mirror of
https://github.com/microsoft/TypeScript.git
synced 2026-02-05 08:11:30 -06:00
3042 lines
151 KiB
TypeScript
3042 lines
151 KiB
TypeScript
/// <reference path="utilities.ts"/>
|
|
/// <reference path="moduleNameResolver.ts"/>
|
|
/// <reference path="parser.ts"/>
|
|
|
|
/* @internal */
|
|
namespace ts {
|
|
export const enum ModuleInstanceState {
|
|
NonInstantiated = 0,
|
|
Instantiated = 1,
|
|
ConstEnumOnly = 2
|
|
}
|
|
|
|
interface ActiveLabel {
|
|
name: string;
|
|
breakTarget: FlowLabel;
|
|
continueTarget: FlowLabel;
|
|
referenced: boolean;
|
|
}
|
|
|
|
export function getModuleInstanceState(node: Node): ModuleInstanceState {
|
|
// A module is uninstantiated if it contains only
|
|
// 1. interface declarations, type alias declarations
|
|
if (node.kind === SyntaxKind.InterfaceDeclaration || node.kind === SyntaxKind.TypeAliasDeclaration) {
|
|
return ModuleInstanceState.NonInstantiated;
|
|
}
|
|
// 2. const enum declarations
|
|
else if (isConstEnumDeclaration(node)) {
|
|
return ModuleInstanceState.ConstEnumOnly;
|
|
}
|
|
// 3. non-exported import declarations
|
|
else if ((node.kind === SyntaxKind.ImportDeclaration || node.kind === SyntaxKind.ImportEqualsDeclaration) && !(hasModifier(node, ModifierFlags.Export))) {
|
|
return ModuleInstanceState.NonInstantiated;
|
|
}
|
|
// 4. other uninstantiated module declarations.
|
|
else if (node.kind === SyntaxKind.ModuleBlock) {
|
|
let state = ModuleInstanceState.NonInstantiated;
|
|
forEachChild(node, n => {
|
|
switch (getModuleInstanceState(n)) {
|
|
case ModuleInstanceState.NonInstantiated:
|
|
// child is non-instantiated - continue searching
|
|
return false;
|
|
case ModuleInstanceState.ConstEnumOnly:
|
|
// child is const enum only - record state and continue searching
|
|
state = ModuleInstanceState.ConstEnumOnly;
|
|
return false;
|
|
case ModuleInstanceState.Instantiated:
|
|
// child is instantiated - record state and stop
|
|
state = ModuleInstanceState.Instantiated;
|
|
return true;
|
|
}
|
|
});
|
|
return state;
|
|
}
|
|
else if (node.kind === SyntaxKind.ModuleDeclaration) {
|
|
const body = (<ModuleDeclaration>node).body;
|
|
return body ? getModuleInstanceState(body) : ModuleInstanceState.Instantiated;
|
|
}
|
|
else {
|
|
return ModuleInstanceState.Instantiated;
|
|
}
|
|
}
|
|
|
|
const enum ContainerFlags {
|
|
// The current node is not a container, and no container manipulation should happen before
|
|
// recursing into it.
|
|
None = 0,
|
|
|
|
// The current node is a container. It should be set as the current container (and block-
|
|
// container) before recursing into it. The current node does not have locals. Examples:
|
|
//
|
|
// Classes, ObjectLiterals, TypeLiterals, Interfaces...
|
|
IsContainer = 1 << 0,
|
|
|
|
// The current node is a block-scoped-container. It should be set as the current block-
|
|
// container before recursing into it. Examples:
|
|
//
|
|
// Blocks (when not parented by functions), Catch clauses, For/For-in/For-of statements...
|
|
IsBlockScopedContainer = 1 << 1,
|
|
|
|
// The current node is the container of a control flow path. The current control flow should
|
|
// be saved and restored, and a new control flow initialized within the container.
|
|
IsControlFlowContainer = 1 << 2,
|
|
|
|
IsFunctionLike = 1 << 3,
|
|
IsFunctionExpression = 1 << 4,
|
|
HasLocals = 1 << 5,
|
|
IsInterface = 1 << 6,
|
|
}
|
|
|
|
const binder = createBinder();
|
|
|
|
export function bindSourceFile(file: SourceFile, options: CompilerOptions) {
|
|
performance.mark("beforeBind");
|
|
binder(file, options);
|
|
performance.mark("afterBind");
|
|
performance.measure("Bind", "beforeBind", "afterBind");
|
|
}
|
|
|
|
function createBinder(): (file: SourceFile, options: CompilerOptions) => void {
|
|
let file: SourceFile;
|
|
let options: CompilerOptions;
|
|
let languageVersion: ScriptTarget;
|
|
let parent: Node;
|
|
let container: Node;
|
|
let blockScopeContainer: Node;
|
|
let lastContainer: Node;
|
|
let seenThisKeyword: boolean;
|
|
|
|
// state used by control flow analysis
|
|
let currentFlow: FlowNode;
|
|
let currentBreakTarget: FlowLabel;
|
|
let currentContinueTarget: FlowLabel;
|
|
let currentReturnTarget: FlowLabel;
|
|
let currentTrueTarget: FlowLabel;
|
|
let currentFalseTarget: FlowLabel;
|
|
let preSwitchCaseFlow: FlowNode;
|
|
let activeLabels: ActiveLabel[];
|
|
let hasExplicitReturn: boolean;
|
|
|
|
// state used for emit helpers
|
|
let emitFlags: NodeFlags;
|
|
|
|
// If this file is an external module, then it is automatically in strict-mode according to
|
|
// ES6. If it is not an external module, then we'll determine if it is in strict mode or
|
|
// not depending on if we see "use strict" in certain places (or if we hit a class/namespace).
|
|
let inStrictMode: boolean;
|
|
|
|
let symbolCount = 0;
|
|
let Symbol: { new (flags: SymbolFlags, name: string): Symbol };
|
|
let classifiableNames: Map<string>;
|
|
|
|
const unreachableFlow: FlowNode = { flags: FlowFlags.Unreachable };
|
|
const reportedUnreachableFlow: FlowNode = { flags: FlowFlags.Unreachable };
|
|
|
|
// state used to aggregate transform flags during bind.
|
|
let subtreeTransformFlags: TransformFlags = TransformFlags.None;
|
|
let skipTransformFlagAggregation: boolean;
|
|
|
|
function bindSourceFile(f: SourceFile, opts: CompilerOptions) {
|
|
file = f;
|
|
options = opts;
|
|
languageVersion = getEmitScriptTarget(options);
|
|
inStrictMode = !!file.externalModuleIndicator;
|
|
classifiableNames = createMap<string>();
|
|
symbolCount = 0;
|
|
skipTransformFlagAggregation = isDeclarationFile(file);
|
|
|
|
Symbol = objectAllocator.getSymbolConstructor();
|
|
|
|
if (!file.locals) {
|
|
bind(file);
|
|
file.symbolCount = symbolCount;
|
|
file.classifiableNames = classifiableNames;
|
|
}
|
|
|
|
file = undefined;
|
|
options = undefined;
|
|
languageVersion = undefined;
|
|
parent = undefined;
|
|
container = undefined;
|
|
blockScopeContainer = undefined;
|
|
lastContainer = undefined;
|
|
seenThisKeyword = false;
|
|
currentFlow = undefined;
|
|
currentBreakTarget = undefined;
|
|
currentContinueTarget = undefined;
|
|
currentReturnTarget = undefined;
|
|
currentTrueTarget = undefined;
|
|
currentFalseTarget = undefined;
|
|
activeLabels = undefined;
|
|
hasExplicitReturn = false;
|
|
emitFlags = NodeFlags.None;
|
|
subtreeTransformFlags = TransformFlags.None;
|
|
}
|
|
|
|
return bindSourceFile;
|
|
|
|
function createSymbol(flags: SymbolFlags, name: string): Symbol {
|
|
symbolCount++;
|
|
return new Symbol(flags, name);
|
|
}
|
|
|
|
function addDeclarationToSymbol(symbol: Symbol, node: Declaration, symbolFlags: SymbolFlags) {
|
|
symbol.flags |= symbolFlags;
|
|
|
|
node.symbol = symbol;
|
|
|
|
if (!symbol.declarations) {
|
|
symbol.declarations = [];
|
|
}
|
|
symbol.declarations.push(node);
|
|
|
|
if (symbolFlags & SymbolFlags.HasExports && !symbol.exports) {
|
|
symbol.exports = createMap<Symbol>();
|
|
}
|
|
|
|
if (symbolFlags & SymbolFlags.HasMembers && !symbol.members) {
|
|
symbol.members = createMap<Symbol>();
|
|
}
|
|
|
|
if (symbolFlags & SymbolFlags.Value) {
|
|
const valueDeclaration = symbol.valueDeclaration;
|
|
if (!valueDeclaration ||
|
|
(valueDeclaration.kind !== node.kind && valueDeclaration.kind === SyntaxKind.ModuleDeclaration)) {
|
|
// other kinds of value declarations take precedence over modules
|
|
symbol.valueDeclaration = node;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Should not be called on a declaration with a computed property name,
|
|
// unless it is a well known Symbol.
|
|
function getDeclarationName(node: Declaration): string {
|
|
if (node.name) {
|
|
if (isAmbientModule(node)) {
|
|
return isGlobalScopeAugmentation(<ModuleDeclaration>node) ? "__global" : `"${(<LiteralExpression>node.name).text}"`;
|
|
}
|
|
if (node.name.kind === SyntaxKind.ComputedPropertyName) {
|
|
const nameExpression = (<ComputedPropertyName>node.name).expression;
|
|
// treat computed property names where expression is string/numeric literal as just string/numeric literal
|
|
if (isStringOrNumericLiteral(nameExpression.kind)) {
|
|
return (<LiteralExpression>nameExpression).text;
|
|
}
|
|
|
|
Debug.assert(isWellKnownSymbolSyntactically(nameExpression));
|
|
return getPropertyNameForKnownSymbolName((<PropertyAccessExpression>nameExpression).name.text);
|
|
}
|
|
return (<Identifier | LiteralExpression>node.name).text;
|
|
}
|
|
switch (node.kind) {
|
|
case SyntaxKind.Constructor:
|
|
return "__constructor";
|
|
case SyntaxKind.FunctionType:
|
|
case SyntaxKind.CallSignature:
|
|
return "__call";
|
|
case SyntaxKind.ConstructorType:
|
|
case SyntaxKind.ConstructSignature:
|
|
return "__new";
|
|
case SyntaxKind.IndexSignature:
|
|
return "__index";
|
|
case SyntaxKind.ExportDeclaration:
|
|
return "__export";
|
|
case SyntaxKind.ExportAssignment:
|
|
return (<ExportAssignment>node).isExportEquals ? "export=" : "default";
|
|
case SyntaxKind.BinaryExpression:
|
|
switch (getSpecialPropertyAssignmentKind(node)) {
|
|
case SpecialPropertyAssignmentKind.ModuleExports:
|
|
// module.exports = ...
|
|
return "export=";
|
|
case SpecialPropertyAssignmentKind.ExportsProperty:
|
|
case SpecialPropertyAssignmentKind.ThisProperty:
|
|
// exports.x = ... or this.y = ...
|
|
return ((node as BinaryExpression).left as PropertyAccessExpression).name.text;
|
|
case SpecialPropertyAssignmentKind.PrototypeProperty:
|
|
// className.prototype.methodName = ...
|
|
return (((node as BinaryExpression).left as PropertyAccessExpression).expression as PropertyAccessExpression).name.text;
|
|
}
|
|
Debug.fail("Unknown binary declaration kind");
|
|
break;
|
|
|
|
case SyntaxKind.FunctionDeclaration:
|
|
case SyntaxKind.ClassDeclaration:
|
|
return hasModifier(node, ModifierFlags.Default) ? "default" : undefined;
|
|
case SyntaxKind.JSDocFunctionType:
|
|
return isJSDocConstructSignature(node) ? "__new" : "__call";
|
|
case SyntaxKind.Parameter:
|
|
// Parameters with names are handled at the top of this function. Parameters
|
|
// without names can only come from JSDocFunctionTypes.
|
|
Debug.assert(node.parent.kind === SyntaxKind.JSDocFunctionType);
|
|
let functionType = <JSDocFunctionType>node.parent;
|
|
let index = indexOf(functionType.parameters, node);
|
|
return "arg" + index;
|
|
case SyntaxKind.JSDocTypedefTag:
|
|
const parentNode = node.parent && node.parent.parent;
|
|
let nameFromParentNode: string;
|
|
if (parentNode && parentNode.kind === SyntaxKind.VariableStatement) {
|
|
if ((<VariableStatement>parentNode).declarationList.declarations.length > 0) {
|
|
const nameIdentifier = (<VariableStatement>parentNode).declarationList.declarations[0].name;
|
|
if (nameIdentifier.kind === SyntaxKind.Identifier) {
|
|
nameFromParentNode = (<Identifier>nameIdentifier).text;
|
|
}
|
|
}
|
|
}
|
|
return nameFromParentNode;
|
|
}
|
|
}
|
|
|
|
function getDisplayName(node: Declaration): string {
|
|
return node.name ? declarationNameToString(node.name) : getDeclarationName(node);
|
|
}
|
|
|
|
/**
|
|
* Declares a Symbol for the node and adds it to symbols. Reports errors for conflicting identifier names.
|
|
* @param symbolTable - The symbol table which node will be added to.
|
|
* @param parent - node's parent declaration.
|
|
* @param node - The declaration to be added to the symbol table
|
|
* @param includes - The SymbolFlags that node has in addition to its declaration type (eg: export, ambient, etc.)
|
|
* @param excludes - The flags which node cannot be declared alongside in a symbol table. Used to report forbidden declarations.
|
|
*/
|
|
function declareSymbol(symbolTable: SymbolTable, parent: Symbol, node: Declaration, includes: SymbolFlags, excludes: SymbolFlags): Symbol {
|
|
Debug.assert(!hasDynamicName(node));
|
|
|
|
const isDefaultExport = hasModifier(node, ModifierFlags.Default);
|
|
|
|
// The exported symbol for an export default function/class node is always named "default"
|
|
const name = isDefaultExport && parent ? "default" : getDeclarationName(node);
|
|
|
|
let symbol: Symbol;
|
|
if (name === undefined) {
|
|
symbol = createSymbol(SymbolFlags.None, "__missing");
|
|
}
|
|
else {
|
|
// Check and see if the symbol table already has a symbol with this name. If not,
|
|
// create a new symbol with this name and add it to the table. Note that we don't
|
|
// give the new symbol any flags *yet*. This ensures that it will not conflict
|
|
// with the 'excludes' flags we pass in.
|
|
//
|
|
// If we do get an existing symbol, see if it conflicts with the new symbol we're
|
|
// creating. For example, a 'var' symbol and a 'class' symbol will conflict within
|
|
// the same symbol table. If we have a conflict, report the issue on each
|
|
// declaration we have for this symbol, and then create a new symbol for this
|
|
// declaration.
|
|
//
|
|
// Note that when properties declared in Javascript constructors
|
|
// (marked by isReplaceableByMethod) conflict with another symbol, the property loses.
|
|
// Always. This allows the common Javascript pattern of overwriting a prototype method
|
|
// with an bound instance method of the same type: `this.method = this.method.bind(this)`
|
|
//
|
|
// If we created a new symbol, either because we didn't have a symbol with this name
|
|
// in the symbol table, or we conflicted with an existing symbol, then just add this
|
|
// node as the sole declaration of the new symbol.
|
|
//
|
|
// Otherwise, we'll be merging into a compatible existing symbol (for example when
|
|
// you have multiple 'vars' with the same name in the same container). In this case
|
|
// just add this node into the declarations list of the symbol.
|
|
symbol = symbolTable[name] || (symbolTable[name] = createSymbol(SymbolFlags.None, name));
|
|
|
|
if (name && (includes & SymbolFlags.Classifiable)) {
|
|
classifiableNames[name] = name;
|
|
}
|
|
|
|
if (symbol.flags & excludes) {
|
|
if (symbol.isReplaceableByMethod) {
|
|
// Javascript constructor-declared symbols can be discarded in favor of
|
|
// prototype symbols like methods.
|
|
symbol = symbolTable[name] = createSymbol(SymbolFlags.None, name);
|
|
}
|
|
else {
|
|
if (node.name) {
|
|
node.name.parent = node;
|
|
}
|
|
|
|
// Report errors every position with duplicate declaration
|
|
// Report errors on previous encountered declarations
|
|
let message = symbol.flags & SymbolFlags.BlockScopedVariable
|
|
? Diagnostics.Cannot_redeclare_block_scoped_variable_0
|
|
: Diagnostics.Duplicate_identifier_0;
|
|
|
|
forEach(symbol.declarations, declaration => {
|
|
if (hasModifier(declaration, ModifierFlags.Default)) {
|
|
message = Diagnostics.A_module_cannot_have_multiple_default_exports;
|
|
}
|
|
});
|
|
|
|
forEach(symbol.declarations, declaration => {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(declaration.name || declaration, message, getDisplayName(declaration)));
|
|
});
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node.name || node, message, getDisplayName(node)));
|
|
|
|
symbol = createSymbol(SymbolFlags.None, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
addDeclarationToSymbol(symbol, node, includes);
|
|
symbol.parent = parent;
|
|
|
|
return symbol;
|
|
}
|
|
|
|
function declareModuleMember(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags): Symbol {
|
|
const hasExportModifier = getCombinedModifierFlags(node) & ModifierFlags.Export;
|
|
if (symbolFlags & SymbolFlags.Alias) {
|
|
if (node.kind === SyntaxKind.ExportSpecifier || (node.kind === SyntaxKind.ImportEqualsDeclaration && hasExportModifier)) {
|
|
return declareSymbol(container.symbol.exports, container.symbol, node, symbolFlags, symbolExcludes);
|
|
}
|
|
else {
|
|
return declareSymbol(container.locals, undefined, node, symbolFlags, symbolExcludes);
|
|
}
|
|
}
|
|
else {
|
|
// Exported module members are given 2 symbols: A local symbol that is classified with an ExportValue,
|
|
// ExportType, or ExportContainer flag, and an associated export symbol with all the correct flags set
|
|
// on it. There are 2 main reasons:
|
|
//
|
|
// 1. We treat locals and exports of the same name as mutually exclusive within a container.
|
|
// That means the binder will issue a Duplicate Identifier error if you mix locals and exports
|
|
// with the same name in the same container.
|
|
// TODO: Make this a more specific error and decouple it from the exclusion logic.
|
|
// 2. When we checkIdentifier in the checker, we set its resolved symbol to the local symbol,
|
|
// but return the export symbol (by calling getExportSymbolOfValueSymbolIfExported). That way
|
|
// when the emitter comes back to it, it knows not to qualify the name if it was found in a containing scope.
|
|
|
|
// NOTE: Nested ambient modules always should go to to 'locals' table to prevent their automatic merge
|
|
// during global merging in the checker. Why? The only case when ambient module is permitted inside another module is module augmentation
|
|
// and this case is specially handled. Module augmentations should only be merged with original module definition
|
|
// and should never be merged directly with other augmentation, and the latter case would be possible if automatic merge is allowed.
|
|
if (!isAmbientModule(node) && (hasExportModifier || container.flags & NodeFlags.ExportContext)) {
|
|
const exportKind =
|
|
(symbolFlags & SymbolFlags.Value ? SymbolFlags.ExportValue : 0) |
|
|
(symbolFlags & SymbolFlags.Type ? SymbolFlags.ExportType : 0) |
|
|
(symbolFlags & SymbolFlags.Namespace ? SymbolFlags.ExportNamespace : 0);
|
|
const local = declareSymbol(container.locals, undefined, node, exportKind, symbolExcludes);
|
|
local.exportSymbol = declareSymbol(container.symbol.exports, container.symbol, node, symbolFlags, symbolExcludes);
|
|
node.localSymbol = local;
|
|
return local;
|
|
}
|
|
else {
|
|
return declareSymbol(container.locals, undefined, node, symbolFlags, symbolExcludes);
|
|
}
|
|
}
|
|
}
|
|
|
|
// All container nodes are kept on a linked list in declaration order. This list is used by
|
|
// the getLocalNameOfContainer function in the type checker to validate that the local name
|
|
// used for a container is unique.
|
|
function bindContainer(node: Node, containerFlags: ContainerFlags) {
|
|
// Before we recurse into a node's children, we first save the existing parent, container
|
|
// and block-container. Then after we pop out of processing the children, we restore
|
|
// these saved values.
|
|
const saveContainer = container;
|
|
const savedBlockScopeContainer = blockScopeContainer;
|
|
|
|
// Depending on what kind of node this is, we may have to adjust the current container
|
|
// and block-container. If the current node is a container, then it is automatically
|
|
// considered the current block-container as well. Also, for containers that we know
|
|
// may contain locals, we proactively initialize the .locals field. We do this because
|
|
// it's highly likely that the .locals will be needed to place some child in (for example,
|
|
// a parameter, or variable declaration).
|
|
//
|
|
// However, we do not proactively create the .locals for block-containers because it's
|
|
// totally normal and common for block-containers to never actually have a block-scoped
|
|
// variable in them. We don't want to end up allocating an object for every 'block' we
|
|
// run into when most of them won't be necessary.
|
|
//
|
|
// Finally, if this is a block-container, then we clear out any existing .locals object
|
|
// it may contain within it. This happens in incremental scenarios. Because we can be
|
|
// reusing a node from a previous compilation, that node may have had 'locals' created
|
|
// for it. We must clear this so we don't accidentally move any stale data forward from
|
|
// a previous compilation.
|
|
if (containerFlags & ContainerFlags.IsContainer) {
|
|
container = blockScopeContainer = node;
|
|
if (containerFlags & ContainerFlags.HasLocals) {
|
|
container.locals = createMap<Symbol>();
|
|
}
|
|
addToContainerChain(container);
|
|
}
|
|
else if (containerFlags & ContainerFlags.IsBlockScopedContainer) {
|
|
blockScopeContainer = node;
|
|
blockScopeContainer.locals = undefined;
|
|
}
|
|
if (containerFlags & ContainerFlags.IsControlFlowContainer) {
|
|
const saveCurrentFlow = currentFlow;
|
|
const saveBreakTarget = currentBreakTarget;
|
|
const saveContinueTarget = currentContinueTarget;
|
|
const saveReturnTarget = currentReturnTarget;
|
|
const saveActiveLabels = activeLabels;
|
|
const saveHasExplicitReturn = hasExplicitReturn;
|
|
const isIIFE = containerFlags & ContainerFlags.IsFunctionExpression && !!getImmediatelyInvokedFunctionExpression(node);
|
|
// An IIFE is considered part of the containing control flow. Return statements behave
|
|
// similarly to break statements that exit to a label just past the statement body.
|
|
if (isIIFE) {
|
|
currentReturnTarget = createBranchLabel();
|
|
}
|
|
else {
|
|
currentFlow = { flags: FlowFlags.Start };
|
|
if (containerFlags & ContainerFlags.IsFunctionExpression) {
|
|
(<FlowStart>currentFlow).container = <FunctionExpression | ArrowFunction>node;
|
|
}
|
|
currentReturnTarget = undefined;
|
|
}
|
|
currentBreakTarget = undefined;
|
|
currentContinueTarget = undefined;
|
|
activeLabels = undefined;
|
|
hasExplicitReturn = false;
|
|
bindChildren(node);
|
|
// Reset all reachability check related flags on node (for incremental scenarios)
|
|
// Reset all emit helper flags on node (for incremental scenarios)
|
|
node.flags &= ~NodeFlags.ReachabilityAndEmitFlags;
|
|
if (!(currentFlow.flags & FlowFlags.Unreachable) && containerFlags & ContainerFlags.IsFunctionLike && nodeIsPresent((<FunctionLikeDeclaration>node).body)) {
|
|
node.flags |= NodeFlags.HasImplicitReturn;
|
|
if (hasExplicitReturn) node.flags |= NodeFlags.HasExplicitReturn;
|
|
}
|
|
if (node.kind === SyntaxKind.SourceFile) {
|
|
node.flags |= emitFlags;
|
|
}
|
|
if (isIIFE) {
|
|
addAntecedent(currentReturnTarget, currentFlow);
|
|
currentFlow = finishFlowLabel(currentReturnTarget);
|
|
}
|
|
else {
|
|
currentFlow = saveCurrentFlow;
|
|
}
|
|
currentBreakTarget = saveBreakTarget;
|
|
currentContinueTarget = saveContinueTarget;
|
|
currentReturnTarget = saveReturnTarget;
|
|
activeLabels = saveActiveLabels;
|
|
hasExplicitReturn = saveHasExplicitReturn;
|
|
}
|
|
else if (containerFlags & ContainerFlags.IsInterface) {
|
|
seenThisKeyword = false;
|
|
bindChildren(node);
|
|
node.flags = seenThisKeyword ? node.flags | NodeFlags.ContainsThis : node.flags & ~NodeFlags.ContainsThis;
|
|
}
|
|
else {
|
|
bindChildren(node);
|
|
}
|
|
container = saveContainer;
|
|
blockScopeContainer = savedBlockScopeContainer;
|
|
}
|
|
|
|
function bindChildren(node: Node): void {
|
|
if (skipTransformFlagAggregation) {
|
|
bindChildrenWorker(node);
|
|
}
|
|
else if (node.transformFlags & TransformFlags.HasComputedFlags) {
|
|
skipTransformFlagAggregation = true;
|
|
bindChildrenWorker(node);
|
|
skipTransformFlagAggregation = false;
|
|
}
|
|
else {
|
|
const savedSubtreeTransformFlags = subtreeTransformFlags;
|
|
subtreeTransformFlags = 0;
|
|
bindChildrenWorker(node);
|
|
subtreeTransformFlags = savedSubtreeTransformFlags | computeTransformFlagsForNode(node, subtreeTransformFlags);
|
|
}
|
|
}
|
|
|
|
function bindChildrenWorker(node: Node): void {
|
|
// Binding of JsDocComment should be done before the current block scope container changes.
|
|
// because the scope of JsDocComment should not be affected by whether the current node is a
|
|
// container or not.
|
|
if (isInJavaScriptFile(node) && node.jsDocComments) {
|
|
forEach(node.jsDocComments, bind);
|
|
}
|
|
if (checkUnreachable(node)) {
|
|
forEachChild(node, bind);
|
|
return;
|
|
}
|
|
switch (node.kind) {
|
|
case SyntaxKind.WhileStatement:
|
|
bindWhileStatement(<WhileStatement>node);
|
|
break;
|
|
case SyntaxKind.DoStatement:
|
|
bindDoStatement(<DoStatement>node);
|
|
break;
|
|
case SyntaxKind.ForStatement:
|
|
bindForStatement(<ForStatement>node);
|
|
break;
|
|
case SyntaxKind.ForInStatement:
|
|
case SyntaxKind.ForOfStatement:
|
|
bindForInOrForOfStatement(<ForInStatement | ForOfStatement>node);
|
|
break;
|
|
case SyntaxKind.IfStatement:
|
|
bindIfStatement(<IfStatement>node);
|
|
break;
|
|
case SyntaxKind.ReturnStatement:
|
|
case SyntaxKind.ThrowStatement:
|
|
bindReturnOrThrow(<ReturnStatement | ThrowStatement>node);
|
|
break;
|
|
case SyntaxKind.BreakStatement:
|
|
case SyntaxKind.ContinueStatement:
|
|
bindBreakOrContinueStatement(<BreakOrContinueStatement>node);
|
|
break;
|
|
case SyntaxKind.TryStatement:
|
|
bindTryStatement(<TryStatement>node);
|
|
break;
|
|
case SyntaxKind.SwitchStatement:
|
|
bindSwitchStatement(<SwitchStatement>node);
|
|
break;
|
|
case SyntaxKind.CaseBlock:
|
|
bindCaseBlock(<CaseBlock>node);
|
|
break;
|
|
case SyntaxKind.CaseClause:
|
|
bindCaseClause(<CaseClause>node);
|
|
break;
|
|
case SyntaxKind.LabeledStatement:
|
|
bindLabeledStatement(<LabeledStatement>node);
|
|
break;
|
|
case SyntaxKind.PrefixUnaryExpression:
|
|
bindPrefixUnaryExpressionFlow(<PrefixUnaryExpression>node);
|
|
break;
|
|
case SyntaxKind.PostfixUnaryExpression:
|
|
bindPostfixUnaryExpressionFlow(<PostfixUnaryExpression>node);
|
|
break;
|
|
case SyntaxKind.BinaryExpression:
|
|
bindBinaryExpressionFlow(<BinaryExpression>node);
|
|
break;
|
|
case SyntaxKind.DeleteExpression:
|
|
bindDeleteExpressionFlow(<DeleteExpression>node);
|
|
break;
|
|
case SyntaxKind.ConditionalExpression:
|
|
bindConditionalExpressionFlow(<ConditionalExpression>node);
|
|
break;
|
|
case SyntaxKind.VariableDeclaration:
|
|
bindVariableDeclarationFlow(<VariableDeclaration>node);
|
|
break;
|
|
case SyntaxKind.CallExpression:
|
|
bindCallExpressionFlow(<CallExpression>node);
|
|
break;
|
|
default:
|
|
forEachChild(node, bind);
|
|
break;
|
|
}
|
|
}
|
|
|
|
function isNarrowingExpression(expr: Expression): boolean {
|
|
switch (expr.kind) {
|
|
case SyntaxKind.Identifier:
|
|
case SyntaxKind.ThisKeyword:
|
|
case SyntaxKind.PropertyAccessExpression:
|
|
return isNarrowableReference(expr);
|
|
case SyntaxKind.CallExpression:
|
|
return hasNarrowableArgument(<CallExpression>expr);
|
|
case SyntaxKind.ParenthesizedExpression:
|
|
return isNarrowingExpression((<ParenthesizedExpression>expr).expression);
|
|
case SyntaxKind.BinaryExpression:
|
|
return isNarrowingBinaryExpression(<BinaryExpression>expr);
|
|
case SyntaxKind.PrefixUnaryExpression:
|
|
return (<PrefixUnaryExpression>expr).operator === SyntaxKind.ExclamationToken && isNarrowingExpression((<PrefixUnaryExpression>expr).operand);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function isNarrowableReference(expr: Expression): boolean {
|
|
return expr.kind === SyntaxKind.Identifier ||
|
|
expr.kind === SyntaxKind.ThisKeyword ||
|
|
expr.kind === SyntaxKind.PropertyAccessExpression && isNarrowableReference((<PropertyAccessExpression>expr).expression);
|
|
}
|
|
|
|
function hasNarrowableArgument(expr: CallExpression) {
|
|
if (expr.arguments) {
|
|
for (const argument of expr.arguments) {
|
|
if (isNarrowableReference(argument)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (expr.expression.kind === SyntaxKind.PropertyAccessExpression &&
|
|
isNarrowableReference((<PropertyAccessExpression>expr.expression).expression)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function isNarrowingTypeofOperands(expr1: Expression, expr2: Expression) {
|
|
return expr1.kind === SyntaxKind.TypeOfExpression && isNarrowableOperand((<TypeOfExpression>expr1).expression) && expr2.kind === SyntaxKind.StringLiteral;
|
|
}
|
|
|
|
function isNarrowingBinaryExpression(expr: BinaryExpression) {
|
|
switch (expr.operatorToken.kind) {
|
|
case SyntaxKind.EqualsToken:
|
|
return isNarrowableReference(expr.left);
|
|
case SyntaxKind.EqualsEqualsToken:
|
|
case SyntaxKind.ExclamationEqualsToken:
|
|
case SyntaxKind.EqualsEqualsEqualsToken:
|
|
case SyntaxKind.ExclamationEqualsEqualsToken:
|
|
return isNarrowableOperand(expr.left) || isNarrowableOperand(expr.right) ||
|
|
isNarrowingTypeofOperands(expr.right, expr.left) || isNarrowingTypeofOperands(expr.left, expr.right);
|
|
case SyntaxKind.InstanceOfKeyword:
|
|
return isNarrowableOperand(expr.left);
|
|
case SyntaxKind.CommaToken:
|
|
return isNarrowingExpression(expr.right);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function isNarrowableOperand(expr: Expression): boolean {
|
|
switch (expr.kind) {
|
|
case SyntaxKind.ParenthesizedExpression:
|
|
return isNarrowableOperand((<ParenthesizedExpression>expr).expression);
|
|
case SyntaxKind.BinaryExpression:
|
|
switch ((<BinaryExpression>expr).operatorToken.kind) {
|
|
case SyntaxKind.EqualsToken:
|
|
return isNarrowableOperand((<BinaryExpression>expr).left);
|
|
case SyntaxKind.CommaToken:
|
|
return isNarrowableOperand((<BinaryExpression>expr).right);
|
|
}
|
|
}
|
|
return isNarrowableReference(expr);
|
|
}
|
|
|
|
function createBranchLabel(): FlowLabel {
|
|
return {
|
|
flags: FlowFlags.BranchLabel,
|
|
antecedents: undefined
|
|
};
|
|
}
|
|
|
|
function createLoopLabel(): FlowLabel {
|
|
return {
|
|
flags: FlowFlags.LoopLabel,
|
|
antecedents: undefined
|
|
};
|
|
}
|
|
|
|
function setFlowNodeReferenced(flow: FlowNode) {
|
|
// On first reference we set the Referenced flag, thereafter we set the Shared flag
|
|
flow.flags |= flow.flags & FlowFlags.Referenced ? FlowFlags.Shared : FlowFlags.Referenced;
|
|
}
|
|
|
|
function addAntecedent(label: FlowLabel, antecedent: FlowNode): void {
|
|
if (!(antecedent.flags & FlowFlags.Unreachable) && !contains(label.antecedents, antecedent)) {
|
|
(label.antecedents || (label.antecedents = [])).push(antecedent);
|
|
setFlowNodeReferenced(antecedent);
|
|
}
|
|
}
|
|
|
|
function createFlowCondition(flags: FlowFlags, antecedent: FlowNode, expression: Expression): FlowNode {
|
|
if (antecedent.flags & FlowFlags.Unreachable) {
|
|
return antecedent;
|
|
}
|
|
if (!expression) {
|
|
return flags & FlowFlags.TrueCondition ? antecedent : unreachableFlow;
|
|
}
|
|
if (expression.kind === SyntaxKind.TrueKeyword && flags & FlowFlags.FalseCondition ||
|
|
expression.kind === SyntaxKind.FalseKeyword && flags & FlowFlags.TrueCondition) {
|
|
return unreachableFlow;
|
|
}
|
|
if (!isNarrowingExpression(expression)) {
|
|
return antecedent;
|
|
}
|
|
setFlowNodeReferenced(antecedent);
|
|
return <FlowCondition>{
|
|
flags,
|
|
expression,
|
|
antecedent
|
|
};
|
|
}
|
|
|
|
function createFlowSwitchClause(antecedent: FlowNode, switchStatement: SwitchStatement, clauseStart: number, clauseEnd: number): FlowNode {
|
|
if (!isNarrowingExpression(switchStatement.expression)) {
|
|
return antecedent;
|
|
}
|
|
setFlowNodeReferenced(antecedent);
|
|
return <FlowSwitchClause>{
|
|
flags: FlowFlags.SwitchClause,
|
|
switchStatement,
|
|
clauseStart,
|
|
clauseEnd,
|
|
antecedent
|
|
};
|
|
}
|
|
|
|
function createFlowAssignment(antecedent: FlowNode, node: Expression | VariableDeclaration | BindingElement): FlowNode {
|
|
setFlowNodeReferenced(antecedent);
|
|
return <FlowAssignment>{
|
|
flags: FlowFlags.Assignment,
|
|
antecedent,
|
|
node
|
|
};
|
|
}
|
|
|
|
function finishFlowLabel(flow: FlowLabel): FlowNode {
|
|
const antecedents = flow.antecedents;
|
|
if (!antecedents) {
|
|
return unreachableFlow;
|
|
}
|
|
if (antecedents.length === 1) {
|
|
return antecedents[0];
|
|
}
|
|
return flow;
|
|
}
|
|
|
|
function isStatementCondition(node: Node) {
|
|
const parent = node.parent;
|
|
switch (parent.kind) {
|
|
case SyntaxKind.IfStatement:
|
|
case SyntaxKind.WhileStatement:
|
|
case SyntaxKind.DoStatement:
|
|
return (<IfStatement | WhileStatement | DoStatement>parent).expression === node;
|
|
case SyntaxKind.ForStatement:
|
|
case SyntaxKind.ConditionalExpression:
|
|
return (<ForStatement | ConditionalExpression>parent).condition === node;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function isLogicalExpression(node: Node) {
|
|
while (true) {
|
|
if (node.kind === SyntaxKind.ParenthesizedExpression) {
|
|
node = (<ParenthesizedExpression>node).expression;
|
|
}
|
|
else if (node.kind === SyntaxKind.PrefixUnaryExpression && (<PrefixUnaryExpression>node).operator === SyntaxKind.ExclamationToken) {
|
|
node = (<PrefixUnaryExpression>node).operand;
|
|
}
|
|
else {
|
|
return node.kind === SyntaxKind.BinaryExpression && (
|
|
(<BinaryExpression>node).operatorToken.kind === SyntaxKind.AmpersandAmpersandToken ||
|
|
(<BinaryExpression>node).operatorToken.kind === SyntaxKind.BarBarToken);
|
|
}
|
|
}
|
|
}
|
|
|
|
function isTopLevelLogicalExpression(node: Node): boolean {
|
|
while (node.parent.kind === SyntaxKind.ParenthesizedExpression ||
|
|
node.parent.kind === SyntaxKind.PrefixUnaryExpression &&
|
|
(<PrefixUnaryExpression>node.parent).operator === SyntaxKind.ExclamationToken) {
|
|
node = node.parent;
|
|
}
|
|
return !isStatementCondition(node) && !isLogicalExpression(node.parent);
|
|
}
|
|
|
|
function bindCondition(node: Expression, trueTarget: FlowLabel, falseTarget: FlowLabel) {
|
|
const saveTrueTarget = currentTrueTarget;
|
|
const saveFalseTarget = currentFalseTarget;
|
|
currentTrueTarget = trueTarget;
|
|
currentFalseTarget = falseTarget;
|
|
bind(node);
|
|
currentTrueTarget = saveTrueTarget;
|
|
currentFalseTarget = saveFalseTarget;
|
|
if (!node || !isLogicalExpression(node)) {
|
|
addAntecedent(trueTarget, createFlowCondition(FlowFlags.TrueCondition, currentFlow, node));
|
|
addAntecedent(falseTarget, createFlowCondition(FlowFlags.FalseCondition, currentFlow, node));
|
|
}
|
|
}
|
|
|
|
function bindIterativeStatement(node: Statement, breakTarget: FlowLabel, continueTarget: FlowLabel): void {
|
|
const saveBreakTarget = currentBreakTarget;
|
|
const saveContinueTarget = currentContinueTarget;
|
|
currentBreakTarget = breakTarget;
|
|
currentContinueTarget = continueTarget;
|
|
bind(node);
|
|
currentBreakTarget = saveBreakTarget;
|
|
currentContinueTarget = saveContinueTarget;
|
|
}
|
|
|
|
function bindWhileStatement(node: WhileStatement): void {
|
|
const preWhileLabel = createLoopLabel();
|
|
const preBodyLabel = createBranchLabel();
|
|
const postWhileLabel = createBranchLabel();
|
|
addAntecedent(preWhileLabel, currentFlow);
|
|
currentFlow = preWhileLabel;
|
|
bindCondition(node.expression, preBodyLabel, postWhileLabel);
|
|
currentFlow = finishFlowLabel(preBodyLabel);
|
|
bindIterativeStatement(node.statement, postWhileLabel, preWhileLabel);
|
|
addAntecedent(preWhileLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(postWhileLabel);
|
|
}
|
|
|
|
function bindDoStatement(node: DoStatement): void {
|
|
const preDoLabel = createLoopLabel();
|
|
const preConditionLabel = createBranchLabel();
|
|
const postDoLabel = createBranchLabel();
|
|
addAntecedent(preDoLabel, currentFlow);
|
|
currentFlow = preDoLabel;
|
|
bindIterativeStatement(node.statement, postDoLabel, preConditionLabel);
|
|
addAntecedent(preConditionLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(preConditionLabel);
|
|
bindCondition(node.expression, preDoLabel, postDoLabel);
|
|
currentFlow = finishFlowLabel(postDoLabel);
|
|
}
|
|
|
|
function bindForStatement(node: ForStatement): void {
|
|
const preLoopLabel = createLoopLabel();
|
|
const preBodyLabel = createBranchLabel();
|
|
const postLoopLabel = createBranchLabel();
|
|
bind(node.initializer);
|
|
addAntecedent(preLoopLabel, currentFlow);
|
|
currentFlow = preLoopLabel;
|
|
bindCondition(node.condition, preBodyLabel, postLoopLabel);
|
|
currentFlow = finishFlowLabel(preBodyLabel);
|
|
bindIterativeStatement(node.statement, postLoopLabel, preLoopLabel);
|
|
bind(node.incrementor);
|
|
addAntecedent(preLoopLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(postLoopLabel);
|
|
}
|
|
|
|
function bindForInOrForOfStatement(node: ForInStatement | ForOfStatement): void {
|
|
const preLoopLabel = createLoopLabel();
|
|
const postLoopLabel = createBranchLabel();
|
|
addAntecedent(preLoopLabel, currentFlow);
|
|
currentFlow = preLoopLabel;
|
|
bind(node.expression);
|
|
addAntecedent(postLoopLabel, currentFlow);
|
|
bind(node.initializer);
|
|
if (node.initializer.kind !== SyntaxKind.VariableDeclarationList) {
|
|
bindAssignmentTargetFlow(<Expression>node.initializer);
|
|
}
|
|
bindIterativeStatement(node.statement, postLoopLabel, preLoopLabel);
|
|
addAntecedent(preLoopLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(postLoopLabel);
|
|
}
|
|
|
|
function bindIfStatement(node: IfStatement): void {
|
|
const thenLabel = createBranchLabel();
|
|
const elseLabel = createBranchLabel();
|
|
const postIfLabel = createBranchLabel();
|
|
bindCondition(node.expression, thenLabel, elseLabel);
|
|
currentFlow = finishFlowLabel(thenLabel);
|
|
bind(node.thenStatement);
|
|
addAntecedent(postIfLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(elseLabel);
|
|
bind(node.elseStatement);
|
|
addAntecedent(postIfLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(postIfLabel);
|
|
}
|
|
|
|
function bindReturnOrThrow(node: ReturnStatement | ThrowStatement): void {
|
|
bind(node.expression);
|
|
if (node.kind === SyntaxKind.ReturnStatement) {
|
|
hasExplicitReturn = true;
|
|
if (currentReturnTarget) {
|
|
addAntecedent(currentReturnTarget, currentFlow);
|
|
}
|
|
}
|
|
currentFlow = unreachableFlow;
|
|
}
|
|
|
|
function findActiveLabel(name: string) {
|
|
if (activeLabels) {
|
|
for (const label of activeLabels) {
|
|
if (label.name === name) {
|
|
return label;
|
|
}
|
|
}
|
|
}
|
|
return undefined;
|
|
}
|
|
|
|
function bindbreakOrContinueFlow(node: BreakOrContinueStatement, breakTarget: FlowLabel, continueTarget: FlowLabel) {
|
|
const flowLabel = node.kind === SyntaxKind.BreakStatement ? breakTarget : continueTarget;
|
|
if (flowLabel) {
|
|
addAntecedent(flowLabel, currentFlow);
|
|
currentFlow = unreachableFlow;
|
|
}
|
|
}
|
|
|
|
function bindBreakOrContinueStatement(node: BreakOrContinueStatement): void {
|
|
bind(node.label);
|
|
if (node.label) {
|
|
const activeLabel = findActiveLabel(node.label.text);
|
|
if (activeLabel) {
|
|
activeLabel.referenced = true;
|
|
bindbreakOrContinueFlow(node, activeLabel.breakTarget, activeLabel.continueTarget);
|
|
}
|
|
}
|
|
else {
|
|
bindbreakOrContinueFlow(node, currentBreakTarget, currentContinueTarget);
|
|
}
|
|
}
|
|
|
|
function bindTryStatement(node: TryStatement): void {
|
|
const postFinallyLabel = createBranchLabel();
|
|
const preTryFlow = currentFlow;
|
|
// TODO: Every statement in try block is potentially an exit point!
|
|
bind(node.tryBlock);
|
|
addAntecedent(postFinallyLabel, currentFlow);
|
|
if (node.catchClause) {
|
|
currentFlow = preTryFlow;
|
|
bind(node.catchClause);
|
|
addAntecedent(postFinallyLabel, currentFlow);
|
|
}
|
|
if (node.finallyBlock) {
|
|
currentFlow = preTryFlow;
|
|
bind(node.finallyBlock);
|
|
}
|
|
currentFlow = finishFlowLabel(postFinallyLabel);
|
|
}
|
|
|
|
function bindSwitchStatement(node: SwitchStatement): void {
|
|
const postSwitchLabel = createBranchLabel();
|
|
bind(node.expression);
|
|
const saveBreakTarget = currentBreakTarget;
|
|
const savePreSwitchCaseFlow = preSwitchCaseFlow;
|
|
currentBreakTarget = postSwitchLabel;
|
|
preSwitchCaseFlow = currentFlow;
|
|
bind(node.caseBlock);
|
|
addAntecedent(postSwitchLabel, currentFlow);
|
|
const hasDefault = forEach(node.caseBlock.clauses, c => c.kind === SyntaxKind.DefaultClause);
|
|
// We mark a switch statement as possibly exhaustive if it has no default clause and if all
|
|
// case clauses have unreachable end points (e.g. they all return).
|
|
node.possiblyExhaustive = !hasDefault && !postSwitchLabel.antecedents;
|
|
if (!hasDefault) {
|
|
addAntecedent(postSwitchLabel, createFlowSwitchClause(preSwitchCaseFlow, node, 0, 0));
|
|
}
|
|
currentBreakTarget = saveBreakTarget;
|
|
preSwitchCaseFlow = savePreSwitchCaseFlow;
|
|
currentFlow = finishFlowLabel(postSwitchLabel);
|
|
}
|
|
|
|
function bindCaseBlock(node: CaseBlock): void {
|
|
const clauses = node.clauses;
|
|
let fallthroughFlow = unreachableFlow;
|
|
for (let i = 0; i < clauses.length; i++) {
|
|
const clauseStart = i;
|
|
while (!clauses[i].statements.length && i + 1 < clauses.length) {
|
|
bind(clauses[i]);
|
|
i++;
|
|
}
|
|
const preCaseLabel = createBranchLabel();
|
|
addAntecedent(preCaseLabel, createFlowSwitchClause(preSwitchCaseFlow, <SwitchStatement>node.parent, clauseStart, i + 1));
|
|
addAntecedent(preCaseLabel, fallthroughFlow);
|
|
currentFlow = finishFlowLabel(preCaseLabel);
|
|
const clause = clauses[i];
|
|
bind(clause);
|
|
fallthroughFlow = currentFlow;
|
|
if (!(currentFlow.flags & FlowFlags.Unreachable) && i !== clauses.length - 1 && options.noFallthroughCasesInSwitch) {
|
|
errorOnFirstToken(clause, Diagnostics.Fallthrough_case_in_switch);
|
|
}
|
|
}
|
|
}
|
|
|
|
function bindCaseClause(node: CaseClause): void {
|
|
const saveCurrentFlow = currentFlow;
|
|
currentFlow = preSwitchCaseFlow;
|
|
bind(node.expression);
|
|
currentFlow = saveCurrentFlow;
|
|
forEach(node.statements, bind);
|
|
}
|
|
|
|
function pushActiveLabel(name: string, breakTarget: FlowLabel, continueTarget: FlowLabel): ActiveLabel {
|
|
const activeLabel = {
|
|
name,
|
|
breakTarget,
|
|
continueTarget,
|
|
referenced: false
|
|
};
|
|
(activeLabels || (activeLabels = [])).push(activeLabel);
|
|
return activeLabel;
|
|
}
|
|
|
|
function popActiveLabel() {
|
|
activeLabels.pop();
|
|
}
|
|
|
|
function bindLabeledStatement(node: LabeledStatement): void {
|
|
const preStatementLabel = createLoopLabel();
|
|
const postStatementLabel = createBranchLabel();
|
|
bind(node.label);
|
|
addAntecedent(preStatementLabel, currentFlow);
|
|
const activeLabel = pushActiveLabel(node.label.text, postStatementLabel, preStatementLabel);
|
|
bind(node.statement);
|
|
popActiveLabel();
|
|
if (!activeLabel.referenced && !options.allowUnusedLabels) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node.label, Diagnostics.Unused_label));
|
|
}
|
|
addAntecedent(postStatementLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(postStatementLabel);
|
|
}
|
|
|
|
function bindDestructuringTargetFlow(node: Expression) {
|
|
if (node.kind === SyntaxKind.BinaryExpression && (<BinaryExpression>node).operatorToken.kind === SyntaxKind.EqualsToken) {
|
|
bindAssignmentTargetFlow((<BinaryExpression>node).left);
|
|
}
|
|
else {
|
|
bindAssignmentTargetFlow(node);
|
|
}
|
|
}
|
|
|
|
function bindAssignmentTargetFlow(node: Expression) {
|
|
if (isNarrowableReference(node)) {
|
|
currentFlow = createFlowAssignment(currentFlow, node);
|
|
}
|
|
else if (node.kind === SyntaxKind.ArrayLiteralExpression) {
|
|
for (const e of (<ArrayLiteralExpression>node).elements) {
|
|
if (e.kind === SyntaxKind.SpreadElementExpression) {
|
|
bindAssignmentTargetFlow((<SpreadElementExpression>e).expression);
|
|
}
|
|
else {
|
|
bindDestructuringTargetFlow(e);
|
|
}
|
|
}
|
|
}
|
|
else if (node.kind === SyntaxKind.ObjectLiteralExpression) {
|
|
for (const p of (<ObjectLiteralExpression>node).properties) {
|
|
if (p.kind === SyntaxKind.PropertyAssignment) {
|
|
bindDestructuringTargetFlow((<PropertyAssignment>p).initializer);
|
|
}
|
|
else if (p.kind === SyntaxKind.ShorthandPropertyAssignment) {
|
|
bindAssignmentTargetFlow((<ShorthandPropertyAssignment>p).name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function bindLogicalExpression(node: BinaryExpression, trueTarget: FlowLabel, falseTarget: FlowLabel) {
|
|
const preRightLabel = createBranchLabel();
|
|
if (node.operatorToken.kind === SyntaxKind.AmpersandAmpersandToken) {
|
|
bindCondition(node.left, preRightLabel, falseTarget);
|
|
}
|
|
else {
|
|
bindCondition(node.left, trueTarget, preRightLabel);
|
|
}
|
|
currentFlow = finishFlowLabel(preRightLabel);
|
|
bind(node.operatorToken);
|
|
bindCondition(node.right, trueTarget, falseTarget);
|
|
}
|
|
|
|
function bindPrefixUnaryExpressionFlow(node: PrefixUnaryExpression) {
|
|
if (node.operator === SyntaxKind.ExclamationToken) {
|
|
const saveTrueTarget = currentTrueTarget;
|
|
currentTrueTarget = currentFalseTarget;
|
|
currentFalseTarget = saveTrueTarget;
|
|
forEachChild(node, bind);
|
|
currentFalseTarget = currentTrueTarget;
|
|
currentTrueTarget = saveTrueTarget;
|
|
}
|
|
else {
|
|
forEachChild(node, bind);
|
|
if (node.operator === SyntaxKind.PlusEqualsToken || node.operator === SyntaxKind.MinusMinusToken) {
|
|
bindAssignmentTargetFlow(node.operand);
|
|
}
|
|
}
|
|
}
|
|
|
|
function bindPostfixUnaryExpressionFlow(node: PostfixUnaryExpression) {
|
|
forEachChild(node, bind);
|
|
if (node.operator === SyntaxKind.PlusPlusToken || node.operator === SyntaxKind.MinusMinusToken) {
|
|
bindAssignmentTargetFlow(node.operand);
|
|
}
|
|
}
|
|
|
|
function bindBinaryExpressionFlow(node: BinaryExpression) {
|
|
const operator = node.operatorToken.kind;
|
|
if (operator === SyntaxKind.AmpersandAmpersandToken || operator === SyntaxKind.BarBarToken) {
|
|
if (isTopLevelLogicalExpression(node)) {
|
|
const postExpressionLabel = createBranchLabel();
|
|
bindLogicalExpression(node, postExpressionLabel, postExpressionLabel);
|
|
currentFlow = finishFlowLabel(postExpressionLabel);
|
|
}
|
|
else {
|
|
bindLogicalExpression(node, currentTrueTarget, currentFalseTarget);
|
|
}
|
|
}
|
|
else {
|
|
forEachChild(node, bind);
|
|
if (operator === SyntaxKind.EqualsToken && !isAssignmentTarget(node)) {
|
|
bindAssignmentTargetFlow(node.left);
|
|
}
|
|
}
|
|
}
|
|
|
|
function bindDeleteExpressionFlow(node: DeleteExpression) {
|
|
forEachChild(node, bind);
|
|
if (node.expression.kind === SyntaxKind.PropertyAccessExpression) {
|
|
bindAssignmentTargetFlow(node.expression);
|
|
}
|
|
}
|
|
|
|
function bindConditionalExpressionFlow(node: ConditionalExpression) {
|
|
const trueLabel = createBranchLabel();
|
|
const falseLabel = createBranchLabel();
|
|
const postExpressionLabel = createBranchLabel();
|
|
bindCondition(node.condition, trueLabel, falseLabel);
|
|
currentFlow = finishFlowLabel(trueLabel);
|
|
bind(node.whenTrue);
|
|
addAntecedent(postExpressionLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(falseLabel);
|
|
bind(node.whenFalse);
|
|
addAntecedent(postExpressionLabel, currentFlow);
|
|
currentFlow = finishFlowLabel(postExpressionLabel);
|
|
}
|
|
|
|
function bindInitializedVariableFlow(node: VariableDeclaration | ArrayBindingElement) {
|
|
const name = !isOmittedExpression(node) ? node.name : undefined;
|
|
if (isBindingPattern(name)) {
|
|
for (const child of name.elements) {
|
|
bindInitializedVariableFlow(child);
|
|
}
|
|
}
|
|
else {
|
|
currentFlow = createFlowAssignment(currentFlow, node);
|
|
}
|
|
}
|
|
|
|
function bindVariableDeclarationFlow(node: VariableDeclaration) {
|
|
forEachChild(node, bind);
|
|
if (node.initializer || node.parent.parent.kind === SyntaxKind.ForInStatement || node.parent.parent.kind === SyntaxKind.ForOfStatement) {
|
|
bindInitializedVariableFlow(node);
|
|
}
|
|
}
|
|
|
|
function bindCallExpressionFlow(node: CallExpression) {
|
|
// If the target of the call expression is a function expression or arrow function we have
|
|
// an immediately invoked function expression (IIFE). Initialize the flowNode property to
|
|
// the current control flow (which includes evaluation of the IIFE arguments).
|
|
let expr: Expression = node.expression;
|
|
while (expr.kind === SyntaxKind.ParenthesizedExpression) {
|
|
expr = (<ParenthesizedExpression>expr).expression;
|
|
}
|
|
if (expr.kind === SyntaxKind.FunctionExpression || expr.kind === SyntaxKind.ArrowFunction) {
|
|
forEach(node.typeArguments, bind);
|
|
forEach(node.arguments, bind);
|
|
bind(node.expression);
|
|
}
|
|
else {
|
|
forEachChild(node, bind);
|
|
}
|
|
}
|
|
|
|
function getContainerFlags(node: Node): ContainerFlags {
|
|
switch (node.kind) {
|
|
case SyntaxKind.ClassExpression:
|
|
case SyntaxKind.ClassDeclaration:
|
|
case SyntaxKind.EnumDeclaration:
|
|
case SyntaxKind.ObjectLiteralExpression:
|
|
case SyntaxKind.TypeLiteral:
|
|
case SyntaxKind.JSDocTypeLiteral:
|
|
case SyntaxKind.JSDocRecordType:
|
|
return ContainerFlags.IsContainer;
|
|
|
|
case SyntaxKind.InterfaceDeclaration:
|
|
return ContainerFlags.IsContainer | ContainerFlags.IsInterface;
|
|
|
|
case SyntaxKind.JSDocFunctionType:
|
|
case SyntaxKind.ModuleDeclaration:
|
|
case SyntaxKind.TypeAliasDeclaration:
|
|
return ContainerFlags.IsContainer | ContainerFlags.HasLocals;
|
|
|
|
case SyntaxKind.SourceFile:
|
|
return ContainerFlags.IsContainer | ContainerFlags.IsControlFlowContainer | ContainerFlags.HasLocals;
|
|
|
|
case SyntaxKind.Constructor:
|
|
case SyntaxKind.FunctionDeclaration:
|
|
case SyntaxKind.MethodDeclaration:
|
|
case SyntaxKind.MethodSignature:
|
|
case SyntaxKind.GetAccessor:
|
|
case SyntaxKind.SetAccessor:
|
|
case SyntaxKind.CallSignature:
|
|
case SyntaxKind.ConstructSignature:
|
|
case SyntaxKind.IndexSignature:
|
|
case SyntaxKind.FunctionType:
|
|
case SyntaxKind.ConstructorType:
|
|
return ContainerFlags.IsContainer | ContainerFlags.IsControlFlowContainer | ContainerFlags.HasLocals | ContainerFlags.IsFunctionLike;
|
|
|
|
case SyntaxKind.FunctionExpression:
|
|
case SyntaxKind.ArrowFunction:
|
|
return ContainerFlags.IsContainer | ContainerFlags.IsControlFlowContainer | ContainerFlags.HasLocals | ContainerFlags.IsFunctionLike | ContainerFlags.IsFunctionExpression;
|
|
|
|
case SyntaxKind.ModuleBlock:
|
|
return ContainerFlags.IsControlFlowContainer;
|
|
case SyntaxKind.PropertyDeclaration:
|
|
return (<PropertyDeclaration>node).initializer ? ContainerFlags.IsControlFlowContainer : 0;
|
|
|
|
case SyntaxKind.CatchClause:
|
|
case SyntaxKind.ForStatement:
|
|
case SyntaxKind.ForInStatement:
|
|
case SyntaxKind.ForOfStatement:
|
|
case SyntaxKind.CaseBlock:
|
|
return ContainerFlags.IsBlockScopedContainer;
|
|
|
|
case SyntaxKind.Block:
|
|
// do not treat blocks directly inside a function as a block-scoped-container.
|
|
// Locals that reside in this block should go to the function locals. Otherwise 'x'
|
|
// would not appear to be a redeclaration of a block scoped local in the following
|
|
// example:
|
|
//
|
|
// function foo() {
|
|
// var x;
|
|
// let x;
|
|
// }
|
|
//
|
|
// If we placed 'var x' into the function locals and 'let x' into the locals of
|
|
// the block, then there would be no collision.
|
|
//
|
|
// By not creating a new block-scoped-container here, we ensure that both 'var x'
|
|
// and 'let x' go into the Function-container's locals, and we do get a collision
|
|
// conflict.
|
|
return isFunctionLike(node.parent) ? ContainerFlags.None : ContainerFlags.IsBlockScopedContainer;
|
|
}
|
|
|
|
return ContainerFlags.None;
|
|
}
|
|
|
|
function addToContainerChain(next: Node) {
|
|
if (lastContainer) {
|
|
lastContainer.nextContainer = next;
|
|
}
|
|
|
|
lastContainer = next;
|
|
}
|
|
|
|
function declareSymbolAndAddToSymbolTable(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags): Symbol {
|
|
// Just call this directly so that the return type of this function stays "void".
|
|
return declareSymbolAndAddToSymbolTableWorker(node, symbolFlags, symbolExcludes);
|
|
}
|
|
|
|
function declareSymbolAndAddToSymbolTableWorker(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags): Symbol {
|
|
switch (container.kind) {
|
|
// Modules, source files, and classes need specialized handling for how their
|
|
// members are declared (for example, a member of a class will go into a specific
|
|
// symbol table depending on if it is static or not). We defer to specialized
|
|
// handlers to take care of declaring these child members.
|
|
case SyntaxKind.ModuleDeclaration:
|
|
return declareModuleMember(node, symbolFlags, symbolExcludes);
|
|
|
|
case SyntaxKind.SourceFile:
|
|
return declareSourceFileMember(node, symbolFlags, symbolExcludes);
|
|
|
|
case SyntaxKind.ClassExpression:
|
|
case SyntaxKind.ClassDeclaration:
|
|
return declareClassMember(node, symbolFlags, symbolExcludes);
|
|
|
|
case SyntaxKind.EnumDeclaration:
|
|
return declareSymbol(container.symbol.exports, container.symbol, node, symbolFlags, symbolExcludes);
|
|
|
|
case SyntaxKind.TypeLiteral:
|
|
case SyntaxKind.ObjectLiteralExpression:
|
|
case SyntaxKind.InterfaceDeclaration:
|
|
case SyntaxKind.JSDocRecordType:
|
|
case SyntaxKind.JSDocTypeLiteral:
|
|
// Interface/Object-types always have their children added to the 'members' of
|
|
// their container. They are only accessible through an instance of their
|
|
// container, and are never in scope otherwise (even inside the body of the
|
|
// object / type / interface declaring them). An exception is type parameters,
|
|
// which are in scope without qualification (similar to 'locals').
|
|
return declareSymbol(container.symbol.members, container.symbol, node, symbolFlags, symbolExcludes);
|
|
|
|
case SyntaxKind.FunctionType:
|
|
case SyntaxKind.ConstructorType:
|
|
case SyntaxKind.CallSignature:
|
|
case SyntaxKind.ConstructSignature:
|
|
case SyntaxKind.IndexSignature:
|
|
case SyntaxKind.MethodDeclaration:
|
|
case SyntaxKind.MethodSignature:
|
|
case SyntaxKind.Constructor:
|
|
case SyntaxKind.GetAccessor:
|
|
case SyntaxKind.SetAccessor:
|
|
case SyntaxKind.FunctionDeclaration:
|
|
case SyntaxKind.FunctionExpression:
|
|
case SyntaxKind.ArrowFunction:
|
|
case SyntaxKind.JSDocFunctionType:
|
|
case SyntaxKind.TypeAliasDeclaration:
|
|
// All the children of these container types are never visible through another
|
|
// symbol (i.e. through another symbol's 'exports' or 'members'). Instead,
|
|
// they're only accessed 'lexically' (i.e. from code that exists underneath
|
|
// their container in the tree. To accomplish this, we simply add their declared
|
|
// symbol to the 'locals' of the container. These symbols can then be found as
|
|
// the type checker walks up the containers, checking them for matching names.
|
|
return declareSymbol(container.locals, /*parent*/ undefined, node, symbolFlags, symbolExcludes);
|
|
}
|
|
}
|
|
|
|
function declareClassMember(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags) {
|
|
return hasModifier(node, ModifierFlags.Static)
|
|
? declareSymbol(container.symbol.exports, container.symbol, node, symbolFlags, symbolExcludes)
|
|
: declareSymbol(container.symbol.members, container.symbol, node, symbolFlags, symbolExcludes);
|
|
}
|
|
|
|
function declareSourceFileMember(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags) {
|
|
return isExternalModule(file)
|
|
? declareModuleMember(node, symbolFlags, symbolExcludes)
|
|
: declareSymbol(file.locals, undefined, node, symbolFlags, symbolExcludes);
|
|
}
|
|
|
|
function hasExportDeclarations(node: ModuleDeclaration | SourceFile): boolean {
|
|
const body = node.kind === SyntaxKind.SourceFile ? node : (<ModuleDeclaration>node).body;
|
|
if (body && (body.kind === SyntaxKind.SourceFile || body.kind === SyntaxKind.ModuleBlock)) {
|
|
for (const stat of (<Block>body).statements) {
|
|
if (stat.kind === SyntaxKind.ExportDeclaration || stat.kind === SyntaxKind.ExportAssignment) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function setExportContextFlag(node: ModuleDeclaration | SourceFile) {
|
|
// A declaration source file or ambient module declaration that contains no export declarations (but possibly regular
|
|
// declarations with export modifiers) is an export context in which declarations are implicitly exported.
|
|
if (isInAmbientContext(node) && !hasExportDeclarations(node)) {
|
|
node.flags |= NodeFlags.ExportContext;
|
|
}
|
|
else {
|
|
node.flags &= ~NodeFlags.ExportContext;
|
|
}
|
|
}
|
|
|
|
function bindModuleDeclaration(node: ModuleDeclaration) {
|
|
setExportContextFlag(node);
|
|
if (isAmbientModule(node)) {
|
|
if (hasModifier(node, ModifierFlags.Export)) {
|
|
errorOnFirstToken(node, Diagnostics.export_modifier_cannot_be_applied_to_ambient_modules_and_module_augmentations_since_they_are_always_visible);
|
|
}
|
|
if (isExternalModuleAugmentation(node)) {
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.NamespaceModule, SymbolFlags.NamespaceModuleExcludes);
|
|
}
|
|
else {
|
|
let pattern: Pattern | undefined;
|
|
if (node.name.kind === SyntaxKind.StringLiteral) {
|
|
const text = (<StringLiteral>node.name).text;
|
|
if (hasZeroOrOneAsteriskCharacter(text)) {
|
|
pattern = tryParsePattern(text);
|
|
}
|
|
else {
|
|
errorOnFirstToken(node.name, Diagnostics.Pattern_0_can_have_at_most_one_Asterisk_character, text);
|
|
}
|
|
}
|
|
|
|
const symbol = declareSymbolAndAddToSymbolTable(node, SymbolFlags.ValueModule, SymbolFlags.ValueModuleExcludes);
|
|
|
|
if (pattern) {
|
|
(file.patternAmbientModules || (file.patternAmbientModules = [])).push({ pattern, symbol });
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
const state = getModuleInstanceState(node);
|
|
if (state === ModuleInstanceState.NonInstantiated) {
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.NamespaceModule, SymbolFlags.NamespaceModuleExcludes);
|
|
}
|
|
else {
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.ValueModule, SymbolFlags.ValueModuleExcludes);
|
|
if (node.symbol.flags & (SymbolFlags.Function | SymbolFlags.Class | SymbolFlags.RegularEnum)) {
|
|
// if module was already merged with some function, class or non-const enum
|
|
// treat is a non-const-enum-only
|
|
node.symbol.constEnumOnlyModule = false;
|
|
}
|
|
else {
|
|
const currentModuleIsConstEnumOnly = state === ModuleInstanceState.ConstEnumOnly;
|
|
if (node.symbol.constEnumOnlyModule === undefined) {
|
|
// non-merged case - use the current state
|
|
node.symbol.constEnumOnlyModule = currentModuleIsConstEnumOnly;
|
|
}
|
|
else {
|
|
// merged case: module is const enum only if all its pieces are non-instantiated or const enum
|
|
node.symbol.constEnumOnlyModule = node.symbol.constEnumOnlyModule && currentModuleIsConstEnumOnly;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function bindFunctionOrConstructorType(node: SignatureDeclaration): void {
|
|
// For a given function symbol "<...>(...) => T" we want to generate a symbol identical
|
|
// to the one we would get for: { <...>(...): T }
|
|
//
|
|
// We do that by making an anonymous type literal symbol, and then setting the function
|
|
// symbol as its sole member. To the rest of the system, this symbol will be indistinguishable
|
|
// from an actual type literal symbol you would have gotten had you used the long form.
|
|
const symbol = createSymbol(SymbolFlags.Signature, getDeclarationName(node));
|
|
addDeclarationToSymbol(symbol, node, SymbolFlags.Signature);
|
|
|
|
const typeLiteralSymbol = createSymbol(SymbolFlags.TypeLiteral, "__type");
|
|
addDeclarationToSymbol(typeLiteralSymbol, node, SymbolFlags.TypeLiteral);
|
|
typeLiteralSymbol.members = createMap<Symbol>();
|
|
typeLiteralSymbol.members[symbol.name] = symbol;
|
|
}
|
|
|
|
function bindObjectLiteralExpression(node: ObjectLiteralExpression) {
|
|
const enum ElementKind {
|
|
Property = 1,
|
|
Accessor = 2
|
|
}
|
|
|
|
if (inStrictMode) {
|
|
const seen = createMap<ElementKind>();
|
|
|
|
for (const prop of node.properties) {
|
|
if (prop.name.kind !== SyntaxKind.Identifier) {
|
|
continue;
|
|
}
|
|
|
|
const identifier = <Identifier>prop.name;
|
|
|
|
// ECMA-262 11.1.5 Object Initializer
|
|
// If previous is not undefined then throw a SyntaxError exception if any of the following conditions are true
|
|
// a.This production is contained in strict code and IsDataDescriptor(previous) is true and
|
|
// IsDataDescriptor(propId.descriptor) is true.
|
|
// b.IsDataDescriptor(previous) is true and IsAccessorDescriptor(propId.descriptor) is true.
|
|
// c.IsAccessorDescriptor(previous) is true and IsDataDescriptor(propId.descriptor) is true.
|
|
// d.IsAccessorDescriptor(previous) is true and IsAccessorDescriptor(propId.descriptor) is true
|
|
// and either both previous and propId.descriptor have[[Get]] fields or both previous and propId.descriptor have[[Set]] fields
|
|
const currentKind = prop.kind === SyntaxKind.PropertyAssignment || prop.kind === SyntaxKind.ShorthandPropertyAssignment || prop.kind === SyntaxKind.MethodDeclaration
|
|
? ElementKind.Property
|
|
: ElementKind.Accessor;
|
|
|
|
const existingKind = seen[identifier.text];
|
|
if (!existingKind) {
|
|
seen[identifier.text] = currentKind;
|
|
continue;
|
|
}
|
|
|
|
if (currentKind === ElementKind.Property && existingKind === ElementKind.Property) {
|
|
const span = getErrorSpanForNode(file, identifier);
|
|
file.bindDiagnostics.push(createFileDiagnostic(file, span.start, span.length,
|
|
Diagnostics.An_object_literal_cannot_have_multiple_properties_with_the_same_name_in_strict_mode));
|
|
}
|
|
}
|
|
}
|
|
|
|
return bindAnonymousDeclaration(node, SymbolFlags.ObjectLiteral, "__object");
|
|
}
|
|
|
|
function bindAnonymousDeclaration(node: Declaration, symbolFlags: SymbolFlags, name: string) {
|
|
const symbol = createSymbol(symbolFlags, name);
|
|
addDeclarationToSymbol(symbol, node, symbolFlags);
|
|
}
|
|
|
|
function bindBlockScopedDeclaration(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags) {
|
|
switch (blockScopeContainer.kind) {
|
|
case SyntaxKind.ModuleDeclaration:
|
|
declareModuleMember(node, symbolFlags, symbolExcludes);
|
|
break;
|
|
case SyntaxKind.SourceFile:
|
|
if (isExternalModule(<SourceFile>container)) {
|
|
declareModuleMember(node, symbolFlags, symbolExcludes);
|
|
break;
|
|
}
|
|
// fall through.
|
|
default:
|
|
if (!blockScopeContainer.locals) {
|
|
blockScopeContainer.locals = createMap<Symbol>();
|
|
addToContainerChain(blockScopeContainer);
|
|
}
|
|
declareSymbol(blockScopeContainer.locals, undefined, node, symbolFlags, symbolExcludes);
|
|
}
|
|
}
|
|
|
|
function bindBlockScopedVariableDeclaration(node: Declaration) {
|
|
bindBlockScopedDeclaration(node, SymbolFlags.BlockScopedVariable, SymbolFlags.BlockScopedVariableExcludes);
|
|
}
|
|
|
|
// The binder visits every node in the syntax tree so it is a convenient place to perform a single localized
|
|
// check for reserved words used as identifiers in strict mode code.
|
|
function checkStrictModeIdentifier(node: Identifier) {
|
|
if (inStrictMode &&
|
|
node.originalKeywordKind >= SyntaxKind.FirstFutureReservedWord &&
|
|
node.originalKeywordKind <= SyntaxKind.LastFutureReservedWord &&
|
|
!isIdentifierName(node) &&
|
|
!isInAmbientContext(node)) {
|
|
|
|
// Report error only if there are no parse errors in file
|
|
if (!file.parseDiagnostics.length) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node,
|
|
getStrictModeIdentifierMessage(node), declarationNameToString(node)));
|
|
}
|
|
}
|
|
}
|
|
|
|
function getStrictModeIdentifierMessage(node: Node) {
|
|
// Provide specialized messages to help the user understand why we think they're in
|
|
// strict mode.
|
|
if (getContainingClass(node)) {
|
|
return Diagnostics.Identifier_expected_0_is_a_reserved_word_in_strict_mode_Class_definitions_are_automatically_in_strict_mode;
|
|
}
|
|
|
|
if (file.externalModuleIndicator) {
|
|
return Diagnostics.Identifier_expected_0_is_a_reserved_word_in_strict_mode_Modules_are_automatically_in_strict_mode;
|
|
}
|
|
|
|
return Diagnostics.Identifier_expected_0_is_a_reserved_word_in_strict_mode;
|
|
}
|
|
|
|
function checkStrictModeBinaryExpression(node: BinaryExpression) {
|
|
if (inStrictMode && isLeftHandSideExpression(node.left) && isAssignmentOperator(node.operatorToken.kind)) {
|
|
// ECMA 262 (Annex C) The identifier eval or arguments may not appear as the LeftHandSideExpression of an
|
|
// Assignment operator(11.13) or of a PostfixExpression(11.3)
|
|
checkStrictModeEvalOrArguments(node, <Identifier>node.left);
|
|
}
|
|
}
|
|
|
|
function checkStrictModeCatchClause(node: CatchClause) {
|
|
// It is a SyntaxError if a TryStatement with a Catch occurs within strict code and the Identifier of the
|
|
// Catch production is eval or arguments
|
|
if (inStrictMode && node.variableDeclaration) {
|
|
checkStrictModeEvalOrArguments(node, node.variableDeclaration.name);
|
|
}
|
|
}
|
|
|
|
function checkStrictModeDeleteExpression(node: DeleteExpression) {
|
|
// Grammar checking
|
|
if (inStrictMode && node.expression.kind === SyntaxKind.Identifier) {
|
|
// When a delete operator occurs within strict mode code, a SyntaxError is thrown if its
|
|
// UnaryExpression is a direct reference to a variable, function argument, or function name
|
|
const span = getErrorSpanForNode(file, node.expression);
|
|
file.bindDiagnostics.push(createFileDiagnostic(file, span.start, span.length, Diagnostics.delete_cannot_be_called_on_an_identifier_in_strict_mode));
|
|
}
|
|
}
|
|
|
|
function isEvalOrArgumentsIdentifier(node: Node): boolean {
|
|
return node.kind === SyntaxKind.Identifier &&
|
|
((<Identifier>node).text === "eval" || (<Identifier>node).text === "arguments");
|
|
}
|
|
|
|
function checkStrictModeEvalOrArguments(contextNode: Node, name: Node) {
|
|
if (name && name.kind === SyntaxKind.Identifier) {
|
|
const identifier = <Identifier>name;
|
|
if (isEvalOrArgumentsIdentifier(identifier)) {
|
|
// We check first if the name is inside class declaration or class expression; if so give explicit message
|
|
// otherwise report generic error message.
|
|
const span = getErrorSpanForNode(file, name);
|
|
file.bindDiagnostics.push(createFileDiagnostic(file, span.start, span.length,
|
|
getStrictModeEvalOrArgumentsMessage(contextNode), identifier.text));
|
|
}
|
|
}
|
|
}
|
|
|
|
function getStrictModeEvalOrArgumentsMessage(node: Node) {
|
|
// Provide specialized messages to help the user understand why we think they're in
|
|
// strict mode.
|
|
if (getContainingClass(node)) {
|
|
return Diagnostics.Invalid_use_of_0_Class_definitions_are_automatically_in_strict_mode;
|
|
}
|
|
|
|
if (file.externalModuleIndicator) {
|
|
return Diagnostics.Invalid_use_of_0_Modules_are_automatically_in_strict_mode;
|
|
}
|
|
|
|
return Diagnostics.Invalid_use_of_0_in_strict_mode;
|
|
}
|
|
|
|
function checkStrictModeFunctionName(node: FunctionLikeDeclaration) {
|
|
if (inStrictMode) {
|
|
// It is a SyntaxError if the identifier eval or arguments appears within a FormalParameterList of a strict mode FunctionDeclaration or FunctionExpression (13.1))
|
|
checkStrictModeEvalOrArguments(node, node.name);
|
|
}
|
|
}
|
|
|
|
function getStrictModeBlockScopeFunctionDeclarationMessage(node: Node) {
|
|
// Provide specialized messages to help the user understand why we think they're in
|
|
// strict mode.
|
|
if (getContainingClass(node)) {
|
|
return Diagnostics.Function_declarations_are_not_allowed_inside_blocks_in_strict_mode_when_targeting_ES3_or_ES5_Class_definitions_are_automatically_in_strict_mode;
|
|
}
|
|
|
|
if (file.externalModuleIndicator) {
|
|
return Diagnostics.Function_declarations_are_not_allowed_inside_blocks_in_strict_mode_when_targeting_ES3_or_ES5_Modules_are_automatically_in_strict_mode;
|
|
}
|
|
|
|
return Diagnostics.Function_declarations_are_not_allowed_inside_blocks_in_strict_mode_when_targeting_ES3_or_ES5;
|
|
}
|
|
|
|
function checkStrictModeFunctionDeclaration(node: FunctionDeclaration) {
|
|
if (languageVersion < ScriptTarget.ES6) {
|
|
// Report error if function is not top level function declaration
|
|
if (blockScopeContainer.kind !== SyntaxKind.SourceFile &&
|
|
blockScopeContainer.kind !== SyntaxKind.ModuleDeclaration &&
|
|
!isFunctionLike(blockScopeContainer)) {
|
|
// We check first if the name is inside class declaration or class expression; if so give explicit message
|
|
// otherwise report generic error message.
|
|
const errorSpan = getErrorSpanForNode(file, node);
|
|
file.bindDiagnostics.push(createFileDiagnostic(file, errorSpan.start, errorSpan.length,
|
|
getStrictModeBlockScopeFunctionDeclarationMessage(node)));
|
|
}
|
|
}
|
|
}
|
|
|
|
function checkStrictModeNumericLiteral(node: NumericLiteral) {
|
|
if (inStrictMode && node.isOctalLiteral) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node, Diagnostics.Octal_literals_are_not_allowed_in_strict_mode));
|
|
}
|
|
}
|
|
|
|
function checkStrictModePostfixUnaryExpression(node: PostfixUnaryExpression) {
|
|
// Grammar checking
|
|
// The identifier eval or arguments may not appear as the LeftHandSideExpression of an
|
|
// Assignment operator(11.13) or of a PostfixExpression(11.3) or as the UnaryExpression
|
|
// operated upon by a Prefix Increment(11.4.4) or a Prefix Decrement(11.4.5) operator.
|
|
if (inStrictMode) {
|
|
checkStrictModeEvalOrArguments(node, <Identifier>node.operand);
|
|
}
|
|
}
|
|
|
|
function checkStrictModePrefixUnaryExpression(node: PrefixUnaryExpression) {
|
|
// Grammar checking
|
|
if (inStrictMode) {
|
|
if (node.operator === SyntaxKind.PlusPlusToken || node.operator === SyntaxKind.MinusMinusToken) {
|
|
checkStrictModeEvalOrArguments(node, <Identifier>node.operand);
|
|
}
|
|
}
|
|
}
|
|
|
|
function checkStrictModeWithStatement(node: WithStatement) {
|
|
// Grammar checking for withStatement
|
|
if (inStrictMode) {
|
|
errorOnFirstToken(node, Diagnostics.with_statements_are_not_allowed_in_strict_mode);
|
|
}
|
|
}
|
|
|
|
function errorOnFirstToken(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any) {
|
|
const span = getSpanOfTokenAtPosition(file, node.pos);
|
|
file.bindDiagnostics.push(createFileDiagnostic(file, span.start, span.length, message, arg0, arg1, arg2));
|
|
}
|
|
|
|
function getDestructuringParameterName(node: Declaration) {
|
|
return "__" + indexOf((<SignatureDeclaration>node.parent).parameters, node);
|
|
}
|
|
|
|
function bind(node: Node): void {
|
|
if (!node) {
|
|
return;
|
|
}
|
|
node.parent = parent;
|
|
const saveInStrictMode = inStrictMode;
|
|
// First we bind declaration nodes to a symbol if possible. We'll both create a symbol
|
|
// and then potentially add the symbol to an appropriate symbol table. Possible
|
|
// destination symbol tables are:
|
|
//
|
|
// 1) The 'exports' table of the current container's symbol.
|
|
// 2) The 'members' table of the current container's symbol.
|
|
// 3) The 'locals' table of the current container.
|
|
//
|
|
// However, not all symbols will end up in any of these tables. 'Anonymous' symbols
|
|
// (like TypeLiterals for example) will not be put in any table.
|
|
bindWorker(node);
|
|
// Then we recurse into the children of the node to bind them as well. For certain
|
|
// symbols we do specialized work when we recurse. For example, we'll keep track of
|
|
// the current 'container' node when it changes. This helps us know which symbol table
|
|
// a local should go into for example. Since terminal nodes are known not to have
|
|
// children, as an optimization we don't process those.
|
|
if (node.kind > SyntaxKind.LastToken) {
|
|
const saveParent = parent;
|
|
parent = node;
|
|
const containerFlags = getContainerFlags(node);
|
|
if (containerFlags === ContainerFlags.None) {
|
|
bindChildren(node);
|
|
}
|
|
else {
|
|
bindContainer(node, containerFlags);
|
|
}
|
|
parent = saveParent;
|
|
}
|
|
else if (!skipTransformFlagAggregation && (node.transformFlags & TransformFlags.HasComputedFlags) === 0) {
|
|
subtreeTransformFlags |= computeTransformFlagsForNode(node, 0);
|
|
}
|
|
inStrictMode = saveInStrictMode;
|
|
}
|
|
|
|
function updateStrictModeStatementList(statements: NodeArray<Statement>) {
|
|
if (!inStrictMode) {
|
|
for (const statement of statements) {
|
|
if (!isPrologueDirective(statement)) {
|
|
return;
|
|
}
|
|
|
|
if (isUseStrictPrologueDirective(<ExpressionStatement>statement)) {
|
|
inStrictMode = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Should be called only on prologue directives (isPrologueDirective(node) should be true)
|
|
function isUseStrictPrologueDirective(node: ExpressionStatement): boolean {
|
|
const nodeText = getTextOfNodeFromSourceText(file.text, node.expression);
|
|
|
|
// Note: the node text must be exactly "use strict" or 'use strict'. It is not ok for the
|
|
// string to contain unicode escapes (as per ES5).
|
|
return nodeText === '"use strict"' || nodeText === "'use strict'";
|
|
}
|
|
|
|
function bindWorker(node: Node) {
|
|
switch (node.kind) {
|
|
/* Strict mode checks */
|
|
case SyntaxKind.Identifier:
|
|
case SyntaxKind.ThisKeyword:
|
|
if (currentFlow && (isExpression(node) || parent.kind === SyntaxKind.ShorthandPropertyAssignment)) {
|
|
node.flowNode = currentFlow;
|
|
}
|
|
return checkStrictModeIdentifier(<Identifier>node);
|
|
case SyntaxKind.PropertyAccessExpression:
|
|
if (currentFlow && isNarrowableReference(<Expression>node)) {
|
|
node.flowNode = currentFlow;
|
|
}
|
|
break;
|
|
case SyntaxKind.BinaryExpression:
|
|
if (isInJavaScriptFile(node)) {
|
|
const specialKind = getSpecialPropertyAssignmentKind(node);
|
|
switch (specialKind) {
|
|
case SpecialPropertyAssignmentKind.ExportsProperty:
|
|
bindExportsPropertyAssignment(<BinaryExpression>node);
|
|
break;
|
|
case SpecialPropertyAssignmentKind.ModuleExports:
|
|
bindModuleExportsAssignment(<BinaryExpression>node);
|
|
break;
|
|
case SpecialPropertyAssignmentKind.PrototypeProperty:
|
|
bindPrototypePropertyAssignment(<BinaryExpression>node);
|
|
break;
|
|
case SpecialPropertyAssignmentKind.ThisProperty:
|
|
bindThisPropertyAssignment(<BinaryExpression>node);
|
|
break;
|
|
case SpecialPropertyAssignmentKind.None:
|
|
// Nothing to do
|
|
break;
|
|
default:
|
|
Debug.fail("Unknown special property assignment kind");
|
|
}
|
|
}
|
|
return checkStrictModeBinaryExpression(<BinaryExpression>node);
|
|
case SyntaxKind.CatchClause:
|
|
return checkStrictModeCatchClause(<CatchClause>node);
|
|
case SyntaxKind.DeleteExpression:
|
|
return checkStrictModeDeleteExpression(<DeleteExpression>node);
|
|
case SyntaxKind.NumericLiteral:
|
|
return checkStrictModeNumericLiteral(<NumericLiteral>node);
|
|
case SyntaxKind.PostfixUnaryExpression:
|
|
return checkStrictModePostfixUnaryExpression(<PostfixUnaryExpression>node);
|
|
case SyntaxKind.PrefixUnaryExpression:
|
|
return checkStrictModePrefixUnaryExpression(<PrefixUnaryExpression>node);
|
|
case SyntaxKind.WithStatement:
|
|
return checkStrictModeWithStatement(<WithStatement>node);
|
|
case SyntaxKind.ThisType:
|
|
seenThisKeyword = true;
|
|
return;
|
|
case SyntaxKind.TypePredicate:
|
|
return checkTypePredicate(node as TypePredicateNode);
|
|
case SyntaxKind.TypeParameter:
|
|
return declareSymbolAndAddToSymbolTable(<Declaration>node, SymbolFlags.TypeParameter, SymbolFlags.TypeParameterExcludes);
|
|
case SyntaxKind.Parameter:
|
|
return bindParameter(<ParameterDeclaration>node);
|
|
case SyntaxKind.VariableDeclaration:
|
|
case SyntaxKind.BindingElement:
|
|
return bindVariableDeclarationOrBindingElement(<VariableDeclaration | BindingElement>node);
|
|
case SyntaxKind.PropertyDeclaration:
|
|
case SyntaxKind.PropertySignature:
|
|
case SyntaxKind.JSDocRecordMember:
|
|
return bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.Property | ((<PropertyDeclaration>node).questionToken ? SymbolFlags.Optional : SymbolFlags.None), SymbolFlags.PropertyExcludes);
|
|
case SyntaxKind.JSDocPropertyTag:
|
|
return bindJSDocProperty(<JSDocPropertyTag>node);
|
|
case SyntaxKind.PropertyAssignment:
|
|
case SyntaxKind.ShorthandPropertyAssignment:
|
|
return bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.Property, SymbolFlags.PropertyExcludes);
|
|
case SyntaxKind.EnumMember:
|
|
return bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.EnumMember, SymbolFlags.EnumMemberExcludes);
|
|
|
|
case SyntaxKind.JsxSpreadAttribute:
|
|
emitFlags |= NodeFlags.HasJsxSpreadAttributes;
|
|
return;
|
|
|
|
case SyntaxKind.CallSignature:
|
|
case SyntaxKind.ConstructSignature:
|
|
case SyntaxKind.IndexSignature:
|
|
return declareSymbolAndAddToSymbolTable(<Declaration>node, SymbolFlags.Signature, SymbolFlags.None);
|
|
case SyntaxKind.MethodDeclaration:
|
|
case SyntaxKind.MethodSignature:
|
|
// If this is an ObjectLiteralExpression method, then it sits in the same space
|
|
// as other properties in the object literal. So we use SymbolFlags.PropertyExcludes
|
|
// so that it will conflict with any other object literal members with the same
|
|
// name.
|
|
return bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.Method | ((<MethodDeclaration>node).questionToken ? SymbolFlags.Optional : SymbolFlags.None),
|
|
isObjectLiteralMethod(node) ? SymbolFlags.PropertyExcludes : SymbolFlags.MethodExcludes);
|
|
case SyntaxKind.FunctionDeclaration:
|
|
return bindFunctionDeclaration(<FunctionDeclaration>node);
|
|
case SyntaxKind.Constructor:
|
|
return declareSymbolAndAddToSymbolTable(<Declaration>node, SymbolFlags.Constructor, /*symbolExcludes:*/ SymbolFlags.None);
|
|
case SyntaxKind.GetAccessor:
|
|
return bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.GetAccessor, SymbolFlags.GetAccessorExcludes);
|
|
case SyntaxKind.SetAccessor:
|
|
return bindPropertyOrMethodOrAccessor(<Declaration>node, SymbolFlags.SetAccessor, SymbolFlags.SetAccessorExcludes);
|
|
case SyntaxKind.FunctionType:
|
|
case SyntaxKind.ConstructorType:
|
|
case SyntaxKind.JSDocFunctionType:
|
|
return bindFunctionOrConstructorType(<SignatureDeclaration>node);
|
|
case SyntaxKind.TypeLiteral:
|
|
case SyntaxKind.JSDocTypeLiteral:
|
|
case SyntaxKind.JSDocRecordType:
|
|
return bindAnonymousDeclaration(<TypeLiteralNode>node, SymbolFlags.TypeLiteral, "__type");
|
|
case SyntaxKind.ObjectLiteralExpression:
|
|
return bindObjectLiteralExpression(<ObjectLiteralExpression>node);
|
|
case SyntaxKind.FunctionExpression:
|
|
case SyntaxKind.ArrowFunction:
|
|
return bindFunctionExpression(<FunctionExpression>node);
|
|
|
|
case SyntaxKind.CallExpression:
|
|
if (isInJavaScriptFile(node)) {
|
|
bindCallExpression(<CallExpression>node);
|
|
}
|
|
break;
|
|
|
|
// Members of classes, interfaces, and modules
|
|
case SyntaxKind.ClassExpression:
|
|
case SyntaxKind.ClassDeclaration:
|
|
// All classes are automatically in strict mode in ES6.
|
|
inStrictMode = true;
|
|
return bindClassLikeDeclaration(<ClassLikeDeclaration>node);
|
|
case SyntaxKind.InterfaceDeclaration:
|
|
return bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.Interface, SymbolFlags.InterfaceExcludes);
|
|
case SyntaxKind.JSDocTypedefTag:
|
|
case SyntaxKind.TypeAliasDeclaration:
|
|
return bindBlockScopedDeclaration(<Declaration>node, SymbolFlags.TypeAlias, SymbolFlags.TypeAliasExcludes);
|
|
case SyntaxKind.EnumDeclaration:
|
|
return bindEnumDeclaration(<EnumDeclaration>node);
|
|
case SyntaxKind.ModuleDeclaration:
|
|
return bindModuleDeclaration(<ModuleDeclaration>node);
|
|
|
|
// Imports and exports
|
|
case SyntaxKind.ImportEqualsDeclaration:
|
|
case SyntaxKind.NamespaceImport:
|
|
case SyntaxKind.ImportSpecifier:
|
|
case SyntaxKind.ExportSpecifier:
|
|
return declareSymbolAndAddToSymbolTable(<Declaration>node, SymbolFlags.Alias, SymbolFlags.AliasExcludes);
|
|
case SyntaxKind.NamespaceExportDeclaration:
|
|
return bindNamespaceExportDeclaration(<NamespaceExportDeclaration>node);
|
|
case SyntaxKind.ImportClause:
|
|
return bindImportClause(<ImportClause>node);
|
|
case SyntaxKind.ExportDeclaration:
|
|
return bindExportDeclaration(<ExportDeclaration>node);
|
|
case SyntaxKind.ExportAssignment:
|
|
return bindExportAssignment(<ExportAssignment>node);
|
|
case SyntaxKind.SourceFile:
|
|
updateStrictModeStatementList((<SourceFile>node).statements);
|
|
return bindSourceFileIfExternalModule();
|
|
case SyntaxKind.Block:
|
|
if (!isFunctionLike(node.parent)) {
|
|
return;
|
|
}
|
|
// Fall through
|
|
case SyntaxKind.ModuleBlock:
|
|
return updateStrictModeStatementList((<Block | ModuleBlock>node).statements);
|
|
}
|
|
}
|
|
|
|
function checkTypePredicate(node: TypePredicateNode) {
|
|
const { parameterName, type } = node;
|
|
if (parameterName && parameterName.kind === SyntaxKind.Identifier) {
|
|
checkStrictModeIdentifier(parameterName as Identifier);
|
|
}
|
|
if (parameterName && parameterName.kind === SyntaxKind.ThisType) {
|
|
seenThisKeyword = true;
|
|
}
|
|
bind(type);
|
|
}
|
|
|
|
function bindSourceFileIfExternalModule() {
|
|
setExportContextFlag(file);
|
|
if (isExternalModule(file)) {
|
|
bindSourceFileAsExternalModule();
|
|
}
|
|
}
|
|
|
|
function bindSourceFileAsExternalModule() {
|
|
bindAnonymousDeclaration(file, SymbolFlags.ValueModule, `"${removeFileExtension(file.fileName) }"`);
|
|
}
|
|
|
|
function bindExportAssignment(node: ExportAssignment | BinaryExpression) {
|
|
if (!container.symbol || !container.symbol.exports) {
|
|
// Export assignment in some sort of block construct
|
|
bindAnonymousDeclaration(node, SymbolFlags.Alias, getDeclarationName(node));
|
|
}
|
|
else {
|
|
const flags = node.kind === SyntaxKind.ExportAssignment && exportAssignmentIsAlias(<ExportAssignment>node)
|
|
// An export default clause with an EntityNameExpression exports all meanings of that identifier
|
|
? SymbolFlags.Alias
|
|
// An export default clause with any other expression exports a value
|
|
: SymbolFlags.Property;
|
|
declareSymbol(container.symbol.exports, container.symbol, node, flags, SymbolFlags.PropertyExcludes | SymbolFlags.AliasExcludes);
|
|
}
|
|
}
|
|
|
|
function bindNamespaceExportDeclaration(node: NamespaceExportDeclaration) {
|
|
if (node.modifiers && node.modifiers.length) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node, Diagnostics.Modifiers_cannot_appear_here));
|
|
}
|
|
|
|
if (node.parent.kind !== SyntaxKind.SourceFile) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node, Diagnostics.Global_module_exports_may_only_appear_at_top_level));
|
|
return;
|
|
}
|
|
else {
|
|
const parent = node.parent as SourceFile;
|
|
|
|
if (!isExternalModule(parent)) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node, Diagnostics.Global_module_exports_may_only_appear_in_module_files));
|
|
return;
|
|
}
|
|
|
|
if (!parent.isDeclarationFile) {
|
|
file.bindDiagnostics.push(createDiagnosticForNode(node, Diagnostics.Global_module_exports_may_only_appear_in_declaration_files));
|
|
return;
|
|
}
|
|
}
|
|
|
|
file.symbol.globalExports = file.symbol.globalExports || createMap<Symbol>();
|
|
declareSymbol(file.symbol.globalExports, file.symbol, node, SymbolFlags.Alias, SymbolFlags.AliasExcludes);
|
|
}
|
|
|
|
function bindExportDeclaration(node: ExportDeclaration) {
|
|
if (!container.symbol || !container.symbol.exports) {
|
|
// Export * in some sort of block construct
|
|
bindAnonymousDeclaration(node, SymbolFlags.ExportStar, getDeclarationName(node));
|
|
}
|
|
else if (!node.exportClause) {
|
|
// All export * declarations are collected in an __export symbol
|
|
declareSymbol(container.symbol.exports, container.symbol, node, SymbolFlags.ExportStar, SymbolFlags.None);
|
|
}
|
|
}
|
|
|
|
function bindImportClause(node: ImportClause) {
|
|
if (node.name) {
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.Alias, SymbolFlags.AliasExcludes);
|
|
}
|
|
}
|
|
|
|
function setCommonJsModuleIndicator(node: Node) {
|
|
if (!file.commonJsModuleIndicator) {
|
|
file.commonJsModuleIndicator = node;
|
|
bindSourceFileAsExternalModule();
|
|
}
|
|
}
|
|
|
|
function bindExportsPropertyAssignment(node: BinaryExpression) {
|
|
// When we create a property via 'exports.foo = bar', the 'exports.foo' property access
|
|
// expression is the declaration
|
|
setCommonJsModuleIndicator(node);
|
|
declareSymbol(file.symbol.exports, file.symbol, <PropertyAccessExpression>node.left, SymbolFlags.Property | SymbolFlags.Export, SymbolFlags.None);
|
|
}
|
|
|
|
function bindModuleExportsAssignment(node: BinaryExpression) {
|
|
// 'module.exports = expr' assignment
|
|
setCommonJsModuleIndicator(node);
|
|
declareSymbol(file.symbol.exports, file.symbol, node, SymbolFlags.Property | SymbolFlags.Export | SymbolFlags.ValueModule, SymbolFlags.None);
|
|
}
|
|
|
|
function bindThisPropertyAssignment(node: BinaryExpression) {
|
|
Debug.assert(isInJavaScriptFile(node));
|
|
// Declare a 'member' if the container is an ES5 class or ES6 constructor
|
|
if (container.kind === SyntaxKind.FunctionDeclaration || container.kind === SyntaxKind.FunctionExpression) {
|
|
container.symbol.members = container.symbol.members || createMap<Symbol>();
|
|
// It's acceptable for multiple 'this' assignments of the same identifier to occur
|
|
declareSymbol(container.symbol.members, container.symbol, node, SymbolFlags.Property, SymbolFlags.PropertyExcludes & ~SymbolFlags.Property);
|
|
}
|
|
else if (container.kind === SyntaxKind.Constructor) {
|
|
// this.foo assignment in a JavaScript class
|
|
// Bind this property to the containing class
|
|
const saveContainer = container;
|
|
container = container.parent;
|
|
const symbol = bindPropertyOrMethodOrAccessor(node, SymbolFlags.Property, SymbolFlags.None);
|
|
if (symbol) {
|
|
// constructor-declared symbols can be overwritten by subsequent method declarations
|
|
(symbol as Symbol).isReplaceableByMethod = true;
|
|
}
|
|
container = saveContainer;
|
|
}
|
|
}
|
|
|
|
function bindPrototypePropertyAssignment(node: BinaryExpression) {
|
|
// We saw a node of the form 'x.prototype.y = z'. Declare a 'member' y on x if x was a function.
|
|
|
|
// Look up the function in the local scope, since prototype assignments should
|
|
// follow the function declaration
|
|
const leftSideOfAssignment = node.left as PropertyAccessExpression;
|
|
const classPrototype = leftSideOfAssignment.expression as PropertyAccessExpression;
|
|
const constructorFunction = classPrototype.expression as Identifier;
|
|
|
|
// Fix up parent pointers since we're going to use these nodes before we bind into them
|
|
leftSideOfAssignment.parent = node;
|
|
constructorFunction.parent = classPrototype;
|
|
classPrototype.parent = leftSideOfAssignment;
|
|
|
|
const funcSymbol = container.locals[constructorFunction.text];
|
|
if (!funcSymbol || !(funcSymbol.flags & SymbolFlags.Function || isDeclarationOfFunctionExpression(funcSymbol))) {
|
|
return;
|
|
}
|
|
|
|
// Set up the members collection if it doesn't exist already
|
|
if (!funcSymbol.members) {
|
|
funcSymbol.members = createMap<Symbol>();
|
|
}
|
|
|
|
// Declare the method/property
|
|
declareSymbol(funcSymbol.members, funcSymbol, leftSideOfAssignment, SymbolFlags.Property, SymbolFlags.PropertyExcludes);
|
|
}
|
|
|
|
function bindCallExpression(node: CallExpression) {
|
|
// We're only inspecting call expressions to detect CommonJS modules, so we can skip
|
|
// this check if we've already seen the module indicator
|
|
if (!file.commonJsModuleIndicator && isRequireCall(node, /*checkArgumentIsStringLiteral*/false)) {
|
|
setCommonJsModuleIndicator(node);
|
|
}
|
|
}
|
|
|
|
function bindClassLikeDeclaration(node: ClassLikeDeclaration) {
|
|
if (!isDeclarationFile(file) && !isInAmbientContext(node)) {
|
|
if (getClassExtendsHeritageClauseElement(node) !== undefined) {
|
|
emitFlags |= NodeFlags.HasClassExtends;
|
|
}
|
|
if (nodeIsDecorated(node)) {
|
|
emitFlags |= NodeFlags.HasDecorators;
|
|
}
|
|
}
|
|
|
|
if (node.kind === SyntaxKind.ClassDeclaration) {
|
|
bindBlockScopedDeclaration(node, SymbolFlags.Class, SymbolFlags.ClassExcludes);
|
|
}
|
|
else {
|
|
const bindingName = node.name ? node.name.text : "__class";
|
|
bindAnonymousDeclaration(node, SymbolFlags.Class, bindingName);
|
|
// Add name of class expression into the map for semantic classifier
|
|
if (node.name) {
|
|
classifiableNames[node.name.text] = node.name.text;
|
|
}
|
|
}
|
|
|
|
const symbol = node.symbol;
|
|
|
|
// TypeScript 1.0 spec (April 2014): 8.4
|
|
// Every class automatically contains a static property member named 'prototype', the
|
|
// type of which is an instantiation of the class type with type Any supplied as a type
|
|
// argument for each type parameter. It is an error to explicitly declare a static
|
|
// property member with the name 'prototype'.
|
|
//
|
|
// Note: we check for this here because this class may be merging into a module. The
|
|
// module might have an exported variable called 'prototype'. We can't allow that as
|
|
// that would clash with the built-in 'prototype' for the class.
|
|
const prototypeSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Prototype, "prototype");
|
|
if (symbol.exports[prototypeSymbol.name]) {
|
|
if (node.name) {
|
|
node.name.parent = node;
|
|
}
|
|
file.bindDiagnostics.push(createDiagnosticForNode(symbol.exports[prototypeSymbol.name].declarations[0],
|
|
Diagnostics.Duplicate_identifier_0, prototypeSymbol.name));
|
|
}
|
|
symbol.exports[prototypeSymbol.name] = prototypeSymbol;
|
|
prototypeSymbol.parent = symbol;
|
|
}
|
|
|
|
function bindEnumDeclaration(node: EnumDeclaration) {
|
|
return isConst(node)
|
|
? bindBlockScopedDeclaration(node, SymbolFlags.ConstEnum, SymbolFlags.ConstEnumExcludes)
|
|
: bindBlockScopedDeclaration(node, SymbolFlags.RegularEnum, SymbolFlags.RegularEnumExcludes);
|
|
}
|
|
|
|
function bindVariableDeclarationOrBindingElement(node: VariableDeclaration | BindingElement) {
|
|
if (inStrictMode) {
|
|
checkStrictModeEvalOrArguments(node, node.name);
|
|
}
|
|
|
|
if (!isBindingPattern(node.name)) {
|
|
if (isBlockOrCatchScoped(node)) {
|
|
bindBlockScopedVariableDeclaration(node);
|
|
}
|
|
else if (isParameterDeclaration(node)) {
|
|
// It is safe to walk up parent chain to find whether the node is a destructing parameter declaration
|
|
// because its parent chain has already been set up, since parents are set before descending into children.
|
|
//
|
|
// If node is a binding element in parameter declaration, we need to use ParameterExcludes.
|
|
// Using ParameterExcludes flag allows the compiler to report an error on duplicate identifiers in Parameter Declaration
|
|
// For example:
|
|
// function foo([a,a]) {} // Duplicate Identifier error
|
|
// function bar(a,a) {} // Duplicate Identifier error, parameter declaration in this case is handled in bindParameter
|
|
// // which correctly set excluded symbols
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.FunctionScopedVariable, SymbolFlags.ParameterExcludes);
|
|
}
|
|
else {
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.FunctionScopedVariable, SymbolFlags.FunctionScopedVariableExcludes);
|
|
}
|
|
}
|
|
}
|
|
|
|
function bindParameter(node: ParameterDeclaration) {
|
|
if (!isDeclarationFile(file) &&
|
|
!isInAmbientContext(node) &&
|
|
nodeIsDecorated(node)) {
|
|
emitFlags |= (NodeFlags.HasDecorators | NodeFlags.HasParamDecorators);
|
|
}
|
|
|
|
if (inStrictMode) {
|
|
// It is a SyntaxError if the identifier eval or arguments appears within a FormalParameterList of a
|
|
// strict mode FunctionLikeDeclaration or FunctionExpression(13.1)
|
|
checkStrictModeEvalOrArguments(node, node.name);
|
|
}
|
|
|
|
if (isBindingPattern(node.name)) {
|
|
bindAnonymousDeclaration(node, SymbolFlags.FunctionScopedVariable, getDestructuringParameterName(node));
|
|
}
|
|
else {
|
|
declareSymbolAndAddToSymbolTable(node, SymbolFlags.FunctionScopedVariable, SymbolFlags.ParameterExcludes);
|
|
}
|
|
|
|
// If this is a property-parameter, then also declare the property symbol into the
|
|
// containing class.
|
|
if (isParameterPropertyDeclaration(node)) {
|
|
const classDeclaration = <ClassLikeDeclaration>node.parent.parent;
|
|
declareSymbol(classDeclaration.symbol.members, classDeclaration.symbol, node, SymbolFlags.Property | (node.questionToken ? SymbolFlags.Optional : SymbolFlags.None), SymbolFlags.PropertyExcludes);
|
|
}
|
|
}
|
|
|
|
function bindFunctionDeclaration(node: FunctionDeclaration) {
|
|
if (!isDeclarationFile(file) && !isInAmbientContext(node)) {
|
|
if (isAsyncFunctionLike(node)) {
|
|
emitFlags |= NodeFlags.HasAsyncFunctions;
|
|
}
|
|
}
|
|
|
|
checkStrictModeFunctionName(<FunctionDeclaration>node);
|
|
if (inStrictMode) {
|
|
checkStrictModeFunctionDeclaration(node);
|
|
bindBlockScopedDeclaration(node, SymbolFlags.Function, SymbolFlags.FunctionExcludes);
|
|
}
|
|
else {
|
|
declareSymbolAndAddToSymbolTable(<Declaration>node, SymbolFlags.Function, SymbolFlags.FunctionExcludes);
|
|
}
|
|
}
|
|
|
|
function bindFunctionExpression(node: FunctionExpression) {
|
|
if (!isDeclarationFile(file) && !isInAmbientContext(node)) {
|
|
if (isAsyncFunctionLike(node)) {
|
|
emitFlags |= NodeFlags.HasAsyncFunctions;
|
|
}
|
|
}
|
|
if (currentFlow) {
|
|
node.flowNode = currentFlow;
|
|
}
|
|
checkStrictModeFunctionName(<FunctionExpression>node);
|
|
const bindingName = (<FunctionExpression>node).name ? (<FunctionExpression>node).name.text : "__function";
|
|
return bindAnonymousDeclaration(<FunctionExpression>node, SymbolFlags.Function, bindingName);
|
|
}
|
|
|
|
function bindPropertyOrMethodOrAccessor(node: Declaration, symbolFlags: SymbolFlags, symbolExcludes: SymbolFlags) {
|
|
if (!isDeclarationFile(file) && !isInAmbientContext(node)) {
|
|
if (isAsyncFunctionLike(node)) {
|
|
emitFlags |= NodeFlags.HasAsyncFunctions;
|
|
}
|
|
if (nodeIsDecorated(node)) {
|
|
emitFlags |= NodeFlags.HasDecorators;
|
|
}
|
|
}
|
|
|
|
return hasDynamicName(node)
|
|
? bindAnonymousDeclaration(node, symbolFlags, "__computed")
|
|
: declareSymbolAndAddToSymbolTable(node, symbolFlags, symbolExcludes);
|
|
}
|
|
|
|
function bindJSDocProperty(node: JSDocPropertyTag) {
|
|
return declareSymbolAndAddToSymbolTable(node, SymbolFlags.Property, SymbolFlags.PropertyExcludes);
|
|
}
|
|
|
|
// reachability checks
|
|
|
|
function shouldReportErrorOnModuleDeclaration(node: ModuleDeclaration): boolean {
|
|
const instanceState = getModuleInstanceState(node);
|
|
return instanceState === ModuleInstanceState.Instantiated || (instanceState === ModuleInstanceState.ConstEnumOnly && options.preserveConstEnums);
|
|
}
|
|
|
|
function checkUnreachable(node: Node): boolean {
|
|
if (!(currentFlow.flags & FlowFlags.Unreachable)) {
|
|
return false;
|
|
}
|
|
if (currentFlow === unreachableFlow) {
|
|
const reportError =
|
|
// report error on all statements except empty ones
|
|
(isStatementButNotDeclaration(node) && node.kind !== SyntaxKind.EmptyStatement) ||
|
|
// report error on class declarations
|
|
node.kind === SyntaxKind.ClassDeclaration ||
|
|
// report error on instantiated modules or const-enums only modules if preserveConstEnums is set
|
|
(node.kind === SyntaxKind.ModuleDeclaration && shouldReportErrorOnModuleDeclaration(<ModuleDeclaration>node)) ||
|
|
// report error on regular enums and const enums if preserveConstEnums is set
|
|
(node.kind === SyntaxKind.EnumDeclaration && (!isConstEnumDeclaration(node) || options.preserveConstEnums));
|
|
|
|
if (reportError) {
|
|
currentFlow = reportedUnreachableFlow;
|
|
|
|
// unreachable code is reported if
|
|
// - user has explicitly asked about it AND
|
|
// - statement is in not ambient context (statements in ambient context is already an error
|
|
// so we should not report extras) AND
|
|
// - node is not variable statement OR
|
|
// - node is block scoped variable statement OR
|
|
// - node is not block scoped variable statement and at least one variable declaration has initializer
|
|
// Rationale: we don't want to report errors on non-initialized var's since they are hoisted
|
|
// On the other side we do want to report errors on non-initialized 'lets' because of TDZ
|
|
const reportUnreachableCode =
|
|
!options.allowUnreachableCode &&
|
|
!isInAmbientContext(node) &&
|
|
(
|
|
node.kind !== SyntaxKind.VariableStatement ||
|
|
getCombinedNodeFlags((<VariableStatement>node).declarationList) & NodeFlags.BlockScoped ||
|
|
forEach((<VariableStatement>node).declarationList.declarations, d => d.initializer)
|
|
);
|
|
|
|
if (reportUnreachableCode) {
|
|
errorOnFirstToken(node, Diagnostics.Unreachable_code_detected);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Computes the transform flags for a node, given the transform flags of its subtree
|
|
*
|
|
* @param node The node to analyze
|
|
* @param subtreeFlags Transform flags computed for this node's subtree
|
|
*/
|
|
export function computeTransformFlagsForNode(node: Node, subtreeFlags: TransformFlags): TransformFlags {
|
|
const kind = node.kind;
|
|
switch (kind) {
|
|
case SyntaxKind.CallExpression:
|
|
return computeCallExpression(<CallExpression>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ModuleDeclaration:
|
|
return computeModuleDeclaration(<ModuleDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ParenthesizedExpression:
|
|
return computeParenthesizedExpression(<ParenthesizedExpression>node, subtreeFlags);
|
|
|
|
case SyntaxKind.BinaryExpression:
|
|
return computeBinaryExpression(<BinaryExpression>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ExpressionStatement:
|
|
return computeExpressionStatement(<ExpressionStatement>node, subtreeFlags);
|
|
|
|
case SyntaxKind.Parameter:
|
|
return computeParameter(<ParameterDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ArrowFunction:
|
|
return computeArrowFunction(<ArrowFunction>node, subtreeFlags);
|
|
|
|
case SyntaxKind.FunctionExpression:
|
|
return computeFunctionExpression(<FunctionExpression>node, subtreeFlags);
|
|
|
|
case SyntaxKind.FunctionDeclaration:
|
|
return computeFunctionDeclaration(<FunctionDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.VariableDeclaration:
|
|
return computeVariableDeclaration(<VariableDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.VariableDeclarationList:
|
|
return computeVariableDeclarationList(<VariableDeclarationList>node, subtreeFlags);
|
|
|
|
case SyntaxKind.VariableStatement:
|
|
return computeVariableStatement(<VariableStatement>node, subtreeFlags);
|
|
|
|
case SyntaxKind.LabeledStatement:
|
|
return computeLabeledStatement(<LabeledStatement>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ClassDeclaration:
|
|
return computeClassDeclaration(<ClassDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ClassExpression:
|
|
return computeClassExpression(<ClassExpression>node, subtreeFlags);
|
|
|
|
case SyntaxKind.HeritageClause:
|
|
return computeHeritageClause(<HeritageClause>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ExpressionWithTypeArguments:
|
|
return computeExpressionWithTypeArguments(<ExpressionWithTypeArguments>node, subtreeFlags);
|
|
|
|
case SyntaxKind.Constructor:
|
|
return computeConstructor(<ConstructorDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.PropertyDeclaration:
|
|
return computePropertyDeclaration(<PropertyDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.MethodDeclaration:
|
|
return computeMethod(<MethodDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.GetAccessor:
|
|
case SyntaxKind.SetAccessor:
|
|
return computeAccessor(<AccessorDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.ImportEqualsDeclaration:
|
|
return computeImportEquals(<ImportEqualsDeclaration>node, subtreeFlags);
|
|
|
|
case SyntaxKind.PropertyAccessExpression:
|
|
return computePropertyAccess(<PropertyAccessExpression>node, subtreeFlags);
|
|
|
|
default:
|
|
return computeOther(node, kind, subtreeFlags);
|
|
}
|
|
}
|
|
|
|
function computeCallExpression(node: CallExpression, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const expression = node.expression;
|
|
const expressionKind = expression.kind;
|
|
|
|
if (subtreeFlags & TransformFlags.ContainsSpreadElementExpression
|
|
|| isSuperOrSuperProperty(expression, expressionKind)) {
|
|
// If the this node contains a SpreadElementExpression, or is a super call, then it is an ES6
|
|
// node.
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ArrayLiteralOrCallOrNewExcludes;
|
|
}
|
|
|
|
function isSuperOrSuperProperty(node: Node, kind: SyntaxKind) {
|
|
switch (kind) {
|
|
case SyntaxKind.SuperKeyword:
|
|
return true;
|
|
|
|
case SyntaxKind.PropertyAccessExpression:
|
|
case SyntaxKind.ElementAccessExpression:
|
|
const expression = (<PropertyAccessExpression | ElementAccessExpression>node).expression;
|
|
const expressionKind = expression.kind;
|
|
return expressionKind === SyntaxKind.SuperKeyword;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
function computeBinaryExpression(node: BinaryExpression, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const operatorTokenKind = node.operatorToken.kind;
|
|
const leftKind = node.left.kind;
|
|
|
|
if (operatorTokenKind === SyntaxKind.EqualsToken
|
|
&& (leftKind === SyntaxKind.ObjectLiteralExpression
|
|
|| leftKind === SyntaxKind.ArrayLiteralExpression)) {
|
|
// Destructuring assignments are ES6 syntax.
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.DestructuringAssignment;
|
|
}
|
|
else if (operatorTokenKind === SyntaxKind.AsteriskAsteriskToken
|
|
|| operatorTokenKind === SyntaxKind.AsteriskAsteriskEqualsToken) {
|
|
// Exponentiation is ES7 syntax.
|
|
transformFlags |= TransformFlags.AssertES7;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeParameter(node: ParameterDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const modifierFlags = getModifierFlags(node);
|
|
const name = node.name;
|
|
const initializer = node.initializer;
|
|
const dotDotDotToken = node.dotDotDotToken;
|
|
|
|
// If the parameter has a question token, then it is TypeScript syntax.
|
|
if (node.questionToken) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// If the parameter's name is 'this', then it is TypeScript syntax.
|
|
if (subtreeFlags & TransformFlags.ContainsDecorators
|
|
|| (name && isIdentifier(name) && name.originalKeywordKind === SyntaxKind.ThisKeyword)) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// If a parameter has an accessibility modifier, then it is TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.ParameterPropertyModifier) {
|
|
transformFlags |= TransformFlags.AssertTypeScript | TransformFlags.ContainsParameterPropertyAssignments;
|
|
}
|
|
|
|
// If a parameter has an initializer, a binding pattern or a dotDotDot token, then
|
|
// it is ES6 syntax and its container must emit default value assignments or parameter destructuring downlevel.
|
|
if (subtreeFlags & TransformFlags.ContainsBindingPattern || initializer || dotDotDotToken) {
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.ContainsDefaultValueAssignments;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ParameterExcludes;
|
|
}
|
|
|
|
function computeParenthesizedExpression(node: ParenthesizedExpression, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const expression = node.expression;
|
|
const expressionKind = expression.kind;
|
|
const expressionTransformFlags = expression.transformFlags;
|
|
|
|
// If the node is synthesized, it means the emitter put the parentheses there,
|
|
// not the user. If we didn't want them, the emitter would not have put them
|
|
// there.
|
|
if (expressionKind === SyntaxKind.AsExpression
|
|
|| expressionKind === SyntaxKind.TypeAssertionExpression) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// If the expression of a ParenthesizedExpression is a destructuring assignment,
|
|
// then the ParenthesizedExpression is a destructuring assignment.
|
|
if (expressionTransformFlags & TransformFlags.DestructuringAssignment) {
|
|
transformFlags |= TransformFlags.DestructuringAssignment;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeClassDeclaration(node: ClassDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags: TransformFlags;
|
|
const modifierFlags = getModifierFlags(node);
|
|
|
|
if (modifierFlags & ModifierFlags.Ambient) {
|
|
// An ambient declaration is TypeScript syntax.
|
|
transformFlags = TransformFlags.AssertTypeScript;
|
|
}
|
|
else {
|
|
// A ClassDeclaration is ES6 syntax.
|
|
transformFlags = subtreeFlags | TransformFlags.AssertES6;
|
|
|
|
// A class with a parameter property assignment, property initializer, or decorator is
|
|
// TypeScript syntax.
|
|
// An exported declaration may be TypeScript syntax.
|
|
if ((subtreeFlags & TransformFlags.TypeScriptClassSyntaxMask)
|
|
|| (modifierFlags & ModifierFlags.Export)) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
if (subtreeFlags & TransformFlags.ContainsLexicalThisInComputedPropertyName) {
|
|
// A computed property name containing `this` might need to be rewritten,
|
|
// so propagate the ContainsLexicalThis flag upward.
|
|
transformFlags |= TransformFlags.ContainsLexicalThis;
|
|
}
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ClassExcludes;
|
|
}
|
|
|
|
function computeClassExpression(node: ClassExpression, subtreeFlags: TransformFlags) {
|
|
// A ClassExpression is ES6 syntax.
|
|
let transformFlags = subtreeFlags | TransformFlags.AssertES6;
|
|
|
|
// A class with a parameter property assignment, property initializer, or decorator is
|
|
// TypeScript syntax.
|
|
if (subtreeFlags & TransformFlags.TypeScriptClassSyntaxMask) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
if (subtreeFlags & TransformFlags.ContainsLexicalThisInComputedPropertyName) {
|
|
// A computed property name containing `this` might need to be rewritten,
|
|
// so propagate the ContainsLexicalThis flag upward.
|
|
transformFlags |= TransformFlags.ContainsLexicalThis;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ClassExcludes;
|
|
}
|
|
|
|
function computeHeritageClause(node: HeritageClause, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
|
|
switch (node.token) {
|
|
case SyntaxKind.ExtendsKeyword:
|
|
// An `extends` HeritageClause is ES6 syntax.
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
break;
|
|
|
|
case SyntaxKind.ImplementsKeyword:
|
|
// An `implements` HeritageClause is TypeScript syntax.
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
break;
|
|
|
|
default:
|
|
Debug.fail("Unexpected token for heritage clause");
|
|
break;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeExpressionWithTypeArguments(node: ExpressionWithTypeArguments, subtreeFlags: TransformFlags) {
|
|
// An ExpressionWithTypeArguments is ES6 syntax, as it is used in the
|
|
// extends clause of a class.
|
|
let transformFlags = subtreeFlags | TransformFlags.AssertES6;
|
|
|
|
// If an ExpressionWithTypeArguments contains type arguments, then it
|
|
// is TypeScript syntax.
|
|
if (node.typeArguments) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeConstructor(node: ConstructorDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const body = node.body;
|
|
|
|
if (body === undefined) {
|
|
// An overload constructor is TypeScript syntax.
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ConstructorExcludes;
|
|
}
|
|
|
|
function computeMethod(node: MethodDeclaration, subtreeFlags: TransformFlags) {
|
|
// A MethodDeclaration is ES6 syntax.
|
|
let transformFlags = subtreeFlags | TransformFlags.AssertES6;
|
|
const modifierFlags = getModifierFlags(node);
|
|
const body = node.body;
|
|
const typeParameters = node.typeParameters;
|
|
const asteriskToken = node.asteriskToken;
|
|
|
|
// A MethodDeclaration is TypeScript syntax if it is either async, abstract, overloaded,
|
|
// generic, or has a decorator.
|
|
if (!body
|
|
|| typeParameters
|
|
|| (modifierFlags & (ModifierFlags.Async | ModifierFlags.Abstract))
|
|
|| (subtreeFlags & TransformFlags.ContainsDecorators)) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// Currently, we only support generators that were originally async function bodies.
|
|
if (asteriskToken && node.emitFlags & NodeEmitFlags.AsyncFunctionBody) {
|
|
transformFlags |= TransformFlags.AssertGenerator;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.MethodOrAccessorExcludes;
|
|
}
|
|
|
|
function computeAccessor(node: AccessorDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const modifierFlags = getModifierFlags(node);
|
|
const body = node.body;
|
|
|
|
// A MethodDeclaration is TypeScript syntax if it is either async, abstract, overloaded,
|
|
// generic, or has a decorator.
|
|
if (!body
|
|
|| (modifierFlags & (ModifierFlags.Async | ModifierFlags.Abstract))
|
|
|| (subtreeFlags & TransformFlags.ContainsDecorators)) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.MethodOrAccessorExcludes;
|
|
}
|
|
|
|
function computePropertyDeclaration(node: PropertyDeclaration, subtreeFlags: TransformFlags) {
|
|
// A PropertyDeclaration is TypeScript syntax.
|
|
let transformFlags = subtreeFlags | TransformFlags.AssertTypeScript;
|
|
|
|
// If the PropertyDeclaration has an initializer, we need to inform its ancestor
|
|
// so that it handle the transformation.
|
|
if (node.initializer) {
|
|
transformFlags |= TransformFlags.ContainsPropertyInitializer;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeFunctionDeclaration(node: FunctionDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags: TransformFlags;
|
|
const modifierFlags = getModifierFlags(node);
|
|
const body = node.body;
|
|
const asteriskToken = node.asteriskToken;
|
|
|
|
if (!body || (modifierFlags & ModifierFlags.Ambient)) {
|
|
// An ambient declaration is TypeScript syntax.
|
|
// A FunctionDeclaration without a body is an overload and is TypeScript syntax.
|
|
transformFlags = TransformFlags.AssertTypeScript;
|
|
}
|
|
else {
|
|
transformFlags = subtreeFlags | TransformFlags.ContainsHoistedDeclarationOrCompletion;
|
|
|
|
// If a FunctionDeclaration is exported, then it is either ES6 or TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.Export) {
|
|
transformFlags |= TransformFlags.AssertTypeScript | TransformFlags.AssertES6;
|
|
}
|
|
|
|
// If a FunctionDeclaration is async, then it is TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.Async) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// If a FunctionDeclaration's subtree has marked the container as needing to capture the
|
|
// lexical this, or the function contains parameters with initializers, then this node is
|
|
// ES6 syntax.
|
|
if (subtreeFlags & TransformFlags.ES6FunctionSyntaxMask) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
// If a FunctionDeclaration is generator function and is the body of a
|
|
// transformed async function, then this node can be transformed to a
|
|
// down-level generator.
|
|
// Currently we do not support transforming any other generator fucntions
|
|
// down level.
|
|
if (asteriskToken && node.emitFlags & NodeEmitFlags.AsyncFunctionBody) {
|
|
transformFlags |= TransformFlags.AssertGenerator;
|
|
}
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.FunctionExcludes;
|
|
}
|
|
|
|
function computeFunctionExpression(node: FunctionExpression, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const modifierFlags = getModifierFlags(node);
|
|
const asteriskToken = node.asteriskToken;
|
|
|
|
// An async function expression is TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.Async) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// If a FunctionExpression's subtree has marked the container as needing to capture the
|
|
// lexical this, or the function contains parameters with initializers, then this node is
|
|
// ES6 syntax.
|
|
if (subtreeFlags & TransformFlags.ES6FunctionSyntaxMask) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
// If a FunctionExpression is generator function and is the body of a
|
|
// transformed async function, then this node can be transformed to a
|
|
// down-level generator.
|
|
// Currently we do not support transforming any other generator fucntions
|
|
// down level.
|
|
if (asteriskToken && node.emitFlags & NodeEmitFlags.AsyncFunctionBody) {
|
|
transformFlags |= TransformFlags.AssertGenerator;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.FunctionExcludes;
|
|
}
|
|
|
|
function computeArrowFunction(node: ArrowFunction, subtreeFlags: TransformFlags) {
|
|
// An ArrowFunction is ES6 syntax, and excludes markers that should not escape the scope of an ArrowFunction.
|
|
let transformFlags = subtreeFlags | TransformFlags.AssertES6;
|
|
const modifierFlags = getModifierFlags(node);
|
|
|
|
// An async arrow function is TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.Async) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
// If an ArrowFunction contains a lexical this, its container must capture the lexical this.
|
|
if (subtreeFlags & TransformFlags.ContainsLexicalThis) {
|
|
transformFlags |= TransformFlags.ContainsCapturedLexicalThis;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ArrowFunctionExcludes;
|
|
}
|
|
|
|
function computePropertyAccess(node: PropertyAccessExpression, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const expression = node.expression;
|
|
const expressionKind = expression.kind;
|
|
|
|
// If a PropertyAccessExpression starts with a super keyword, then it is
|
|
// ES6 syntax, and requires a lexical `this` binding.
|
|
if (expressionKind === SyntaxKind.SuperKeyword) {
|
|
transformFlags |= TransformFlags.ContainsLexicalThis;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeVariableDeclaration(node: VariableDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
const nameKind = node.name.kind;
|
|
|
|
// A VariableDeclaration with a binding pattern is ES6 syntax.
|
|
if (nameKind === SyntaxKind.ObjectBindingPattern || nameKind === SyntaxKind.ArrayBindingPattern) {
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.ContainsBindingPattern;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeVariableStatement(node: VariableStatement, subtreeFlags: TransformFlags) {
|
|
let transformFlags: TransformFlags;
|
|
const modifierFlags = getModifierFlags(node);
|
|
const declarationListTransformFlags = node.declarationList.transformFlags;
|
|
|
|
// An ambient declaration is TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.Ambient) {
|
|
transformFlags = TransformFlags.AssertTypeScript;
|
|
}
|
|
else {
|
|
transformFlags = subtreeFlags;
|
|
|
|
// If a VariableStatement is exported, then it is either ES6 or TypeScript syntax.
|
|
if (modifierFlags & ModifierFlags.Export) {
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
if (declarationListTransformFlags & TransformFlags.ContainsBindingPattern) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeLabeledStatement(node: LabeledStatement, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
|
|
// A labeled statement containing a block scoped binding *may* need to be transformed from ES6.
|
|
if (subtreeFlags & TransformFlags.ContainsBlockScopedBinding
|
|
&& isIterationStatement(node, /*lookInLabeledStatements*/ true)) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeImportEquals(node: ImportEqualsDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
|
|
// An ImportEqualsDeclaration with a namespace reference is TypeScript.
|
|
if (!isExternalModuleImportEqualsDeclaration(node)) {
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeExpressionStatement(node: ExpressionStatement, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags;
|
|
|
|
// If the expression of an expression statement is a destructuring assignment,
|
|
// then we treat the statement as ES6 so that we can indicate that we do not
|
|
// need to hold on to the right-hand side.
|
|
if (node.expression.transformFlags & TransformFlags.DestructuringAssignment) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.NodeExcludes;
|
|
}
|
|
|
|
function computeModuleDeclaration(node: ModuleDeclaration, subtreeFlags: TransformFlags) {
|
|
let transformFlags = TransformFlags.AssertTypeScript;
|
|
const modifierFlags = getModifierFlags(node);
|
|
|
|
if ((modifierFlags & ModifierFlags.Ambient) === 0) {
|
|
transformFlags |= subtreeFlags;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.ModuleExcludes;
|
|
}
|
|
|
|
function computeVariableDeclarationList(node: VariableDeclarationList, subtreeFlags: TransformFlags) {
|
|
let transformFlags = subtreeFlags | TransformFlags.ContainsHoistedDeclarationOrCompletion;
|
|
|
|
if (subtreeFlags & TransformFlags.ContainsBindingPattern) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
// If a VariableDeclarationList is `let` or `const`, then it is ES6 syntax.
|
|
if (node.flags & NodeFlags.BlockScoped) {
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.ContainsBlockScopedBinding;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~TransformFlags.VariableDeclarationListExcludes;
|
|
}
|
|
|
|
function computeOther(node: Node, kind: SyntaxKind, subtreeFlags: TransformFlags) {
|
|
// Mark transformations needed for each node
|
|
let transformFlags = subtreeFlags;
|
|
let excludeFlags = TransformFlags.NodeExcludes;
|
|
|
|
switch (kind) {
|
|
case SyntaxKind.PublicKeyword:
|
|
case SyntaxKind.PrivateKeyword:
|
|
case SyntaxKind.ProtectedKeyword:
|
|
case SyntaxKind.AbstractKeyword:
|
|
case SyntaxKind.DeclareKeyword:
|
|
case SyntaxKind.AsyncKeyword:
|
|
case SyntaxKind.ConstKeyword:
|
|
case SyntaxKind.AwaitExpression:
|
|
case SyntaxKind.EnumDeclaration:
|
|
case SyntaxKind.EnumMember:
|
|
case SyntaxKind.TypeAssertionExpression:
|
|
case SyntaxKind.AsExpression:
|
|
case SyntaxKind.NonNullExpression:
|
|
case SyntaxKind.ReadonlyKeyword:
|
|
// These nodes are TypeScript syntax.
|
|
transformFlags |= TransformFlags.AssertTypeScript;
|
|
break;
|
|
|
|
case SyntaxKind.JsxElement:
|
|
case SyntaxKind.JsxSelfClosingElement:
|
|
case SyntaxKind.JsxOpeningElement:
|
|
case SyntaxKind.JsxText:
|
|
case SyntaxKind.JsxClosingElement:
|
|
case SyntaxKind.JsxAttribute:
|
|
case SyntaxKind.JsxSpreadAttribute:
|
|
case SyntaxKind.JsxExpression:
|
|
// These nodes are Jsx syntax.
|
|
transformFlags |= TransformFlags.AssertJsx;
|
|
break;
|
|
|
|
case SyntaxKind.ExportKeyword:
|
|
// This node is both ES6 and TypeScript syntax.
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.AssertTypeScript;
|
|
break;
|
|
|
|
case SyntaxKind.DefaultKeyword:
|
|
case SyntaxKind.NoSubstitutionTemplateLiteral:
|
|
case SyntaxKind.TemplateHead:
|
|
case SyntaxKind.TemplateMiddle:
|
|
case SyntaxKind.TemplateTail:
|
|
case SyntaxKind.TemplateExpression:
|
|
case SyntaxKind.TaggedTemplateExpression:
|
|
case SyntaxKind.ShorthandPropertyAssignment:
|
|
case SyntaxKind.ForOfStatement:
|
|
// These nodes are ES6 syntax.
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
break;
|
|
|
|
case SyntaxKind.YieldExpression:
|
|
// This node is ES6 syntax.
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.ContainsYield;
|
|
break;
|
|
|
|
case SyntaxKind.AnyKeyword:
|
|
case SyntaxKind.NumberKeyword:
|
|
case SyntaxKind.NeverKeyword:
|
|
case SyntaxKind.StringKeyword:
|
|
case SyntaxKind.BooleanKeyword:
|
|
case SyntaxKind.SymbolKeyword:
|
|
case SyntaxKind.VoidKeyword:
|
|
case SyntaxKind.TypeParameter:
|
|
case SyntaxKind.PropertySignature:
|
|
case SyntaxKind.MethodSignature:
|
|
case SyntaxKind.CallSignature:
|
|
case SyntaxKind.ConstructSignature:
|
|
case SyntaxKind.IndexSignature:
|
|
case SyntaxKind.TypePredicate:
|
|
case SyntaxKind.TypeReference:
|
|
case SyntaxKind.FunctionType:
|
|
case SyntaxKind.ConstructorType:
|
|
case SyntaxKind.TypeQuery:
|
|
case SyntaxKind.TypeLiteral:
|
|
case SyntaxKind.ArrayType:
|
|
case SyntaxKind.TupleType:
|
|
case SyntaxKind.UnionType:
|
|
case SyntaxKind.IntersectionType:
|
|
case SyntaxKind.ParenthesizedType:
|
|
case SyntaxKind.InterfaceDeclaration:
|
|
case SyntaxKind.TypeAliasDeclaration:
|
|
case SyntaxKind.ThisType:
|
|
case SyntaxKind.LiteralType:
|
|
// Types and signatures are TypeScript syntax, and exclude all other facts.
|
|
transformFlags = TransformFlags.AssertTypeScript;
|
|
excludeFlags = TransformFlags.TypeExcludes;
|
|
break;
|
|
|
|
case SyntaxKind.ComputedPropertyName:
|
|
// Even though computed property names are ES6, we don't treat them as such.
|
|
// This is so that they can flow through PropertyName transforms unaffected.
|
|
// Instead, we mark the container as ES6, so that it can properly handle the transform.
|
|
transformFlags |= TransformFlags.ContainsComputedPropertyName;
|
|
if (subtreeFlags & TransformFlags.ContainsLexicalThis) {
|
|
// A computed method name like `[this.getName()](x: string) { ... }` needs to
|
|
// distinguish itself from the normal case of a method body containing `this`:
|
|
// `this` inside a method doesn't need to be rewritten (the method provides `this`),
|
|
// whereas `this` inside a computed name *might* need to be rewritten if the class/object
|
|
// is inside an arrow function:
|
|
// `_this = this; () => class K { [_this.getName()]() { ... } }`
|
|
// To make this distinction, use ContainsLexicalThisInComputedPropertyName
|
|
// instead of ContainsLexicalThis for computed property names
|
|
transformFlags |= TransformFlags.ContainsLexicalThisInComputedPropertyName;
|
|
}
|
|
break;
|
|
|
|
case SyntaxKind.SpreadElementExpression:
|
|
// This node is ES6 syntax, but is handled by a containing node.
|
|
transformFlags |= TransformFlags.ContainsSpreadElementExpression;
|
|
break;
|
|
|
|
case SyntaxKind.SuperKeyword:
|
|
// This node is ES6 syntax.
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
break;
|
|
|
|
case SyntaxKind.ThisKeyword:
|
|
// Mark this node and its ancestors as containing a lexical `this` keyword.
|
|
transformFlags |= TransformFlags.ContainsLexicalThis;
|
|
break;
|
|
|
|
case SyntaxKind.ObjectBindingPattern:
|
|
case SyntaxKind.ArrayBindingPattern:
|
|
// These nodes are ES6 syntax.
|
|
transformFlags |= TransformFlags.AssertES6 | TransformFlags.ContainsBindingPattern;
|
|
break;
|
|
|
|
case SyntaxKind.Decorator:
|
|
// This node is TypeScript syntax, and marks its container as also being TypeScript syntax.
|
|
transformFlags |= TransformFlags.AssertTypeScript | TransformFlags.ContainsDecorators;
|
|
break;
|
|
|
|
case SyntaxKind.ObjectLiteralExpression:
|
|
excludeFlags = TransformFlags.ObjectLiteralExcludes;
|
|
if (subtreeFlags & TransformFlags.ContainsComputedPropertyName) {
|
|
// If an ObjectLiteralExpression contains a ComputedPropertyName, then it
|
|
// is an ES6 node.
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
if (subtreeFlags & TransformFlags.ContainsLexicalThisInComputedPropertyName) {
|
|
// A computed property name containing `this` might need to be rewritten,
|
|
// so propagate the ContainsLexicalThis flag upward.
|
|
transformFlags |= TransformFlags.ContainsLexicalThis;
|
|
}
|
|
|
|
break;
|
|
|
|
case SyntaxKind.ArrayLiteralExpression:
|
|
case SyntaxKind.NewExpression:
|
|
excludeFlags = TransformFlags.ArrayLiteralOrCallOrNewExcludes;
|
|
if (subtreeFlags & TransformFlags.ContainsSpreadElementExpression) {
|
|
// If the this node contains a SpreadElementExpression, then it is an ES6
|
|
// node.
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
break;
|
|
|
|
case SyntaxKind.DoStatement:
|
|
case SyntaxKind.WhileStatement:
|
|
case SyntaxKind.ForStatement:
|
|
case SyntaxKind.ForInStatement:
|
|
// A loop containing a block scoped binding *may* need to be transformed from ES6.
|
|
if (subtreeFlags & TransformFlags.ContainsBlockScopedBinding) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
break;
|
|
|
|
case SyntaxKind.SourceFile:
|
|
if (subtreeFlags & TransformFlags.ContainsCapturedLexicalThis) {
|
|
transformFlags |= TransformFlags.AssertES6;
|
|
}
|
|
|
|
break;
|
|
|
|
case SyntaxKind.ReturnStatement:
|
|
case SyntaxKind.ContinueStatement:
|
|
case SyntaxKind.BreakStatement:
|
|
transformFlags |= TransformFlags.ContainsHoistedDeclarationOrCompletion;
|
|
break;
|
|
}
|
|
|
|
node.transformFlags = transformFlags | TransformFlags.HasComputedFlags;
|
|
return transformFlags & ~excludeFlags;
|
|
}
|
|
}
|