property name we would want to
// look for property too and that could be anywhere
if (isObjectBindingPatternElementWithoutPropertyName(symbol)) {
return undefined;
}
// if this symbol is visible from its parent container, e.g. exported, then bail out
// if symbol correspond to the union property - bail out
if (symbol.parent || (symbol.flags & SymbolFlags.SyntheticProperty)) {
return undefined;
}
let scope: Node;
const declarations = symbol.getDeclarations();
if (declarations) {
for (const declaration of declarations) {
const container = getContainerNode(declaration);
if (!container) {
return undefined;
}
if (scope && scope !== container) {
// Different declarations have different containers, bail out
return undefined;
}
if (container.kind === SyntaxKind.SourceFile && !isExternalModule(<SourceFile>container)) {
// This is a global variable and not an external module, any declaration defined
// within this scope is visible outside the file
return undefined;
}
// The search scope is the container node
scope = container;
}
}
return scope;
}
function getPossibleSymbolReferencePositions(sourceFile: SourceFile, symbolName: string, start: number, end: number): number[] {
const positions: number[] = [];
/// TODO: Cache symbol existence for files to save text search
// Also, need to make this work for unicode escapes.
// Be resilient in the face of a symbol with no name or zero length name
if (!symbolName || !symbolName.length) {
return positions;
}
const text = sourceFile.text;
const sourceLength = text.length;
const symbolNameLength = symbolName.length;
let position = text.indexOf(symbolName, start);
while (position >= 0) {
cancellationToken.throwIfCancellationRequested();
// If we are past the end, stop looking
if (position > end) break;
// We found a match. Make sure it's not part of a larger word (i.e. the char
// before and after it have to be a non-identifier char).
const endPosition = position + symbolNameLength;
if ((position === 0 || !isIdentifierPart(text.charCodeAt(position - 1), ScriptTarget.Latest)) &&
(endPosition === sourceLength || !isIdentifierPart(text.charCodeAt(endPosition), ScriptTarget.Latest))) {
// Found a real match. Keep searching.
positions.push(position);
}
position = text.indexOf(symbolName, position + symbolNameLength + 1);
}
return positions;
}
function getLabelReferencesInNode(container: Node, targetLabel: Identifier): ReferencedSymbol[] {
const references: ReferenceEntry[] = [];
const sourceFile = container.getSourceFile();
const labelName = targetLabel.text;
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, labelName, container.getStart(), container.getEnd());
forEach(possiblePositions, position => {
cancellationToken.throwIfCancellationRequested();
const node = getTouchingWord(sourceFile, position);
if (!node || node.getWidth() !== labelName.length) {
return;
}
// Only pick labels that are either the target label, or have a target that is the target label
if (node === targetLabel ||
(isJumpStatementTarget(node) && getTargetLabel(node, labelName) === targetLabel)) {
references.push(getReferenceEntryFromNode(node));
}
});
const definition: DefinitionInfo = {
containerKind: "",
containerName: "",
fileName: targetLabel.getSourceFile().fileName,
kind: ScriptElementKind.label,
name: labelName,
textSpan: createTextSpanFromBounds(targetLabel.getStart(), targetLabel.getEnd())
};
return [{ definition, references }];
}
function isValidReferencePosition(node: Node, searchSymbolName: string): boolean {
if (node) {
// Compare the length so we filter out strict superstrings of the symbol we are looking for
switch (node.kind) {
case SyntaxKind.Identifier:
return node.getWidth() === searchSymbolName.length;
case SyntaxKind.StringLiteral:
if (isLiteralNameOfPropertyDeclarationOrIndexAccess(node) ||
isNameOfExternalModuleImportOrDeclaration(node)) {
// For string literals we have two additional chars for the quotes
return node.getWidth() === searchSymbolName.length + 2;
}
break;
case SyntaxKind.NumericLiteral:
if (isLiteralNameOfPropertyDeclarationOrIndexAccess(node)) {
return node.getWidth() === searchSymbolName.length;
}
break;
}
}
return false;
}
/** Search within node "container" for references for a search value, where the search value is defined as a
* tuple of(searchSymbol, searchText, searchLocation, and searchMeaning).
* searchLocation: a node where the search value
*/
function getReferencesInNode(container: Node,
searchSymbol: Symbol,
searchText: string,
searchLocation: Node,
searchMeaning: SemanticMeaning,
findInStrings: boolean,
findInComments: boolean,
result: ReferencedSymbol[],
symbolToIndex: number[]): void {
const sourceFile = container.getSourceFile();
const tripleSlashDirectivePrefixRegex = /^\/\/\/\s*</;
const start = findInComments ? container.getFullStart() : container.getStart();
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, searchText, start, container.getEnd());
if (possiblePositions.length) {
// Build the set of symbols to search for, initially it has only the current symbol
const searchSymbols = populateSearchSymbolSet(searchSymbol, searchLocation);
forEach(possiblePositions, position => {
cancellationToken.throwIfCancellationRequested();
const referenceLocation = getTouchingPropertyName(sourceFile, position);
if (!isValidReferencePosition(referenceLocation, searchText)) {
// This wasn't the start of a token. Check to see if it might be a
// match in a comment or string if that's what the caller is asking
// for.
if ((findInStrings && isInString(sourceFile, position)) ||
(findInComments && isInNonReferenceComment(sourceFile, position))) {
// In the case where we're looking inside comments/strings, we don't have
// an actual definition. So just use 'undefined' here. Features like
// 'Rename' won't care (as they ignore the definitions), and features like
// 'FindReferences' will just filter out these results.
result.push({
definition: undefined,
references: [{
fileName: sourceFile.fileName,
textSpan: createTextSpan(position, searchText.length),
isWriteAccess: false,
isDefinition: false
}]
});
}
return;
}
if (!(getMeaningFromLocation(referenceLocation) & searchMeaning)) {
return;
}
const referenceSymbol = typeChecker.getSymbolAtLocation(referenceLocation);
if (referenceSymbol) {
const referenceSymbolDeclaration = referenceSymbol.valueDeclaration;
const shorthandValueSymbol = typeChecker.getShorthandAssignmentValueSymbol(referenceSymbolDeclaration);
const relatedSymbol = getRelatedSymbol(searchSymbols, referenceSymbol, referenceLocation);
if (relatedSymbol) {
const referencedSymbol = getReferencedSymbol(relatedSymbol);
referencedSymbol.references.push(getReferenceEntryFromNode(referenceLocation));
}
/* Because in short-hand property assignment, an identifier which stored as name of the short-hand property assignment
* has two meaning : property name and property value. Therefore when we do findAllReference at the position where
* an identifier is declared, the language service should return the position of the variable declaration as well as
* the position in short-hand property assignment excluding property accessing. However, if we do findAllReference at the
* position of property accessing, the referenceEntry of such position will be handled in the first case.
*/
else if (!(referenceSymbol.flags & SymbolFlags.Transient) && searchSymbols.indexOf(shorthandValueSymbol) >= 0) {
const referencedSymbol = getReferencedSymbol(shorthandValueSymbol);
referencedSymbol.references.push(getReferenceEntryFromNode(referenceSymbolDeclaration.name));
}
}
});
}
return;
function getReferencedSymbol(symbol: Symbol): ReferencedSymbol {
const symbolId = getSymbolId(symbol);
let index = symbolToIndex[symbolId];
if (index === undefined) {
index = result.length;
symbolToIndex[symbolId] = index;
result.push({
definition: getDefinition(symbol),
references: []
});
}
return result[index];
}
function isInNonReferenceComment(sourceFile: SourceFile, position: number): boolean {
return isInCommentHelper(sourceFile, position, isNonReferenceComment);
function isNonReferenceComment(c: CommentRange): boolean {
const commentText = sourceFile.text.substring(c.pos, c.end);
return !tripleSlashDirectivePrefixRegex.test(commentText);
}
}
}
function getReferencesForSuperKeyword(superKeyword: Node): ReferencedSymbol[] {
let searchSpaceNode = getSuperContainer(superKeyword, /*stopOnFunctions*/ false);
if (!searchSpaceNode) {
return undefined;
}
// Whether 'super' occurs in a static context within a class.
let staticFlag = NodeFlags.Static;
switch (searchSpaceNode.kind) {
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
staticFlag &= searchSpaceNode.flags;
searchSpaceNode = searchSpaceNode.parent; // re-assign to be the owning class
break;
default:
return undefined;
}
const references: ReferenceEntry[] = [];
const sourceFile = searchSpaceNode.getSourceFile();
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, "super", searchSpaceNode.getStart(), searchSpaceNode.getEnd());
forEach(possiblePositions, position => {
cancellationToken.throwIfCancellationRequested();
const node = getTouchingWord(sourceFile, position);
if (!node || node.kind !== SyntaxKind.SuperKeyword) {
return;
}
const container = getSuperContainer(node, /*stopOnFunctions*/ false);
// If we have a 'super' container, we must have an enclosing class.
// Now make sure the owning class is the same as the search-space
// and has the same static qualifier as the original 'super's owner.
if (container && (NodeFlags.Static & container.flags) === staticFlag && container.parent.symbol === searchSpaceNode.symbol) {
references.push(getReferenceEntryFromNode(node));
}
});
const definition = getDefinition(searchSpaceNode.symbol);
return [{ definition, references }];
}
function getReferencesForThisKeyword(thisOrSuperKeyword: Node, sourceFiles: SourceFile[]): ReferencedSymbol[] {
let searchSpaceNode = getThisContainer(thisOrSuperKeyword, /* includeArrowFunctions */ false);
// Whether 'this' occurs in a static context within a class.
let staticFlag = NodeFlags.Static;
switch (searchSpaceNode.kind) {
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
if (isObjectLiteralMethod(searchSpaceNode)) {
break;
}
// fall through
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
staticFlag &= searchSpaceNode.flags;
searchSpaceNode = searchSpaceNode.parent; // re-assign to be the owning class
break;
case SyntaxKind.SourceFile:
if (isExternalModule(<SourceFile>searchSpaceNode)) {
return undefined;
}
// Fall through
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
break;
// Computed properties in classes are not handled here because references to this are illegal,
// so there is no point finding references to them.
default:
return undefined;
}
const references: ReferenceEntry[] = [];
let possiblePositions: number[];
if (searchSpaceNode.kind === SyntaxKind.SourceFile) {
forEach(sourceFiles, sourceFile => {
possiblePositions = getPossibleSymbolReferencePositions(sourceFile, "this", sourceFile.getStart(), sourceFile.getEnd());
getThisReferencesInFile(sourceFile, sourceFile, possiblePositions, references);
});
}
else {
const sourceFile = searchSpaceNode.getSourceFile();
possiblePositions = getPossibleSymbolReferencePositions(sourceFile, "this", searchSpaceNode.getStart(), searchSpaceNode.getEnd());
getThisReferencesInFile(sourceFile, searchSpaceNode, possiblePositions, references);
}
return [{
definition: {
containerKind: "",
containerName: "",
fileName: node.getSourceFile().fileName,
kind: ScriptElementKind.variableElement,
name: "this",
textSpan: createTextSpanFromBounds(node.getStart(), node.getEnd())
},
references: references
}];
function getThisReferencesInFile(sourceFile: SourceFile, searchSpaceNode: Node, possiblePositions: number[], result: ReferenceEntry[]): void {
forEach(possiblePositions, position => {
cancellationToken.throwIfCancellationRequested();
const node = getTouchingWord(sourceFile, position);
if (!node || !isThis(node)) {
return;
}
const container = getThisContainer(node, /* includeArrowFunctions */ false);
switch (searchSpaceNode.kind) {
case SyntaxKind.FunctionExpression:
case SyntaxKind.FunctionDeclaration:
if (searchSpaceNode.symbol === container.symbol) {
result.push(getReferenceEntryFromNode(node));
}
break;
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
if (isObjectLiteralMethod(searchSpaceNode) && searchSpaceNode.symbol === container.symbol) {
result.push(getReferenceEntryFromNode(node));
}
break;
case SyntaxKind.ClassExpression:
case SyntaxKind.ClassDeclaration:
// Make sure the container belongs to the same class
// and has the appropriate static modifier from the original container.
if (container.parent && searchSpaceNode.symbol === container.parent.symbol && (container.flags & NodeFlags.Static) === staticFlag) {
result.push(getReferenceEntryFromNode(node));
}
break;
case SyntaxKind.SourceFile:
if (container.kind === SyntaxKind.SourceFile && !isExternalModule(<SourceFile>container)) {
result.push(getReferenceEntryFromNode(node));
}
break;
}
});
}
}
function getReferencesForStringLiteral(node: StringLiteral, sourceFiles: SourceFile[]): ReferencedSymbol[] {
const typeChecker = program.getTypeChecker();
const type = getStringLiteralTypeForNode(node, typeChecker);
if (!type) {
// nothing to do here. moving on
return undefined;
}
const references: ReferenceEntry[] = [];
for (const sourceFile of sourceFiles) {
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, type.text, sourceFile.getStart(), sourceFile.getEnd());
getReferencesForStringLiteralInFile(sourceFile, type, possiblePositions, references);
}
return [{
definition: {
containerKind: "",
containerName: "",
fileName: node.getSourceFile().fileName,
kind: ScriptElementKind.variableElement,
name: type.text,
textSpan: createTextSpanFromBounds(node.getStart(), node.getEnd())
},
references: references
}];
function getReferencesForStringLiteralInFile(sourceFile: SourceFile, searchType: Type, possiblePositions: number[], references: ReferenceEntry[]): void {
for (const position of possiblePositions) {
cancellationToken.throwIfCancellationRequested();
const node = getTouchingWord(sourceFile, position);
if (!node || node.kind !== SyntaxKind.StringLiteral) {
return;
}
const type = getStringLiteralTypeForNode(<StringLiteral>node, typeChecker);
if (type === searchType) {
references.push(getReferenceEntryFromNode(node));
}
}
}
}
function populateSearchSymbolSet(symbol: Symbol, location: Node): Symbol[] {
// The search set contains at least the current symbol
let result = [symbol];
// If the location is name of property symbol from object literal destructuring pattern
// Search the property symbol
// for ( { property: p2 } of elems) { }
const containingObjectLiteralElement = getContainingObjectLiteralElement(location);
if (containingObjectLiteralElement && containingObjectLiteralElement.kind !== SyntaxKind.ShorthandPropertyAssignment) {
const propertySymbol = getPropertySymbolOfDestructuringAssignment(location);
if (propertySymbol) {
result.push(propertySymbol);
}
}
// If the symbol is an alias, add what it aliases to the list
// import {a} from "mod";
// export {a}
// If the symbol is an alias to default declaration, add what it aliases to the list
// declare "mod" { export default class B { } }
// import B from "mod";
//// For export specifiers, the exported name can be referring to a local symbol, e.g.:
//// import {a} from "mod";
//// export {a as somethingElse}
//// We want the *local* declaration of 'a' as declared in the import,
//// *not* as declared within "mod" (or farther)
const aliasSymbol = getAliasSymbolForPropertyNameSymbol(symbol, location);
if (aliasSymbol) {
result = result.concat(populateSearchSymbolSet(aliasSymbol, location));
}
// If the location is in a context sensitive location (i.e. in an object literal) try
// to get a contextual type for it, and add the property symbol from the contextual
// type to the search set
if (containingObjectLiteralElement) {
forEach(getPropertySymbolsFromContextualType(containingObjectLiteralElement), contextualSymbol => {
addRange(result, typeChecker.getRootSymbols(contextualSymbol));
});
/* Because in short-hand property assignment, location has two meaning : property name and as value of the property
* When we do findAllReference at the position of the short-hand property assignment, we would want to have references to position of
* property name and variable declaration of the identifier.
* Like in below example, when querying for all references for an identifier 'name', of the property assignment, the language service
* should show both 'name' in 'obj' and 'name' in variable declaration
* const name = "Foo";
* const obj = { name };
* In order to do that, we will populate the search set with the value symbol of the identifier as a value of the property assignment
* so that when matching with potential reference symbol, both symbols from property declaration and variable declaration
* will be included correctly.
*/
const shorthandValueSymbol = typeChecker.getShorthandAssignmentValueSymbol(location.parent);
if (shorthandValueSymbol) {
result.push(shorthandValueSymbol);
}
}
// If the symbol.valueDeclaration is a property parameter declaration,
// we should include both parameter declaration symbol and property declaration symbol
// Parameter Declaration symbol is only visible within function scope, so the symbol is stored in constructor.locals.
// Property Declaration symbol is a member of the class, so the symbol is stored in its class Declaration.symbol.members
if (symbol.valueDeclaration && symbol.valueDeclaration.kind === SyntaxKind.Parameter &&
isParameterPropertyDeclaration(<ParameterDeclaration>symbol.valueDeclaration)) {
result = result.concat(typeChecker.getSymbolsOfParameterPropertyDeclaration(<ParameterDeclaration>symbol.valueDeclaration, symbol.name));
}
// If this is symbol of binding element without propertyName declaration in Object binding pattern
// Include the property in the search
const bindingElementPropertySymbol = getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol);
if (bindingElementPropertySymbol) {
result.push(bindingElementPropertySymbol);
}
// If this is a union property, add all the symbols from all its source symbols in all unioned types.
// If the symbol is an instantiation from a another symbol (e.g. widened symbol) , add the root the list
forEach(typeChecker.getRootSymbols(symbol), rootSymbol => {
if (rootSymbol !== symbol) {
result.push(rootSymbol);
}
// Add symbol of properties/methods of the same name in base classes and implemented interfaces definitions
if (rootSymbol.parent && rootSymbol.parent.flags & (SymbolFlags.Class | SymbolFlags.Interface)) {
getPropertySymbolsFromBaseTypes(rootSymbol.parent, rootSymbol.getName(), result, /*previousIterationSymbolsCache*/ {});
}
});
return result;
}
/**
* Find symbol of the given property-name and add the symbol to the given result array
* @param symbol a symbol to start searching for the given propertyName
* @param propertyName a name of property to search for
* @param result an array of symbol of found property symbols
* @param previousIterationSymbolsCache a cache of symbol from previous iterations of calling this function to prevent infinite revisiting of the same symbol.
* The value of previousIterationSymbol is undefined when the function is first called.
*/
function getPropertySymbolsFromBaseTypes(symbol: Symbol, propertyName: string, result: Symbol[],
previousIterationSymbolsCache: SymbolTable): void {
if (!symbol) {
return;
}
// If the current symbol is the same as the previous-iteration symbol, we can just return the symbol that has already been visited
// This is particularly important for the following cases, so that we do not infinitely visit the same symbol.
// For example:
// interface C extends C {
// /*findRef*/propName: string;
// }
// The first time getPropertySymbolsFromBaseTypes is called when finding-all-references at propName,
// the symbol argument will be the symbol of an interface "C" and previousIterationSymbol is undefined,
// the function will add any found symbol of the property-name, then its sub-routine will call
// getPropertySymbolsFromBaseTypes again to walk up any base types to prevent revisiting already
// visited symbol, interface "C", the sub-routine will pass the current symbol as previousIterationSymbol.
if (hasProperty(previousIterationSymbolsCache, symbol.name)) {
return;
}
if (symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface)) {
forEach(symbol.getDeclarations(), declaration => {
if (isClassLike(declaration)) {
getPropertySymbolFromTypeReference(getClassExtendsHeritageClauseElement(<ClassDeclaration>declaration));
forEach(getClassImplementsHeritageClauseElements(<ClassDeclaration>declaration), getPropertySymbolFromTypeReference);
}
else if (declaration.kind === SyntaxKind.InterfaceDeclaration) {
forEach(getInterfaceBaseTypeNodes(<InterfaceDeclaration>declaration), getPropertySymbolFromTypeReference);
}
});
}
return;
function getPropertySymbolFromTypeReference(typeReference: ExpressionWithTypeArguments) {
if (typeReference) {
const type = typeChecker.getTypeAtLocation(typeReference);
if (type) {
const propertySymbol = typeChecker.getPropertyOfType(type, propertyName);
if (propertySymbol) {
result.push(...typeChecker.getRootSymbols(propertySymbol));
}
// Visit the typeReference as well to see if it directly or indirectly use that property
previousIterationSymbolsCache[symbol.name] = symbol;
getPropertySymbolsFromBaseTypes(type.symbol, propertyName, result, previousIterationSymbolsCache);
}
}
}
}
function getRelatedSymbol(searchSymbols: Symbol[], referenceSymbol: Symbol, referenceLocation: Node): Symbol {
if (searchSymbols.indexOf(referenceSymbol) >= 0) {
return referenceSymbol;
}
// If the reference symbol is an alias, check if what it is aliasing is one of the search
// symbols but by looking up for related symbol of this alias so it can handle multiple level of indirectness.
const aliasSymbol = getAliasSymbolForPropertyNameSymbol(referenceSymbol, referenceLocation);
if (aliasSymbol) {
return getRelatedSymbol(searchSymbols, aliasSymbol, referenceLocation);
}
// If the reference location is in an object literal, try to get the contextual type for the
// object literal, lookup the property symbol in the contextual type, and use this symbol to
// compare to our searchSymbol
const containingObjectLiteralElement = getContainingObjectLiteralElement(referenceLocation);
if (containingObjectLiteralElement) {
const contextualSymbol = forEach(getPropertySymbolsFromContextualType(containingObjectLiteralElement), contextualSymbol => {
return forEach(typeChecker.getRootSymbols(contextualSymbol), s => searchSymbols.indexOf(s) >= 0 ? s : undefined);
});
if (contextualSymbol) {
return contextualSymbol;
}
// If the reference location is the name of property from object literal destructuring pattern
// Get the property symbol from the object literal's type and look if thats the search symbol
// In below eg. get 'property' from type of elems iterating type
// for ( { property: p2 } of elems) { }
const propertySymbol = getPropertySymbolOfDestructuringAssignment(referenceLocation);
if (propertySymbol && searchSymbols.indexOf(propertySymbol) >= 0) {
return propertySymbol;
}
}
// If the reference location is the binding element and doesn't have property name
// then include the binding element in the related symbols
// let { a } : { a };
const bindingElementPropertySymbol = getPropertySymbolOfObjectBindingPatternWithoutPropertyName(referenceSymbol);
if (bindingElementPropertySymbol && searchSymbols.indexOf(bindingElementPropertySymbol) >= 0) {
return bindingElementPropertySymbol;
}
// Unwrap symbols to get to the root (e.g. transient symbols as a result of widening)
// Or a union property, use its underlying unioned symbols
return forEach(typeChecker.getRootSymbols(referenceSymbol), rootSymbol => {
// if it is in the list, then we are done
if (searchSymbols.indexOf(rootSymbol) >= 0) {
return rootSymbol;
}
// Finally, try all properties with the same name in any type the containing type extended or implemented, and
// see if any is in the list
if (rootSymbol.parent && rootSymbol.parent.flags & (SymbolFlags.Class | SymbolFlags.Interface)) {
const result: Symbol[] = [];
getPropertySymbolsFromBaseTypes(rootSymbol.parent, rootSymbol.getName(), result, /*previousIterationSymbolsCache*/ {});
return forEach(result, s => searchSymbols.indexOf(s) >= 0 ? s : undefined);
}
return undefined;
});
}
function getNameFromObjectLiteralElement(node: ObjectLiteralElement) {
if (node.name.kind === SyntaxKind.ComputedPropertyName) {
const nameExpression = (<ComputedPropertyName>node.name).expression;
// treat computed property names where expression is string/numeric literal as just string/numeric literal
if (isStringOrNumericLiteral(nameExpression.kind)) {
return (<LiteralExpression>nameExpression).text;
}
return undefined;
}
return (<Identifier | LiteralExpression>node.name).text;
}
function getPropertySymbolsFromContextualType(node: ObjectLiteralElement): Symbol[] {
const objectLiteral = <ObjectLiteralExpression>node.parent;
const contextualType = typeChecker.getContextualType(objectLiteral);
const name = getNameFromObjectLiteralElement(node);
if (name && contextualType) {
const result: Symbol[] = [];
const symbol = contextualType.getProperty(name);
if (symbol) {
result.push(symbol);
}
if (contextualType.flags & TypeFlags.Union) {
forEach((<UnionType>contextualType).types, t => {
const symbol = t.getProperty(name);
if (symbol) {
result.push(symbol);
}
});
}
return result;
}
return undefined;
}
/** Given an initial searchMeaning, extracted from a location, widen the search scope based on the declarations
* of the corresponding symbol. e.g. if we are searching for "Foo" in value position, but "Foo" references a class
* then we need to widen the search to include type positions as well.
* On the contrary, if we are searching for "Bar" in type position and we trace bar to an interface, and an uninstantiated
* module, we want to keep the search limited to only types, as the two declarations (interface and uninstantiated module)
* do not intersect in any of the three spaces.
*/
function getIntersectingMeaningFromDeclarations(meaning: SemanticMeaning, declarations: Declaration[]): SemanticMeaning {
if (declarations) {
let lastIterationMeaning: SemanticMeaning;
do {
// The result is order-sensitive, for instance if initialMeaning === Namespace, and declarations = [class, instantiated module]
// we need to consider both as they initialMeaning intersects with the module in the namespace space, and the module
// intersects with the class in the value space.
// To achieve that we will keep iterating until the result stabilizes.
// Remember the last meaning
lastIterationMeaning = meaning;
for (const declaration of declarations) {
const declarationMeaning = getMeaningFromDeclaration(declaration);
if (declarationMeaning & meaning) {
meaning |= declarationMeaning;
}
}
}
while (meaning !== lastIterationMeaning);
}
return meaning;
}
}
function getReferenceEntryFromNode(node: Node): ReferenceEntry {
let start = node.getStart();
let end = node.getEnd();
if (node.kind === SyntaxKind.StringLiteral) {
start += 1;
end -= 1;
}
return {
fileName: node.getSourceFile().fileName,
textSpan: createTextSpanFromBounds(start, end),
isWriteAccess: isWriteAccess(node),
isDefinition: isDeclarationName(node) || isLiteralComputedPropertyDeclarationName(node)
};
}
/** A node is considered a writeAccess iff it is a name of a declaration or a target of an assignment */
function isWriteAccess(node: Node): boolean {
if (node.kind === SyntaxKind.Identifier && isDeclarationName(node)) {
return true;
}
const parent = node.parent;
if (parent) {
if (parent.kind === SyntaxKind.PostfixUnaryExpression || parent.kind === SyntaxKind.PrefixUnaryExpression) {
return true;
}
else if (parent.kind === SyntaxKind.BinaryExpression && (<BinaryExpression>parent).left === node) {
const operator = (<BinaryExpression>parent).operatorToken.kind;
return SyntaxKind.FirstAssignment <= operator && operator <= SyntaxKind.LastAssignment;
}
}
return false;
}
/// NavigateTo
function getNavigateToItems(searchValue: string, maxResultCount?: number): NavigateToItem[] {
synchronizeHostData();
const checker = getProgram().getTypeChecker();
return ts.NavigateTo.getNavigateToItems(program, checker, cancellationToken, searchValue, maxResultCount);
}
function getEmitOutput(fileName: string): EmitOutput {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
const outputFiles: OutputFile[] = [];
function writeFile(fileName: string, data: string, writeByteOrderMark: boolean) {
outputFiles.push({
name: fileName,
writeByteOrderMark: writeByteOrderMark,
text: data
});
}
const emitOutput = program.emit(sourceFile, writeFile, cancellationToken);
return {
outputFiles,
emitSkipped: emitOutput.emitSkipped
};
}
function getMeaningFromDeclaration(node: Node): SemanticMeaning {
switch (node.kind) {
case SyntaxKind.Parameter:
case SyntaxKind.VariableDeclaration:
case SyntaxKind.BindingElement:
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.PropertyAssignment:
case SyntaxKind.ShorthandPropertyAssignment:
case SyntaxKind.EnumMember:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
case SyntaxKind.ArrowFunction:
case SyntaxKind.CatchClause:
return SemanticMeaning.Value;
case SyntaxKind.TypeParameter:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.TypeAliasDeclaration:
case SyntaxKind.TypeLiteral:
return SemanticMeaning.Type;
case SyntaxKind.ClassDeclaration:
case SyntaxKind.EnumDeclaration:
return SemanticMeaning.Value | SemanticMeaning.Type;
case SyntaxKind.ModuleDeclaration:
if (isAmbientModule(<ModuleDeclaration>node)) {
return SemanticMeaning.Namespace | SemanticMeaning.Value;
}
else if (getModuleInstanceState(node) === ModuleInstanceState.Instantiated) {
return SemanticMeaning.Namespace | SemanticMeaning.Value;
}
else {
return SemanticMeaning.Namespace;
}
case SyntaxKind.NamedImports:
case SyntaxKind.ImportSpecifier:
case SyntaxKind.ImportEqualsDeclaration:
case SyntaxKind.ImportDeclaration:
case SyntaxKind.ExportAssignment:
case SyntaxKind.ExportDeclaration:
return SemanticMeaning.Value | SemanticMeaning.Type | SemanticMeaning.Namespace;
// An external module can be a Value
case SyntaxKind.SourceFile:
return SemanticMeaning.Namespace | SemanticMeaning.Value;
}
return SemanticMeaning.Value | SemanticMeaning.Type | SemanticMeaning.Namespace;
}
function isTypeReference(node: Node): boolean {
if (isRightSideOfQualifiedNameOrPropertyAccess(node)) {
node = node.parent;
}
return node.parent.kind === SyntaxKind.TypeReference ||
(node.parent.kind === SyntaxKind.ExpressionWithTypeArguments && !isExpressionWithTypeArgumentsInClassExtendsClause(<ExpressionWithTypeArguments>node.parent)) ||
(node.kind === SyntaxKind.ThisKeyword && !isExpression(node)) ||
node.kind === SyntaxKind.ThisType;
}
function isNamespaceReference(node: Node): boolean {
return isQualifiedNameNamespaceReference(node) || isPropertyAccessNamespaceReference(node);
}
function isPropertyAccessNamespaceReference(node: Node): boolean {
let root = node;
let isLastClause = true;
if (root.parent.kind === SyntaxKind.PropertyAccessExpression) {
while (root.parent && root.parent.kind === SyntaxKind.PropertyAccessExpression) {
root = root.parent;
}
isLastClause = (<PropertyAccessExpression>root).name === node;
}
if (!isLastClause && root.parent.kind === SyntaxKind.ExpressionWithTypeArguments && root.parent.parent.kind === SyntaxKind.HeritageClause) {
const decl = root.parent.parent.parent;
return (decl.kind === SyntaxKind.ClassDeclaration && (<HeritageClause>root.parent.parent).token === SyntaxKind.ImplementsKeyword) ||
(decl.kind === SyntaxKind.InterfaceDeclaration && (<HeritageClause>root.parent.parent).token === SyntaxKind.ExtendsKeyword);
}
return false;
}
function isQualifiedNameNamespaceReference(node: Node): boolean {
let root = node;
let isLastClause = true;
if (root.parent.kind === SyntaxKind.QualifiedName) {
while (root.parent && root.parent.kind === SyntaxKind.QualifiedName) {
root = root.parent;
}
isLastClause = (<QualifiedName>root).right === node;
}
return root.parent.kind === SyntaxKind.TypeReference && !isLastClause;
}
function isInRightSideOfImport(node: Node) {
while (node.parent.kind === SyntaxKind.QualifiedName) {
node = node.parent;
}
return isInternalModuleImportEqualsDeclaration(node.parent) && (<ImportEqualsDeclaration>node.parent).moduleReference === node;
}
function getMeaningFromRightHandSideOfImportEquals(node: Node) {
Debug.assert(node.kind === SyntaxKind.Identifier);
// import a = |b|; // Namespace
// import a = |b.c|; // Value, type, namespace
// import a = |b.c|.d; // Namespace
if (node.parent.kind === SyntaxKind.QualifiedName &&
(<QualifiedName>node.parent).right === node &&
node.parent.parent.kind === SyntaxKind.ImportEqualsDeclaration) {
return SemanticMeaning.Value | SemanticMeaning.Type | SemanticMeaning.Namespace;
}
return SemanticMeaning.Namespace;
}
function getMeaningFromLocation(node: Node): SemanticMeaning {
if (node.parent.kind === SyntaxKind.ExportAssignment) {
return SemanticMeaning.Value | SemanticMeaning.Type | SemanticMeaning.Namespace;
}
else if (isInRightSideOfImport(node)) {
return getMeaningFromRightHandSideOfImportEquals(node);
}
else if (isDeclarationName(node)) {
return getMeaningFromDeclaration(node.parent);
}
else if (isTypeReference(node)) {
return SemanticMeaning.Type;
}
else if (isNamespaceReference(node)) {
return SemanticMeaning.Namespace;
}
else {
return SemanticMeaning.Value;
}
}
// Signature help
/**
* This is a semantic operation.
*/
function getSignatureHelpItems(fileName: string, position: number): SignatureHelpItems {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
return SignatureHelp.getSignatureHelpItems(program, sourceFile, position, cancellationToken);
}
/// Syntactic features
function getNonBoundSourceFile(fileName: string): SourceFile {
return syntaxTreeCache.getCurrentSourceFile(fileName);
}
function getNameOrDottedNameSpan(fileName: string, startPos: number, endPos: number): TextSpan {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
// Get node at the location
const node = getTouchingPropertyName(sourceFile, startPos);
if (node === sourceFile) {
return;
}
switch (node.kind) {
case SyntaxKind.PropertyAccessExpression:
case SyntaxKind.QualifiedName:
case SyntaxKind.StringLiteral:
case SyntaxKind.StringLiteralType:
case SyntaxKind.FalseKeyword:
case SyntaxKind.TrueKeyword:
case SyntaxKind.NullKeyword:
case SyntaxKind.SuperKeyword:
case SyntaxKind.ThisKeyword:
case SyntaxKind.ThisType:
case SyntaxKind.Identifier:
break;
// Cant create the text span
default:
return;
}
let nodeForStartPos = node;
while (true) {
if (isRightSideOfPropertyAccess(nodeForStartPos) || isRightSideOfQualifiedName(nodeForStartPos)) {
// If on the span is in right side of the the property or qualified name, return the span from the qualified name pos to end of this node
nodeForStartPos = nodeForStartPos.parent;
}
else if (isNameOfModuleDeclaration(nodeForStartPos)) {
// If this is name of a module declarations, check if this is right side of dotted module name
// If parent of the module declaration which is parent of this node is module declaration and its body is the module declaration that this node is name of
// Then this name is name from dotted module
if (nodeForStartPos.parent.parent.kind === SyntaxKind.ModuleDeclaration &&
(<ModuleDeclaration>nodeForStartPos.parent.parent).body === nodeForStartPos.parent) {
// Use parent module declarations name for start pos
nodeForStartPos = (<ModuleDeclaration>nodeForStartPos.parent.parent).name;
}
else {
// We have to use this name for start pos
break;
}
}
else {
// Is not a member expression so we have found the node for start pos
break;
}
}
return createTextSpanFromBounds(nodeForStartPos.getStart(), node.getEnd());
}
function getBreakpointStatementAtPosition(fileName: string, position: number) {
// doesn't use compiler - no need to synchronize with host
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
return BreakpointResolver.spanInSourceFileAtLocation(sourceFile, position);
}
function getNavigationBarItems(fileName: string): NavigationBarItem[] {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
return NavigationBar.getNavigationBarItems(sourceFile);
}
function getSemanticClassifications(fileName: string, span: TextSpan): ClassifiedSpan[] {
return convertClassifications(getEncodedSemanticClassifications(fileName, span));
}
function checkForClassificationCancellation(kind: SyntaxKind) {
// We don't want to actually call back into our host on every node to find out if we've
// been canceled. That would be an enormous amount of chattyness, along with the all
// the overhead of marshalling the data to/from the host. So instead we pick a few
// reasonable node kinds to bother checking on. These node kinds represent high level
// constructs that we would expect to see commonly, but just at a far less frequent
// interval.
//
// For example, in checker.ts (around 750k) we only have around 600 of these constructs.
// That means we're calling back into the host around every 1.2k of the file we process.
// Lib.d.ts has similar numbers.
switch (kind) {
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.ClassDeclaration:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.FunctionDeclaration:
cancellationToken.throwIfCancellationRequested();
}
}
function getEncodedSemanticClassifications(fileName: string, span: TextSpan): Classifications {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
const typeChecker = program.getTypeChecker();
const result: number[] = [];
const classifiableNames = program.getClassifiableNames();
processNode(sourceFile);
return { spans: result, endOfLineState: EndOfLineState.None };
function pushClassification(start: number, length: number, type: ClassificationType) {
result.push(start);
result.push(length);
result.push(type);
}
function classifySymbol(symbol: Symbol, meaningAtPosition: SemanticMeaning): ClassificationType {
const flags = symbol.getFlags();
if ((flags & SymbolFlags.Classifiable) === SymbolFlags.None) {
return;
}
if (flags & SymbolFlags.Class) {
return ClassificationType.className;
}
else if (flags & SymbolFlags.Enum) {
return ClassificationType.enumName;
}
else if (flags & SymbolFlags.TypeAlias) {
return ClassificationType.typeAliasName;
}
else if (meaningAtPosition & SemanticMeaning.Type) {
if (flags & SymbolFlags.Interface) {
return ClassificationType.interfaceName;
}
else if (flags & SymbolFlags.TypeParameter) {
return ClassificationType.typeParameterName;
}
}
else if (flags & SymbolFlags.Module) {
// Only classify a module as such if
// - It appears in a namespace context.
// - There exists a module declaration which actually impacts the value side.
if (meaningAtPosition & SemanticMeaning.Namespace ||
(meaningAtPosition & SemanticMeaning.Value && hasValueSideModule(symbol))) {
return ClassificationType.moduleName;
}
}
return undefined;
/**
* Returns true if there exists a module that introduces entities on the value side.
*/
function hasValueSideModule(symbol: Symbol): boolean {
return forEach(symbol.declarations, declaration => {
return declaration.kind === SyntaxKind.ModuleDeclaration &&
getModuleInstanceState(declaration) === ModuleInstanceState.Instantiated;
});
}
}
function processNode(node: Node) {
// Only walk into nodes that intersect the requested span.
if (node && textSpanIntersectsWith(span, node.getFullStart(), node.getFullWidth())) {
const kind = node.kind;
checkForClassificationCancellation(kind);
if (kind === SyntaxKind.Identifier && !nodeIsMissing(node)) {
const identifier = <Identifier>node;
// Only bother calling into the typechecker if this is an identifier that
// could possibly resolve to a type name. This makes classification run
// in a third of the time it would normally take.
if (classifiableNames[identifier.text]) {
const symbol = typeChecker.getSymbolAtLocation(node);
if (symbol) {
const type = classifySymbol(symbol, getMeaningFromLocation(node));
if (type) {
pushClassification(node.getStart(), node.getWidth(), type);
}
}
}
}
forEachChild(node, processNode);
}
}
}
function getClassificationTypeName(type: ClassificationType) {
switch (type) {
case ClassificationType.comment: return ClassificationTypeNames.comment;
case ClassificationType.identifier: return ClassificationTypeNames.identifier;
case ClassificationType.keyword: return ClassificationTypeNames.keyword;
case ClassificationType.numericLiteral: return ClassificationTypeNames.numericLiteral;
case ClassificationType.operator: return ClassificationTypeNames.operator;
case ClassificationType.stringLiteral: return ClassificationTypeNames.stringLiteral;
case ClassificationType.whiteSpace: return ClassificationTypeNames.whiteSpace;
case ClassificationType.text: return ClassificationTypeNames.text;
case ClassificationType.punctuation: return ClassificationTypeNames.punctuation;
case ClassificationType.className: return ClassificationTypeNames.className;
case ClassificationType.enumName: return ClassificationTypeNames.enumName;
case ClassificationType.interfaceName: return ClassificationTypeNames.interfaceName;
case ClassificationType.moduleName: return ClassificationTypeNames.moduleName;
case ClassificationType.typeParameterName: return ClassificationTypeNames.typeParameterName;
case ClassificationType.typeAliasName: return ClassificationTypeNames.typeAliasName;
case ClassificationType.parameterName: return ClassificationTypeNames.parameterName;
case ClassificationType.docCommentTagName: return ClassificationTypeNames.docCommentTagName;
case ClassificationType.jsxOpenTagName: return ClassificationTypeNames.jsxOpenTagName;
case ClassificationType.jsxCloseTagName: return ClassificationTypeNames.jsxCloseTagName;
case ClassificationType.jsxSelfClosingTagName: return ClassificationTypeNames.jsxSelfClosingTagName;
case ClassificationType.jsxAttribute: return ClassificationTypeNames.jsxAttribute;
case ClassificationType.jsxText: return ClassificationTypeNames.jsxText;
case ClassificationType.jsxAttributeStringLiteralValue: return ClassificationTypeNames.jsxAttributeStringLiteralValue;
}
}
function convertClassifications(classifications: Classifications): ClassifiedSpan[] {
Debug.assert(classifications.spans.length % 3 === 0);
const dense = classifications.spans;
const result: ClassifiedSpan[] = [];
for (let i = 0, n = dense.length; i < n; i += 3) {
result.push({
textSpan: createTextSpan(dense[i], dense[i + 1]),
classificationType: getClassificationTypeName(dense[i + 2])
});
}
return result;
}
function getSyntacticClassifications(fileName: string, span: TextSpan): ClassifiedSpan[] {
return convertClassifications(getEncodedSyntacticClassifications(fileName, span));
}
function getEncodedSyntacticClassifications(fileName: string, span: TextSpan): Classifications {
// doesn't use compiler - no need to synchronize with host
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
const spanStart = span.start;
const spanLength = span.length;
// Make a scanner we can get trivia from.
const triviaScanner = createScanner(ScriptTarget.Latest, /*skipTrivia*/ false, sourceFile.languageVariant, sourceFile.text);
const mergeConflictScanner = createScanner(ScriptTarget.Latest, /*skipTrivia*/ false, sourceFile.languageVariant, sourceFile.text);
const result: number[] = [];
processElement(sourceFile);
return { spans: result, endOfLineState: EndOfLineState.None };
function pushClassification(start: number, length: number, type: ClassificationType) {
result.push(start);
result.push(length);
result.push(type);
}
function classifyLeadingTriviaAndGetTokenStart(token: Node): number {
triviaScanner.setTextPos(token.pos);
while (true) {
const start = triviaScanner.getTextPos();
// only bother scanning if we have something that could be trivia.
if (!couldStartTrivia(sourceFile.text, start)) {
return start;
}
const kind = triviaScanner.scan();
const end = triviaScanner.getTextPos();
const width = end - start;
// The moment we get something that isn't trivia, then stop processing.
if (!isTrivia(kind)) {
return start;
}
// Don't bother with newlines/whitespace.
if (kind === SyntaxKind.NewLineTrivia || kind === SyntaxKind.WhitespaceTrivia) {
continue;
}
// Only bother with the trivia if it at least intersects the span of interest.
if (isComment(kind)) {
classifyComment(token, kind, start, width);
// Classifying a comment might cause us to reuse the trivia scanner
// (because of jsdoc comments). So after we classify the comment make
// sure we set the scanner position back to where it needs to be.
triviaScanner.setTextPos(end);
continue;
}
if (kind === SyntaxKind.ConflictMarkerTrivia) {
const text = sourceFile.text;
const ch = text.charCodeAt(start);
// for the <<<<<<< and >>>>>>> markers, we just add them in as comments
// in the classification stream.
if (ch === CharacterCodes.lessThan || ch === CharacterCodes.greaterThan) {
pushClassification(start, width, ClassificationType.comment);
continue;
}
// for the ======== add a comment for the first line, and then lex all
// subsequent lines up until the end of the conflict marker.
Debug.assert(ch === CharacterCodes.equals);
classifyDisabledMergeCode(text, start, end);
}
}
}
function classifyComment(token: Node, kind: SyntaxKind, start: number, width: number) {
if (kind === SyntaxKind.MultiLineCommentTrivia) {
// See if this is a doc comment. If so, we'll classify certain portions of it
// specially.
const docCommentAndDiagnostics = parseIsolatedJSDocComment(sourceFile.text, start, width);
if (docCommentAndDiagnostics && docCommentAndDiagnostics.jsDocComment) {
docCommentAndDiagnostics.jsDocComment.parent = token;
classifyJSDocComment(docCommentAndDiagnostics.jsDocComment);
return;
}
}
// Simple comment. Just add as is.
pushCommentRange(start, width);
}
function pushCommentRange(start: number, width: number) {
pushClassification(start, width, ClassificationType.comment);
}
function classifyJSDocComment(docComment: JSDocComment) {
let pos = docComment.pos;
for (const tag of docComment.tags) {
// As we walk through each tag, classify the portion of text from the end of
// the last tag (or the start of the entire doc comment) as 'comment'.
if (tag.pos !== pos) {
pushCommentRange(pos, tag.pos - pos);
}
pushClassification(tag.atToken.pos, tag.atToken.end - tag.atToken.pos, ClassificationType.punctuation);
pushClassification(tag.tagName.pos, tag.tagName.end - tag.tagName.pos, ClassificationType.docCommentTagName);
pos = tag.tagName.end;
switch (tag.kind) {
case SyntaxKind.JSDocParameterTag:
processJSDocParameterTag(<JSDocParameterTag>tag);
break;
case SyntaxKind.JSDocTemplateTag:
processJSDocTemplateTag(<JSDocTemplateTag>tag);
break;
case SyntaxKind.JSDocTypeTag:
processElement((<JSDocTypeTag>tag).typeExpression);
break;
case SyntaxKind.JSDocReturnTag:
processElement((<JSDocReturnTag>tag).typeExpression);
break;
}
pos = tag.end;
}
if (pos !== docComment.end) {
pushCommentRange(pos, docComment.end - pos);
}
return;
function processJSDocParameterTag(tag: JSDocParameterTag) {
if (tag.preParameterName) {
pushCommentRange(pos, tag.preParameterName.pos - pos);
pushClassification(tag.preParameterName.pos, tag.preParameterName.end - tag.preParameterName.pos, ClassificationType.parameterName);
pos = tag.preParameterName.end;
}
if (tag.typeExpression) {
pushCommentRange(pos, tag.typeExpression.pos - pos);
processElement(tag.typeExpression);
pos = tag.typeExpression.end;
}
if (tag.postParameterName) {
pushCommentRange(pos, tag.postParameterName.pos - pos);
pushClassification(tag.postParameterName.pos, tag.postParameterName.end - tag.postParameterName.pos, ClassificationType.parameterName);
pos = tag.postParameterName.end;
}
}
}
function processJSDocTemplateTag(tag: JSDocTemplateTag) {
for (const child of tag.getChildren()) {
processElement(child);
}
}
function classifyDisabledMergeCode(text: string, start: number, end: number) {
// Classify the line that the ======= marker is on as a comment. Then just lex
// all further tokens and add them to the result.
let i: number;
for (i = start; i < end; i++) {
if (isLineBreak(text.charCodeAt(i))) {
break;
}
}
pushClassification(start, i - start, ClassificationType.comment);
mergeConflictScanner.setTextPos(i);
while (mergeConflictScanner.getTextPos() < end) {
classifyDisabledCodeToken();
}
}
function classifyDisabledCodeToken() {
const start = mergeConflictScanner.getTextPos();
const tokenKind = mergeConflictScanner.scan();
const end = mergeConflictScanner.getTextPos();
const type = classifyTokenType(tokenKind);
if (type) {
pushClassification(start, end - start, type);
}
}
/**
* Returns true if node should be treated as classified and no further processing is required.
* False will mean that node is not classified and traverse routine should recurse into node contents.
*/
function tryClassifyNode(node: Node): boolean {
if (nodeIsMissing(node)) {
return true;
}
const classifiedElementName = tryClassifyJsxElementName(node);
if (!isToken(node) && node.kind !== SyntaxKind.JsxText && classifiedElementName === undefined) {
return false;
}
const tokenStart = node.kind === SyntaxKind.JsxText ? node.pos : classifyLeadingTriviaAndGetTokenStart(node);
const tokenWidth = node.end - tokenStart;
Debug.assert(tokenWidth >= 0);
if (tokenWidth > 0) {
const type = classifiedElementName || classifyTokenType(node.kind, node);
if (type) {
pushClassification(tokenStart, tokenWidth, type);
}
}
return true;
}
function tryClassifyJsxElementName(token: Node): ClassificationType {
switch (token.parent && token.parent.kind) {
case SyntaxKind.JsxOpeningElement:
if ((<JsxOpeningElement>token.parent).tagName === token) {
return ClassificationType.jsxOpenTagName;
}
break;
case SyntaxKind.JsxClosingElement:
if ((<JsxClosingElement>token.parent).tagName === token) {
return ClassificationType.jsxCloseTagName;
}
break;
case SyntaxKind.JsxSelfClosingElement:
if ((<JsxSelfClosingElement>token.parent).tagName === token) {
return ClassificationType.jsxSelfClosingTagName;
}
break;
case SyntaxKind.JsxAttribute:
if ((<JsxAttribute>token.parent).name === token) {
return ClassificationType.jsxAttribute;
}
break;
}
return undefined;
}
// for accurate classification, the actual token should be passed in. however, for
// cases like 'disabled merge code' classification, we just get the token kind and
// classify based on that instead.
function classifyTokenType(tokenKind: SyntaxKind, token?: Node): ClassificationType {
if (isKeyword(tokenKind)) {
return ClassificationType.keyword;
}
// Special case < and > If they appear in a generic context they are punctuation,
// not operators.
if (tokenKind === SyntaxKind.LessThanToken || tokenKind === SyntaxKind.GreaterThanToken) {
// If the node owning the token has a type argument list or type parameter list, then
// we can effectively assume that a '<' and '>' belong to those lists.
if (token && getTypeArgumentOrTypeParameterList(token.parent)) {
return ClassificationType.punctuation;
}
}
if (isPunctuation(tokenKind)) {
if (token) {
if (tokenKind === SyntaxKind.EqualsToken) {
// the '=' in a variable declaration is special cased here.
if (token.parent.kind === SyntaxKind.VariableDeclaration ||
token.parent.kind === SyntaxKind.PropertyDeclaration ||
token.parent.kind === SyntaxKind.Parameter ||
token.parent.kind === SyntaxKind.JsxAttribute) {
return ClassificationType.operator;
}
}
if (token.parent.kind === SyntaxKind.BinaryExpression ||
token.parent.kind === SyntaxKind.PrefixUnaryExpression ||
token.parent.kind === SyntaxKind.PostfixUnaryExpression ||
token.parent.kind === SyntaxKind.ConditionalExpression) {
return ClassificationType.operator;
}
}
return ClassificationType.punctuation;
}
else if (tokenKind === SyntaxKind.NumericLiteral) {
return ClassificationType.numericLiteral;
}
else if (tokenKind === SyntaxKind.StringLiteral || tokenKind === SyntaxKind.StringLiteralType) {
return token.parent.kind === SyntaxKind.JsxAttribute ? ClassificationType.jsxAttributeStringLiteralValue : ClassificationType.stringLiteral;
}
else if (tokenKind === SyntaxKind.RegularExpressionLiteral) {
// TODO: we should get another classification type for these literals.
return ClassificationType.stringLiteral;
}
else if (isTemplateLiteralKind(tokenKind)) {
// TODO (drosen): we should *also* get another classification type for these literals.
return ClassificationType.stringLiteral;
}
else if (tokenKind === SyntaxKind.JsxText) {
return ClassificationType.jsxText;
}
else if (tokenKind === SyntaxKind.Identifier) {
if (token) {
switch (token.parent.kind) {
case SyntaxKind.ClassDeclaration:
if ((<ClassDeclaration>token.parent).name === token) {
return ClassificationType.className;
}
return;
case SyntaxKind.TypeParameter:
if ((<TypeParameterDeclaration>token.parent).name === token) {
return ClassificationType.typeParameterName;
}
return;
case SyntaxKind.InterfaceDeclaration:
if ((<InterfaceDeclaration>token.parent).name === token) {
return ClassificationType.interfaceName;
}
return;
case SyntaxKind.EnumDeclaration:
if ((<EnumDeclaration>token.parent).name === token) {
return ClassificationType.enumName;
}
return;
case SyntaxKind.ModuleDeclaration:
if ((<ModuleDeclaration>token.parent).name === token) {
return ClassificationType.moduleName;
}
return;
case SyntaxKind.Parameter:
if ((<ParameterDeclaration>token.parent).name === token) {
const isThis = token.kind === SyntaxKind.Identifier && (<Identifier>token).originalKeywordKind === SyntaxKind.ThisKeyword;
return isThis ? ClassificationType.keyword : ClassificationType.parameterName;
}
return;
}
}
return ClassificationType.identifier;
}
}
function processElement(element: Node) {
if (!element) {
return;
}
// Ignore nodes that don't intersect the original span to classify.
if (decodedTextSpanIntersectsWith(spanStart, spanLength, element.pos, element.getFullWidth())) {
checkForClassificationCancellation(element.kind);
const children = element.getChildren(sourceFile);
for (let i = 0, n = children.length; i < n; i++) {
const child = children[i];
if (!tryClassifyNode(child)) {
// Recurse into our child nodes.
processElement(child);
}
}
}
}
}
function getOutliningSpans(fileName: string): OutliningSpan[] {
// doesn't use compiler - no need to synchronize with host
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
return OutliningElementsCollector.collectElements(sourceFile);
}
function getBraceMatchingAtPosition(fileName: string, position: number) {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
const result: TextSpan[] = [];
const token = getTouchingToken(sourceFile, position);
if (token.getStart(sourceFile) === position) {
const matchKind = getMatchingTokenKind(token);
// Ensure that there is a corresponding token to match ours.
if (matchKind) {
const parentElement = token.parent;
const childNodes = parentElement.getChildren(sourceFile);
for (const current of childNodes) {
if (current.kind === matchKind) {
const range1 = createTextSpan(token.getStart(sourceFile), token.getWidth(sourceFile));
const range2 = createTextSpan(current.getStart(sourceFile), current.getWidth(sourceFile));
// We want to order the braces when we return the result.
if (range1.start < range2.start) {
result.push(range1, range2);
}
else {
result.push(range2, range1);
}
break;
}
}
}
}
return result;
function getMatchingTokenKind(token: Node): ts.SyntaxKind {
switch (token.kind) {
case ts.SyntaxKind.OpenBraceToken: return ts.SyntaxKind.CloseBraceToken;
case ts.SyntaxKind.OpenParenToken: return ts.SyntaxKind.CloseParenToken;
case ts.SyntaxKind.OpenBracketToken: return ts.SyntaxKind.CloseBracketToken;
case ts.SyntaxKind.LessThanToken: return ts.SyntaxKind.GreaterThanToken;
case ts.SyntaxKind.CloseBraceToken: return ts.SyntaxKind.OpenBraceToken;
case ts.SyntaxKind.CloseParenToken: return ts.SyntaxKind.OpenParenToken;
case ts.SyntaxKind.CloseBracketToken: return ts.SyntaxKind.OpenBracketToken;
case ts.SyntaxKind.GreaterThanToken: return ts.SyntaxKind.LessThanToken;
}
return undefined;
}
}
function getIndentationAtPosition(fileName: string, position: number, editorOptions: EditorOptions) {
let start = new Date().getTime();
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
log("getIndentationAtPosition: getCurrentSourceFile: " + (new Date().getTime() - start));
start = new Date().getTime();
const result = formatting.SmartIndenter.getIndentation(position, sourceFile, editorOptions);
log("getIndentationAtPosition: computeIndentation : " + (new Date().getTime() - start));
return result;
}
function getFormattingEditsForRange(fileName: string, start: number, end: number, options: FormatCodeOptions): TextChange[] {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
return formatting.formatSelection(start, end, sourceFile, getRuleProvider(options), options);
}
function getFormattingEditsForDocument(fileName: string, options: FormatCodeOptions): TextChange[] {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
return formatting.formatDocument(sourceFile, getRuleProvider(options), options);
}
function getFormattingEditsAfterKeystroke(fileName: string, position: number, key: string, options: FormatCodeOptions): TextChange[] {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
if (key === "}") {
return formatting.formatOnClosingCurly(position, sourceFile, getRuleProvider(options), options);
}
else if (key === ";") {
return formatting.formatOnSemicolon(position, sourceFile, getRuleProvider(options), options);
}
else if (key === "\n") {
return formatting.formatOnEnter(position, sourceFile, getRuleProvider(options), options);
}
return [];
}
/**
* Checks if position points to a valid position to add JSDoc comments, and if so,
* returns the appropriate template. Otherwise returns an empty string.
* Valid positions are
* - outside of comments, statements, and expressions, and
* - preceding a:
* - function/constructor/method declaration
* - class declarations
* - variable statements
* - namespace declarations
*
* Hosts should ideally check that:
* - The line is all whitespace up to 'position' before performing the insertion.
* - If the keystroke sequence "/\*\*" induced the call, we also check that the next
* non-whitespace character is '*', which (approximately) indicates whether we added
* the second '*' to complete an existing (JSDoc) comment.
* @param fileName The file in which to perform the check.
* @param position The (character-indexed) position in the file where the check should
* be performed.
*/
function getDocCommentTemplateAtPosition(fileName: string, position: number): TextInsertion {
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
// Check if in a context where we don't want to perform any insertion
if (isInString(sourceFile, position) || isInComment(sourceFile, position) || hasDocComment(sourceFile, position)) {
return undefined;
}
const tokenAtPos = getTokenAtPosition(sourceFile, position);
const tokenStart = tokenAtPos.getStart();
if (!tokenAtPos || tokenStart < position) {
return undefined;
}
// TODO: add support for:
// - enums/enum members
// - interfaces
// - property declarations
// - potentially property assignments
let commentOwner: Node;
findOwner: for (commentOwner = tokenAtPos; commentOwner; commentOwner = commentOwner.parent) {
switch (commentOwner.kind) {
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.Constructor:
case SyntaxKind.ClassDeclaration:
case SyntaxKind.VariableStatement:
break findOwner;
case SyntaxKind.SourceFile:
return undefined;
case SyntaxKind.ModuleDeclaration:
// If in walking up the tree, we hit a a nested namespace declaration,
// then we must be somewhere within a dotted namespace name; however we don't
// want to give back a JSDoc template for the 'b' or 'c' in 'namespace a.b.c { }'.
if (commentOwner.parent.kind === SyntaxKind.ModuleDeclaration) {
return undefined;
}
break findOwner;
}
}
if (!commentOwner || commentOwner.getStart() < position) {
return undefined;
}
const parameters = getParametersForJsDocOwningNode(commentOwner);
const posLineAndChar = sourceFile.getLineAndCharacterOfPosition(position);
const lineStart = sourceFile.getLineStarts()[posLineAndChar.line];
const indentationStr = sourceFile.text.substr(lineStart, posLineAndChar.character);
const newLine = getNewLineOrDefaultFromHost(host);
let docParams = "";
for (let i = 0, numParams = parameters.length; i < numParams; i++) {
const currentName = parameters[i].name;
const paramName = currentName.kind === SyntaxKind.Identifier ?
(<Identifier>currentName).text :
"param" + i;
docParams += `${indentationStr} * @param ${paramName}${newLine}`;
}
// A doc comment consists of the following
// * The opening comment line
// * the first line (without a param) for the object's untagged info (this is also where the caret ends up)
// * the '@param'-tagged lines
// * TODO: other tags.
// * the closing comment line
// * if the caret was directly in front of the object, then we add an extra line and indentation.
const preamble = "/**" + newLine +
indentationStr + " * ";
const result =
preamble + newLine +
docParams +
indentationStr + " */" +
(tokenStart === position ? newLine + indentationStr : "");
return { newText: result, caretOffset: preamble.length };
}
function isValidBraceCompletionAtPosition(fileName: string, position: number, openingBrace: number): boolean {
// '<' is currently not supported, figuring out if we're in a Generic Type vs. a comparison is too
// expensive to do during typing scenarios
// i.e. whether we're dealing with:
// var x = new foo<| ( with class foo<T>{} )
// or
// var y = 3 <|
if (openingBrace === CharacterCodes.lessThan) {
return false;
}
const sourceFile = syntaxTreeCache.getCurrentSourceFile(fileName);
// Check if in a context where we don't want to perform any insertion
if (isInString(sourceFile, position) || isInComment(sourceFile, position)) {
return false;
}
if (isInsideJsxElementOrAttribute(sourceFile, position)) {
return openingBrace === CharacterCodes.openBrace;
}
if (isInTemplateString(sourceFile, position)) {
return false;
}
return true;
}
function getParametersForJsDocOwningNode(commentOwner: Node): ParameterDeclaration[] {
if (isFunctionLike(commentOwner)) {
return commentOwner.parameters;
}
if (commentOwner.kind === SyntaxKind.VariableStatement) {
const varStatement = <VariableStatement>commentOwner;
const varDeclarations = varStatement.declarationList.declarations;
if (varDeclarations.length === 1 && varDeclarations[0].initializer) {
return getParametersFromRightHandSideOfAssignment(varDeclarations[0].initializer);
}
}
return emptyArray;
}
/**
* Digs into an an initializer or RHS operand of an assignment operation
* to get the parameters of an apt signature corresponding to a
* function expression or a class expression.
*
* @param rightHandSide the expression which may contain an appropriate set of parameters
* @returns the parameters of a signature found on the RHS if one exists; otherwise 'emptyArray'.
*/
function getParametersFromRightHandSideOfAssignment(rightHandSide: Expression): ParameterDeclaration[] {
while (rightHandSide.kind === SyntaxKind.ParenthesizedExpression) {
rightHandSide = (<ParenthesizedExpression>rightHandSide).expression;
}
switch (rightHandSide.kind) {
case SyntaxKind.FunctionExpression:
case SyntaxKind.ArrowFunction:
return (<FunctionExpression>rightHandSide).parameters;
case SyntaxKind.ClassExpression:
for (const member of (<ClassExpression>rightHandSide).members) {
if (member.kind === SyntaxKind.Constructor) {
return (<ConstructorDeclaration>member).parameters;
}
}
break;
}
return emptyArray;
}
function getTodoComments(fileName: string, descriptors: TodoCommentDescriptor[]): TodoComment[] {
// Note: while getting todo comments seems like a syntactic operation, we actually
// treat it as a semantic operation here. This is because we expect our host to call
// this on every single file. If we treat this syntactically, then that will cause
// us to populate and throw away the tree in our syntax tree cache for each file. By
// treating this as a semantic operation, we can access any tree without throwing
// anything away.
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
cancellationToken.throwIfCancellationRequested();
const fileContents = sourceFile.text;
const result: TodoComment[] = [];
if (descriptors.length > 0) {
const regExp = getTodoCommentsRegExp();
let matchArray: RegExpExecArray;
while (matchArray = regExp.exec(fileContents)) {
cancellationToken.throwIfCancellationRequested();
// If we got a match, here is what the match array will look like. Say the source text is:
//
// " // hack 1"
//
// The result array with the regexp: will be:
//
// ["// hack 1", "// ", "hack 1", undefined, "hack"]
//
// Here are the relevant capture groups:
// 0) The full match for the entire regexp.
// 1) The preamble to the message portion.
// 2) The message portion.
// 3...N) The descriptor that was matched - by index. 'undefined' for each
// descriptor that didn't match. an actual value if it did match.
//
// i.e. 'undefined' in position 3 above means TODO(jason) didn't match.
// "hack" in position 4 means HACK did match.
const firstDescriptorCaptureIndex = 3;
Debug.assert(matchArray.length === descriptors.length + firstDescriptorCaptureIndex);
const preamble = matchArray[1];
const matchPosition = matchArray.index + preamble.length;
// OK, we have found a match in the file. This is only an acceptable match if
// it is contained within a comment.
const token = getTokenAtPosition(sourceFile, matchPosition);
if (!isInsideComment(sourceFile, token, matchPosition)) {
continue;
}
let descriptor: TodoCommentDescriptor = undefined;
for (let i = 0, n = descriptors.length; i < n; i++) {
if (matchArray[i + firstDescriptorCaptureIndex]) {
descriptor = descriptors[i];
}
}
Debug.assert(descriptor !== undefined);
// We don't want to match something like 'TODOBY', so we make sure a non
// letter/digit follows the match.
if (isLetterOrDigit(fileContents.charCodeAt(matchPosition + descriptor.text.length))) {
continue;
}
const message = matchArray[2];
result.push({
descriptor: descriptor,
message: message,
position: matchPosition
});
}
}
return result;
function escapeRegExp(str: string): string {
return str.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g, "\\$&");
}
function getTodoCommentsRegExp(): RegExp {
// NOTE: ?: means 'non-capture group'. It allows us to have groups without having to
// filter them out later in the final result array.
// TODO comments can appear in one of the following forms:
//
// 1) // TODO or /////////// TODO
//
// 2) /* TODO or /********** TODO
//
// 3) /*
// * TODO
// */
//
// The following three regexps are used to match the start of the text up to the TODO
// comment portion.
const singleLineCommentStart = /(?:\/\/+\s*)/.source;
const multiLineCommentStart = /(?:\/\*+\s*)/.source;
const anyNumberOfSpacesAndAsterisksAtStartOfLine = /(?:^(?:\s|\*)*)/.source;
// Match any of the above three TODO comment start regexps.
// Note that the outermost group *is* a capture group. We want to capture the preamble
// so that we can determine the starting position of the TODO comment match.
const preamble = "(" + anyNumberOfSpacesAndAsterisksAtStartOfLine + "|" + singleLineCommentStart + "|" + multiLineCommentStart + ")";
// Takes the descriptors and forms a regexp that matches them as if they were literals.
// For example, if the descriptors are "TODO(jason)" and "HACK", then this will be:
//
// (?:(TODO\(jason\))|(HACK))
//
// Note that the outermost group is *not* a capture group, but the innermost groups
// *are* capture groups. By capturing the inner literals we can determine after
// matching which descriptor we are dealing with.
const literals = "(?:" + map(descriptors, d => "(" + escapeRegExp(d.text) + ")").join("|") + ")";
// After matching a descriptor literal, the following regexp matches the rest of the
// text up to the end of the line (or */).
const endOfLineOrEndOfComment = /(?:$|\*\/)/.source;
const messageRemainder = /(?:.*?)/.source;
// This is the portion of the match we'll return as part of the TODO comment result. We
// match the literal portion up to the end of the line or end of comment.
const messagePortion = "(" + literals + messageRemainder + ")";
const regExpString = preamble + messagePortion + endOfLineOrEndOfComment;
// The final regexp will look like this:
// /((?:\/\/+\s*)|(?:\/\*+\s*)|(?:^(?:\s|\*)*))((?:(TODO\(jason\))|(HACK))(?:.*?))(?:$|\*\/)/gim
// The flags of the regexp are important here.
// 'g' is so that we are doing a global search and can find matches several times
// in the input.
//
// 'i' is for case insensitivity (We do this to match C# TODO comment code).
//
// 'm' is so we can find matches in a multi-line input.
return new RegExp(regExpString, "gim");
}
function isLetterOrDigit(char: number): boolean {
return (char >= CharacterCodes.a && char <= CharacterCodes.z) ||
(char >= CharacterCodes.A && char <= CharacterCodes.Z) ||
(char >= CharacterCodes._0 && char <= CharacterCodes._9);
}
}
function getStringLiteralTypeForNode(node: StringLiteral | StringLiteralTypeNode, typeChecker: TypeChecker): StringLiteralType {
const searchNode = node.parent.kind === SyntaxKind.StringLiteralType ? <StringLiteralTypeNode>node.parent : node;
const type = typeChecker.getTypeAtLocation(searchNode);
if (type && type.flags & TypeFlags.StringLiteral) {
return <StringLiteralType>type;
}
return undefined;
}
function getRenameInfo(fileName: string, position: number): RenameInfo {
synchronizeHostData();
const sourceFile = getValidSourceFile(fileName);
const typeChecker = program.getTypeChecker();
const defaultLibFileName = host.getDefaultLibFileName(host.getCompilationSettings());
const canonicalDefaultLibName = getCanonicalFileName(ts.normalizePath(defaultLibFileName));
const node = getTouchingWord(sourceFile, position, /*includeJsDocComment*/ true);
if (node) {
if (node.kind === SyntaxKind.Identifier ||
node.kind === SyntaxKind.StringLiteral ||
isLiteralNameOfPropertyDeclarationOrIndexAccess(node) ||
isThis(node)) {
const symbol = typeChecker.getSymbolAtLocation(node);
// Only allow a symbol to be renamed if it actually has at least one declaration.
if (symbol) {
const declarations = symbol.getDeclarations();
if (declarations && declarations.length > 0) {
// Disallow rename for elements that are defined in the standard TypeScript library.
if (forEach(declarations, isDefinedInLibraryFile)) {
return getRenameInfoError(getLocaleSpecificMessage(Diagnostics.You_cannot_rename_elements_that_are_defined_in_the_standard_TypeScript_library));
}
const displayName = stripQuotes(getDeclaredName(typeChecker, symbol, node));
const kind = getSymbolKind(symbol, node);
if (kind) {
return {
canRename: true,
kind,
displayName,
localizedErrorMessage: undefined,
fullDisplayName: typeChecker.getFullyQualifiedName(symbol),
kindModifiers: getSymbolModifiers(symbol),
triggerSpan: createTriggerSpanForNode(node, sourceFile)
};
}
}
}
else if (node.kind === SyntaxKind.StringLiteral) {
const type = getStringLiteralTypeForNode(<StringLiteral>node, typeChecker);
if (type) {
if (isDefinedInLibraryFile(node)) {
return getRenameInfoError(getLocaleSpecificMessage(Diagnostics.You_cannot_rename_elements_that_are_defined_in_the_standard_TypeScript_library));
}
else {
const displayName = stripQuotes(type.text);
return {
canRename: true,
kind: ScriptElementKind.variableElement,
displayName,
localizedErrorMessage: undefined,
fullDisplayName: displayName,
kindModifiers: ScriptElementKindModifier.none,
triggerSpan: createTriggerSpanForNode(node, sourceFile)
};
}
}
}
}
}
return getRenameInfoError(getLocaleSpecificMessage(Diagnostics.You_cannot_rename_this_element));
function getRenameInfoError(localizedErrorMessage: string): RenameInfo {
return {
canRename: false,
localizedErrorMessage: localizedErrorMessage,
displayName: undefined,
fullDisplayName: undefined,
kind: undefined,
kindModifiers: undefined,
triggerSpan: undefined
};
}
function isDefinedInLibraryFile(declaration: Node) {
if (defaultLibFileName) {
const sourceFile = declaration.getSourceFile();
const canonicalName = getCanonicalFileName(ts.normalizePath(sourceFile.fileName));
if (canonicalName === canonicalDefaultLibName) {
return true;
}
}
return false;
}
function createTriggerSpanForNode(node: Node, sourceFile: SourceFile) {
let start = node.getStart(sourceFile);
let width = node.getWidth(sourceFile);
if (node.kind === SyntaxKind.StringLiteral) {
// Exclude the quotes
start += 1;
width -= 2;
}
return createTextSpan(start, width);
}
}
return {
dispose,
cleanupSemanticCache,
getSyntacticDiagnostics,
getSemanticDiagnostics,
getCompilerOptionsDiagnostics,
getSyntacticClassifications,
getSemanticClassifications,
getEncodedSyntacticClassifications,
getEncodedSemanticClassifications,
getCompletionsAtPosition,
getCompletionEntryDetails,
getSignatureHelpItems,
getQuickInfoAtPosition,
getDefinitionAtPosition,
getTypeDefinitionAtPosition,
getReferencesAtPosition,
findReferences,
getOccurrencesAtPosition,
getDocumentHighlights,
getNameOrDottedNameSpan,
getBreakpointStatementAtPosition,
getNavigateToItems,
getRenameInfo,
findRenameLocations,
getNavigationBarItems,
getOutliningSpans,
getTodoComments,
getBraceMatchingAtPosition,
getIndentationAtPosition,
getFormattingEditsForRange,
getFormattingEditsForDocument,
getFormattingEditsAfterKeystroke,
getDocCommentTemplateAtPosition,
isValidBraceCompletionAtPosition,
getEmitOutput,
getNonBoundSourceFile,
getProgram
};
}
/* @internal */
export function getNameTable(sourceFile: SourceFile): Map<number> {
if (!sourceFile.nameTable) {
initializeNameTable(sourceFile);
}
return sourceFile.nameTable;
}
function initializeNameTable(sourceFile: SourceFile): void {
const nameTable: Map<number> = {};
walk(sourceFile);
sourceFile.nameTable = nameTable;
function walk(node: Node) {
switch (node.kind) {
case SyntaxKind.Identifier:
nameTable[(<Identifier>node).text] = nameTable[(<Identifier>node).text] === undefined ? node.pos : -1;
break;
case SyntaxKind.StringLiteral:
case SyntaxKind.NumericLiteral:
// We want to store any numbers/strings if they were a name that could be
// related to a declaration. So, if we have 'import x = require("something")'
// then we want 'something' to be in the name table. Similarly, if we have
// "a['propname']" then we want to store "propname" in the name table.
if (isDeclarationName(node) ||
node.parent.kind === SyntaxKind.ExternalModuleReference ||
isArgumentOfElementAccessExpression(node) ||
isLiteralComputedPropertyDeclarationName(node)) {
nameTable[(<LiteralExpression>node).text] = nameTable[(<LiteralExpression>node).text] === undefined ? node.pos : -1;
}
break;
default:
forEachChild(node, walk);
if (node.jsDocComments) {
for (const jsDocComment of node.jsDocComments) {
forEachChild(jsDocComment, walk);
}
}
}
}
}
function isArgumentOfElementAccessExpression(node: Node) {
return node &&
node.parent &&
node.parent.kind === SyntaxKind.ElementAccessExpression &&
(<ElementAccessExpression>node.parent).argumentExpression === node;
}
/// Classifier
export function createClassifier(): Classifier {
const scanner = createScanner(ScriptTarget.Latest, /*skipTrivia*/ false);
/// We do not have a full parser support to know when we should parse a regex or not
/// If we consider every slash token to be a regex, we could be missing cases like "1/2/3", where
/// we have a series of divide operator. this list allows us to be more accurate by ruling out
/// locations where a regexp cannot exist.
const noRegexTable: boolean[] = [];
noRegexTable[SyntaxKind.Identifier] = true;
noRegexTable[SyntaxKind.StringLiteral] = true;
noRegexTable[SyntaxKind.NumericLiteral] = true;
noRegexTable[SyntaxKind.RegularExpressionLiteral] = true;
noRegexTable[SyntaxKind.ThisKeyword] = true;
noRegexTable[SyntaxKind.PlusPlusToken] = true;
noRegexTable[SyntaxKind.MinusMinusToken] = true;
noRegexTable[SyntaxKind.CloseParenToken] = true;
noRegexTable[SyntaxKind.CloseBracketToken] = true;
noRegexTable[SyntaxKind.CloseBraceToken] = true;
noRegexTable[SyntaxKind.TrueKeyword] = true;
noRegexTable[SyntaxKind.FalseKeyword] = true;
// Just a stack of TemplateHeads and OpenCurlyBraces, used to perform rudimentary (inexact)
// classification on template strings. Because of the context free nature of templates,
// the only precise way to classify a template portion would be by propagating the stack across
// lines, just as we do with the end-of-line state. However, this is a burden for implementers,
// and the behavior is entirely subsumed by the syntactic classifier anyway, so we instead
// flatten any nesting when the template stack is non-empty and encode it in the end-of-line state.
// Situations in which this fails are
// 1) When template strings are nested across different lines:
// `hello ${ `world
// ` }`
//
// Where on the second line, you will get the closing of a template,
// a closing curly, and a new template.
//
// 2) When substitution expressions have curly braces and the curly brace falls on the next line:
// `hello ${ () => {
// return "world" } } `
//
// Where on the second line, you will get the 'return' keyword,
// a string literal, and a template end consisting of '} } `'.
const templateStack: SyntaxKind[] = [];
/** Returns true if 'keyword2' can legally follow 'keyword1' in any language construct. */
function canFollow(keyword1: SyntaxKind, keyword2: SyntaxKind) {
if (isAccessibilityModifier(keyword1)) {
if (keyword2 === SyntaxKind.GetKeyword ||
keyword2 === SyntaxKind.SetKeyword ||
keyword2 === SyntaxKind.ConstructorKeyword ||
keyword2 === SyntaxKind.StaticKeyword) {
// Allow things like "public get", "public constructor" and "public static".
// These are all legal.
return true;
}
// Any other keyword following "public" is actually an identifier an not a real
// keyword.
return false;
}
// Assume any other keyword combination is legal. This can be refined in the future
// if there are more cases we want the classifier to be better at.
return true;
}
function convertClassifications(classifications: Classifications, text: string): ClassificationResult {
const entries: ClassificationInfo[] = [];
const dense = classifications.spans;
let lastEnd = 0;
for (let i = 0, n = dense.length; i < n; i += 3) {
const start = dense[i];
const length = dense[i + 1];
const type = <ClassificationType>dense[i + 2];
// Make a whitespace entry between the last item and this one.
if (lastEnd >= 0) {
const whitespaceLength = start - lastEnd;
if (whitespaceLength > 0) {
entries.push({ length: whitespaceLength, classification: TokenClass.Whitespace });
}
}
entries.push({ length, classification: convertClassification(type) });
lastEnd = start + length;
}
const whitespaceLength = text.length - lastEnd;
if (whitespaceLength > 0) {
entries.push({ length: whitespaceLength, classification: TokenClass.Whitespace });
}
return { entries, finalLexState: classifications.endOfLineState };
}
function convertClassification(type: ClassificationType): TokenClass {
switch (type) {
case ClassificationType.comment: return TokenClass.Comment;
case ClassificationType.keyword: return TokenClass.Keyword;
case ClassificationType.numericLiteral: return TokenClass.NumberLiteral;
case ClassificationType.operator: return TokenClass.Operator;
case ClassificationType.stringLiteral: return TokenClass.StringLiteral;
case ClassificationType.whiteSpace: return TokenClass.Whitespace;
case ClassificationType.punctuation: return TokenClass.Punctuation;
case ClassificationType.identifier:
case ClassificationType.className:
case ClassificationType.enumName:
case ClassificationType.interfaceName:
case ClassificationType.moduleName:
case ClassificationType.typeParameterName:
case ClassificationType.typeAliasName:
case ClassificationType.text:
case ClassificationType.parameterName:
default:
return TokenClass.Identifier;
}
}
function getClassificationsForLine(text: string, lexState: EndOfLineState, syntacticClassifierAbsent: boolean): ClassificationResult {
return convertClassifications(getEncodedLexicalClassifications(text, lexState, syntacticClassifierAbsent), text);
}
// If there is a syntactic classifier ('syntacticClassifierAbsent' is false),
// we will be more conservative in order to avoid conflicting with the syntactic classifier.
function getEncodedLexicalClassifications(text: string, lexState: EndOfLineState, syntacticClassifierAbsent: boolean): Classifications {
let offset = 0;
let token = SyntaxKind.Unknown;
let lastNonTriviaToken = SyntaxKind.Unknown;
// Empty out the template stack for reuse.
while (templateStack.length > 0) {
templateStack.pop();
}
// If we're in a string literal, then prepend: "\
// (and a newline). That way when we lex we'll think we're still in a string literal.
//
// If we're in a multiline comment, then prepend: /*
// (and a newline). That way when we lex we'll think we're still in a multiline comment.
switch (lexState) {
case EndOfLineState.InDoubleQuoteStringLiteral:
text = "\"\\\n" + text;
offset = 3;
break;
case EndOfLineState.InSingleQuoteStringLiteral:
text = "'\\\n" + text;
offset = 3;
break;
case EndOfLineState.InMultiLineCommentTrivia:
text = "/*\n" + text;
offset = 3;
break;
case EndOfLineState.InTemplateHeadOrNoSubstitutionTemplate:
text = "`\n" + text;
offset = 2;
break;
case EndOfLineState.InTemplateMiddleOrTail:
text = "}\n" + text;
offset = 2;
// fallthrough
case EndOfLineState.InTemplateSubstitutionPosition:
templateStack.push(SyntaxKind.TemplateHead);
break;
}
scanner.setText(text);
const result: Classifications = {
endOfLineState: EndOfLineState.None,
spans: []
};
// We can run into an unfortunate interaction between the lexical and syntactic classifier
// when the user is typing something generic. Consider the case where the user types:
//
// Foo<number
//
// From the lexical classifier's perspective, 'number' is a keyword, and so the word will
// be classified as such. However, from the syntactic classifier's tree-based perspective
// this is simply an expression with the identifier 'number' on the RHS of the less than
// token. So the classification will go back to being an identifier. The moment the user
// types again, number will become a keyword, then an identifier, etc. etc.
//
// To try to avoid this problem, we avoid classifying contextual keywords as keywords
// when the user is potentially typing something generic. We just can't do a good enough
// job at the lexical level, and so well leave it up to the syntactic classifier to make
// the determination.
//
// In order to determine if the user is potentially typing something generic, we use a
// weak heuristic where we track < and > tokens. It's a weak heuristic, but should
// work well enough in practice.
let angleBracketStack = 0;
do {
token = scanner.scan();
if (!isTrivia(token)) {
if ((token === SyntaxKind.SlashToken || token === SyntaxKind.SlashEqualsToken) && !noRegexTable[lastNonTriviaToken]) {
if (scanner.reScanSlashToken() === SyntaxKind.RegularExpressionLiteral) {
token = SyntaxKind.RegularExpressionLiteral;
}
}
else if (lastNonTriviaToken === SyntaxKind.DotToken && isKeyword(token)) {
token = SyntaxKind.Identifier;
}
else if (isKeyword(lastNonTriviaToken) && isKeyword(token) && !canFollow(lastNonTriviaToken, token)) {
// We have two keywords in a row. Only treat the second as a keyword if
// it's a sequence that could legally occur in the language. Otherwise
// treat it as an identifier. This way, if someone writes "private var"
// we recognize that 'var' is actually an identifier here.
token = SyntaxKind.Identifier;
}
else if (lastNonTriviaToken === SyntaxKind.Identifier &&
token === SyntaxKind.LessThanToken) {
// Could be the start of something generic. Keep track of that by bumping
// up the current count of generic contexts we may be in.
angleBracketStack++;
}
else if (token === SyntaxKind.GreaterThanToken && angleBracketStack > 0) {
// If we think we're currently in something generic, then mark that that
// generic entity is complete.
angleBracketStack--;
}
else if (token === SyntaxKind.AnyKeyword ||
token === SyntaxKind.StringKeyword ||
token === SyntaxKind.NumberKeyword ||
token === SyntaxKind.BooleanKeyword ||
token === SyntaxKind.SymbolKeyword) {
if (angleBracketStack > 0 && !syntacticClassifierAbsent) {
// If it looks like we're could be in something generic, don't classify this
// as a keyword. We may just get overwritten by the syntactic classifier,
// causing a noisy experience for the user.
token = SyntaxKind.Identifier;
}
}
else if (token === SyntaxKind.TemplateHead) {
templateStack.push(token);
}
else if (token === SyntaxKind.OpenBraceToken) {
// If we don't have anything on the template stack,
// then we aren't trying to keep track of a previously scanned template head.
if (templateStack.length > 0) {
templateStack.push(token);
}
}
else if (token === SyntaxKind.CloseBraceToken) {
// If we don't have anything on the template stack,
// then we aren't trying to keep track of a previously scanned template head.
if (templateStack.length > 0) {
const lastTemplateStackToken = lastOrUndefined(templateStack);
if (lastTemplateStackToken === SyntaxKind.TemplateHead) {
token = scanner.reScanTemplateToken();
// Only pop on a TemplateTail; a TemplateMiddle indicates there is more for us.
if (token === SyntaxKind.TemplateTail) {
templateStack.pop();
}
else {
Debug.assert(token === SyntaxKind.TemplateMiddle, "Should have been a template middle. Was " + token);
}
}
else {
Debug.assert(lastTemplateStackToken === SyntaxKind.OpenBraceToken, "Should have been an open brace. Was: " + token);
templateStack.pop();
}
}
}
lastNonTriviaToken = token;
}
processToken();
}
while (token !== SyntaxKind.EndOfFileToken);
return result;
function processToken(): void {
const start = scanner.getTokenPos();
const end = scanner.getTextPos();
addResult(start, end, classFromKind(token));
if (end >= text.length) {
if (token === SyntaxKind.StringLiteral || token === SyntaxKind.StringLiteralType) {
// Check to see if we finished up on a multiline string literal.
const tokenText = scanner.getTokenText();
if (scanner.isUnterminated()) {
const lastCharIndex = tokenText.length - 1;
let numBackslashes = 0;
while (tokenText.charCodeAt(lastCharIndex - numBackslashes) === CharacterCodes.backslash) {
numBackslashes++;
}
// If we have an odd number of backslashes, then the multiline string is unclosed
if (numBackslashes & 1) {
const quoteChar = tokenText.charCodeAt(0);
result.endOfLineState = quoteChar === CharacterCodes.doubleQuote
? EndOfLineState.InDoubleQuoteStringLiteral
: EndOfLineState.InSingleQuoteStringLiteral;
}
}
}
else if (token === SyntaxKind.MultiLineCommentTrivia) {
// Check to see if the multiline comment was unclosed.
if (scanner.isUnterminated()) {
result.endOfLineState = EndOfLineState.InMultiLineCommentTrivia;
}
}
else if (isTemplateLiteralKind(token)) {
if (scanner.isUnterminated()) {
if (token === SyntaxKind.TemplateTail) {
result.endOfLineState = EndOfLineState.InTemplateMiddleOrTail;
}
else if (token === SyntaxKind.NoSubstitutionTemplateLiteral) {
result.endOfLineState = EndOfLineState.InTemplateHeadOrNoSubstitutionTemplate;
}
else {
Debug.fail("Only 'NoSubstitutionTemplateLiteral's and 'TemplateTail's can be unterminated; got SyntaxKind #" + token);
}
}
}
else if (templateStack.length > 0 && lastOrUndefined(templateStack) === SyntaxKind.TemplateHead) {
result.endOfLineState = EndOfLineState.InTemplateSubstitutionPosition;
}
}
}
function addResult(start: number, end: number, classification: ClassificationType): void {
if (classification === ClassificationType.whiteSpace) {
// Don't bother with whitespace classifications. They're not needed.
return;
}
if (start === 0 && offset > 0) {
// We're classifying the first token, and this was a case where we prepended
// text. We should consider the start of this token to be at the start of
// the original text.
start += offset;
}
// All our tokens are in relation to the augmented text. Move them back to be
// relative to the original text.
start -= offset;
end -= offset;
const length = end - start;
if (length > 0) {
result.spans.push(start);
result.spans.push(length);
result.spans.push(classification);
}
}
}
function isBinaryExpressionOperatorToken(token: SyntaxKind): boolean {
switch (token) {
case SyntaxKind.AsteriskToken:
case SyntaxKind.SlashToken:
case SyntaxKind.PercentToken:
case SyntaxKind.PlusToken:
case SyntaxKind.MinusToken:
case SyntaxKind.LessThanLessThanToken:
case SyntaxKind.GreaterThanGreaterThanToken:
case SyntaxKind.GreaterThanGreaterThanGreaterThanToken:
case SyntaxKind.LessThanToken:
case SyntaxKind.GreaterThanToken:
case SyntaxKind.LessThanEqualsToken:
case SyntaxKind.GreaterThanEqualsToken:
case SyntaxKind.InstanceOfKeyword:
case SyntaxKind.InKeyword:
case SyntaxKind.AsKeyword:
case SyntaxKind.EqualsEqualsToken:
case SyntaxKind.ExclamationEqualsToken:
case SyntaxKind.EqualsEqualsEqualsToken:
case SyntaxKind.ExclamationEqualsEqualsToken:
case SyntaxKind.AmpersandToken:
case SyntaxKind.CaretToken:
case SyntaxKind.BarToken:
case SyntaxKind.AmpersandAmpersandToken:
case SyntaxKind.BarBarToken:
case SyntaxKind.BarEqualsToken:
case SyntaxKind.AmpersandEqualsToken:
case SyntaxKind.CaretEqualsToken:
case SyntaxKind.LessThanLessThanEqualsToken:
case SyntaxKind.GreaterThanGreaterThanEqualsToken:
case SyntaxKind.GreaterThanGreaterThanGreaterThanEqualsToken:
case SyntaxKind.PlusEqualsToken:
case SyntaxKind.MinusEqualsToken:
case SyntaxKind.AsteriskEqualsToken:
case SyntaxKind.SlashEqualsToken:
case SyntaxKind.PercentEqualsToken:
case SyntaxKind.EqualsToken:
case SyntaxKind.CommaToken:
return true;
default:
return false;
}
}
function isPrefixUnaryExpressionOperatorToken(token: SyntaxKind): boolean {
switch (token) {
case SyntaxKind.PlusToken:
case SyntaxKind.MinusToken:
case SyntaxKind.TildeToken:
case SyntaxKind.ExclamationToken:
case SyntaxKind.PlusPlusToken:
case SyntaxKind.MinusMinusToken:
return true;
default:
return false;
}
}
function isKeyword(token: SyntaxKind): boolean {
return token >= SyntaxKind.FirstKeyword && token <= SyntaxKind.LastKeyword;
}
function classFromKind(token: SyntaxKind): ClassificationType {
if (isKeyword(token)) {
return ClassificationType.keyword;
}
else if (isBinaryExpressionOperatorToken(token) || isPrefixUnaryExpressionOperatorToken(token)) {
return ClassificationType.operator;
}
else if (token >= SyntaxKind.FirstPunctuation && token <= SyntaxKind.LastPunctuation) {
return ClassificationType.punctuation;
}
switch (token) {
case SyntaxKind.NumericLiteral:
return ClassificationType.numericLiteral;
case SyntaxKind.StringLiteral:
case SyntaxKind.StringLiteralType:
return ClassificationType.stringLiteral;
case SyntaxKind.RegularExpressionLiteral:
return ClassificationType.regularExpressionLiteral;
case SyntaxKind.ConflictMarkerTrivia:
case SyntaxKind.MultiLineCommentTrivia:
case SyntaxKind.SingleLineCommentTrivia:
return ClassificationType.comment;
case SyntaxKind.WhitespaceTrivia:
case SyntaxKind.NewLineTrivia:
return ClassificationType.whiteSpace;
case SyntaxKind.Identifier:
default:
if (isTemplateLiteralKind(token)) {
return ClassificationType.stringLiteral;
}
return ClassificationType.identifier;
}
}
return {
getClassificationsForLine,
getEncodedLexicalClassifications
};
}
/// getDefaultLibraryFilePath
declare const __dirname: string;
/**
* Get the path of the default library files (lib.d.ts) as distributed with the typescript
* node package.
* The functionality is not supported if the ts module is consumed outside of a node module.
*/
export function getDefaultLibFilePath(options: CompilerOptions): string {
// Check __dirname is defined and that we are on a node.js system.
if (typeof __dirname !== "undefined") {
return __dirname + directorySeparator + getDefaultLibFileName(options);
}
throw new Error("getDefaultLibFilePath is only supported when consumed as a node module. ");
}
function initializeServices() {
objectAllocator = {
getNodeConstructor: () => NodeObject,
getSourceFileConstructor: () => SourceFileObject,
getSymbolConstructor: () => SymbolObject,
getTypeConstructor: () => TypeObject,
getSignatureConstructor: () => SignatureObject,
};
}
initializeServices();
}