TypeScript/src/services/findAllReferences.ts
Andrew Casey ef5a289966
Merge pull request #21014 from amcasey/GH19115
Handle different default export forms the same way in import code fixes
2018-01-08 19:07:43 -08:00

1784 lines
88 KiB
TypeScript

/// <reference path="./importTracker.ts" />
/* @internal */
namespace ts.FindAllReferences {
export interface SymbolAndEntries {
definition: Definition | undefined;
references: Entry[];
}
export type Definition =
| { type: "symbol"; symbol: Symbol; node: Node }
| { type: "label"; node: Identifier }
| { type: "keyword"; node: ts.Node }
| { type: "this"; node: ts.Node }
| { type: "string"; node: ts.StringLiteral };
export type Entry = NodeEntry | SpanEntry;
export interface NodeEntry {
type: "node";
node: Node;
isInString?: true;
}
export interface SpanEntry {
type: "span";
fileName: string;
textSpan: TextSpan;
}
export function nodeEntry(node: ts.Node, isInString?: true): NodeEntry {
return { type: "node", node, isInString };
}
export interface Options {
readonly findInStrings?: boolean;
readonly findInComments?: boolean;
/**
* True if we are renaming the symbol.
* If so, we will find fewer references -- if it is referenced by several different names, we sill only find references for the original name.
*/
readonly isForRename?: boolean;
/** True if we are searching for implementations. We will have a different method of adding references if so. */
readonly implementations?: boolean;
}
export function findReferencedSymbols(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, sourceFile: SourceFile, position: number): ReferencedSymbol[] | undefined {
const referencedSymbols = findAllReferencedSymbols(program, cancellationToken, sourceFiles, sourceFile, position);
const checker = program.getTypeChecker();
return !referencedSymbols || !referencedSymbols.length ? undefined : mapDefined(referencedSymbols, ({ definition, references }) =>
// Only include referenced symbols that have a valid definition.
definition && { definition: definitionToReferencedSymbolDefinitionInfo(definition, checker), references: references.map(toReferenceEntry) });
}
export function getImplementationsAtPosition(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, sourceFile: SourceFile, position: number): ImplementationLocation[] {
// A node in a JSDoc comment can't have an implementation anyway.
const node = getTouchingPropertyName(sourceFile, position, /*includeJsDocComment*/ false);
const referenceEntries = getImplementationReferenceEntries(program, cancellationToken, sourceFiles, node, position);
const checker = program.getTypeChecker();
return map(referenceEntries, entry => toImplementationLocation(entry, checker));
}
function getImplementationReferenceEntries(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, node: Node, position: number): Entry[] | undefined {
if (node.kind === SyntaxKind.SourceFile) {
return undefined;
}
const checker = program.getTypeChecker();
// If invoked directly on a shorthand property assignment, then return
// the declaration of the symbol being assigned (not the symbol being assigned to).
if (node.parent.kind === SyntaxKind.ShorthandPropertyAssignment) {
const result: NodeEntry[] = [];
Core.getReferenceEntriesForShorthandPropertyAssignment(node, checker, node => result.push(nodeEntry(node)));
return result;
}
else if (node.kind === SyntaxKind.SuperKeyword || isSuperProperty(node.parent)) {
// References to and accesses on the super keyword only have one possible implementation, so no
// need to "Find all References"
const symbol = checker.getSymbolAtLocation(node);
return symbol.valueDeclaration && [nodeEntry(symbol.valueDeclaration)];
}
else {
// Perform "Find all References" and retrieve only those that are implementations
return getReferenceEntriesForNode(position, node, program, sourceFiles, cancellationToken, { implementations: true });
}
}
export function findReferencedEntries(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, sourceFile: SourceFile, position: number, options?: Options): ReferenceEntry[] | undefined {
const x = flattenEntries(findAllReferencedSymbols(program, cancellationToken, sourceFiles, sourceFile, position, options));
return map(x, toReferenceEntry);
}
export function getReferenceEntriesForNode(position: number, node: Node, program: Program, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken, options: Options = {}): Entry[] | undefined {
return flattenEntries(Core.getReferencedSymbolsForNode(position, node, program, sourceFiles, cancellationToken, options));
}
function findAllReferencedSymbols(program: Program, cancellationToken: CancellationToken, sourceFiles: ReadonlyArray<SourceFile>, sourceFile: SourceFile, position: number, options?: Options): SymbolAndEntries[] | undefined {
const node = getTouchingPropertyName(sourceFile, position, /*includeJsDocComment*/ true);
return Core.getReferencedSymbolsForNode(position, node, program, sourceFiles, cancellationToken, options);
}
function flattenEntries(referenceSymbols: SymbolAndEntries[]): Entry[] {
return referenceSymbols && flatMap(referenceSymbols, r => r.references);
}
function definitionToReferencedSymbolDefinitionInfo(def: Definition, checker: TypeChecker): ReferencedSymbolDefinitionInfo | undefined {
const info = (() => {
switch (def.type) {
case "symbol": {
const { symbol, node } = def;
const { displayParts, kind } = getDefinitionKindAndDisplayParts(symbol, node, checker);
const name = displayParts.map(p => p.text).join("");
return { node, name, kind, displayParts };
}
case "label": {
const { node } = def;
return { node, name: node.text, kind: ScriptElementKind.label, displayParts: [displayPart(node.text, SymbolDisplayPartKind.text)] };
}
case "keyword": {
const { node } = def;
const name = tokenToString(node.kind);
return { node, name, kind: ScriptElementKind.keyword, displayParts: [{ text: name, kind: ScriptElementKind.keyword }] };
}
case "this": {
const { node } = def;
const symbol = checker.getSymbolAtLocation(node);
const displayParts = symbol && SymbolDisplay.getSymbolDisplayPartsDocumentationAndSymbolKind(
checker, symbol, node.getSourceFile(), getContainerNode(node), node).displayParts;
return { node, name: "this", kind: ScriptElementKind.variableElement, displayParts };
}
case "string": {
const { node } = def;
return { node, name: node.text, kind: ScriptElementKind.variableElement, displayParts: [displayPart(getTextOfNode(node), SymbolDisplayPartKind.stringLiteral)] };
}
}
})();
if (!info) {
return undefined;
}
const { node, name, kind, displayParts } = info;
const sourceFile = node.getSourceFile();
return {
containerKind: ScriptElementKind.unknown,
containerName: "",
fileName: sourceFile.fileName,
kind,
name,
textSpan: createTextSpanFromNode(node, sourceFile),
displayParts
};
}
function getDefinitionKindAndDisplayParts(symbol: Symbol, node: Node, checker: TypeChecker): { displayParts: SymbolDisplayPart[], kind: ScriptElementKind } {
const { displayParts, symbolKind } =
SymbolDisplay.getSymbolDisplayPartsDocumentationAndSymbolKind(checker, symbol, node.getSourceFile(), getContainerNode(node), node);
return { displayParts, kind: symbolKind };
}
function toReferenceEntry(entry: Entry): ReferenceEntry {
if (entry.type === "span") {
return { textSpan: entry.textSpan, fileName: entry.fileName, isWriteAccess: false, isDefinition: false };
}
const { node, isInString } = entry;
return {
fileName: node.getSourceFile().fileName,
textSpan: getTextSpan(node),
isWriteAccess: isWriteAccessForReference(node),
isDefinition: node.kind === SyntaxKind.DefaultKeyword
|| isAnyDeclarationName(node)
|| isLiteralComputedPropertyDeclarationName(node),
isInString
};
}
function toImplementationLocation(entry: Entry, checker: ts.TypeChecker): ImplementationLocation {
if (entry.type === "node") {
const { node } = entry;
return { textSpan: getTextSpan(node), fileName: node.getSourceFile().fileName, ...implementationKindDisplayParts(node, checker) };
}
else {
const { textSpan, fileName } = entry;
return { textSpan, fileName, kind: ScriptElementKind.unknown, displayParts: [] };
}
}
function implementationKindDisplayParts(node: ts.Node, checker: ts.TypeChecker): { kind: ScriptElementKind, displayParts: SymbolDisplayPart[] } {
const symbol = checker.getSymbolAtLocation(isDeclaration(node) && node.name ? node.name : node);
if (symbol) {
return getDefinitionKindAndDisplayParts(symbol, node, checker);
}
else if (node.kind === SyntaxKind.ObjectLiteralExpression) {
return {
kind: ScriptElementKind.interfaceElement,
displayParts: [punctuationPart(SyntaxKind.OpenParenToken), textPart("object literal"), punctuationPart(SyntaxKind.CloseParenToken)]
};
}
else if (node.kind === SyntaxKind.ClassExpression) {
return {
kind: ScriptElementKind.localClassElement,
displayParts: [punctuationPart(SyntaxKind.OpenParenToken), textPart("anonymous local class"), punctuationPart(SyntaxKind.CloseParenToken)]
};
}
else {
return { kind: getNodeKind(node), displayParts: [] };
}
}
export function toHighlightSpan(entry: FindAllReferences.Entry): { fileName: string, span: HighlightSpan } {
if (entry.type === "span") {
const { fileName, textSpan } = entry;
return { fileName, span: { textSpan, kind: HighlightSpanKind.reference } };
}
const { node, isInString } = entry;
const fileName = entry.node.getSourceFile().fileName;
const writeAccess = isWriteAccessForReference(node);
const span: HighlightSpan = {
textSpan: getTextSpan(node),
kind: writeAccess ? HighlightSpanKind.writtenReference : HighlightSpanKind.reference,
isInString
};
return { fileName, span };
}
function getTextSpan(node: Node): TextSpan {
let start = node.getStart();
let end = node.getEnd();
if (node.kind === SyntaxKind.StringLiteral) {
start += 1;
end -= 1;
}
return createTextSpanFromBounds(start, end);
}
/** A node is considered a writeAccess iff it is a name of a declaration or a target of an assignment */
function isWriteAccessForReference(node: Node): boolean {
return node.kind === SyntaxKind.DefaultKeyword || isAnyDeclarationName(node) || isWriteAccess(node);
}
}
/** Encapsulates the core find-all-references algorithm. */
/* @internal */
namespace ts.FindAllReferences.Core {
/** Core find-all-references algorithm. Handles special cases before delegating to `getReferencedSymbolsForSymbol`. */
export function getReferencedSymbolsForNode(position: number, node: Node, program: Program, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken, options: Options = {}): SymbolAndEntries[] | undefined {
if (isSourceFile(node)) {
const reference = GoToDefinition.getReferenceAtPosition(node, position, program);
return reference && getReferencedSymbolsForModule(program, program.getTypeChecker().getMergedSymbol(reference.file.symbol), sourceFiles);
}
if (!options.implementations) {
const special = getReferencedSymbolsSpecial(node, sourceFiles, cancellationToken);
if (special) {
return special;
}
}
const checker = program.getTypeChecker();
const symbol = checker.getSymbolAtLocation(node);
// Could not find a symbol e.g. unknown identifier
if (!symbol) {
// String literal might be a property (and thus have a symbol), so do this here rather than in getReferencedSymbolsSpecial.
return !options.implementations && isStringLiteral(node) ? getReferencesForStringLiteral(node, sourceFiles, cancellationToken) : undefined;
}
if (symbol.flags & SymbolFlags.Module && isModuleReferenceLocation(node)) {
return getReferencedSymbolsForModule(program, symbol, sourceFiles);
}
return getReferencedSymbolsForSymbol(symbol, node, sourceFiles, checker, cancellationToken, options);
}
function isModuleReferenceLocation(node: ts.Node): boolean {
if (node.kind !== SyntaxKind.StringLiteral && node.kind !== SyntaxKind.NoSubstitutionTemplateLiteral) {
return false;
}
switch (node.parent.kind) {
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.ExternalModuleReference:
case SyntaxKind.ImportDeclaration:
case SyntaxKind.ExportDeclaration:
return true;
case SyntaxKind.CallExpression:
return isRequireCall(node.parent as CallExpression, /*checkArgumentIsStringLiteral*/ false) || isImportCall(node.parent as CallExpression);
default:
return false;
}
}
function getReferencedSymbolsForModule(program: Program, symbol: Symbol, sourceFiles: ReadonlyArray<SourceFile>): SymbolAndEntries[] {
Debug.assert(!!symbol.valueDeclaration);
const references = findModuleReferences(program, sourceFiles, symbol).map<Entry>(reference => {
if (reference.kind === "import") {
return { type: "node", node: reference.literal };
}
else {
return {
type: "span",
fileName: reference.referencingFile.fileName,
textSpan: createTextSpanFromRange(reference.ref),
};
}
});
for (const decl of symbol.declarations) {
switch (decl.kind) {
case ts.SyntaxKind.SourceFile:
// Don't include the source file itself. (This may not be ideal behavior, but awkward to include an entire file as a reference.)
break;
case ts.SyntaxKind.ModuleDeclaration:
references.push({ type: "node", node: (decl as ts.ModuleDeclaration).name });
break;
default:
Debug.fail("Expected a module symbol to be declared by a SourceFile or ModuleDeclaration.");
}
}
return [{
definition: { type: "symbol", symbol, node: symbol.valueDeclaration },
references
}];
}
/** getReferencedSymbols for special node kinds. */
function getReferencedSymbolsSpecial(node: Node, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken): SymbolAndEntries[] | undefined {
if (isTypeKeyword(node.kind)) {
return getAllReferencesForKeyword(sourceFiles, node.kind, cancellationToken);
}
// Labels
if (isLabelName(node)) {
if (isJumpStatementTarget(node)) {
const labelDefinition = getTargetLabel((<BreakOrContinueStatement>node.parent), (<Identifier>node).text);
// if we have a label definition, look within its statement for references, if not, then
// the label is undefined and we have no results..
return labelDefinition && getLabelReferencesInNode(labelDefinition.parent, labelDefinition);
}
else {
// it is a label definition and not a target, search within the parent labeledStatement
return getLabelReferencesInNode(node.parent, <Identifier>node);
}
}
if (isThis(node)) {
return getReferencesForThisKeyword(node, sourceFiles, cancellationToken);
}
if (node.kind === SyntaxKind.SuperKeyword) {
return getReferencesForSuperKeyword(node);
}
return undefined;
}
/** Core find-all-references algorithm for a normal symbol. */
function getReferencedSymbolsForSymbol(symbol: Symbol, node: Node, sourceFiles: ReadonlyArray<SourceFile>, checker: TypeChecker, cancellationToken: CancellationToken, options: Options): SymbolAndEntries[] {
symbol = skipPastExportOrImportSpecifier(symbol, node, checker);
// Compute the meaning from the location and the symbol it references
const searchMeaning = getIntersectingMeaningFromDeclarations(getMeaningFromLocation(node), symbol.declarations);
const result: SymbolAndEntries[] = [];
const state = new State(sourceFiles, getSpecialSearchKind(node), checker, cancellationToken, searchMeaning, options, result);
if (node.kind === SyntaxKind.DefaultKeyword) {
addReference(node, symbol, node, state);
searchForImportsOfExport(node, symbol, { exportingModuleSymbol: symbol.parent, exportKind: ExportKind.Default }, state);
}
else {
const search = state.createSearch(node, symbol, /*comingFrom*/ undefined, { allSearchSymbols: populateSearchSymbolSet(symbol, node, checker, options.implementations) });
// Try to get the smallest valid scope that we can limit our search to;
// otherwise we'll need to search globally (i.e. include each file).
const scope = getSymbolScope(symbol);
if (scope) {
getReferencesInContainer(scope, scope.getSourceFile(), search, state);
}
else {
// Global search
for (const sourceFile of state.sourceFiles) {
state.cancellationToken.throwIfCancellationRequested();
searchForName(sourceFile, search, state);
}
}
}
return result;
}
function getSpecialSearchKind(node: Node): SpecialSearchKind {
switch (node.kind) {
case SyntaxKind.ConstructorKeyword:
return SpecialSearchKind.Constructor;
case SyntaxKind.Identifier:
if (isClassLike(node.parent)) {
Debug.assert(node.parent.name === node);
return SpecialSearchKind.Class;
}
// falls through
default:
return SpecialSearchKind.None;
}
}
/** Handle a few special cases relating to export/import specifiers. */
function skipPastExportOrImportSpecifier(symbol: Symbol, node: Node, checker: TypeChecker): Symbol {
const { parent } = node;
if (isExportSpecifier(parent)) {
return getLocalSymbolForExportSpecifier(node as Identifier, symbol, parent, checker);
}
if (isImportSpecifier(parent) && parent.propertyName === node) {
// We're at `foo` in `import { foo as bar }`. Probably intended to find all refs on the original, not just on the import.
return checker.getImmediateAliasedSymbol(symbol);
}
return symbol;
}
/**
* Symbol that is currently being searched for.
* This will be replaced if we find an alias for the symbol.
*/
interface Search {
/** If coming from an export, we will not recursively search for the imported symbol (since that's where we came from). */
readonly comingFrom?: ImportExport;
readonly location: Node;
readonly symbol: Symbol;
readonly text: string;
readonly escapedText: __String;
/** Only set if `options.implementations` is true. These are the symbols checked to get the implementations of a property access. */
readonly parents: Symbol[] | undefined;
/**
* Whether a symbol is in the search set.
* Do not compare directly to `symbol` because there may be related symbols to search for. See `populateSearchSymbolSet`.
*/
includes(symbol: Symbol): boolean;
}
const enum SpecialSearchKind {
None,
Constructor,
Class,
}
/**
* Holds all state needed for the finding references.
* Unlike `Search`, there is only one `State`.
*/
class State {
/** Cache for `explicitlyinheritsFrom`. */
readonly inheritsFromCache = createMap<boolean>();
/**
* Type nodes can contain multiple references to the same type. For example:
* let x: Foo & (Foo & Bar) = ...
* Because we are returning the implementation locations and not the identifier locations,
* duplicate entries would be returned here as each of the type references is part of
* the same implementation. For that reason, check before we add a new entry.
*/
readonly markSeenContainingTypeReference = nodeSeenTracker();
/**
* It's possible that we will encounter the right side of `export { foo as bar } from "x";` more than once.
* For example:
* // b.ts
* export { foo as bar } from "./a";
* import { bar } from "./b";
*
* Normally at `foo as bar` we directly add `foo` and do not locally search for it (since it doesn't declare a local).
* But another reference to it may appear in the same source file.
* See `tests/cases/fourslash/transitiveExportImports3.ts`.
*/
readonly markSeenReExportRHS = nodeSeenTracker();
constructor(
readonly sourceFiles: ReadonlyArray<SourceFile>,
/** True if we're searching for constructor references. */
readonly specialSearchKind: SpecialSearchKind,
readonly checker: TypeChecker,
readonly cancellationToken: CancellationToken,
readonly searchMeaning: SemanticMeaning,
readonly options: Options,
private readonly result: Push<SymbolAndEntries>) {}
private importTracker: ImportTracker | undefined;
/** Gets every place to look for references of an exported symbols. See `ImportsResult` in `importTracker.ts` for more documentation. */
getImportSearches(exportSymbol: Symbol, exportInfo: ExportInfo): ImportsResult {
if (!this.importTracker) this.importTracker = createImportTracker(this.sourceFiles, this.checker, this.cancellationToken);
return this.importTracker(exportSymbol, exportInfo, this.options.isForRename);
}
/** @param allSearchSymbols set of additinal symbols for use by `includes`. */
createSearch(location: Node, symbol: Symbol, comingFrom: ImportExport | undefined, searchOptions: { text?: string, allSearchSymbols?: Symbol[] } = {}): Search {
// Note: if this is an external module symbol, the name doesn't include quotes.
// Note: getLocalSymbolForExportDefault handles `export default class C {}`, but not `export default C` or `export { C as default }`.
// The other two forms seem to be handled downstream (e.g. in `skipPastExportOrImportSpecifier`), so special-casing the first form
// here appears to be intentional).
const {
text = stripQuotes(unescapeLeadingUnderscores((getLocalSymbolForExportDefault(symbol) || symbol).escapedName)),
allSearchSymbols = undefined,
} = searchOptions;
const escapedText = escapeLeadingUnderscores(text);
const parents = this.options.implementations && getParentSymbolsOfPropertyAccess(location, symbol, this.checker);
return {
location, symbol, comingFrom, text, escapedText, parents,
includes: referenceSymbol => allSearchSymbols ? contains(allSearchSymbols, referenceSymbol) : referenceSymbol === symbol,
};
}
private readonly symbolIdToReferences: Entry[][] = [];
/**
* Callback to add references for a particular searched symbol.
* This initializes a reference group, so only call this if you will add at least one reference.
*/
referenceAdder(searchSymbol: Symbol, searchLocation: Node): (node: Node) => void {
const symbolId = getSymbolId(searchSymbol);
let references = this.symbolIdToReferences[symbolId];
if (!references) {
references = this.symbolIdToReferences[symbolId] = [];
this.result.push({ definition: { type: "symbol", symbol: searchSymbol, node: searchLocation }, references });
}
return node => references.push(nodeEntry(node));
}
/** Add a reference with no associated definition. */
addStringOrCommentReference(fileName: string, textSpan: TextSpan): void {
this.result.push({
definition: undefined,
references: [{ type: "span", fileName, textSpan }]
});
}
// Source file ID → symbol ID → Whether the symbol has been searched for in the source file.
private readonly sourceFileToSeenSymbols: true[][] = [];
/** Returns `true` the first time we search for a symbol in a file and `false` afterwards. */
markSearchedSymbol(sourceFile: SourceFile, symbol: Symbol): boolean {
const sourceId = getNodeId(sourceFile);
const symbolId = getSymbolId(symbol);
const seenSymbols = this.sourceFileToSeenSymbols[sourceId] || (this.sourceFileToSeenSymbols[sourceId] = []);
return !seenSymbols[symbolId] && (seenSymbols[symbolId] = true);
}
}
/** Search for all imports of a given exported symbol using `State.getImportSearches`. */
function searchForImportsOfExport(exportLocation: Node, exportSymbol: Symbol, exportInfo: ExportInfo, state: State): void {
const { importSearches, singleReferences, indirectUsers } = state.getImportSearches(exportSymbol, exportInfo);
// For `import { foo as bar }` just add the reference to `foo`, and don't otherwise search in the file.
if (singleReferences.length) {
const addRef = state.referenceAdder(exportSymbol, exportLocation);
for (const singleRef of singleReferences) {
addRef(singleRef);
}
}
// For each import, find all references to that import in its source file.
for (const [importLocation, importSymbol] of importSearches) {
getReferencesInSourceFile(importLocation.getSourceFile(), state.createSearch(importLocation, importSymbol, ImportExport.Export), state);
}
if (indirectUsers.length) {
let indirectSearch: Search | undefined;
switch (exportInfo.exportKind) {
case ExportKind.Named:
indirectSearch = state.createSearch(exportLocation, exportSymbol, ImportExport.Export);
break;
case ExportKind.Default:
// Search for a property access to '.default'. This can't be renamed.
indirectSearch = state.options.isForRename ? undefined : state.createSearch(exportLocation, exportSymbol, ImportExport.Export, { text: "default" });
break;
case ExportKind.ExportEquals:
break;
}
if (indirectSearch) {
for (const indirectUser of indirectUsers) {
searchForName(indirectUser, indirectSearch, state);
}
}
}
}
// Go to the symbol we imported from and find references for it.
function searchForImportedSymbol(symbol: Symbol, state: State): void {
for (const declaration of symbol.declarations) {
getReferencesInSourceFile(declaration.getSourceFile(), state.createSearch(declaration, symbol, ImportExport.Import), state);
}
}
/** Search for all occurences of an identifier in a source file (and filter out the ones that match). */
function searchForName(sourceFile: SourceFile, search: Search, state: State): void {
if (getNameTable(sourceFile).get(search.escapedText) !== undefined) {
getReferencesInSourceFile(sourceFile, search, state);
}
}
function getPropertySymbolOfDestructuringAssignment(location: Node, checker: TypeChecker): Symbol | undefined {
return isArrayLiteralOrObjectLiteralDestructuringPattern(location.parent.parent) &&
checker.getPropertySymbolOfDestructuringAssignment(<Identifier>location);
}
function getObjectBindingElementWithoutPropertyName(symbol: Symbol): BindingElement | undefined {
const bindingElement = getDeclarationOfKind<BindingElement>(symbol, SyntaxKind.BindingElement);
if (bindingElement &&
bindingElement.parent.kind === SyntaxKind.ObjectBindingPattern &&
!bindingElement.propertyName) {
return bindingElement;
}
}
function getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol: Symbol, checker: TypeChecker): Symbol | undefined {
const bindingElement = getObjectBindingElementWithoutPropertyName(symbol);
if (!bindingElement) return undefined;
const typeOfPattern = checker.getTypeAtLocation(bindingElement.parent);
const propSymbol = typeOfPattern && checker.getPropertyOfType(typeOfPattern, (<Identifier>bindingElement.name).text);
if (propSymbol && propSymbol.flags & SymbolFlags.Accessor) {
// See GH#16922
Debug.assert(!!(propSymbol.flags & SymbolFlags.Transient));
return (propSymbol as TransientSymbol).target;
}
return propSymbol;
}
/**
* Determines the smallest scope in which a symbol may have named references.
* Note that not every construct has been accounted for. This function can
* probably be improved.
*
* @returns undefined if the scope cannot be determined, implying that
* a reference to a symbol can occur anywhere.
*/
function getSymbolScope(symbol: Symbol): Node | undefined {
// If this is the symbol of a named function expression or named class expression,
// then named references are limited to its own scope.
const { declarations, flags, parent, valueDeclaration } = symbol;
if (valueDeclaration && (valueDeclaration.kind === SyntaxKind.FunctionExpression || valueDeclaration.kind === SyntaxKind.ClassExpression)) {
return valueDeclaration;
}
if (!declarations) {
return undefined;
}
// If this is private property or method, the scope is the containing class
if (flags & (SymbolFlags.Property | SymbolFlags.Method)) {
const privateDeclaration = find(declarations, d => hasModifier(d, ModifierFlags.Private));
if (privateDeclaration) {
return getAncestor(privateDeclaration, SyntaxKind.ClassDeclaration);
}
// Else this is a public property and could be accessed from anywhere.
return undefined;
}
// If symbol is of object binding pattern element without property name we would want to
// look for property too and that could be anywhere
if (getObjectBindingElementWithoutPropertyName(symbol)) {
return undefined;
}
/*
If the symbol has a parent, it's globally visible unless:
- It's a private property (handled above).
- It's a type parameter.
- The parent is an external module: then we should only search in the module (and recurse on the export later).
- But if the parent has `export as namespace`, the symbol is globally visible through that namespace.
*/
const exposedByParent = parent && !(symbol.flags & SymbolFlags.TypeParameter);
if (exposedByParent && !((parent.flags & SymbolFlags.Module) && isExternalModuleSymbol(parent) && !parent.globalExports)) {
return undefined;
}
let scope: Node | undefined;
for (const declaration of declarations) {
const container = getContainerNode(declaration);
if (scope && scope !== container) {
// Different declarations have different containers, bail out
return undefined;
}
if (!container || container.kind === SyntaxKind.SourceFile && !isExternalOrCommonJsModule(<SourceFile>container)) {
// This is a global variable and not an external module, any declaration defined
// within this scope is visible outside the file
return undefined;
}
// The search scope is the container node
scope = container;
}
// If symbol.parent, this means we are in an export of an external module. (Otherwise we would have returned `undefined` above.)
// For an export of a module, we may be in a declaration file, and it may be accessed elsewhere. E.g.:
// declare module "a" { export type T = number; }
// declare module "b" { import { T } from "a"; export const x: T; }
// So we must search the whole source file. (Because we will mark the source file as seen, we we won't return to it when searching for imports.)
return exposedByParent ? scope.getSourceFile() : scope;
}
function getPossibleSymbolReferencePositions(sourceFile: SourceFile, symbolName: string, container: Node = sourceFile): number[] {
const positions: number[] = [];
/// TODO: Cache symbol existence for files to save text search
// Also, need to make this work for unicode escapes.
// Be resilient in the face of a symbol with no name or zero length name
if (!symbolName || !symbolName.length) {
return positions;
}
const text = sourceFile.text;
const sourceLength = text.length;
const symbolNameLength = symbolName.length;
let position = text.indexOf(symbolName, container.pos);
while (position >= 0) {
// If we are past the end, stop looking
if (position > container.end) break;
// We found a match. Make sure it's not part of a larger word (i.e. the char
// before and after it have to be a non-identifier char).
const endPosition = position + symbolNameLength;
if ((position === 0 || !isIdentifierPart(text.charCodeAt(position - 1), ScriptTarget.Latest)) &&
(endPosition === sourceLength || !isIdentifierPart(text.charCodeAt(endPosition), ScriptTarget.Latest))) {
// Found a real match. Keep searching.
positions.push(position);
}
position = text.indexOf(symbolName, position + symbolNameLength + 1);
}
return positions;
}
function getLabelReferencesInNode(container: Node, targetLabel: Identifier): SymbolAndEntries[] {
const references: Entry[] = [];
const sourceFile = container.getSourceFile();
const labelName = targetLabel.text;
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, labelName, container);
for (const position of possiblePositions) {
const node = getTouchingWord(sourceFile, position, /*includeJsDocComment*/ false);
// Only pick labels that are either the target label, or have a target that is the target label
if (node && (node === targetLabel || (isJumpStatementTarget(node) && getTargetLabel(node, labelName) === targetLabel))) {
references.push(nodeEntry(node));
}
}
return [{ definition: { type: "label", node: targetLabel }, references }];
}
function isValidReferencePosition(node: Node, searchSymbolName: string): boolean {
// Compare the length so we filter out strict superstrings of the symbol we are looking for
switch (node.kind) {
case SyntaxKind.Identifier:
return (node as Identifier).text.length === searchSymbolName.length;
case SyntaxKind.StringLiteral:
return (isLiteralNameOfPropertyDeclarationOrIndexAccess(node as StringLiteral) || isNameOfExternalModuleImportOrDeclaration(node)) &&
(node as StringLiteral).text.length === searchSymbolName.length;
case SyntaxKind.NumericLiteral:
return isLiteralNameOfPropertyDeclarationOrIndexAccess(node as NumericLiteral) && (node as NumericLiteral).text.length === searchSymbolName.length;
case SyntaxKind.DefaultKeyword:
return "default".length === searchSymbolName.length;
default:
return false;
}
}
function getAllReferencesForKeyword(sourceFiles: ReadonlyArray<SourceFile>, keywordKind: ts.SyntaxKind, cancellationToken: CancellationToken): SymbolAndEntries[] {
const references: NodeEntry[] = [];
for (const sourceFile of sourceFiles) {
cancellationToken.throwIfCancellationRequested();
addReferencesForKeywordInFile(sourceFile, keywordKind, tokenToString(keywordKind), references);
}
return references.length ? [{ definition: { type: "keyword", node: references[0].node }, references }] : undefined;
}
function addReferencesForKeywordInFile(sourceFile: SourceFile, kind: SyntaxKind, searchText: string, references: Push<NodeEntry>): void {
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, searchText, sourceFile);
for (const position of possiblePositions) {
const referenceLocation = getTouchingPropertyName(sourceFile, position, /*includeJsDocComment*/ true);
if (referenceLocation.kind === kind) {
references.push(nodeEntry(referenceLocation));
}
}
}
function getReferencesInSourceFile(sourceFile: ts.SourceFile, search: Search, state: State): void {
state.cancellationToken.throwIfCancellationRequested();
return getReferencesInContainer(sourceFile, sourceFile, search, state);
}
/**
* Search within node "container" for references for a search value, where the search value is defined as a
* tuple of(searchSymbol, searchText, searchLocation, and searchMeaning).
* searchLocation: a node where the search value
*/
function getReferencesInContainer(container: Node, sourceFile: ts.SourceFile, search: Search, state: State): void {
if (!state.markSearchedSymbol(sourceFile, search.symbol)) {
return;
}
for (const position of getPossibleSymbolReferencePositions(sourceFile, search.text, container)) {
getReferencesAtLocation(sourceFile, position, search, state);
}
}
function getReferencesAtLocation(sourceFile: SourceFile, position: number, search: Search, state: State): void {
const referenceLocation = getTouchingPropertyName(sourceFile, position, /*includeJsDocComment*/ true);
if (!isValidReferencePosition(referenceLocation, search.text)) {
// This wasn't the start of a token. Check to see if it might be a
// match in a comment or string if that's what the caller is asking
// for.
if (!state.options.implementations && (state.options.findInStrings && isInString(sourceFile, position) || state.options.findInComments && isInNonReferenceComment(sourceFile, position))) {
// In the case where we're looking inside comments/strings, we don't have
// an actual definition. So just use 'undefined' here. Features like
// 'Rename' won't care (as they ignore the definitions), and features like
// 'FindReferences' will just filter out these results.
state.addStringOrCommentReference(sourceFile.fileName, createTextSpan(position, search.text.length));
}
return;
}
if (!(getMeaningFromLocation(referenceLocation) & state.searchMeaning)) {
return;
}
const referenceSymbol = state.checker.getSymbolAtLocation(referenceLocation);
if (!referenceSymbol) {
return;
}
const { parent } = referenceLocation;
if (isImportSpecifier(parent) && parent.propertyName === referenceLocation) {
// This is added through `singleReferences` in ImportsResult. If we happen to see it again, don't add it again.
return;
}
if (isExportSpecifier(parent)) {
Debug.assert(referenceLocation.kind === SyntaxKind.Identifier);
getReferencesAtExportSpecifier(referenceLocation as Identifier, referenceSymbol, parent, search, state);
return;
}
const relatedSymbol = getRelatedSymbol(search, referenceSymbol, referenceLocation, state);
if (!relatedSymbol) {
getReferenceForShorthandProperty(referenceSymbol, search, state);
return;
}
switch (state.specialSearchKind) {
case SpecialSearchKind.None:
addReference(referenceLocation, relatedSymbol, search.location, state);
break;
case SpecialSearchKind.Constructor:
addConstructorReferences(referenceLocation, sourceFile, search, state);
break;
case SpecialSearchKind.Class:
addClassStaticThisReferences(referenceLocation, search, state);
break;
default:
Debug.assertNever(state.specialSearchKind);
}
getImportOrExportReferences(referenceLocation, referenceSymbol, search, state);
}
function getReferencesAtExportSpecifier(referenceLocation: Identifier, referenceSymbol: Symbol, exportSpecifier: ExportSpecifier, search: Search, state: State): void {
const { parent, propertyName, name } = exportSpecifier;
const exportDeclaration = parent.parent;
const localSymbol = getLocalSymbolForExportSpecifier(referenceLocation, referenceSymbol, exportSpecifier, state.checker);
if (!search.includes(localSymbol)) {
return;
}
if (!propertyName) {
addRef();
}
else if (referenceLocation === propertyName) {
// For `export { foo as bar } from "baz"`, "`foo`" will be added from the singleReferences for import searches of the original export.
// For `export { foo as bar };`, where `foo` is a local, so add it now.
if (!exportDeclaration.moduleSpecifier) {
addRef();
}
if (!state.options.isForRename && state.markSeenReExportRHS(name)) {
addReference(name, referenceSymbol, name, state);
}
}
else {
if (state.markSeenReExportRHS(referenceLocation)) {
addRef();
}
}
// For `export { foo as bar }`, rename `foo`, but not `bar`.
if (!(referenceLocation === propertyName && state.options.isForRename)) {
const exportKind = (referenceLocation as Identifier).originalKeywordKind === ts.SyntaxKind.DefaultKeyword ? ExportKind.Default : ExportKind.Named;
const exportInfo = getExportInfo(referenceSymbol, exportKind, state.checker);
Debug.assert(!!exportInfo);
searchForImportsOfExport(referenceLocation, referenceSymbol, exportInfo, state);
}
// At `export { x } from "foo"`, also search for the imported symbol `"foo".x`.
if (search.comingFrom !== ImportExport.Export && exportDeclaration.moduleSpecifier && !propertyName) {
searchForImportedSymbol(state.checker.getExportSpecifierLocalTargetSymbol(exportSpecifier), state);
}
function addRef() {
addReference(referenceLocation, localSymbol, search.location, state);
}
}
function getLocalSymbolForExportSpecifier(referenceLocation: Identifier, referenceSymbol: Symbol, exportSpecifier: ExportSpecifier, checker: TypeChecker): Symbol {
return isExportSpecifierAlias(referenceLocation, exportSpecifier) ? checker.getExportSpecifierLocalTargetSymbol(exportSpecifier) : referenceSymbol;
}
function isExportSpecifierAlias(referenceLocation: Identifier, exportSpecifier: ExportSpecifier): boolean {
const { parent, propertyName, name } = exportSpecifier;
Debug.assert(propertyName === referenceLocation || name === referenceLocation);
if (propertyName) {
// Given `export { foo as bar } [from "someModule"]`: It's an alias at `foo`, but at `bar` it's a new symbol.
return propertyName === referenceLocation;
}
else {
// `export { foo } from "foo"` is a re-export.
// `export { foo };` is not a re-export, it creates an alias for the local variable `foo`.
return !parent.parent.moduleSpecifier;
}
}
function getImportOrExportReferences(referenceLocation: Node, referenceSymbol: Symbol, search: Search, state: State): void {
const importOrExport = getImportOrExportSymbol(referenceLocation, referenceSymbol, state.checker, search.comingFrom === ImportExport.Export);
if (!importOrExport) return;
const { symbol } = importOrExport;
if (importOrExport.kind === ImportExport.Import) {
if (!state.options.isForRename || importOrExport.isNamedImport) {
searchForImportedSymbol(symbol, state);
}
}
else {
// We don't check for `state.isForRename`, even for default exports, because importers that previously matched the export name should be updated to continue matching.
searchForImportsOfExport(referenceLocation, symbol, importOrExport.exportInfo, state);
}
}
function getReferenceForShorthandProperty({ flags, valueDeclaration }: Symbol, search: Search, state: State): void {
const shorthandValueSymbol = state.checker.getShorthandAssignmentValueSymbol(valueDeclaration);
/*
* Because in short-hand property assignment, an identifier which stored as name of the short-hand property assignment
* has two meanings: property name and property value. Therefore when we do findAllReference at the position where
* an identifier is declared, the language service should return the position of the variable declaration as well as
* the position in short-hand property assignment excluding property accessing. However, if we do findAllReference at the
* position of property accessing, the referenceEntry of such position will be handled in the first case.
*/
if (!(flags & SymbolFlags.Transient) && search.includes(shorthandValueSymbol)) {
addReference(getNameOfDeclaration(valueDeclaration), shorthandValueSymbol, search.location, state);
}
}
function addReference(referenceLocation: Node, relatedSymbol: Symbol, searchLocation: Node, state: State): void {
const addRef = state.referenceAdder(relatedSymbol, searchLocation);
if (state.options.implementations) {
addImplementationReferences(referenceLocation, addRef, state);
}
else {
addRef(referenceLocation);
}
}
/** Adds references when a constructor is used with `new this()` in its own class and `super()` calls in subclasses. */
function addConstructorReferences(referenceLocation: Node, sourceFile: SourceFile, search: Search, state: State): void {
if (isNewExpressionTarget(referenceLocation)) {
addReference(referenceLocation, search.symbol, search.location, state);
}
const pusher = () => state.referenceAdder(search.symbol, search.location);
if (isClassLike(referenceLocation.parent)) {
Debug.assert(referenceLocation.parent.name === referenceLocation);
// This is the class declaration containing the constructor.
findOwnConstructorReferences(search.symbol, sourceFile, pusher());
}
else {
// If this class appears in `extends C`, then the extending class' "super" calls are references.
const classExtending = tryGetClassByExtendingIdentifier(referenceLocation);
if (classExtending) {
findSuperConstructorAccesses(classExtending, pusher());
}
}
}
function addClassStaticThisReferences(referenceLocation: Node, search: Search, state: State): void {
addReference(referenceLocation, search.symbol, search.location, state);
if (isClassLike(referenceLocation.parent)) {
Debug.assert(referenceLocation.parent.name === referenceLocation);
// This is the class declaration.
addStaticThisReferences(referenceLocation.parent, state.referenceAdder(search.symbol, search.location));
}
}
function addStaticThisReferences(classLike: ClassLikeDeclaration, pusher: (node: Node) => void): void {
for (const member of classLike.members) {
if (!(isMethodOrAccessor(member) && hasModifier(member, ModifierFlags.Static))) {
continue;
}
member.body.forEachChild(function cb(node) {
if (node.kind === SyntaxKind.ThisKeyword) {
pusher(node);
}
else if (!isFunctionLike(node)) {
node.forEachChild(cb);
}
});
}
}
function getPropertyAccessExpressionFromRightHandSide(node: Node): PropertyAccessExpression {
return isRightSideOfPropertyAccess(node) && <PropertyAccessExpression>node.parent;
}
/**
* `classSymbol` is the class where the constructor was defined.
* Reference the constructor and all calls to `new this()`.
*/
function findOwnConstructorReferences(classSymbol: Symbol, sourceFile: SourceFile, addNode: (node: Node) => void): void {
for (const decl of classSymbol.members.get(InternalSymbolName.Constructor).declarations) {
const ctrKeyword = findChildOfKind(decl, ts.SyntaxKind.ConstructorKeyword, sourceFile)!;
Debug.assert(decl.kind === SyntaxKind.Constructor && !!ctrKeyword);
addNode(ctrKeyword);
}
classSymbol.exports.forEach(member => {
const decl = member.valueDeclaration;
if (decl && decl.kind === SyntaxKind.MethodDeclaration) {
const body = (<MethodDeclaration>decl).body;
if (body) {
forEachDescendantOfKind(body, SyntaxKind.ThisKeyword, thisKeyword => {
if (isNewExpressionTarget(thisKeyword)) {
addNode(thisKeyword);
}
});
}
}
});
}
/** Find references to `super` in the constructor of an extending class. */
function findSuperConstructorAccesses(cls: ClassLikeDeclaration, addNode: (node: Node) => void): void {
const symbol = cls.symbol;
const ctr = symbol.members.get(InternalSymbolName.Constructor);
if (!ctr) {
return;
}
for (const decl of ctr.declarations) {
Debug.assert(decl.kind === SyntaxKind.Constructor);
const body = (<ConstructorDeclaration>decl).body;
if (body) {
forEachDescendantOfKind(body, SyntaxKind.SuperKeyword, node => {
if (isCallExpressionTarget(node)) {
addNode(node);
}
});
}
}
}
function addImplementationReferences(refNode: Node, addReference: (node: Node) => void, state: State): void {
// Check if we found a function/propertyAssignment/method with an implementation or initializer
if (isDeclarationName(refNode) && isImplementation(refNode.parent)) {
addReference(refNode.parent);
return;
}
if (refNode.kind !== SyntaxKind.Identifier) {
return;
}
if (refNode.parent.kind === SyntaxKind.ShorthandPropertyAssignment) {
// Go ahead and dereference the shorthand assignment by going to its definition
getReferenceEntriesForShorthandPropertyAssignment(refNode, state.checker, addReference);
}
// Check if the node is within an extends or implements clause
const containingClass = getContainingClassIfInHeritageClause(refNode);
if (containingClass) {
addReference(containingClass);
return;
}
// If we got a type reference, try and see if the reference applies to any expressions that can implement an interface
const containingTypeReference = getContainingTypeReference(refNode);
if (containingTypeReference && state.markSeenContainingTypeReference(containingTypeReference)) {
const parent = containingTypeReference.parent;
if (hasType(parent) && parent.type === containingTypeReference && hasInitializer(parent) && isImplementationExpression(parent.initializer)) {
addReference(parent.initializer);
}
else if (isFunctionLike(parent) && parent.type === containingTypeReference && (parent as FunctionLikeDeclaration).body) {
const body = (parent as FunctionLikeDeclaration).body;
if (body.kind === SyntaxKind.Block) {
forEachReturnStatement(<Block>body, returnStatement => {
if (returnStatement.expression && isImplementationExpression(returnStatement.expression)) {
addReference(returnStatement.expression);
}
});
}
else if (isImplementationExpression(<Expression>body)) {
addReference(body);
}
}
else if (isAssertionExpression(parent) && isImplementationExpression(parent.expression)) {
addReference(parent.expression);
}
}
}
function getSymbolsForClassAndInterfaceComponents(type: UnionOrIntersectionType, result: Symbol[] = []): Symbol[] {
for (const componentType of type.types) {
if (componentType.symbol && componentType.symbol.getFlags() & (SymbolFlags.Class | SymbolFlags.Interface)) {
result.push(componentType.symbol);
}
if (componentType.getFlags() & TypeFlags.UnionOrIntersection) {
getSymbolsForClassAndInterfaceComponents(<UnionOrIntersectionType>componentType, result);
}
}
return result;
}
function getContainingTypeReference(node: Node): Node {
let topLevelTypeReference: Node = undefined;
while (node) {
if (isTypeNode(node)) {
topLevelTypeReference = node;
}
node = node.parent;
}
return topLevelTypeReference;
}
function getContainingClassIfInHeritageClause(node: Node): ClassLikeDeclaration {
if (node && node.parent) {
if (node.kind === SyntaxKind.ExpressionWithTypeArguments
&& node.parent.kind === SyntaxKind.HeritageClause
&& isClassLike(node.parent.parent)) {
return node.parent.parent;
}
else if (node.kind === SyntaxKind.Identifier || node.kind === SyntaxKind.PropertyAccessExpression) {
return getContainingClassIfInHeritageClause(node.parent);
}
}
return undefined;
}
/**
* Returns true if this is an expression that can be considered an implementation
*/
function isImplementationExpression(node: Expression): boolean {
switch (node.kind) {
case SyntaxKind.ParenthesizedExpression:
return isImplementationExpression((<ParenthesizedExpression>node).expression);
case SyntaxKind.ArrowFunction:
case SyntaxKind.FunctionExpression:
case SyntaxKind.ObjectLiteralExpression:
case SyntaxKind.ClassExpression:
case SyntaxKind.ArrayLiteralExpression:
return true;
default:
return false;
}
}
/**
* Determines if the parent symbol occurs somewhere in the child's ancestry. If the parent symbol
* is an interface, determines if some ancestor of the child symbol extends or inherits from it.
* Also takes in a cache of previous results which makes this slightly more efficient and is
* necessary to avoid potential loops like so:
* class A extends B { }
* class B extends A { }
*
* We traverse the AST rather than using the type checker because users are typically only interested
* in explicit implementations of an interface/class when calling "Go to Implementation". Sibling
* implementations of types that share a common ancestor with the type whose implementation we are
* searching for need to be filtered out of the results. The type checker doesn't let us make the
* distinction between structurally compatible implementations and explicit implementations, so we
* must use the AST.
*
* @param child A class or interface Symbol
* @param parent Another class or interface Symbol
* @param cachedResults A map of symbol id pairs (i.e. "child,parent") to booleans indicating previous results
*/
function explicitlyInheritsFrom(child: Symbol, parent: Symbol, cachedResults: Map<boolean>, checker: TypeChecker): boolean {
const parentIsInterface = parent.getFlags() & SymbolFlags.Interface;
return searchHierarchy(child);
function searchHierarchy(symbol: Symbol): boolean {
if (symbol === parent) {
return true;
}
const key = getSymbolId(symbol) + "," + getSymbolId(parent);
const cached = cachedResults.get(key);
if (cached !== undefined) {
return cached;
}
// Set the key so that we don't infinitely recurse
cachedResults.set(key, false);
const inherits = forEach(symbol.getDeclarations(), declaration => {
if (isClassLike(declaration)) {
if (parentIsInterface) {
const interfaceReferences = getClassImplementsHeritageClauseElements(declaration);
if (interfaceReferences) {
for (const typeReference of interfaceReferences) {
if (searchTypeReference(typeReference)) {
return true;
}
}
}
}
return searchTypeReference(getClassExtendsHeritageClauseElement(declaration));
}
else if (declaration.kind === SyntaxKind.InterfaceDeclaration) {
if (parentIsInterface) {
return forEach(getInterfaceBaseTypeNodes(<InterfaceDeclaration>declaration), searchTypeReference);
}
}
return false;
});
cachedResults.set(key, inherits);
return inherits;
}
function searchTypeReference(typeReference: ExpressionWithTypeArguments): boolean {
if (typeReference) {
const type = checker.getTypeAtLocation(typeReference);
if (type && type.symbol) {
return searchHierarchy(type.symbol);
}
}
return false;
}
}
function getReferencesForSuperKeyword(superKeyword: Node): SymbolAndEntries[] {
let searchSpaceNode = getSuperContainer(superKeyword, /*stopOnFunctions*/ false);
if (!searchSpaceNode) {
return undefined;
}
// Whether 'super' occurs in a static context within a class.
let staticFlag = ModifierFlags.Static;
switch (searchSpaceNode.kind) {
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
staticFlag &= getModifierFlags(searchSpaceNode);
searchSpaceNode = searchSpaceNode.parent; // re-assign to be the owning class
break;
default:
return undefined;
}
const references: Entry[] = [];
const sourceFile = searchSpaceNode.getSourceFile();
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, "super", searchSpaceNode);
for (const position of possiblePositions) {
const node = getTouchingWord(sourceFile, position, /*includeJsDocComment*/ false);
if (!node || node.kind !== SyntaxKind.SuperKeyword) {
continue;
}
const container = getSuperContainer(node, /*stopOnFunctions*/ false);
// If we have a 'super' container, we must have an enclosing class.
// Now make sure the owning class is the same as the search-space
// and has the same static qualifier as the original 'super's owner.
if (container && (ModifierFlags.Static & getModifierFlags(container)) === staticFlag && container.parent.symbol === searchSpaceNode.symbol) {
references.push(nodeEntry(node));
}
}
return [{ definition: { type: "symbol", symbol: searchSpaceNode.symbol, node: superKeyword }, references }];
}
function getReferencesForThisKeyword(thisOrSuperKeyword: Node, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken): SymbolAndEntries[] {
let searchSpaceNode = getThisContainer(thisOrSuperKeyword, /* includeArrowFunctions */ false);
// Whether 'this' occurs in a static context within a class.
let staticFlag = ModifierFlags.Static;
switch (searchSpaceNode.kind) {
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
if (isObjectLiteralMethod(searchSpaceNode)) {
break;
}
// falls through
case SyntaxKind.PropertyDeclaration:
case SyntaxKind.PropertySignature:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
staticFlag &= getModifierFlags(searchSpaceNode);
searchSpaceNode = searchSpaceNode.parent; // re-assign to be the owning class
break;
case SyntaxKind.SourceFile:
if (isExternalModule(<SourceFile>searchSpaceNode)) {
return undefined;
}
// falls through
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
break;
// Computed properties in classes are not handled here because references to this are illegal,
// so there is no point finding references to them.
default:
return undefined;
}
const references: Entry[] = [];
let possiblePositions: number[];
if (searchSpaceNode.kind === SyntaxKind.SourceFile) {
forEach(sourceFiles, sourceFile => {
cancellationToken.throwIfCancellationRequested();
possiblePositions = getPossibleSymbolReferencePositions(sourceFile, "this");
getThisReferencesInFile(sourceFile, sourceFile, possiblePositions, references);
});
}
else {
const sourceFile = searchSpaceNode.getSourceFile();
possiblePositions = getPossibleSymbolReferencePositions(sourceFile, "this", searchSpaceNode);
getThisReferencesInFile(sourceFile, searchSpaceNode, possiblePositions, references);
}
return [{
definition: { type: "this", node: thisOrSuperKeyword },
references
}];
function getThisReferencesInFile(sourceFile: SourceFile, searchSpaceNode: Node, possiblePositions: number[], result: Entry[]): void {
forEach(possiblePositions, position => {
const node = getTouchingWord(sourceFile, position, /*includeJsDocComment*/ false);
if (!node || !isThis(node)) {
return;
}
const container = getThisContainer(node, /* includeArrowFunctions */ false);
switch (searchSpaceNode.kind) {
case SyntaxKind.FunctionExpression:
case SyntaxKind.FunctionDeclaration:
if (searchSpaceNode.symbol === container.symbol) {
result.push(nodeEntry(node));
}
break;
case SyntaxKind.MethodDeclaration:
case SyntaxKind.MethodSignature:
if (isObjectLiteralMethod(searchSpaceNode) && searchSpaceNode.symbol === container.symbol) {
result.push(nodeEntry(node));
}
break;
case SyntaxKind.ClassExpression:
case SyntaxKind.ClassDeclaration:
// Make sure the container belongs to the same class
// and has the appropriate static modifier from the original container.
if (container.parent && searchSpaceNode.symbol === container.parent.symbol && (getModifierFlags(container) & ModifierFlags.Static) === staticFlag) {
result.push(nodeEntry(node));
}
break;
case SyntaxKind.SourceFile:
if (container.kind === SyntaxKind.SourceFile && !isExternalModule(<SourceFile>container)) {
result.push(nodeEntry(node));
}
break;
}
});
}
}
function getReferencesForStringLiteral(node: StringLiteral, sourceFiles: ReadonlyArray<SourceFile>, cancellationToken: CancellationToken): SymbolAndEntries[] {
const references: NodeEntry[] = [];
for (const sourceFile of sourceFiles) {
cancellationToken.throwIfCancellationRequested();
const possiblePositions = getPossibleSymbolReferencePositions(sourceFile, node.text);
getReferencesForStringLiteralInFile(sourceFile, node.text, possiblePositions, references);
}
return [{
definition: { type: "string", node },
references
}];
function getReferencesForStringLiteralInFile(sourceFile: SourceFile, searchText: string, possiblePositions: number[], references: Push<NodeEntry>): void {
for (const position of possiblePositions) {
const node = getTouchingWord(sourceFile, position, /*includeJsDocComment*/ false);
if (node && node.kind === SyntaxKind.StringLiteral && (node as StringLiteral).text === searchText) {
references.push(nodeEntry(node, /*isInString*/ true));
}
}
}
}
// For certain symbol kinds, we need to include other symbols in the search set.
// This is not needed when searching for re-exports.
function populateSearchSymbolSet(symbol: Symbol, location: Node, checker: TypeChecker, implementations: boolean): Symbol[] {
// The search set contains at least the current symbol
const result: Symbol[] = [];
const containingObjectLiteralElement = getContainingObjectLiteralElement(location);
if (containingObjectLiteralElement) {
// If the location is name of property symbol from object literal destructuring pattern
// Search the property symbol
// for ( { property: p2 } of elems) { }
if (containingObjectLiteralElement.kind !== SyntaxKind.ShorthandPropertyAssignment) {
const propertySymbol = getPropertySymbolOfDestructuringAssignment(location, checker);
if (propertySymbol) {
result.push(propertySymbol);
}
}
// If the location is in a context sensitive location (i.e. in an object literal) try
// to get a contextual type for it, and add the property symbol from the contextual
// type to the search set
for (const contextualSymbol of getPropertySymbolsFromContextualType(containingObjectLiteralElement, checker)) {
addRootSymbols(contextualSymbol);
}
/* Because in short-hand property assignment, location has two meaning : property name and as value of the property
* When we do findAllReference at the position of the short-hand property assignment, we would want to have references to position of
* property name and variable declaration of the identifier.
* Like in below example, when querying for all references for an identifier 'name', of the property assignment, the language service
* should show both 'name' in 'obj' and 'name' in variable declaration
* const name = "Foo";
* const obj = { name };
* In order to do that, we will populate the search set with the value symbol of the identifier as a value of the property assignment
* so that when matching with potential reference symbol, both symbols from property declaration and variable declaration
* will be included correctly.
*/
const shorthandValueSymbol = checker.getShorthandAssignmentValueSymbol(location.parent);
if (shorthandValueSymbol) {
result.push(shorthandValueSymbol);
}
}
// If the symbol.valueDeclaration is a property parameter declaration,
// we should include both parameter declaration symbol and property declaration symbol
// Parameter Declaration symbol is only visible within function scope, so the symbol is stored in constructor.locals.
// Property Declaration symbol is a member of the class, so the symbol is stored in its class Declaration.symbol.members
addRange(result, getParameterPropertySymbols(symbol, checker));
// If this is symbol of binding element without propertyName declaration in Object binding pattern
// Include the property in the search
const bindingElementPropertySymbol = getPropertySymbolOfObjectBindingPatternWithoutPropertyName(symbol, checker);
if (bindingElementPropertySymbol) {
result.push(bindingElementPropertySymbol);
addRootSymbols(bindingElementPropertySymbol);
}
addRootSymbols(symbol);
return result;
function addRootSymbols(sym: Symbol): void {
// If this is a union property, add all the symbols from all its source symbols in all unioned types.
// If the symbol is an instantiation from a another symbol (e.g. widened symbol) , add the root the list
for (const rootSymbol of checker.getRootSymbols(sym)) {
result.push(rootSymbol);
// Add symbol of properties/methods of the same name in base classes and implemented interfaces definitions
if (!implementations && rootSymbol.parent && rootSymbol.parent.flags & (SymbolFlags.Class | SymbolFlags.Interface)) {
getPropertySymbolsFromBaseTypes(rootSymbol.parent, rootSymbol.name, result, /*previousIterationSymbolsCache*/ createSymbolTable(), checker);
}
}
}
}
function getParameterPropertySymbols(symbol: Symbol, checker: TypeChecker): Symbol[] {
return symbol.valueDeclaration && isParameter(symbol.valueDeclaration) && isParameterPropertyDeclaration(symbol.valueDeclaration)
? checker.getSymbolsOfParameterPropertyDeclaration(symbol.valueDeclaration, symbol.name)
: undefined;
}
/**
* Find symbol of the given property-name and add the symbol to the given result array
* @param symbol a symbol to start searching for the given propertyName
* @param propertyName a name of property to search for
* @param result an array of symbol of found property symbols
* @param previousIterationSymbolsCache a cache of symbol from previous iterations of calling this function to prevent infinite revisiting of the same symbol.
* The value of previousIterationSymbol is undefined when the function is first called.
*/
function getPropertySymbolsFromBaseTypes(symbol: Symbol, propertyName: string, result: Push<Symbol>, previousIterationSymbolsCache: SymbolTable, checker: TypeChecker): void {
if (!symbol) {
return;
}
// If the current symbol is the same as the previous-iteration symbol, we can just return the symbol that has already been visited
// This is particularly important for the following cases, so that we do not infinitely visit the same symbol.
// For example:
// interface C extends C {
// /*findRef*/propName: string;
// }
// The first time getPropertySymbolsFromBaseTypes is called when finding-all-references at propName,
// the symbol argument will be the symbol of an interface "C" and previousIterationSymbol is undefined,
// the function will add any found symbol of the property-name, then its sub-routine will call
// getPropertySymbolsFromBaseTypes again to walk up any base types to prevent revisiting already
// visited symbol, interface "C", the sub-routine will pass the current symbol as previousIterationSymbol.
if (previousIterationSymbolsCache.has(symbol.escapedName)) {
return;
}
if (symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface)) {
forEach(symbol.getDeclarations(), declaration => {
if (isClassLike(declaration)) {
getPropertySymbolFromTypeReference(getClassExtendsHeritageClauseElement(<ClassDeclaration>declaration));
forEach(getClassImplementsHeritageClauseElements(<ClassDeclaration>declaration), getPropertySymbolFromTypeReference);
}
else if (declaration.kind === SyntaxKind.InterfaceDeclaration) {
forEach(getInterfaceBaseTypeNodes(<InterfaceDeclaration>declaration), getPropertySymbolFromTypeReference);
}
});
}
return;
function getPropertySymbolFromTypeReference(typeReference: ExpressionWithTypeArguments): void {
if (typeReference) {
const type = checker.getTypeAtLocation(typeReference);
if (type) {
const propertySymbol = checker.getPropertyOfType(type, propertyName);
if (propertySymbol) {
result.push(...checker.getRootSymbols(propertySymbol));
}
// Visit the typeReference as well to see if it directly or indirectly use that property
previousIterationSymbolsCache.set(symbol.escapedName, symbol);
getPropertySymbolsFromBaseTypes(type.symbol, propertyName, result, previousIterationSymbolsCache, checker);
}
}
}
}
function getRelatedSymbol(search: Search, referenceSymbol: Symbol, referenceLocation: Node, state: State): Symbol | undefined {
const { checker } = state;
if (search.includes(referenceSymbol)) {
return referenceSymbol;
}
if (referenceSymbol.flags & SymbolFlags.FunctionScopedVariable) {
Debug.assert(!(referenceSymbol.flags & SymbolFlags.Property));
const paramProps = getParameterPropertySymbols(referenceSymbol, checker);
if (paramProps) {
return getRelatedSymbol(search, find(paramProps, x => !!(x.flags & SymbolFlags.Property))!, referenceLocation, state);
}
}
// If the reference location is in an object literal, try to get the contextual type for the
// object literal, lookup the property symbol in the contextual type, and use this symbol to
// compare to our searchSymbol
const containingObjectLiteralElement = getContainingObjectLiteralElement(referenceLocation);
if (containingObjectLiteralElement) {
const contextualSymbol = firstDefined(getPropertySymbolsFromContextualType(containingObjectLiteralElement, checker), findRootSymbol);
if (contextualSymbol) {
return contextualSymbol;
}
// If the reference location is the name of property from object literal destructuring pattern
// Get the property symbol from the object literal's type and look if thats the search symbol
// In below eg. get 'property' from type of elems iterating type
// for ( { property: p2 } of elems) { }
const propertySymbol = getPropertySymbolOfDestructuringAssignment(referenceLocation, checker);
if (propertySymbol && search.includes(propertySymbol)) {
return propertySymbol;
}
}
// If the reference location is the binding element and doesn't have property name
// then include the binding element in the related symbols
// let { a } : { a };
const bindingElementPropertySymbol = getPropertySymbolOfObjectBindingPatternWithoutPropertyName(referenceSymbol, checker);
if (bindingElementPropertySymbol) {
const fromBindingElement = findRootSymbol(bindingElementPropertySymbol);
if (fromBindingElement) return fromBindingElement;
}
return findRootSymbol(referenceSymbol);
function findRootSymbol(sym: Symbol): Symbol | undefined {
// Unwrap symbols to get to the root (e.g. transient symbols as a result of widening)
// Or a union property, use its underlying unioned symbols
return firstDefined(checker.getRootSymbols(sym), rootSymbol => {
// if it is in the list, then we are done
if (search.includes(rootSymbol)) {
return rootSymbol;
}
// Finally, try all properties with the same name in any type the containing type extended or implemented, and
// see if any is in the list. If we were passed a parent symbol, only include types that are subtypes of the
// parent symbol
if (rootSymbol.parent && rootSymbol.parent.flags & (SymbolFlags.Class | SymbolFlags.Interface)) {
// Parents will only be defined if implementations is true
if (search.parents && !some(search.parents, parent => explicitlyInheritsFrom(rootSymbol.parent, parent, state.inheritsFromCache, checker))) {
return undefined;
}
const result: Symbol[] = [];
getPropertySymbolsFromBaseTypes(rootSymbol.parent, rootSymbol.name, result, /*previousIterationSymbolsCache*/ createSymbolTable(), checker);
return find(result, search.includes);
}
return undefined;
});
}
}
function getNameFromObjectLiteralElement(node: ObjectLiteralElement): string {
if (node.name.kind === SyntaxKind.ComputedPropertyName) {
const nameExpression = (<ComputedPropertyName>node.name).expression;
// treat computed property names where expression is string/numeric literal as just string/numeric literal
if (isStringOrNumericLiteral(nameExpression)) {
return (<LiteralExpression>nameExpression).text;
}
return undefined;
}
return getTextOfIdentifierOrLiteral(node.name);
}
/** Gets all symbols for one property. Does not get symbols for every property. */
function getPropertySymbolsFromContextualType(node: ObjectLiteralElement, checker: TypeChecker): ReadonlyArray<Symbol> {
const contextualType = checker.getContextualType(<ObjectLiteralExpression>node.parent);
const name = getNameFromObjectLiteralElement(node);
const symbol = contextualType && name && contextualType.getProperty(name);
return symbol ? [symbol] :
contextualType && contextualType.flags & TypeFlags.Union ? mapDefined((<UnionType>contextualType).types, t => t.getProperty(name)) : emptyArray;
}
/**
* Given an initial searchMeaning, extracted from a location, widen the search scope based on the declarations
* of the corresponding symbol. e.g. if we are searching for "Foo" in value position, but "Foo" references a class
* then we need to widen the search to include type positions as well.
* On the contrary, if we are searching for "Bar" in type position and we trace bar to an interface, and an uninstantiated
* module, we want to keep the search limited to only types, as the two declarations (interface and uninstantiated module)
* do not intersect in any of the three spaces.
*/
function getIntersectingMeaningFromDeclarations(meaning: SemanticMeaning, declarations: Declaration[]): SemanticMeaning {
if (declarations) {
let lastIterationMeaning: SemanticMeaning;
do {
// The result is order-sensitive, for instance if initialMeaning === Namespace, and declarations = [class, instantiated module]
// we need to consider both as they initialMeaning intersects with the module in the namespace space, and the module
// intersects with the class in the value space.
// To achieve that we will keep iterating until the result stabilizes.
// Remember the last meaning
lastIterationMeaning = meaning;
for (const declaration of declarations) {
const declarationMeaning = getMeaningFromDeclaration(declaration);
if (declarationMeaning & meaning) {
meaning |= declarationMeaning;
}
}
}
while (meaning !== lastIterationMeaning);
}
return meaning;
}
function isImplementation(node: Node): boolean {
if (!node) {
return false;
}
else if (isVariableLike(node) && hasInitializer(node)) {
return true;
}
else if (node.kind === SyntaxKind.VariableDeclaration) {
const parentStatement = getParentStatementOfVariableDeclaration(<VariableDeclaration>node);
return parentStatement && hasModifier(parentStatement, ModifierFlags.Ambient);
}
else if (isFunctionLike(node)) {
return !!(node as FunctionLikeDeclaration).body || hasModifier(node, ModifierFlags.Ambient);
}
else {
switch (node.kind) {
case SyntaxKind.ClassDeclaration:
case SyntaxKind.ClassExpression:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.ModuleDeclaration:
return true;
}
}
return false;
}
function getParentStatementOfVariableDeclaration(node: VariableDeclaration): VariableStatement {
if (node.parent && node.parent.parent && node.parent.parent.kind === SyntaxKind.VariableStatement) {
Debug.assert(node.parent.kind === SyntaxKind.VariableDeclarationList);
return <VariableStatement>node.parent.parent;
}
}
export function getReferenceEntriesForShorthandPropertyAssignment(node: Node, checker: TypeChecker, addReference: (node: Node) => void): void {
const refSymbol = checker.getSymbolAtLocation(node);
const shorthandSymbol = checker.getShorthandAssignmentValueSymbol(refSymbol.valueDeclaration);
if (shorthandSymbol) {
for (const declaration of shorthandSymbol.getDeclarations()) {
if (getMeaningFromDeclaration(declaration) & SemanticMeaning.Value) {
addReference(declaration);
}
}
}
}
function forEachDescendantOfKind(node: Node, kind: SyntaxKind, action: (node: Node) => void): void {
forEachChild(node, child => {
if (child.kind === kind) {
action(child);
}
forEachDescendantOfKind(child, kind, action);
});
}
/** Get `C` given `N` if `N` is in the position `class C extends N` or `class C extends foo.N` where `N` is an identifier. */
function tryGetClassByExtendingIdentifier(node: Node): ClassLikeDeclaration | undefined {
return tryGetClassExtendingExpressionWithTypeArguments(climbPastPropertyAccess(node).parent);
}
function isNameOfExternalModuleImportOrDeclaration(node: Node): boolean {
if (node.kind === SyntaxKind.StringLiteral) {
return isNameOfModuleDeclaration(node) || isExpressionOfExternalModuleImportEqualsDeclaration(node);
}
return false;
}
/**
* If we are just looking for implementations and this is a property access expression, we need to get the
* symbol of the local type of the symbol the property is being accessed on. This is because our search
* symbol may have a different parent symbol if the local type's symbol does not declare the property
* being accessed (i.e. it is declared in some parent class or interface)
*/
function getParentSymbolsOfPropertyAccess(location: Node, symbol: Symbol, checker: TypeChecker): Symbol[] | undefined {
const propertyAccessExpression = getPropertyAccessExpressionFromRightHandSide(location);
if (!propertyAccessExpression) {
return undefined;
}
const localParentType = checker.getTypeAtLocation(propertyAccessExpression.expression);
if (!localParentType) {
return undefined;
}
if (localParentType.symbol && localParentType.symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface) && localParentType.symbol !== symbol.parent) {
return [localParentType.symbol];
}
else if (localParentType.flags & TypeFlags.UnionOrIntersection) {
return getSymbolsForClassAndInterfaceComponents(<UnionOrIntersectionType>localParentType);
}
}
}