TypeScript/src/services/patternMatcher.ts
Yui 1d9124eb7c [Release-2.0] Merge master into Release-2.0 (#10347)
* Change getUnionType to default to no subtype reduction

* Remove unnecessary subtype reduction operations

* Use binary searching in union types to improve performance

* Optimize type inference

* Fixed broken singleAsteriskRegex. Fixes #9918 (#9920)

* Lock ts-node to 1.1.0 while perf issue is investigated (#9933)

* Fix typo in comment for MAX_SAFE_INTEGER

* In ts.performance.now, bind window.performance.now

Using an arrow function. Previously, it was set directly to
window.performance.now, which fails when used on Chrome.

* Add lint enforcing line endings (#9942)

* Add servicesSources to the list of prerequisites for running tests

* Support emitting static properties for classes with no name

* Add assertion whitespace lint rule (#9931)

* Add assertion whitespace lint rule

* Fix typo

* Add the word `Rule` to Jakefile

* Limit travis build matrix (#9968)

* Convert getErrorBaseline to use canonical diagnostic formatting (#9708)

* Convert getErrorBaseline to use canonical diagnostic formatting

* Fix lint

* Found another clone of format diagnostic - consolidate

* Fully declone

* Unify nodeKind implementations for navigationBar and navigateTo

* Fix test and rename a function

* Fix lint errors

* Remove hardcoded port, use the custom port

* Unlock ts-node version (#9960)

* Allow an abstract class to appear in a local scope

* JSDoc understands string literal types

Unfortunately, I didn't find a way to reuse the normal string literal
type, so I had to extend the existing JSDoc type hierarchy. Otherwise,
this feature is very simple.

* Update baselines to be current

* Add find and findIndex to ReadonlyArray

* The optional this should be readonly too.

* Update baseline source location

* Re-add concat overload to support inferring tuples

* Update baselines with new concat overload

* Update LastJSDoc[Tag]Node

* Display enum member types using qualified names

* Accept new baselines

* Fix lint error

* null/undefined are allowed as index expressions

`null` and `undefined` are not allowed with `--strictNullChecks` turned
on. Previously, they were disallowed whether or not it was on.

* Use correct nullable terminology

* Get rid of port parameter

* Remove [port] in usage message

* Properly reset type guards in loops

* Add regression test

* Introduce the `EntityNameExpression` type

* Allow `export =` and `export default` to alias any EntityNameExpression, not just identifiers.

* Lint tests helper files

* recreate program if baseUrl or paths changed in tsconfig

* Simplify some code

* Have travis use a newer image for the OSX build (#10034)

Suggested by travis support for stopping the randomly-halting-builds issue.

* Correctly check for ambient class flag

* Use "best choice type" for || and ?: operators

* jsx opening element formatting

* change error message for unused parameter property

fix

* Fix issue related to this and #8383

* Add additional tests

* Accept new baselines

* Provide `realpath` for module resolution in LSHost

* Add test

* Add test baselines

* Accept new baselines

* CR feedback

* Remove `SupportedExpressionWithTypeArguments` type; just check that the expression of each `ExpressionWithTypeArguments` is an `EntityNameExpression`.

* Fix bug

* Fix #10083 - allowSyntheticDefaultImports alters getExternalModuleMember (#10096)

* Use recursion, and fix error for undefined node

* Rename function

* Fix lint error

* Narrowing type parameter intersects w/narrowed types

This makes sure that a union type that includes a type parameter is
still usable as the actual type that the type guard narrows to.

* Add a helper function `getOrUpdateProperty` to prevent unprotected access to Maps.

* Limit type guards as assertions to incomplete types in loops

* Accept new baselines

* Fix linting error

* Allow JS multiple declarations of ctor properties

When a property is declared in the constructor and on the prototype of
an ES6 class, the property's symbol is discarded in favour of the
method's symbol. That because the usual use for this pattern is to bind
an instance function: `this.m = this.m.bind(this)`. In this case the
type you want really is the method's type.

* Use {} type facts for unconstrained type params

Previously it was using TypeFacts.All. But the constraint of an
unconstrained type parameter is actually {}.

* Fix newline lint

* Test that declares conflicting method first

* [Release-2.0] Fix 9662: Visual Studio 2015 with TS2.0 gives incorrect @types path resolution errors (#9867)

* Change the shape of the shim layer to support getAutomaticTypeDirectives

* Change the key for looking up automatic type-directives

* Update baselines from change look-up name of type-directives

* Add @currentDirectory into the test

* Update baselines

* Fix linting error

* Address PR: fix spelling mistake

* Instead of return path of the type directive names just return type directive names

* Remove unused reference files: these tests produce erros so they will not produce these files (#9233)

* Add string-literal completion test for jsdoc

* Support other (new) literal types in jsdoc

* Don't allow properties inherited from Object to be automatically included in TSX attributes

* Add new test baseline and delete else in binder

The extra `else` caused a ton of test failures!

* Fix lint

* Port PR #10016 to Master (#10100)

* Treat namespaceExportDeclaration as declaration

* Update baselines

* wip - add tests

* Add tests

* Show "export namespace" for quick-info

* Fix more lint

* Try using runtests-parallel for CI (#9970)

* Try using runtests-parallel for CI

* Put worker count setting into .travis.yml

* Reduce worker count to 4 - 8 wasnt much different from 4-6 but had contention issues causing timeouts

* Fix lssl task (#9967)

* Surface noErrorTruncation option

* Stricter check for discriminant properties in type guards

* Add tests

* Emit more efficient/concise "empty" ES6 ctor

When there are property assignments in a the class body of an inheriting
class, tsc current emit the following compilation:

```ts
class Foo extends Bar {
  public foo = 1;
}
```

```js
class Foo extends Bar {
  constructor(…args) {
    super(…args);
    this.foo = 1;
  }
}
```

This introduces an unneeded local variable and might force a reification
of the `arguments` object (or otherwise reify the arguments into an
array).

This is particularly bad when that output is fed into another transpiler
like Babel. In Babel, you get something like this today:


```js
var Foo = (function (_Bar) {
  _inherits(Foo, _Bar);

  function Foo() {
    _classCallCheck(this, Foo);

    for (var _len = arguments.length, args = Array(_len), _key = 0; _key < _len; _key++) {
      args[_key] = arguments[_key];
    }

    _Bar.call.apply(_Bar, [this].concat(args));
    this.foo = 1;
  }

  return Foo;
})(Bar);
```

This causes a lot of needless work/allocations and some very strange
code (`.call.apply` o_0).

Admittedly, this is not strictly tsc’s problem; it could have done a
deeper analysis of the code and optimized out the extra dance. However,
tsc could also have emitted this simpler, more concise and semantically
equivalent code in the first place:


```js
class Foo extends Bar {
  constructor() {
    super(…arguments);
    this.foo = 1;
  }
}
```

Which compiles into the following in Babel:

```js
var Foo = (function (_Bar) {
  _inherits(Foo, _Bar);

  function Foo() {
    _classCallCheck(this, Foo);

    _Bar.apply(this, arguments);
    this.foo = 1;
  }

  return Foo;
})(Bar);
```

Which is well-optimized (today) in most engines and much less confusing
to read.

As far as I can tell, the proposed compilation has exactly the same
semantics as before.

Fixes #10175

* Fix instanceof operator narrowing issues

* Accept new baselines

* Add regression test

* Improve naming and documentation from PR

* Update comment

* Add more tests

* Accept new baselines

* Reduce worker count to 3 (#10210)

Since we saw a starvation issue on one of @sandersn's PRs.

* Speed up fourslash tests

* Duh

* Make baselines faster by not writing out unneeded files

* Fix non-strict-compliant test

* Fix 10076: Fix Tuple Destructing with "this" (#10208)

* Call checkExpression eventhough there is no appropriate type from destructuring of array

* Add tests and baselines

* use transpileModule

* Remove use strict

* Improve instanceof for structurally identical types

* Introduce isTypeInstanceOf function

* Add test

* Accept new baselines

* Fix loop over array to use for-of instead of for-in

* Use correct this in tuple type parameter constraints

Instantiate this in tuple types used as type parameter constraints

* Add explanatory comment to resolveTupleTypeMembers

* Ignore null, undefined, void when checking for discriminant property

* Add regression test

* Delay tuple type constraint resolution

Create a new tuple that stores the this-type.

* Always use thisType when generating tuple id

* Optimize format of type list id strings used in maps

* Make ReadonlyArray iterable.

* Allow OSX to fail while we investigate (#10255)

The random test timeouts are an issue.

* avoid using the global name

* Fix single-quote lint

* Optimize performance of maps

* Update API sample

* Fix processDiagnosticMessages script

* Have travis take shallow clones of the repo (#10275)

Just cloning TS on travis takes 23 seconds on linux (68 seconds on mac), hopefully having it do a shallow clone will help.

We don't rely on any tagging/artifacts from the travis servers which clone depth could impact, so this shouldn't impact anything other than build speed.

* Add folds to travis log (#10269)

* Optimize filterType to only call getUnionType if necessary

* Add shorthand types declaration for travis-fold (#10293)

* Optimize getTypeWithFacts

* Filter out nullable and primitive types in isDiscriminantProperty

* Fix typo

* Add regression tests

* Optimize core filter function to only allocate when necessary

* Address CR comments + more optimizations

* Faster path for creating union types from filterType

* Allow an @types direcotry to have a package.json which specifies `"typings": null` to disclude it from automatically included typings.

* Lint

* Collect timing information for commands running on travis (#10308)

* Simplifies performance API

* Use 'MapLike' instead of 'Map' in 'preferConstRule.ts'.

* narrow from 'any' in most situations

instanceof and user-defined typeguards narrow from 'any' unless the narrowed-to type is exactly 'Object' or 'Function'. This is a breaking change.

* Update instanceof conformance tests

* accept new baselines

* add tests

* accept new baselines

* Use lowercase names for type reference directives

* Use proper response codes in web tests

* Treat ambient shorthand declarations as explicit uses of the `any` type

* Parallel linting (#10313)

* A perilous thing, a parallel lint

* Use work queue rather than scheduling work

* Dont read files for lint on main thread

* Fix style

* Fix the style fix (#10344)

* Aligned mark names with values used by ts-perf.

* Use an enum in checkClassForDuplicateDeclarations to aid readability

* Rename to Accessor

* Correctly update package.json version

* Migrated more MapLikes to Maps

* Add ES2015 Date constructor signature that accepts another Date (#10353)

* Parameters with no assignments implicitly considered const

* Add tests

* Migrate additional MapLikes to Maps.

* Fix 10625: JSX Not validating when index signature is present  (#10352)

* Check for type of property declaration before using index signature

* Add tests and baselines

* fix linting error

* Adding more comments

* Clean up/move some Map helper functions.

* Revert some formatting changes.

* Improve ReadonlyArray<T>.concat to match Array<T>

The Array-based signature was incorrect and also out-of-date.

* Fix link to blog

* Remove old assertion about when we're allowed to use fileExists

* Set isNewIdentifierLocation to true for JavaScript files

* Update error message for conflicting type definitions

Fixes #10370

* Explain why we lower-case type reference directives

* Correctly merge bindThisPropertyAssignment

Also simply it considerably after noticing that it's *only* called for
Javascript files, so there was a lot of dead code for TS cases that
never happened.

* Fix comment

* Property handle imcomplete control flow types in nested loops

* Update due to CR suggestion

* Add regression test

* Fix 10289: correctly generate tsconfig.json with --lib (#10355)

* Separate generate tsconfig into its own function and implement init with --lib

# Conflicts:
#	src/compiler/tsc.ts

* Add tests and baselines; Update function name

Add unittests and baselines
Add unittests and baselines for generating tsconfig

Move unittest into harness folder

Update harness tsconfig.json

USe correct function name

* Use new MapLike interstead. Update unittest

# Conflicts:
#	src/compiler/commandLineParser.ts

* Update JakeFile

* Add tests for incorrect cases

* Address PR : remove explicity write node_modules

* Add more tests for `export = foo.bar`.

* Output test baselines to tests/baselines/local instead of root
2016-08-18 14:49:09 -07:00

746 lines
34 KiB
TypeScript

/* @internal */
namespace ts {
// Note(cyrusn): this enum is ordered from strongest match type to weakest match type.
export enum PatternMatchKind {
exact,
prefix,
substring,
camelCase
}
// Information about a match made by the pattern matcher between a candidate and the
// search pattern.
export interface PatternMatch {
// What kind of match this was. Exact matches are better than prefix matches which are
// better than substring matches which are better than CamelCase matches.
kind: PatternMatchKind;
// If this was a camel case match, how strong the match is. Higher number means
// it was a better match.
camelCaseWeight?: number;
// If this was a match where all constituent parts of the candidate and search pattern
// matched case sensitively or case insensitively. Case sensitive matches of the kind
// are better matches than insensitive matches.
isCaseSensitive: boolean;
// Whether or not this match occurred with the punctuation from the search pattern stripped
// out or not. Matches without the punctuation stripped are better than ones with punctuation
// stripped.
punctuationStripped: boolean;
}
// The pattern matcher maintains an internal cache of information as it is used. Therefore,
// you should not keep it around forever and should get and release the matcher appropriately
// once you no longer need it.
export interface PatternMatcher {
// Used to match a candidate against the last segment of a possibly dotted pattern. This
// is useful as a quick check to prevent having to compute a container before calling
// "getMatches".
//
// For example, if the search pattern is "ts.c.SK" and the candidate is "SyntaxKind", then
// this will return a successful match, having only tested "SK" against "SyntaxKind". At
// that point a call can be made to 'getMatches("SyntaxKind", "ts.compiler")', with the
// work to create 'ts.compiler' only being done once the first match succeeded.
getMatchesForLastSegmentOfPattern(candidate: string): PatternMatch[];
// Fully checks a candidate, with an dotted container, against the search pattern.
// The candidate must match the last part of the search pattern, and the dotted container
// must match the preceding segments of the pattern.
getMatches(candidateContainers: string[], candidate: string): PatternMatch[];
// Whether or not the pattern contained dots or not. Clients can use this to determine
// If they should call getMatches, or if getMatchesForLastSegmentOfPattern is sufficient.
patternContainsDots: boolean;
}
// First we break up the pattern given by dots. Each portion of the pattern between the
// dots is a 'Segment'. The 'Segment' contains information about the entire section of
// text between the dots, as well as information about any individual 'Words' that we
// can break the segment into. A 'Word' is simply a contiguous sequence of characters
// that can appear in a typescript identifier. So "GetKeyword" would be one word, while
// "Get Keyword" would be two words. Once we have the individual 'words', we break those
// into constituent 'character spans' of interest. For example, while 'UIElement' is one
// word, it make character spans corresponding to "U", "I" and "Element". These spans
// are then used when doing camel cased matches against candidate patterns.
interface Segment {
// Information about the entire piece of text between the dots. For example, if the
// text between the dots is 'GetKeyword', then TotalTextChunk.Text will be 'GetKeyword' and
// TotalTextChunk.CharacterSpans will correspond to 'Get', 'Keyword'.
totalTextChunk: TextChunk;
// Information about the subwords compromising the total word. For example, if the
// text between the dots is 'GetFoo KeywordBar', then the subwords will be 'GetFoo'
// and 'KeywordBar'. Those individual words will have CharacterSpans of ('Get' and
// 'Foo') and('Keyword' and 'Bar') respectively.
subWordTextChunks: TextChunk[];
}
// Information about a chunk of text from the pattern. The chunk is a piece of text, with
// cached information about the character spans within in. Character spans are used for
// camel case matching.
interface TextChunk {
// The text of the chunk. This should be a contiguous sequence of character that could
// occur in a symbol name.
text: string;
// The text of a chunk in lower case. Cached because it is needed often to check for
// case insensitive matches.
textLowerCase: string;
// Whether or not this chunk is entirely lowercase. We have different rules when searching
// for something entirely lowercase or not.
isLowerCase: boolean;
// The spans in this text chunk that we think are of interest and should be matched
// independently. For example, if the chunk is for "UIElement" the the spans of interest
// correspond to "U", "I" and "Element". If "UIElement" isn't found as an exact, prefix.
// or substring match, then the character spans will be used to attempt a camel case match.
characterSpans: TextSpan[];
}
function createPatternMatch(kind: PatternMatchKind, punctuationStripped: boolean, isCaseSensitive: boolean, camelCaseWeight?: number): PatternMatch {
return {
kind,
punctuationStripped,
isCaseSensitive,
camelCaseWeight
};
}
export function createPatternMatcher(pattern: string): PatternMatcher {
// We'll often see the same candidate string many times when searching (For example, when
// we see the name of a module that is used everywhere, or the name of an overload). As
// such, we cache the information we compute about the candidate for the life of this
// pattern matcher so we don't have to compute it multiple times.
const stringToWordSpans = createMap<TextSpan[]>();
pattern = pattern.trim();
const dotSeparatedSegments = pattern.split(".").map(p => createSegment(p.trim()));
const invalidPattern = dotSeparatedSegments.length === 0 || forEach(dotSeparatedSegments, segmentIsInvalid);
return {
getMatches,
getMatchesForLastSegmentOfPattern,
patternContainsDots: dotSeparatedSegments.length > 1
};
// Quick checks so we can bail out when asked to match a candidate.
function skipMatch(candidate: string) {
return invalidPattern || !candidate;
}
function getMatchesForLastSegmentOfPattern(candidate: string): PatternMatch[] {
if (skipMatch(candidate)) {
return undefined;
}
return matchSegment(candidate, lastOrUndefined(dotSeparatedSegments));
}
function getMatches(candidateContainers: string[], candidate: string): PatternMatch[] {
if (skipMatch(candidate)) {
return undefined;
}
// First, check that the last part of the dot separated pattern matches the name of the
// candidate. If not, then there's no point in proceeding and doing the more
// expensive work.
const candidateMatch = matchSegment(candidate, lastOrUndefined(dotSeparatedSegments));
if (!candidateMatch) {
return undefined;
}
candidateContainers = candidateContainers || [];
// -1 because the last part was checked against the name, and only the rest
// of the parts are checked against the container.
if (dotSeparatedSegments.length - 1 > candidateContainers.length) {
// There weren't enough container parts to match against the pattern parts.
// So this definitely doesn't match.
return undefined;
}
// So far so good. Now break up the container for the candidate and check if all
// the dotted parts match up correctly.
const totalMatch = candidateMatch;
for (let i = dotSeparatedSegments.length - 2, j = candidateContainers.length - 1;
i >= 0;
i -= 1, j -= 1) {
const segment = dotSeparatedSegments[i];
const containerName = candidateContainers[j];
const containerMatch = matchSegment(containerName, segment);
if (!containerMatch) {
// This container didn't match the pattern piece. So there's no match at all.
return undefined;
}
addRange(totalMatch, containerMatch);
}
// Success, this symbol's full name matched against the dotted name the user was asking
// about.
return totalMatch;
}
function getWordSpans(word: string): TextSpan[] {
if (!(word in stringToWordSpans)) {
stringToWordSpans[word] = breakIntoWordSpans(word);
}
return stringToWordSpans[word];
}
function matchTextChunk(candidate: string, chunk: TextChunk, punctuationStripped: boolean): PatternMatch {
const index = indexOfIgnoringCase(candidate, chunk.textLowerCase);
if (index === 0) {
if (chunk.text.length === candidate.length) {
// a) Check if the part matches the candidate entirely, in an case insensitive or
// sensitive manner. If it does, return that there was an exact match.
return createPatternMatch(PatternMatchKind.exact, punctuationStripped, /*isCaseSensitive:*/ candidate === chunk.text);
}
else {
// b) Check if the part is a prefix of the candidate, in a case insensitive or sensitive
// manner. If it does, return that there was a prefix match.
return createPatternMatch(PatternMatchKind.prefix, punctuationStripped, /*isCaseSensitive:*/ startsWith(candidate, chunk.text));
}
}
const isLowercase = chunk.isLowerCase;
if (isLowercase) {
if (index > 0) {
// c) If the part is entirely lowercase, then check if it is contained anywhere in the
// candidate in a case insensitive manner. If so, return that there was a substring
// match.
//
// Note: We only have a substring match if the lowercase part is prefix match of some
// word part. That way we don't match something like 'Class' when the user types 'a'.
// But we would match 'FooAttribute' (since 'Attribute' starts with 'a').
const wordSpans = getWordSpans(candidate);
for (const span of wordSpans) {
if (partStartsWith(candidate, span, chunk.text, /*ignoreCase:*/ true)) {
return createPatternMatch(PatternMatchKind.substring, punctuationStripped,
/*isCaseSensitive:*/ partStartsWith(candidate, span, chunk.text, /*ignoreCase:*/ false));
}
}
}
}
else {
// d) If the part was not entirely lowercase, then check if it is contained in the
// candidate in a case *sensitive* manner. If so, return that there was a substring
// match.
if (candidate.indexOf(chunk.text) > 0) {
return createPatternMatch(PatternMatchKind.substring, punctuationStripped, /*isCaseSensitive:*/ true);
}
}
if (!isLowercase) {
// e) If the part was not entirely lowercase, then attempt a camel cased match as well.
if (chunk.characterSpans.length > 0) {
const candidateParts = getWordSpans(candidate);
let camelCaseWeight = tryCamelCaseMatch(candidate, candidateParts, chunk, /*ignoreCase:*/ false);
if (camelCaseWeight !== undefined) {
return createPatternMatch(PatternMatchKind.camelCase, punctuationStripped, /*isCaseSensitive:*/ true, /*camelCaseWeight:*/ camelCaseWeight);
}
camelCaseWeight = tryCamelCaseMatch(candidate, candidateParts, chunk, /*ignoreCase:*/ true);
if (camelCaseWeight !== undefined) {
return createPatternMatch(PatternMatchKind.camelCase, punctuationStripped, /*isCaseSensitive:*/ false, /*camelCaseWeight:*/ camelCaseWeight);
}
}
}
if (isLowercase) {
// f) Is the pattern a substring of the candidate starting on one of the candidate's word boundaries?
// We could check every character boundary start of the candidate for the pattern. However, that's
// an m * n operation in the wost case. Instead, find the first instance of the pattern
// substring, and see if it starts on a capital letter. It seems unlikely that the user will try to
// filter the list based on a substring that starts on a capital letter and also with a lowercase one.
// (Pattern: fogbar, Candidate: quuxfogbarFogBar).
if (chunk.text.length < candidate.length) {
if (index > 0 && isUpperCaseLetter(candidate.charCodeAt(index))) {
return createPatternMatch(PatternMatchKind.substring, punctuationStripped, /*isCaseSensitive:*/ false);
}
}
}
return undefined;
}
function containsSpaceOrAsterisk(text: string): boolean {
for (let i = 0; i < text.length; i++) {
const ch = text.charCodeAt(i);
if (ch === CharacterCodes.space || ch === CharacterCodes.asterisk) {
return true;
}
}
return false;
}
function matchSegment(candidate: string, segment: Segment): PatternMatch[] {
// First check if the segment matches as is. This is also useful if the segment contains
// characters we would normally strip when splitting into parts that we also may want to
// match in the candidate. For example if the segment is "@int" and the candidate is
// "@int", then that will show up as an exact match here.
//
// Note: if the segment contains a space or an asterisk then we must assume that it's a
// multi-word segment.
if (!containsSpaceOrAsterisk(segment.totalTextChunk.text)) {
const match = matchTextChunk(candidate, segment.totalTextChunk, /*punctuationStripped:*/ false);
if (match) {
return [match];
}
}
// The logic for pattern matching is now as follows:
//
// 1) Break the segment passed in into words. Breaking is rather simple and a
// good way to think about it that if gives you all the individual alphanumeric words
// of the pattern.
//
// 2) For each word try to match the word against the candidate value.
//
// 3) Matching is as follows:
//
// a) Check if the word matches the candidate entirely, in an case insensitive or
// sensitive manner. If it does, return that there was an exact match.
//
// b) Check if the word is a prefix of the candidate, in a case insensitive or
// sensitive manner. If it does, return that there was a prefix match.
//
// c) If the word is entirely lowercase, then check if it is contained anywhere in the
// candidate in a case insensitive manner. If so, return that there was a substring
// match.
//
// Note: We only have a substring match if the lowercase part is prefix match of
// some word part. That way we don't match something like 'Class' when the user
// types 'a'. But we would match 'FooAttribute' (since 'Attribute' starts with
// 'a').
//
// d) If the word was not entirely lowercase, then check if it is contained in the
// candidate in a case *sensitive* manner. If so, return that there was a substring
// match.
//
// e) If the word was not entirely lowercase, then attempt a camel cased match as
// well.
//
// f) The word is all lower case. Is it a case insensitive substring of the candidate starting
// on a part boundary of the candidate?
//
// Only if all words have some sort of match is the pattern considered matched.
const subWordTextChunks = segment.subWordTextChunks;
let matches: PatternMatch[] = undefined;
for (const subWordTextChunk of subWordTextChunks) {
// Try to match the candidate with this word
const result = matchTextChunk(candidate, subWordTextChunk, /*punctuationStripped:*/ true);
if (!result) {
return undefined;
}
matches = matches || [];
matches.push(result);
}
return matches;
}
function partStartsWith(candidate: string, candidateSpan: TextSpan, pattern: string, ignoreCase: boolean, patternSpan?: TextSpan): boolean {
const patternPartStart = patternSpan ? patternSpan.start : 0;
const patternPartLength = patternSpan ? patternSpan.length : pattern.length;
if (patternPartLength > candidateSpan.length) {
// Pattern part is longer than the candidate part. There can never be a match.
return false;
}
if (ignoreCase) {
for (let i = 0; i < patternPartLength; i++) {
const ch1 = pattern.charCodeAt(patternPartStart + i);
const ch2 = candidate.charCodeAt(candidateSpan.start + i);
if (toLowerCase(ch1) !== toLowerCase(ch2)) {
return false;
}
}
}
else {
for (let i = 0; i < patternPartLength; i++) {
const ch1 = pattern.charCodeAt(patternPartStart + i);
const ch2 = candidate.charCodeAt(candidateSpan.start + i);
if (ch1 !== ch2) {
return false;
}
}
}
return true;
}
function tryCamelCaseMatch(candidate: string, candidateParts: TextSpan[], chunk: TextChunk, ignoreCase: boolean): number {
const chunkCharacterSpans = chunk.characterSpans;
// Note: we may have more pattern parts than candidate parts. This is because multiple
// pattern parts may match a candidate part. For example "SiUI" against "SimpleUI".
// We'll have 3 pattern parts Si/U/I against two candidate parts Simple/UI. However, U
// and I will both match in UI.
let currentCandidate = 0;
let currentChunkSpan = 0;
let firstMatch: number = undefined;
let contiguous: boolean = undefined;
while (true) {
// Let's consider our termination cases
if (currentChunkSpan === chunkCharacterSpans.length) {
// We did match! We shall assign a weight to this
let weight = 0;
// Was this contiguous?
if (contiguous) {
weight += 1;
}
// Did we start at the beginning of the candidate?
if (firstMatch === 0) {
weight += 2;
}
return weight;
}
else if (currentCandidate === candidateParts.length) {
// No match, since we still have more of the pattern to hit
return undefined;
}
let candidatePart = candidateParts[currentCandidate];
let gotOneMatchThisCandidate = false;
// Consider the case of matching SiUI against SimpleUIElement. The candidate parts
// will be Simple/UI/Element, and the pattern parts will be Si/U/I. We'll match 'Si'
// against 'Simple' first. Then we'll match 'U' against 'UI'. However, we want to
// still keep matching pattern parts against that candidate part.
for (; currentChunkSpan < chunkCharacterSpans.length; currentChunkSpan++) {
const chunkCharacterSpan = chunkCharacterSpans[currentChunkSpan];
if (gotOneMatchThisCandidate) {
// We've already gotten one pattern part match in this candidate. We will
// only continue trying to consumer pattern parts if the last part and this
// part are both upper case.
if (!isUpperCaseLetter(chunk.text.charCodeAt(chunkCharacterSpans[currentChunkSpan - 1].start)) ||
!isUpperCaseLetter(chunk.text.charCodeAt(chunkCharacterSpans[currentChunkSpan].start))) {
break;
}
}
if (!partStartsWith(candidate, candidatePart, chunk.text, ignoreCase, chunkCharacterSpan)) {
break;
}
gotOneMatchThisCandidate = true;
firstMatch = firstMatch === undefined ? currentCandidate : firstMatch;
// If we were contiguous, then keep that value. If we weren't, then keep that
// value. If we don't know, then set the value to 'true' as an initial match is
// obviously contiguous.
contiguous = contiguous === undefined ? true : contiguous;
candidatePart = createTextSpan(candidatePart.start + chunkCharacterSpan.length, candidatePart.length - chunkCharacterSpan.length);
}
// Check if we matched anything at all. If we didn't, then we need to unset the
// contiguous bit if we currently had it set.
// If we haven't set the bit yet, then that means we haven't matched anything so
// far, and we don't want to change that.
if (!gotOneMatchThisCandidate && contiguous !== undefined) {
contiguous = false;
}
// Move onto the next candidate.
currentCandidate++;
}
}
}
function createSegment(text: string): Segment {
return {
totalTextChunk: createTextChunk(text),
subWordTextChunks: breakPatternIntoTextChunks(text)
};
}
// A segment is considered invalid if we couldn't find any words in it.
function segmentIsInvalid(segment: Segment) {
return segment.subWordTextChunks.length === 0;
}
function isUpperCaseLetter(ch: number) {
// Fast check for the ascii range.
if (ch >= CharacterCodes.A && ch <= CharacterCodes.Z) {
return true;
}
if (ch < CharacterCodes.maxAsciiCharacter || !isUnicodeIdentifierStart(ch, ScriptTarget.Latest)) {
return false;
}
// TODO: find a way to determine this for any unicode characters in a
// non-allocating manner.
const str = String.fromCharCode(ch);
return str === str.toUpperCase();
}
function isLowerCaseLetter(ch: number) {
// Fast check for the ascii range.
if (ch >= CharacterCodes.a && ch <= CharacterCodes.z) {
return true;
}
if (ch < CharacterCodes.maxAsciiCharacter || !isUnicodeIdentifierStart(ch, ScriptTarget.Latest)) {
return false;
}
// TODO: find a way to determine this for any unicode characters in a
// non-allocating manner.
const str = String.fromCharCode(ch);
return str === str.toLowerCase();
}
// Assumes 'value' is already lowercase.
function indexOfIgnoringCase(string: string, value: string): number {
for (let i = 0, n = string.length - value.length; i <= n; i++) {
if (startsWithIgnoringCase(string, value, i)) {
return i;
}
}
return -1;
}
// Assumes 'value' is already lowercase.
function startsWithIgnoringCase(string: string, value: string, start: number): boolean {
for (let i = 0, n = value.length; i < n; i++) {
const ch1 = toLowerCase(string.charCodeAt(i + start));
const ch2 = value.charCodeAt(i);
if (ch1 !== ch2) {
return false;
}
}
return true;
}
function toLowerCase(ch: number): number {
// Fast convert for the ascii range.
if (ch >= CharacterCodes.A && ch <= CharacterCodes.Z) {
return CharacterCodes.a + (ch - CharacterCodes.A);
}
if (ch < CharacterCodes.maxAsciiCharacter) {
return ch;
}
// TODO: find a way to compute this for any unicode characters in a
// non-allocating manner.
return String.fromCharCode(ch).toLowerCase().charCodeAt(0);
}
function isDigit(ch: number) {
// TODO(cyrusn): Find a way to support this for unicode digits.
return ch >= CharacterCodes._0 && ch <= CharacterCodes._9;
}
function isWordChar(ch: number) {
return isUpperCaseLetter(ch) || isLowerCaseLetter(ch) || isDigit(ch) || ch === CharacterCodes._ || ch === CharacterCodes.$;
}
function breakPatternIntoTextChunks(pattern: string): TextChunk[] {
const result: TextChunk[] = [];
let wordStart = 0;
let wordLength = 0;
for (let i = 0; i < pattern.length; i++) {
const ch = pattern.charCodeAt(i);
if (isWordChar(ch)) {
if (wordLength === 0) {
wordStart = i;
}
wordLength++;
}
else {
if (wordLength > 0) {
result.push(createTextChunk(pattern.substr(wordStart, wordLength)));
wordLength = 0;
}
}
}
if (wordLength > 0) {
result.push(createTextChunk(pattern.substr(wordStart, wordLength)));
}
return result;
}
function createTextChunk(text: string): TextChunk {
const textLowerCase = text.toLowerCase();
return {
text,
textLowerCase,
isLowerCase: text === textLowerCase,
characterSpans: breakIntoCharacterSpans(text)
};
}
/* @internal */ export function breakIntoCharacterSpans(identifier: string): TextSpan[] {
return breakIntoSpans(identifier, /*word:*/ false);
}
/* @internal */ export function breakIntoWordSpans(identifier: string): TextSpan[] {
return breakIntoSpans(identifier, /*word:*/ true);
}
function breakIntoSpans(identifier: string, word: boolean): TextSpan[] {
const result: TextSpan[] = [];
let wordStart = 0;
for (let i = 1, n = identifier.length; i < n; i++) {
const lastIsDigit = isDigit(identifier.charCodeAt(i - 1));
const currentIsDigit = isDigit(identifier.charCodeAt(i));
const hasTransitionFromLowerToUpper = transitionFromLowerToUpper(identifier, word, i);
const hasTransitionFromUpperToLower = transitionFromUpperToLower(identifier, word, i, wordStart);
if (charIsPunctuation(identifier.charCodeAt(i - 1)) ||
charIsPunctuation(identifier.charCodeAt(i)) ||
lastIsDigit !== currentIsDigit ||
hasTransitionFromLowerToUpper ||
hasTransitionFromUpperToLower) {
if (!isAllPunctuation(identifier, wordStart, i)) {
result.push(createTextSpan(wordStart, i - wordStart));
}
wordStart = i;
}
}
if (!isAllPunctuation(identifier, wordStart, identifier.length)) {
result.push(createTextSpan(wordStart, identifier.length - wordStart));
}
return result;
}
function charIsPunctuation(ch: number) {
switch (ch) {
case CharacterCodes.exclamation:
case CharacterCodes.doubleQuote:
case CharacterCodes.hash:
case CharacterCodes.percent:
case CharacterCodes.ampersand:
case CharacterCodes.singleQuote:
case CharacterCodes.openParen:
case CharacterCodes.closeParen:
case CharacterCodes.asterisk:
case CharacterCodes.comma:
case CharacterCodes.minus:
case CharacterCodes.dot:
case CharacterCodes.slash:
case CharacterCodes.colon:
case CharacterCodes.semicolon:
case CharacterCodes.question:
case CharacterCodes.at:
case CharacterCodes.openBracket:
case CharacterCodes.backslash:
case CharacterCodes.closeBracket:
case CharacterCodes._:
case CharacterCodes.openBrace:
case CharacterCodes.closeBrace:
return true;
}
return false;
}
function isAllPunctuation(identifier: string, start: number, end: number): boolean {
for (let i = start; i < end; i++) {
const ch = identifier.charCodeAt(i);
// We don't consider _ or $ as punctuation as there may be things with that name.
if (!charIsPunctuation(ch) || ch === CharacterCodes._ || ch === CharacterCodes.$) {
return false;
}
}
return true;
}
function transitionFromUpperToLower(identifier: string, word: boolean, index: number, wordStart: number): boolean {
if (word) {
// Cases this supports:
// 1) IDisposable -> I, Disposable
// 2) UIElement -> UI, Element
// 3) HTMLDocument -> HTML, Document
//
// etc.
if (index !== wordStart &&
index + 1 < identifier.length) {
const currentIsUpper = isUpperCaseLetter(identifier.charCodeAt(index));
const nextIsLower = isLowerCaseLetter(identifier.charCodeAt(index + 1));
if (currentIsUpper && nextIsLower) {
// We have a transition from an upper to a lower letter here. But we only
// want to break if all the letters that preceded are uppercase. i.e. if we
// have "Foo" we don't want to break that into "F, oo". But if we have
// "IFoo" or "UIFoo", then we want to break that into "I, Foo" and "UI,
// Foo". i.e. the last uppercase letter belongs to the lowercase letters
// that follows. Note: this will make the following not split properly:
// "HELLOthere". However, these sorts of names do not show up in .Net
// programs.
for (let i = wordStart; i < index; i++) {
if (!isUpperCaseLetter(identifier.charCodeAt(i))) {
return false;
}
}
return true;
}
}
}
return false;
}
function transitionFromLowerToUpper(identifier: string, word: boolean, index: number): boolean {
const lastIsUpper = isUpperCaseLetter(identifier.charCodeAt(index - 1));
const currentIsUpper = isUpperCaseLetter(identifier.charCodeAt(index));
// See if the casing indicates we're starting a new word. Note: if we're breaking on
// words, then just seeing an upper case character isn't enough. Instead, it has to
// be uppercase and the previous character can't be uppercase.
//
// For example, breaking "AddMetadata" on words would make: Add Metadata
//
// on characters would be: A dd M etadata
//
// Break "AM" on words would be: AM
//
// on characters would be: A M
//
// We break the search string on characters. But we break the symbol name on words.
const transition = word
? (currentIsUpper && !lastIsUpper)
: currentIsUpper;
return transition;
}
}