///
///
///
module ts {
var nodeConstructors = new Array Node>(SyntaxKind.Count);
export function getNodeConstructor(kind: SyntaxKind): new () => Node {
return nodeConstructors[kind] || (nodeConstructors[kind] = objectAllocator.getNodeConstructor(kind));
}
function createRootNode(kind: SyntaxKind, pos: number, end: number, flags: NodeFlags): Node {
var node = new (getNodeConstructor(kind))();
node.pos = pos;
node.end = end;
node.flags = flags;
return node;
}
interface ReferenceComments {
referencedFiles: FileReference[];
amdDependencies: string[];
amdModuleName: string;
}
export function getSourceFileOfNode(node: Node): SourceFile {
while (node && node.kind !== SyntaxKind.SourceFile) node = node.parent;
return node;
}
// This is a useful function for debugging purposes.
export function nodePosToString(node: Node): string {
var file = getSourceFileOfNode(node);
var loc = file.getLineAndCharacterFromPosition(node.pos);
return file.filename + "(" + loc.line + "," + loc.character + ")";
}
export function getStartPosOfNode(node: Node): number {
return node.pos;
}
export function getTokenPosOfNode(node: Node, sourceFile?: SourceFile): number {
// With nodes that have no width (i.e. 'Missing' nodes), we actually *don't*
// want to skip trivia because this will launch us forward to the next token.
if (node.pos === node.end) {
return node.pos;
}
return skipTrivia((sourceFile || getSourceFileOfNode(node)).text, node.pos);
}
export function getSourceTextOfNodeFromSourceFile(sourceFile: SourceFile, node: Node): string {
var text = sourceFile.text;
return text.substring(skipTrivia(text, node.pos), node.end);
}
export function getTextOfNodeFromSourceText(sourceText: string, node: Node): string {
return sourceText.substring(skipTrivia(sourceText, node.pos), node.end);
}
export function getTextOfNode(node: Node): string {
return getSourceTextOfNodeFromSourceFile(getSourceFileOfNode(node), node);
}
// Add an extra underscore to identifiers that start with two underscores to avoid issues with magic names like '__proto__'
export function escapeIdentifier(identifier: string): string {
return identifier.length >= 2 && identifier.charCodeAt(0) === CharacterCodes._ && identifier.charCodeAt(1) === CharacterCodes._ ? "_" + identifier : identifier;
}
// Remove extra underscore from escaped identifier
export function unescapeIdentifier(identifier: string): string {
return identifier.length >= 3 && identifier.charCodeAt(0) === CharacterCodes._ && identifier.charCodeAt(1) === CharacterCodes._ && identifier.charCodeAt(2) === CharacterCodes._ ? identifier.substr(1) : identifier;
}
// TODO(jfreeman): Implement declarationNameToString for computed properties
// Return display name of an identifier
export function declarationNameToString(name: DeclarationName) {
return name.kind === SyntaxKind.Missing ? "(Missing)" : getTextOfNode(name);
}
export function createDiagnosticForNode(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): Diagnostic {
node = getErrorSpanForNode(node);
var file = getSourceFileOfNode(node);
var start = node.kind === SyntaxKind.Missing ? node.pos : skipTrivia(file.text, node.pos);
var length = node.end - start;
return createFileDiagnostic(file, start, length, message, arg0, arg1, arg2);
}
export function createDiagnosticForNodeFromMessageChain(node: Node, messageChain: DiagnosticMessageChain, newLine: string): Diagnostic {
node = getErrorSpanForNode(node);
var file = getSourceFileOfNode(node);
var start = skipTrivia(file.text, node.pos);
var length = node.end - start;
return flattenDiagnosticChain(file, start, length, messageChain, newLine);
}
export function getErrorSpanForNode(node: Node): Node {
var errorSpan: Node;
switch (node.kind) {
// This list is a work in progress. Add missing node kinds to improve their error
// spans.
case SyntaxKind.VariableDeclaration:
case SyntaxKind.ClassDeclaration:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.EnumMember:
errorSpan = (node).name;
break;
}
// We now have the ideal error span, but it may be a node that is optional and absent
// (e.g. the name of a function expression), in which case errorSpan will be undefined.
// Alternatively, it might be required and missing (e.g. the name of a module), in which
// case its pos will equal its end (length 0). In either of these cases, we should fall
// back to the original node that the error was issued on.
return errorSpan && errorSpan.pos < errorSpan.end ? errorSpan : node;
}
export function isExternalModule(file: SourceFile): boolean {
return file.externalModuleIndicator !== undefined;
}
export function isDeclarationFile(file: SourceFile): boolean {
return (file.flags & NodeFlags.DeclarationFile) !== 0;
}
export function isConstEnumDeclaration(node: Declaration): boolean {
return node.kind === SyntaxKind.EnumDeclaration && isConst(node);
}
export function isConst(node: Declaration): boolean {
return !!(node.flags & NodeFlags.Const);
}
export function isLet(node: Declaration): boolean {
return !!(node.flags & NodeFlags.Let);
}
export function isPrologueDirective(node: Node): boolean {
return node.kind === SyntaxKind.ExpressionStatement && (node).expression.kind === SyntaxKind.StringLiteral;
}
function isEvalOrArgumentsIdentifier(node: Node): boolean {
return node.kind === SyntaxKind.Identifier &&
(node).text &&
((node).text === "eval" || (node).text === "arguments");
}
/// Should be called only on prologue directives (isPrologueDirective(node) should be true)
function isUseStrictPrologueDirective(node: Node): boolean {
Debug.assert(isPrologueDirective(node));
return ((node).expression).text === "use strict";
}
export function getLeadingCommentRangesOfNode(node: Node, sourceFileOfNode?: SourceFile) {
sourceFileOfNode = sourceFileOfNode || getSourceFileOfNode(node);
// If parameter/type parameter, the prev token trailing comments are part of this node too
if (node.kind === SyntaxKind.Parameter || node.kind === SyntaxKind.TypeParameter) {
// e.g. (/** blah */ a, /** blah */ b);
return concatenate(getTrailingCommentRanges(sourceFileOfNode.text, node.pos),
// e.g.: (
// /** blah */ a,
// /** blah */ b);
getLeadingCommentRanges(sourceFileOfNode.text, node.pos));
}
else {
return getLeadingCommentRanges(sourceFileOfNode.text, node.pos);
}
}
export function getJsDocComments(node: Declaration, sourceFileOfNode: SourceFile) {
return filter(getLeadingCommentRangesOfNode(node, sourceFileOfNode), comment => isJsDocComment(comment));
function isJsDocComment(comment: CommentRange) {
// True if the comment starts with '/**' but not if it is '/**/'
return sourceFileOfNode.text.charCodeAt(comment.pos + 1) === CharacterCodes.asterisk &&
sourceFileOfNode.text.charCodeAt(comment.pos + 2) === CharacterCodes.asterisk &&
sourceFileOfNode.text.charCodeAt(comment.pos + 3) !== CharacterCodes.slash;
}
}
export var fullTripleSlashReferencePathRegEx = /^(\/\/\/\s*/
// Invokes a callback for each child of the given node. The 'cbNode' callback is invoked for all child nodes
// stored in properties. If a 'cbNodes' callback is specified, it is invoked for embedded arrays; otherwise,
// embedded arrays are flattened and the 'cbNode' callback is invoked for each element. If a callback returns
// a truthy value, iteration stops and that value is returned. Otherwise, undefined is returned.
export function forEachChild(node: Node, cbNode: (node: Node) => T, cbNodes?: (nodes: Node[]) => T): T {
function child(node: Node): T {
if (node) return cbNode(node);
}
function children(nodes: Node[]) {
if (nodes) {
if (cbNodes) return cbNodes(nodes);
var result: T;
for (var i = 0, len = nodes.length; i < len; i++) {
if (result = cbNode(nodes[i])) break;
}
return result;
}
}
if (!node) return;
switch (node.kind) {
case SyntaxKind.QualifiedName:
return child((node).left) ||
child((node).right);
case SyntaxKind.TypeParameter:
return child((node).name) ||
child((node).constraint);
case SyntaxKind.Parameter:
return child((node).name) ||
child((node).type) ||
child((node).initializer);
case SyntaxKind.Property:
case SyntaxKind.PropertyAssignment:
case SyntaxKind.ShorthandPropertyAssignment:
return child((node).name) ||
child((node).type) ||
child((node).initializer);
case SyntaxKind.FunctionType:
case SyntaxKind.ConstructorType:
case SyntaxKind.CallSignature:
case SyntaxKind.ConstructSignature:
case SyntaxKind.IndexSignature:
return children((node).typeParameters) ||
children((node).parameters) ||
child((node).type);
case SyntaxKind.Method:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.FunctionExpression:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.ArrowFunction:
return child((node).name) ||
children((node).typeParameters) ||
children((node).parameters) ||
child((node).type) ||
child((node).body);
case SyntaxKind.TypeReference:
return child((node).typeName) ||
children((node).typeArguments);
case SyntaxKind.TypeQuery:
return child((node).exprName);
case SyntaxKind.TypeLiteral:
return children((node).members);
case SyntaxKind.ArrayType:
return child((node).elementType);
case SyntaxKind.TupleType:
return children((node).elementTypes);
case SyntaxKind.UnionType:
return children((node).types);
case SyntaxKind.ParenType:
return child((node).type);
case SyntaxKind.ArrayLiteral:
return children((node).elements);
case SyntaxKind.ObjectLiteral:
return children((node).properties);
case SyntaxKind.PropertyAccess:
return child((node).left) ||
child((node).right);
case SyntaxKind.IndexedAccess:
return child((node).object) ||
child((node).index);
case SyntaxKind.CallExpression:
case SyntaxKind.NewExpression:
return child((node).func) ||
children((node).typeArguments) ||
children((node).arguments);
case SyntaxKind.TaggedTemplateExpression:
return child((node).tag) ||
child((node).template);
case SyntaxKind.TypeAssertion:
return child((node).type) ||
child((node).operand);
case SyntaxKind.ParenExpression:
return child((node).expression);
case SyntaxKind.PrefixOperator:
case SyntaxKind.PostfixOperator:
return child((node).operand);
case SyntaxKind.BinaryExpression:
return child((node).left) ||
child((node).right);
case SyntaxKind.ConditionalExpression:
return child((node).condition) ||
child((node).whenTrue) ||
child((node).whenFalse);
case SyntaxKind.Block:
case SyntaxKind.TryBlock:
case SyntaxKind.FinallyBlock:
case SyntaxKind.FunctionBlock:
case SyntaxKind.ModuleBlock:
case SyntaxKind.SourceFile:
return children((node).statements);
case SyntaxKind.VariableStatement:
return children((node).declarations);
case SyntaxKind.ExpressionStatement:
return child((node).expression);
case SyntaxKind.IfStatement:
return child((node).expression) ||
child((node).thenStatement) ||
child((node).elseStatement);
case SyntaxKind.DoStatement:
return child((node).statement) ||
child((node).expression);
case SyntaxKind.WhileStatement:
return child((node).expression) ||
child((node).statement);
case SyntaxKind.ForStatement:
return children((node).declarations) ||
child((node).initializer) ||
child((node).condition) ||
child((node).iterator) ||
child((node).statement);
case SyntaxKind.ForInStatement:
return children((node).declarations) ||
child((node).variable) ||
child((node).expression) ||
child((node).statement);
case SyntaxKind.ContinueStatement:
case SyntaxKind.BreakStatement:
return child((node).label);
case SyntaxKind.ReturnStatement:
return child((node).expression);
case SyntaxKind.WithStatement:
return child((node).expression) ||
child((node).statement);
case SyntaxKind.SwitchStatement:
return child((node).expression) ||
children((node).clauses);
case SyntaxKind.CaseClause:
case SyntaxKind.DefaultClause:
return child((node).expression) ||
children((node).statements);
case SyntaxKind.LabeledStatement:
return child((node).label) ||
child((node).statement);
case SyntaxKind.ThrowStatement:
return child((node).expression);
case SyntaxKind.TryStatement:
return child((node).tryBlock) ||
child((node).catchBlock) ||
child((node).finallyBlock);
case SyntaxKind.CatchBlock:
return child((node).variable) ||
children((node).statements);
case SyntaxKind.VariableDeclaration:
return child((node).name) ||
child((node).type) ||
child((node).initializer);
case SyntaxKind.ClassDeclaration:
return child((node).name) ||
children((node).typeParameters) ||
child((node).baseType) ||
children((node).implementedTypes) ||
children((node).members);
case SyntaxKind.InterfaceDeclaration:
return child((node).name) ||
children((node).typeParameters) ||
children((node).baseTypes) ||
children((node).members);
case SyntaxKind.TypeAliasDeclaration:
return child((node).name) ||
child((node).type);
case SyntaxKind.EnumDeclaration:
return child((node).name) ||
children((node).members);
case SyntaxKind.EnumMember:
return child((node).name) ||
child((node).initializer);
case SyntaxKind.ModuleDeclaration:
return child((node).name) ||
child((node).body);
case SyntaxKind.ImportDeclaration:
return child((node).name) ||
child((node).entityName) ||
child((node).externalModuleName);
case SyntaxKind.ExportAssignment:
return child((node).exportName);
case SyntaxKind.TemplateExpression:
return child((node).head) || children((node).templateSpans);
case SyntaxKind.TemplateSpan:
return child((node).expression) || child((node).literal);
}
}
// Warning: This has the same semantics as the forEach family of functions,
// in that traversal terminates in the event that 'visitor' supplies a truthy value.
export function forEachReturnStatement(body: Block, visitor: (stmt: ReturnStatement) => T): T {
return traverse(body);
function traverse(node: Node): T {
switch (node.kind) {
case SyntaxKind.ReturnStatement:
return visitor(node);
case SyntaxKind.Block:
case SyntaxKind.FunctionBlock:
case SyntaxKind.IfStatement:
case SyntaxKind.DoStatement:
case SyntaxKind.WhileStatement:
case SyntaxKind.ForStatement:
case SyntaxKind.ForInStatement:
case SyntaxKind.WithStatement:
case SyntaxKind.SwitchStatement:
case SyntaxKind.CaseClause:
case SyntaxKind.DefaultClause:
case SyntaxKind.LabeledStatement:
case SyntaxKind.TryStatement:
case SyntaxKind.TryBlock:
case SyntaxKind.CatchBlock:
case SyntaxKind.FinallyBlock:
return forEachChild(node, traverse);
}
}
}
export function isAnyFunction(node: Node): boolean {
if (node) {
switch (node.kind) {
case SyntaxKind.FunctionExpression:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.ArrowFunction:
case SyntaxKind.Method:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.Constructor:
return true;
}
}
return false;
}
export function getContainingFunction(node: Node): SignatureDeclaration {
while (true) {
node = node.parent;
if (!node || isAnyFunction(node)) {
return node;
}
}
}
export function getThisContainer(node: Node, includeArrowFunctions: boolean): Node {
while (true) {
node = node.parent;
if (!node) {
return undefined;
}
switch (node.kind) {
case SyntaxKind.ArrowFunction:
if (!includeArrowFunctions) {
continue;
}
// Fall through
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.FunctionExpression:
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.Property:
case SyntaxKind.Method:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.SourceFile:
return node;
}
}
}
export function getSuperContainer(node: Node): Node {
while (true) {
node = node.parent;
if (!node) {
return undefined;
}
switch (node.kind) {
case SyntaxKind.Property:
case SyntaxKind.Method:
case SyntaxKind.Constructor:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
return node;
}
}
}
export function isExpression(node: Node): boolean {
switch (node.kind) {
case SyntaxKind.ThisKeyword:
case SyntaxKind.SuperKeyword:
case SyntaxKind.NullKeyword:
case SyntaxKind.TrueKeyword:
case SyntaxKind.FalseKeyword:
case SyntaxKind.RegularExpressionLiteral:
case SyntaxKind.ArrayLiteral:
case SyntaxKind.ObjectLiteral:
case SyntaxKind.PropertyAccess:
case SyntaxKind.IndexedAccess:
case SyntaxKind.CallExpression:
case SyntaxKind.NewExpression:
case SyntaxKind.TaggedTemplateExpression:
case SyntaxKind.TypeAssertion:
case SyntaxKind.ParenExpression:
case SyntaxKind.FunctionExpression:
case SyntaxKind.ArrowFunction:
case SyntaxKind.PrefixOperator:
case SyntaxKind.PostfixOperator:
case SyntaxKind.BinaryExpression:
case SyntaxKind.ConditionalExpression:
case SyntaxKind.TemplateExpression:
case SyntaxKind.NoSubstitutionTemplateLiteral:
case SyntaxKind.OmittedExpression:
return true;
case SyntaxKind.QualifiedName:
while (node.parent.kind === SyntaxKind.QualifiedName) node = node.parent;
return node.parent.kind === SyntaxKind.TypeQuery;
case SyntaxKind.Identifier:
if (node.parent.kind === SyntaxKind.TypeQuery) {
return true;
}
// fall through
case SyntaxKind.NumericLiteral:
case SyntaxKind.StringLiteral:
var parent = node.parent;
switch (parent.kind) {
case SyntaxKind.VariableDeclaration:
case SyntaxKind.Parameter:
case SyntaxKind.Property:
case SyntaxKind.EnumMember:
case SyntaxKind.PropertyAssignment:
return (parent).initializer === node;
case SyntaxKind.ExpressionStatement:
case SyntaxKind.IfStatement:
case SyntaxKind.DoStatement:
case SyntaxKind.WhileStatement:
case SyntaxKind.ReturnStatement:
case SyntaxKind.WithStatement:
case SyntaxKind.SwitchStatement:
case SyntaxKind.CaseClause:
case SyntaxKind.ThrowStatement:
case SyntaxKind.SwitchStatement:
return (parent).expression === node;
case SyntaxKind.ForStatement:
return (parent).initializer === node ||
(parent).condition === node ||
(parent).iterator === node;
case SyntaxKind.ForInStatement:
return (parent).variable === node ||
(parent).expression === node;
case SyntaxKind.TypeAssertion:
return node === (parent).operand;
case SyntaxKind.TemplateSpan:
return node === (parent).expression;
default:
if (isExpression(parent)) {
return true;
}
}
}
return false;
}
export function hasRestParameters(s: SignatureDeclaration): boolean {
return s.parameters.length > 0 && (s.parameters[s.parameters.length - 1].flags & NodeFlags.Rest) !== 0;
}
export function isLiteralKind(kind: SyntaxKind): boolean {
return SyntaxKind.FirstLiteralToken <= kind && kind <= SyntaxKind.LastLiteralToken;
}
export function isTextualLiteralKind(kind: SyntaxKind): boolean {
return kind === SyntaxKind.StringLiteral || kind === SyntaxKind.NoSubstitutionTemplateLiteral;
}
export function isTemplateLiteralKind(kind: SyntaxKind): boolean {
return SyntaxKind.FirstTemplateToken <= kind && kind <= SyntaxKind.LastTemplateToken;
}
export function isInAmbientContext(node: Node): boolean {
while (node) {
if (node.flags & (NodeFlags.Ambient | NodeFlags.DeclarationFile)) return true;
node = node.parent;
}
return false;
}
export function isDeclaration(node: Node): boolean {
switch (node.kind) {
case SyntaxKind.TypeParameter:
case SyntaxKind.Parameter:
case SyntaxKind.VariableDeclaration:
case SyntaxKind.Property:
case SyntaxKind.PropertyAssignment:
case SyntaxKind.ShorthandPropertyAssignment:
case SyntaxKind.EnumMember:
case SyntaxKind.Method:
case SyntaxKind.FunctionDeclaration:
case SyntaxKind.GetAccessor:
case SyntaxKind.SetAccessor:
case SyntaxKind.ClassDeclaration:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.TypeAliasDeclaration:
case SyntaxKind.EnumDeclaration:
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.ImportDeclaration:
return true;
}
return false;
}
export function isStatement(n: Node): boolean {
switch(n.kind) {
case SyntaxKind.BreakStatement:
case SyntaxKind.ContinueStatement:
case SyntaxKind.DebuggerStatement:
case SyntaxKind.DoStatement:
case SyntaxKind.ExpressionStatement:
case SyntaxKind.EmptyStatement:
case SyntaxKind.ForInStatement:
case SyntaxKind.ForStatement:
case SyntaxKind.IfStatement:
case SyntaxKind.LabeledStatement:
case SyntaxKind.ReturnStatement:
case SyntaxKind.SwitchStatement:
case SyntaxKind.ThrowKeyword:
case SyntaxKind.TryStatement:
case SyntaxKind.VariableStatement:
case SyntaxKind.WhileStatement:
case SyntaxKind.WithStatement:
case SyntaxKind.ExportAssignment:
return true;
default:
return false;
}
}
// True if the given identifier, string literal, or number literal is the name of a declaration node
export function isDeclarationOrFunctionExpressionOrCatchVariableName(name: Node): boolean {
if (name.kind !== SyntaxKind.Identifier && name.kind !== SyntaxKind.StringLiteral && name.kind !== SyntaxKind.NumericLiteral) {
return false;
}
var parent = name.parent;
if (isDeclaration(parent) || parent.kind === SyntaxKind.FunctionExpression) {
return (parent).name === name;
}
if (parent.kind === SyntaxKind.CatchBlock) {
return (parent).variable === name;
}
return false;
}
export function tryResolveScriptReference(program: Program, sourceFile: SourceFile, reference: FileReference) {
if (!program.getCompilerOptions().noResolve) {
var referenceFileName = isRootedDiskPath(reference.filename) ? reference.filename : combinePaths(getDirectoryPath(sourceFile.filename), reference.filename);
referenceFileName = getNormalizedAbsolutePath(referenceFileName, program.getCompilerHost().getCurrentDirectory());
return program.getSourceFile(referenceFileName);
}
}
export function getAncestor(node: Node, kind: SyntaxKind): Node {
switch (kind) {
// special-cases that can be come first
case SyntaxKind.ClassDeclaration:
while (node) {
switch (node.kind) {
case SyntaxKind.ClassDeclaration:
return node;
case SyntaxKind.EnumDeclaration:
case SyntaxKind.InterfaceDeclaration:
case SyntaxKind.TypeAliasDeclaration:
case SyntaxKind.ModuleDeclaration:
case SyntaxKind.ImportDeclaration:
// early exit cases - declarations cannot be nested in classes
return undefined;
default:
node = node.parent;
continue;
}
}
break;
default:
while (node) {
if (node.kind === kind) {
return node;
}
node = node.parent;
}
break;
}
return undefined;
}
const enum ParsingContext {
SourceElements, // Elements in source file
ModuleElements, // Elements in module declaration
BlockStatements, // Statements in block
SwitchClauses, // Clauses in switch statement
SwitchClauseStatements, // Statements in switch clause
TypeMembers, // Members in interface or type literal
ClassMembers, // Members in class declaration
EnumMembers, // Members in enum declaration
BaseTypeReferences, // Type references in extends or implements clause
VariableDeclarations, // Variable declarations in variable statement
ArgumentExpressions, // Expressions in argument list
ObjectLiteralMembers, // Members in object literal
ArrayLiteralMembers, // Members in array literal
Parameters, // Parameters in parameter list
TypeParameters, // Type parameters in type parameter list
TypeArguments, // Type arguments in type argument list
TupleElementTypes, // Element types in tuple element type list
Count // Number of parsing contexts
}
const enum Tristate {
False,
True,
Unknown
}
function parsingContextErrors(context: ParsingContext): DiagnosticMessage {
switch (context) {
case ParsingContext.SourceElements: return Diagnostics.Declaration_or_statement_expected;
case ParsingContext.ModuleElements: return Diagnostics.Declaration_or_statement_expected;
case ParsingContext.BlockStatements: return Diagnostics.Statement_expected;
case ParsingContext.SwitchClauses: return Diagnostics.case_or_default_expected;
case ParsingContext.SwitchClauseStatements: return Diagnostics.Statement_expected;
case ParsingContext.TypeMembers: return Diagnostics.Property_or_signature_expected;
case ParsingContext.ClassMembers: return Diagnostics.Unexpected_token_A_constructor_method_accessor_or_property_was_expected;
case ParsingContext.EnumMembers: return Diagnostics.Enum_member_expected;
case ParsingContext.BaseTypeReferences: return Diagnostics.Type_reference_expected;
case ParsingContext.VariableDeclarations: return Diagnostics.Variable_declaration_expected;
case ParsingContext.ArgumentExpressions: return Diagnostics.Argument_expression_expected;
case ParsingContext.ObjectLiteralMembers: return Diagnostics.Property_assignment_expected;
case ParsingContext.ArrayLiteralMembers: return Diagnostics.Expression_or_comma_expected;
case ParsingContext.Parameters: return Diagnostics.Parameter_declaration_expected;
case ParsingContext.TypeParameters: return Diagnostics.Type_parameter_declaration_expected;
case ParsingContext.TypeArguments: return Diagnostics.Type_argument_expected;
case ParsingContext.TupleElementTypes: return Diagnostics.Type_expected;
}
};
const enum LookAheadMode {
NotLookingAhead,
NoErrorYet,
Error
}
export interface ReferencePathMatchResult {
fileReference?: FileReference
diagnostic?: DiagnosticMessage
isNoDefaultLib?: boolean
}
export function getFileReferenceFromReferencePath(comment: string, commentRange: CommentRange): ReferencePathMatchResult {
var simpleReferenceRegEx = /^\/\/\/\s*/gim;
if (simpleReferenceRegEx.exec(comment)) {
if (isNoDefaultLibRegEx.exec(comment)) {
return {
isNoDefaultLib: true
}
}
else {
var matchResult = fullTripleSlashReferencePathRegEx.exec(comment);
if (matchResult) {
var start = commentRange.pos;
var end = commentRange.end;
return {
fileReference: {
pos: start,
end: end,
filename: matchResult[3]
},
isNoDefaultLib: false
};
}
else {
return {
diagnostic: Diagnostics.Invalid_reference_directive_syntax,
isNoDefaultLib: false
};
}
}
}
return undefined;
}
export function isKeyword(token: SyntaxKind): boolean {
return SyntaxKind.FirstKeyword <= token && token <= SyntaxKind.LastKeyword;
}
export function isTrivia(token: SyntaxKind) {
return SyntaxKind.FirstTriviaToken <= token && token <= SyntaxKind.LastTriviaToken;
}
export function isUnterminatedTemplateEnd(node: LiteralExpression) {
Debug.assert(node.kind === SyntaxKind.NoSubstitutionTemplateLiteral || node.kind === SyntaxKind.TemplateTail);
var sourceText = getSourceFileOfNode(node).text;
// If we're not at the EOF, we know we must be terminated.
if (node.end !== sourceText.length) {
return false;
}
// If we didn't end in a backtick, we must still be in the middle of a template.
// If we did, make sure that it's not the *initial* backtick.
return sourceText.charCodeAt(node.end - 1) !== CharacterCodes.backtick || node.text.length === 0;
}
export function isModifier(token: SyntaxKind): boolean {
switch (token) {
case SyntaxKind.PublicKeyword:
case SyntaxKind.PrivateKeyword:
case SyntaxKind.ProtectedKeyword:
case SyntaxKind.StaticKeyword:
case SyntaxKind.ExportKeyword:
case SyntaxKind.DeclareKeyword:
return true;
}
return false;
}
function modifierToFlag(token: SyntaxKind): NodeFlags {
switch (token) {
case SyntaxKind.StaticKeyword: return NodeFlags.Static;
case SyntaxKind.PublicKeyword: return NodeFlags.Public;
case SyntaxKind.ProtectedKeyword: return NodeFlags.Protected;
case SyntaxKind.PrivateKeyword: return NodeFlags.Private;
case SyntaxKind.ExportKeyword: return NodeFlags.Export;
case SyntaxKind.DeclareKeyword: return NodeFlags.Ambient;
}
return 0;
}
export function createSourceFile(filename: string, sourceText: string, languageVersion: ScriptTarget, version: string, isOpen: boolean = false): SourceFile {
var file: SourceFile;
var scanner: Scanner;
var token: SyntaxKind;
var parsingContext: ParsingContext;
var commentRanges: TextRange[];
var identifiers: Map = {};
var identifierCount = 0;
var nodeCount = 0;
var lineStarts: number[];
var lookAheadMode = LookAheadMode.NotLookingAhead;
// Flags that dictate what parsing context we're in. For example:
// Whether or not we are in strict parsing mode. All that changes in strict parsing mode is
// that some tokens that would be considered identifiers may be considered keywords. When
// rewinding, we need to store and restore this as the mode may have changed.
//
// When adding more parser context flags, consider which is the more common case that the
// flag will be in. This should be hte 'false' state for that flag. The reason for this is
// that we don't store data in our nodes unless the value is in the *non-default* state. So,
// for example, more often than code 'allows-in' (or doesn't 'disallow-in'). We opt for
// 'disallow-in' set to 'false'. Otherwise, if we had 'allowsIn' set to 'true', then almost
// all nodes would need extra state on them to store this info.
//
// Note: 'allowIn' and 'allowYield' track 1:1 with the [in] and [yield] concepts in the ES6
// grammar specification.
//
// An important thing about these context concepts. By default they are effectively inherited
// while parsing through every grammar production. i.e. if you don't change them, then when
// you parse a sub-production, it will have the same context values as hte parent production.
// This is great most of the time. After all, consider all the 'expression' grammar productions
// and how nearly all of them pass along the 'in' and 'yield' context values:
//
// EqualityExpression[In, Yield] :
// RelationalExpression[?In, ?Yield]
// EqualityExpression[?In, ?Yield] == RelationalExpression[?In, ?Yield]
// EqualityExpression[?In, ?Yield] != RelationalExpression[?In, ?Yield]
// EqualityExpression[?In, ?Yield] === RelationalExpression[?In, ?Yield]
// EqualityExpression[?In, ?Yield] !== RelationalExpression[?In, ?Yield]
//
// Where you have to be careful is then understanding what the points are in the grammar
// where the values are *not* passed along. For example:
//
// SingleNameBinding[Yield,GeneratorParameter]
// [+GeneratorParameter]BindingIdentifier[Yield] Initializer[In]opt
// [~GeneratorParameter]BindingIdentifier[?Yield]Initializer[In, ?Yield]opt
//
// Here this is saying that if the GeneratorParameter context flag is set, that we should
// explicitly set the 'yield' context flag to false before calling into the BindingIdentifier
// and we should explicitly unset the 'yield' context flag before calling into the Initializer.
// production. Conversely, if the GeneratorParameter context flag is not set, then we
// should leave the 'yield' context flag alone.
//
// Getting this all correct is tricky and requires careful reading of the grammar to
// understand when these values should be changed versus when they should be inherited.
var strictModeContext = false;
var disallowInContext = false;
function allowInAnd(func: () => T): T {
if (disallowInContext) {
setDisallowInContext(false);
var result = func();
setDisallowInContext(true);
return result;
}
// no need to do anything special if 'in' is already allowed.
return func();
}
function disallowInAnd(func: () => T): T {
if (disallowInContext) {
// no need to do anything special if 'in' is already disallowed.
return func();
}
setDisallowInContext(true);
var result = func();
setDisallowInContext(false);
return result;
}
function setDisallowInContext(val: boolean) {
disallowInContext = val;
}
function getLineStarts(): number[] {
return lineStarts || (lineStarts = computeLineStarts(sourceText));
}
function getLineAndCharacterFromSourcePosition(position: number) {
return getLineAndCharacterOfPosition(getLineStarts(), position);
}
function getPositionFromSourceLineAndCharacter(line: number, character: number): number {
return getPositionFromLineAndCharacter(getLineStarts(), line, character);
}
function error(message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): void {
var start = scanner.getTokenPos();
var length = scanner.getTextPos() - start;
errorAtPos(start, length, message, arg0, arg1, arg2);
}
function errorAtPos(start: number, length: number, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): void {
var lastErrorPos = file.parseDiagnostics.length
? file.parseDiagnostics[file.parseDiagnostics.length - 1].start
: -1;
if (start !== lastErrorPos) {
var diagnostic = createFileDiagnostic(file, start, length, message, arg0, arg1, arg2);
diagnostic.isParseError = true;
file.parseDiagnostics.push(diagnostic);
}
if (lookAheadMode === LookAheadMode.NoErrorYet) {
lookAheadMode = LookAheadMode.Error;
}
}
function scanError(message: DiagnosticMessage) {
var pos = scanner.getTextPos();
errorAtPos(pos, 0, message);
}
function onComment(pos: number, end: number) {
if (commentRanges) commentRanges.push({ pos: pos, end: end });
}
function getNodePos(): number {
return scanner.getStartPos();
}
function getNodeEnd(): number {
return scanner.getStartPos();
}
function nextToken(): SyntaxKind {
return token = scanner.scan();
}
function getTokenPos(pos: number): number {
return skipTrivia(sourceText, pos);
}
function reScanGreaterToken(): SyntaxKind {
return token = scanner.reScanGreaterToken();
}
function reScanSlashToken(): SyntaxKind {
return token = scanner.reScanSlashToken();
}
function reScanTemplateToken(): SyntaxKind {
return token = scanner.reScanTemplateToken();
}
function lookAheadHelper(callback: () => T, alwaysResetState: boolean): T {
// Keep track of the state we'll need to rollback to if lookahead fails (or if the
// caller asked us to always reset our state).
var saveToken = token;
var saveSyntacticErrorsLength = file.parseDiagnostics.length;
// Keep track of the current look ahead mode (this matters if we have nested
// speculative parsing).
var saveLookAheadMode = lookAheadMode;
// Mark that we're in speculative parsing and then try to parse out whatever code
// the callback wants.
lookAheadMode = LookAheadMode.NoErrorYet;
var result = callback();
// If we switched from 1 to -1 then a parse error occurred during the callback.
// If that's the case, then we want to act as if we never got any result at all.
Debug.assert(lookAheadMode === LookAheadMode.Error || lookAheadMode === LookAheadMode.NoErrorYet);
if (lookAheadMode === LookAheadMode.Error) {
result = undefined;
}
// Now restore as appropriate.
lookAheadMode = saveLookAheadMode;
if (!result || alwaysResetState) {
token = saveToken;
file.parseDiagnostics.length = saveSyntacticErrorsLength;
}
return result;
}
function lookAhead(callback: () => T): T {
var result: T;
scanner.tryScan(() => {
result = lookAheadHelper(callback, /*alwaysResetState:*/ true);
// Returning false here indicates to the scanner that it should always jump
// back to where it started. This makes sense as 'lookahead' acts as if
// neither the parser nor scanner was affected by the operation.
//
// Note: the rewinding of the parser state is already handled in lookAheadHelper
// (because we passed 'true' for alwaysResetState).
return false;
});
return result;
}
function tryParse(callback: () => T): T {
return scanner.tryScan(() => lookAheadHelper(callback, /*alwaysResetState:*/ false));
}
function isIdentifier(): boolean {
return token === SyntaxKind.Identifier || (strictModeContext ? token > SyntaxKind.LastFutureReservedWord : token > SyntaxKind.LastReservedWord);
}
function parseExpected(t: SyntaxKind): boolean {
if (token === t) {
nextToken();
return true;
}
error(Diagnostics._0_expected, tokenToString(t));
return false;
}
function parseOptional(t: SyntaxKind): boolean {
if (token === t) {
nextToken();
return true;
}
return false;
}
function canParseSemicolon() {
// If there's a real semicolon, then we can always parse it out.
if (token === SyntaxKind.SemicolonToken) {
return true;
}
// We can parse out an optional semicolon in ASI cases in the following cases.
return token === SyntaxKind.CloseBraceToken || token === SyntaxKind.EndOfFileToken || scanner.hasPrecedingLineBreak();
}
function parseSemicolon(): void {
if (canParseSemicolon()) {
if (token === SyntaxKind.SemicolonToken) {
// consume the semicolon if it was explicitly provided.
nextToken();
}
}
else {
error(Diagnostics._0_expected, ";");
}
}
function createNode(kind: SyntaxKind, pos?: number): Node {
nodeCount++;
var node = new (nodeConstructors[kind] || (nodeConstructors[kind] = objectAllocator.getNodeConstructor(kind)))();
if (!(pos >= 0)) {
pos = scanner.getStartPos();
}
node.pos = pos;
node.end = pos;
return node;
}
function finishNode(node: T): T {
node.end = scanner.getStartPos();
if (strictModeContext) {
node.flags |= NodeFlags.ParsedInStrictModeContext;
}
if (disallowInContext) {
node.flags |= NodeFlags.ParsedInDisallowInContext
}
return node;
}
function createMissingNode(pos?: number): Node {
return createNode(SyntaxKind.Missing, pos);
}
function internIdentifier(text: string): string {
text = escapeIdentifier(text);
return hasProperty(identifiers, text) ? identifiers[text] : (identifiers[text] = text);
}
// An identifier that starts with two underscores has an extra underscore character prepended to it to avoid issues
// with magic property names like '__proto__'. The 'identifiers' object is used to share a single string instance for
// each identifier in order to reduce memory consumption.
function createIdentifier(isIdentifier: boolean): Identifier {
identifierCount++;
if (isIdentifier) {
var node = createNode(SyntaxKind.Identifier);
node.text = internIdentifier(scanner.getTokenValue());
nextToken();
return finishNode(node);
}
error(Diagnostics.Identifier_expected);
var node = createMissingNode();
node.text = "";
return node;
}
function parseIdentifier(): Identifier {
return createIdentifier(isIdentifier());
}
function parseIdentifierName(): Identifier {
return createIdentifier(token >= SyntaxKind.Identifier);
}
function isPropertyName(): boolean {
return token >= SyntaxKind.Identifier ||
token === SyntaxKind.StringLiteral ||
token === SyntaxKind.NumericLiteral;
}
function parsePropertyName(): Identifier {
if (token === SyntaxKind.StringLiteral || token === SyntaxKind.NumericLiteral) {
return parseLiteralNode(/*internName:*/ true);
}
return parseIdentifierName();
}
function parseContextualModifier(t: SyntaxKind): boolean {
return token === t && tryParse(() => {
nextToken();
return token === SyntaxKind.OpenBracketToken || isPropertyName();
});
}
function parseAnyContextualModifier(): boolean {
return isModifier(token) && tryParse(() => {
nextToken();
return token === SyntaxKind.OpenBracketToken || isPropertyName();
});
}
// True if positioned at the start of a list element
function isListElement(kind: ParsingContext, inErrorRecovery: boolean): boolean {
switch (kind) {
case ParsingContext.SourceElements:
case ParsingContext.ModuleElements:
return isSourceElement(inErrorRecovery);
case ParsingContext.BlockStatements:
case ParsingContext.SwitchClauseStatements:
return isStatement(inErrorRecovery);
case ParsingContext.SwitchClauses:
return token === SyntaxKind.CaseKeyword || token === SyntaxKind.DefaultKeyword;
case ParsingContext.TypeMembers:
return isStartOfTypeMember();
case ParsingContext.ClassMembers:
return lookAhead(isClassMemberStart);
case ParsingContext.EnumMembers:
case ParsingContext.ObjectLiteralMembers:
return isPropertyName();
case ParsingContext.BaseTypeReferences:
return isIdentifier() && ((token !== SyntaxKind.ExtendsKeyword && token !== SyntaxKind.ImplementsKeyword) || !lookAhead(() => (nextToken(), isIdentifier())));
case ParsingContext.VariableDeclarations:
case ParsingContext.TypeParameters:
return isIdentifier();
case ParsingContext.ArgumentExpressions:
return token === SyntaxKind.CommaToken || isStartOfExpression();
case ParsingContext.ArrayLiteralMembers:
return token === SyntaxKind.CommaToken || isStartOfExpression();
case ParsingContext.Parameters:
return isStartOfParameter();
case ParsingContext.TypeArguments:
case ParsingContext.TupleElementTypes:
return token === SyntaxKind.CommaToken || isStartOfType();
}
Debug.fail("Non-exhaustive case in 'isListElement'.");
}
// True if positioned at a list terminator
function isListTerminator(kind: ParsingContext): boolean {
if (token === SyntaxKind.EndOfFileToken) {
// Being at the end of the file ends all lists.
return true;
}
switch (kind) {
case ParsingContext.ModuleElements:
case ParsingContext.BlockStatements:
case ParsingContext.SwitchClauses:
case ParsingContext.TypeMembers:
case ParsingContext.ClassMembers:
case ParsingContext.EnumMembers:
case ParsingContext.ObjectLiteralMembers:
return token === SyntaxKind.CloseBraceToken;
case ParsingContext.SwitchClauseStatements:
return token === SyntaxKind.CloseBraceToken || token === SyntaxKind.CaseKeyword || token === SyntaxKind.DefaultKeyword;
case ParsingContext.BaseTypeReferences:
return token === SyntaxKind.OpenBraceToken || token === SyntaxKind.ExtendsKeyword || token === SyntaxKind.ImplementsKeyword;
case ParsingContext.VariableDeclarations:
return isVariableDeclaratorListTerminator();
case ParsingContext.TypeParameters:
// Tokens other than '>' are here for better error recovery
return token === SyntaxKind.GreaterThanToken || token === SyntaxKind.OpenParenToken || token === SyntaxKind.OpenBraceToken || token === SyntaxKind.ExtendsKeyword || token === SyntaxKind.ImplementsKeyword;
case ParsingContext.ArgumentExpressions:
// Tokens other than ')' are here for better error recovery
return token === SyntaxKind.CloseParenToken || token === SyntaxKind.SemicolonToken;
case ParsingContext.ArrayLiteralMembers:
case ParsingContext.TupleElementTypes:
return token === SyntaxKind.CloseBracketToken;
case ParsingContext.Parameters:
// Tokens other than ')' and ']' (the latter for index signatures) are here for better error recovery
return token === SyntaxKind.CloseParenToken || token === SyntaxKind.CloseBracketToken || token === SyntaxKind.OpenBraceToken;
case ParsingContext.TypeArguments:
// Tokens other than '>' are here for better error recovery
return token === SyntaxKind.GreaterThanToken || token === SyntaxKind.OpenParenToken;
}
}
function isVariableDeclaratorListTerminator(): boolean {
// If we can consume a semicolon (either explicitly, or with ASI), then consider us done
// with parsing the list of variable declarators.
if (canParseSemicolon()) {
return true;
}
// in the case where we're parsing the variable declarator of a 'for-in' statement, we
// are done if we see an 'in' keyword in front of us.
if (token === SyntaxKind.InKeyword) {
return true;
}
// ERROR RECOVERY TWEAK:
// For better error recovery, if we see an '=>' then we just stop immediately. We've got an
// arrow function here and it's going to be very unlikely that we'll resynchronize and get
// another variable declaration.
if (token === SyntaxKind.EqualsGreaterThanToken) {
return true;
}
// Keep trying to parse out variable declarators.
return false;
}
// True if positioned at element or terminator of the current list or any enclosing list
function isInSomeParsingContext(): boolean {
for (var kind = 0; kind < ParsingContext.Count; kind++) {
if (parsingContext & (1 << kind)) {
if (isListElement(kind, /* inErrorRecovery */ true) || isListTerminator(kind)) {
return true;
}
}
}
return false;
}
// Parses a list of elements
function parseList(kind: ParsingContext, checkForStrictMode: boolean, parseElement: () => T): NodeArray {
var saveParsingContext = parsingContext;
parsingContext |= 1 << kind;
var result = >[];
result.pos = getNodePos();
var savedStrictModeContext = strictModeContext;
while (!isListTerminator(kind)) {
if (isListElement(kind, /* inErrorRecovery */ false)) {
var element = parseElement();
result.push(element);
// test elements only if we are not already in strict mode
if (!strictModeContext && checkForStrictMode) {
if (isPrologueDirective(element)) {
if (isUseStrictPrologueDirective(element)) {
strictModeContext = true;
checkForStrictMode = false;
}
}
else {
checkForStrictMode = false;
}
}
}
else {
error(parsingContextErrors(kind));
if (isInSomeParsingContext()) {
break;
}
nextToken();
}
}
strictModeContext = savedStrictModeContext;
result.end = getNodeEnd();
parsingContext = saveParsingContext;
return result;
}
// Parses a comma-delimited list of elements
function parseDelimitedList(kind: ParsingContext, parseElement: () => T): NodeArray {
var saveParsingContext = parsingContext;
parsingContext |= 1 << kind;
var result = >[];
result.pos = getNodePos();
var commaStart = -1; // Meaning the previous token was not a comma
while (true) {
if (isListElement(kind, /* inErrorRecovery */ false)) {
result.push(parseElement());
commaStart = scanner.getTokenPos();
if (parseOptional(SyntaxKind.CommaToken)) {
continue;
}
commaStart = -1; // Back to the state where the last token was not a comma
if (isListTerminator(kind)) {
break;
}
error(Diagnostics._0_expected, ",");
}
else if (isListTerminator(kind)) {
break;
}
else {
error(parsingContextErrors(kind));
if (isInSomeParsingContext()) {
break;
}
nextToken();
}
}
// Recording the trailing comma is deliberately done after the previous
// loop, and not just if we see a list terminator. This is because the list
// may have ended incorrectly, but it is still important to know if there
// was a trailing comma.
// Check if the last token was a comma.
if (commaStart >= 0) {
// Always preserve a trailing comma by marking it on the NodeArray
result.hasTrailingComma = true;
}
result.end = getNodeEnd();
parsingContext = saveParsingContext;
return result;
}
function createMissingList(): NodeArray {
var pos = getNodePos();
var result = >[];
result.pos = pos;
result.end = pos;
return result;
}
function parseBracketedList(kind: ParsingContext, parseElement: () => T, startToken: SyntaxKind, endToken: SyntaxKind): NodeArray {
if (parseExpected(startToken)) {
var result = parseDelimitedList(kind, parseElement);
parseExpected(endToken);
return result;
}
return createMissingList();
}
// The allowReservedWords parameter controls whether reserved words are permitted after the first dot
function parseEntityName(allowReservedWords: boolean): EntityName {
var entity: EntityName = parseIdentifier();
while (parseOptional(SyntaxKind.DotToken)) {
var node = createNode(SyntaxKind.QualifiedName, entity.pos);
node.left = entity;
node.right = allowReservedWords ? parseIdentifierName() : parseIdentifier();
entity = finishNode(node);
}
return entity;
}
function parseTokenNode(): Node {
var node = createNode(token);
nextToken();
return finishNode(node);
}
function parseTemplateExpression() {
var template = createNode(SyntaxKind.TemplateExpression);
template.head = parseLiteralNode();
Debug.assert(template.head.kind === SyntaxKind.TemplateHead, "Template head has wrong token kind");
var templateSpans = >[];
templateSpans.pos = getNodePos();
do {
templateSpans.push(parseTemplateSpan());
}
while (templateSpans[templateSpans.length - 1].literal.kind === SyntaxKind.TemplateMiddle)
templateSpans.end = getNodeEnd();
template.templateSpans = templateSpans;
return finishNode(template);
}
function parseTemplateSpan(): TemplateSpan {
var span = createNode(SyntaxKind.TemplateSpan);
span.expression = allowInAnd(parseExpression);
var literal: LiteralExpression;
if (token === SyntaxKind.CloseBraceToken) {
reScanTemplateToken()
literal = parseLiteralNode();
}
else {
error(Diagnostics.Invalid_template_literal_expected);
literal = createMissingNode();
literal.text = "";
}
span.literal = literal;
return finishNode(span);
}
function parseLiteralNode(internName?: boolean): LiteralExpression {
var node = createNode(token);
var text = scanner.getTokenValue();
node.text = internName ? internIdentifier(text) : text;
var tokenPos = scanner.getTokenPos();
nextToken();
finishNode(node);
// Octal literals are not allowed in strict mode or ES5
// Note that theoretically the following condition would hold true literals like 009,
// which is not octal.But because of how the scanner separates the tokens, we would
// never get a token like this. Instead, we would get 00 and 9 as two separate tokens.
// We also do not need to check for negatives because any prefix operator would be part of a
// parent unary expression.
if (node.kind === SyntaxKind.NumericLiteral
&& sourceText.charCodeAt(tokenPos) === CharacterCodes._0
&& isOctalDigit(sourceText.charCodeAt(tokenPos + 1))) {
node.flags |= NodeFlags.OctalLiteral;
}
return node;
}
function parseStringLiteral(): LiteralExpression {
if (token === SyntaxKind.StringLiteral) {
return parseLiteralNode(/*internName:*/ true);
}
error(Diagnostics.String_literal_expected);
return createMissingNode();
}
// TYPES
function parseTypeReference(): TypeReferenceNode {
var node = createNode(SyntaxKind.TypeReference);
node.typeName = parseEntityName(/*allowReservedWords*/ false);
if (!scanner.hasPrecedingLineBreak() && token === SyntaxKind.LessThanToken) {
node.typeArguments = parseTypeArguments();
}
return finishNode(node);
}
function parseTypeQuery(): TypeQueryNode {
var node = createNode(SyntaxKind.TypeQuery);
parseExpected(SyntaxKind.TypeOfKeyword);
node.exprName = parseEntityName(/*allowReservedWords*/ true);
return finishNode(node);
}
function parseTypeParameter(): TypeParameterDeclaration {
var node = createNode(SyntaxKind.TypeParameter);
node.name = parseIdentifier();
if (parseOptional(SyntaxKind.ExtendsKeyword)) {
// It's not uncommon for people to write improper constraints to a generic. If the
// user writes a constraint that is an expression and not an actual type, then parse
// it out as an expression (so we can recover well), but report that a type is needed
// instead.
if (isStartOfType() || !isStartOfExpression()) {
node.constraint = parseType();
}
else {
// It was not a type, and it looked like an expression. Parse out an expression
// here so we recover well. Note: it is important that we call parseUnaryExpression
// and not parseExpression here. If the user has:
//
//
//
// We do *not* want to consume the > as we're consuming the expression for "".
node.expression = parseUnaryExpression();
}
}
return finishNode(node);
}
function parseTypeParameters(): NodeArray {
if (token === SyntaxKind.LessThanToken) {
return parseBracketedList(ParsingContext.TypeParameters, parseTypeParameter, SyntaxKind.LessThanToken, SyntaxKind.GreaterThanToken);
}
}
function parseParameterType(): TypeNode {
return parseOptional(SyntaxKind.ColonToken)
? token === SyntaxKind.StringLiteral
? parseStringLiteral()
: parseType()
: undefined;
}
function isStartOfParameter(): boolean {
return token === SyntaxKind.DotDotDotToken || isIdentifier() || isModifier(token);
}
function setModifiers(node: Node, modifiers: ModifiersArray) {
if (modifiers) {
node.flags |= modifiers.flags;
node.modifiers = modifiers;
}
}
function parseParameter(): ParameterDeclaration {
var node = createNode(SyntaxKind.Parameter);
var modifiers = parseModifiers();
setModifiers(node, modifiers);
if (parseOptional(SyntaxKind.DotDotDotToken)) {
node.flags |= NodeFlags.Rest;
}
node.name = parseIdentifier();
if (node.name.kind === SyntaxKind.Missing && node.flags === 0 && isModifier(token)) {
// in cases like
// 'use strict'
// function foo(static)
// isParameter('static') === true, because of isModifier('static')
// however 'static' is not a legal identifier in a strict mode.
// so result of this function will be ParameterDeclaration (flags = 0, name = missing, type = undefined, initializer = undefined)
// and current token will not change => parsing of the enclosing parameter list will last till the end of time (or OOM)
// to avoid this we'll advance cursor to the next token.
nextToken();
}
if (parseOptional(SyntaxKind.QuestionToken)) {
node.flags |= NodeFlags.QuestionMark;
}
node.type = parseParameterType();
node.initializer = parseInitializer(/*inParameter*/ true);
// Do not check for initializers in an ambient context for parameters. This is not
// a grammar error because the grammar allows arbitrary call signatures in
// an ambient context.
// It is actually not necessary for this to be an error at all. The reason is that
// function/constructor implementations are syntactically disallowed in ambient
// contexts. In addition, parameter initializers are semantically disallowed in
// overload signatures. So parameter initializers are transitively disallowed in
// ambient contexts.
return finishNode(node);
}
function parseSignature(kind: SyntaxKind, returnToken: SyntaxKind, returnTokenRequired: boolean): ParsedSignature {
var signature = {};
fillSignature(kind, returnToken, returnTokenRequired, signature);
return signature;
}
function fillSignature(kind: SyntaxKind, returnToken: SyntaxKind, returnTokenRequired: boolean, signature: ParsedSignature): void {
if (kind === SyntaxKind.ConstructSignature) {
parseExpected(SyntaxKind.NewKeyword);
}
signature.typeParameters = parseTypeParameters();
signature.parameters = parseParameterList(SyntaxKind.OpenParenToken, SyntaxKind.CloseParenToken);
if (returnTokenRequired) {
parseExpected(returnToken);
signature.type = parseType();
}
else if (parseOptional(returnToken)) {
signature.type = parseType();
}
}
// Because we use this for index signatures as well, we sometimes use
// parentheses, and sometimes use brackets.
function parseParameterList(startDelimiter: SyntaxKind, endDelimiter: SyntaxKind) {
return parseBracketedList(ParsingContext.Parameters, parseParameter, startDelimiter, endDelimiter);
}
function parseSignatureMember(kind: SyntaxKind, returnToken: SyntaxKind): SignatureDeclaration {
var node = createNode(kind);
fillSignature(kind, returnToken, /* returnTokenRequired */ false, node);
parseSemicolon();
return finishNode(node);
}
function parseIndexSignatureMember(fullStart: number, modifiers: ModifiersArray): SignatureDeclaration {
var node = createNode(SyntaxKind.IndexSignature, fullStart);
setModifiers(node, modifiers);
node.parameters = parseParameterList(SyntaxKind.OpenBracketToken, SyntaxKind.CloseBracketToken);
node.type = parseTypeAnnotation();
parseSemicolon();
return finishNode(node)
}
function parsePropertyOrMethod(): Declaration {
var fullStart = scanner.getStartPos();
var name = parsePropertyName();
var flags = 0;
if (parseOptional(SyntaxKind.QuestionToken)) {
flags = NodeFlags.QuestionMark;
}
if (token === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken) {
var method = createNode(SyntaxKind.Method, fullStart);
method.name = name;
method.flags = flags;
fillSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false, method);
parseSemicolon();
return finishNode(method);
}
else {
var property = createNode(SyntaxKind.Property, fullStart);
property.name = name;
property.flags = flags;
property.type = parseTypeAnnotation();
parseSemicolon();
return finishNode(property);
}
}
function isStartOfTypeMember(): boolean {
switch (token) {
case SyntaxKind.OpenParenToken:
case SyntaxKind.LessThanToken:
case SyntaxKind.OpenBracketToken:
return true;
default:
return isPropertyName() && lookAhead(() => nextToken() === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken || token === SyntaxKind.QuestionToken ||
token === SyntaxKind.ColonToken || canParseSemicolon());
}
}
function parseTypeMember(): Declaration {
switch (token) {
case SyntaxKind.OpenParenToken:
case SyntaxKind.LessThanToken:
return parseSignatureMember(SyntaxKind.CallSignature, SyntaxKind.ColonToken);
case SyntaxKind.OpenBracketToken:
return parseIndexSignatureMember(scanner.getStartPos(), /*modifiers:*/ undefined);
case SyntaxKind.NewKeyword:
if (lookAhead(() => nextToken() === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken)) {
return parseSignatureMember(SyntaxKind.ConstructSignature, SyntaxKind.ColonToken);
}
case SyntaxKind.StringLiteral:
case SyntaxKind.NumericLiteral:
return parsePropertyOrMethod();
default:
if (token >= SyntaxKind.Identifier) {
return parsePropertyOrMethod();
}
}
}
function parseTypeLiteral(): TypeLiteralNode {
var node = createNode(SyntaxKind.TypeLiteral);
node.members = parseObjectType();
return finishNode(node);
}
function parseObjectType(): NodeArray {
var members: NodeArray;
if (parseExpected(SyntaxKind.OpenBraceToken)) {
members = parseList(ParsingContext.TypeMembers, /*checkForStrictMode*/ false, parseTypeMember);
parseExpected(SyntaxKind.CloseBraceToken);
}
else {
members = createMissingList();
}
return members;
}
function parseTupleType(): TupleTypeNode {
var node = createNode(SyntaxKind.TupleType);
node.elementTypes = parseBracketedList(ParsingContext.TupleElementTypes, parseType, SyntaxKind.OpenBracketToken, SyntaxKind.CloseBracketToken);
return finishNode(node);
}
function parseParenType(): ParenTypeNode {
var node = createNode(SyntaxKind.ParenType);
parseExpected(SyntaxKind.OpenParenToken);
node.type = parseType();
parseExpected(SyntaxKind.CloseParenToken);
return finishNode(node);
}
function parseFunctionType(typeKind: SyntaxKind): SignatureDeclaration {
var node = createNode(typeKind);
fillSignature(typeKind === SyntaxKind.FunctionType ? SyntaxKind.CallSignature : SyntaxKind.ConstructSignature,
SyntaxKind.EqualsGreaterThanToken, /* returnTokenRequired */ true, node);
return finishNode(node);
}
function parseKeywordAndNoDot(): Node {
var node = parseTokenNode();
return token === SyntaxKind.DotToken ? undefined : node;
}
function parseNonArrayType(): TypeNode {
switch (token) {
case SyntaxKind.AnyKeyword:
case SyntaxKind.StringKeyword:
case SyntaxKind.NumberKeyword:
case SyntaxKind.BooleanKeyword:
case SyntaxKind.VoidKeyword:
var node = tryParse(parseKeywordAndNoDot);
return node || parseTypeReference();
case SyntaxKind.TypeOfKeyword:
return parseTypeQuery();
case SyntaxKind.OpenBraceToken:
return parseTypeLiteral();
case SyntaxKind.OpenBracketToken:
return parseTupleType();
case SyntaxKind.OpenParenToken:
return parseParenType();
default:
if (isIdentifier()) {
return parseTypeReference();
}
}
error(Diagnostics.Type_expected);
return createMissingNode();
}
function isStartOfType(): boolean {
switch (token) {
case SyntaxKind.AnyKeyword:
case SyntaxKind.StringKeyword:
case SyntaxKind.NumberKeyword:
case SyntaxKind.BooleanKeyword:
case SyntaxKind.VoidKeyword:
case SyntaxKind.TypeOfKeyword:
case SyntaxKind.OpenBraceToken:
case SyntaxKind.OpenBracketToken:
case SyntaxKind.LessThanToken:
case SyntaxKind.NewKeyword:
return true;
case SyntaxKind.OpenParenToken:
// Only consider '(' the start of a type if followed by ')', '...', an identifier, a modifier,
// or something that starts a type. We don't want to consider things like '(1)' a type.
return lookAhead(() => {
nextToken();
return token === SyntaxKind.CloseParenToken || isStartOfParameter() || isStartOfType();
});
default:
return isIdentifier();
}
}
function parsePrimaryType(): TypeNode {
var type = parseNonArrayType();
while (!scanner.hasPrecedingLineBreak() && parseOptional(SyntaxKind.OpenBracketToken)) {
parseExpected(SyntaxKind.CloseBracketToken);
var node = createNode(SyntaxKind.ArrayType, type.pos);
node.elementType = type;
type = finishNode(node);
}
return type;
}
function parseUnionType(): TypeNode {
var type = parsePrimaryType();
if (token === SyntaxKind.BarToken) {
var types = >[type];
types.pos = type.pos;
while (parseOptional(SyntaxKind.BarToken)) {
types.push(parsePrimaryType());
}
types.end = getNodeEnd();
var node = createNode(SyntaxKind.UnionType, type.pos);
node.types = types;
type = finishNode(node);
}
return type;
}
function isStartOfFunctionType(): boolean {
return token === SyntaxKind.LessThanToken || token === SyntaxKind.OpenParenToken && lookAhead(() => {
nextToken();
if (token === SyntaxKind.CloseParenToken || token === SyntaxKind.DotDotDotToken) {
// ( )
// ( ...
return true;
}
if (isIdentifier() || isModifier(token)) {
nextToken();
if (token === SyntaxKind.ColonToken || token === SyntaxKind.CommaToken ||
token === SyntaxKind.QuestionToken || token === SyntaxKind.EqualsToken ||
isIdentifier() || isModifier(token)) {
// ( id :
// ( id ,
// ( id ?
// ( id =
// ( modifier id
return true;
}
if (token === SyntaxKind.CloseParenToken) {
nextToken();
if (token === SyntaxKind.EqualsGreaterThanToken) {
// ( id ) =>
return true;
}
}
}
return false;
});
}
function parseType(): TypeNode {
if (isStartOfFunctionType()) {
return parseFunctionType(SyntaxKind.FunctionType);
}
if (token === SyntaxKind.NewKeyword) {
return parseFunctionType(SyntaxKind.ConstructorType);
}
return parseUnionType();
}
function parseTypeAnnotation(): TypeNode {
return parseOptional(SyntaxKind.ColonToken) ? parseType() : undefined;
}
// EXPRESSIONS
function isStartOfExpression(): boolean {
switch (token) {
case SyntaxKind.ThisKeyword:
case SyntaxKind.SuperKeyword:
case SyntaxKind.NullKeyword:
case SyntaxKind.TrueKeyword:
case SyntaxKind.FalseKeyword:
case SyntaxKind.NumericLiteral:
case SyntaxKind.StringLiteral:
case SyntaxKind.NoSubstitutionTemplateLiteral:
case SyntaxKind.TemplateHead:
case SyntaxKind.OpenParenToken:
case SyntaxKind.OpenBracketToken:
case SyntaxKind.OpenBraceToken:
case SyntaxKind.FunctionKeyword:
case SyntaxKind.NewKeyword:
case SyntaxKind.SlashToken:
case SyntaxKind.SlashEqualsToken:
case SyntaxKind.PlusToken:
case SyntaxKind.MinusToken:
case SyntaxKind.TildeToken:
case SyntaxKind.ExclamationToken:
case SyntaxKind.DeleteKeyword:
case SyntaxKind.TypeOfKeyword:
case SyntaxKind.VoidKeyword:
case SyntaxKind.PlusPlusToken:
case SyntaxKind.MinusMinusToken:
case SyntaxKind.LessThanToken:
case SyntaxKind.Identifier:
return true;
default:
return isIdentifier();
}
}
function isStartOfExpressionStatement(): boolean {
// As per the grammar, neither '{' nor 'function' can start an expression statement.
return token !== SyntaxKind.OpenBraceToken && token !== SyntaxKind.FunctionKeyword && isStartOfExpression();
}
function parseExpression(): Expression {
// Expression[in]:
// AssignmentExpression[in]
// Expression[in] , AssignmentExpression[in]
var expr = parseAssignmentExpression();
while (parseOptional(SyntaxKind.CommaToken)) {
expr = makeBinaryExpression(expr, SyntaxKind.CommaToken, parseAssignmentExpression());
}
return expr;
}
function parseInitializer(inParameter: boolean): Expression {
if (token !== SyntaxKind.EqualsToken) {
// It's not uncommon during typing for the user to miss writing the '=' token. Check if
// there is no newline after the last token and if we're on an expression. If so, parse
// this as an equals-value clause with a missing equals.
// NOTE: There are two places where we allow equals-value clauses. The first is in a
// variable declarator. The second is with a parameter. For variable declarators
// it's more likely that a { would be a allowed (as an object literal). While this
// is also allowed for parameters, the risk is that we consume the { as an object
// literal when it really will be for the block following the parameter.
if (scanner.hasPrecedingLineBreak() || (inParameter && token === SyntaxKind.OpenBraceToken) || !isStartOfExpression()) {
// preceding line break, open brace in a parameter (likely a function body) or current token is not an expression -
// do not try to parse initializer
return undefined;
}
}
// Initializer[In, Yield] :
// = AssignmentExpression[?In, ?Yield]
parseExpected(SyntaxKind.EqualsToken);
return parseAssignmentExpression();
}
function parseAssignmentExpression(): Expression {
// Augmented by TypeScript:
//
// AssignmentExpression[in]:
// 1) ConditionalExpression[in]
// 2) LeftHandSideExpression = AssignmentExpression[in]
// 3) LeftHandSideExpression AssignmentOperator AssignmentExpression[in]
// 4) ArrowFunctionExpression <-- added by TypeScript
//
// Note: for ease of implementation we treat productions '2' and '3' as the same thing.
// (i.e. they're both BinaryExpressions with an assignment operator in it).
// First, check if we have an arrow function (production '4') that starts with a parenthesized
// parameter list. If we do, we must *not* recurse for productions 1, 2 or 3. An ArrowFunction is
// not a LeftHandSideExpression, nor does it start a ConditionalExpression. So we are done
// with AssignmentExpression if we see one.
var arrowExpression = tryParseParenthesizedArrowFunctionExpression();
if (arrowExpression) {
return arrowExpression;
}
// Now try to handle the rest of the cases. First, see if we can parse out up to and
// including a conditional expression.
var expr = parseConditionalExpression();
// To avoid a look-ahead, we did not handle the case of an arrow function with a single un-parenthesized
// parameter ('x => ...') above. We handle it here by checking if the parsed expression was a single
// identifier and the current token is an arrow.
if (expr.kind === SyntaxKind.Identifier && token === SyntaxKind.EqualsGreaterThanToken) {
return parseSimpleArrowFunctionExpression(expr);
}
// Now see if we might be in cases '2' or '3'.
// If the expression was a LHS expression, and we have an assignment operator, then
// we're in '2' or '3'. Consume the assignment and return.
if (isLeftHandSideExpression(expr) && isAssignmentOperator(token)) {
var operator = token;
nextToken();
return makeBinaryExpression(expr, operator, parseAssignmentExpression());
}
// otherwise this was production '1'. Return whatever we parsed so far.
return expr;
}
function parseSimpleArrowFunctionExpression(identifier: Identifier): Expression {
Debug.assert(token === SyntaxKind.EqualsGreaterThanToken, "parseSimpleArrowFunctionExpression should only have been called if we had a =>");
parseExpected(SyntaxKind.EqualsGreaterThanToken);
var parameter = createNode(SyntaxKind.Parameter, identifier.pos);
parameter.name = identifier;
finishNode(parameter);
var parameters = >[];
parameters.push(parameter);
parameters.pos = parameter.pos;
parameters.end = parameter.end;
var signature = { parameters: parameters };
return parseArrowExpressionTail(identifier.pos, signature);
}
function tryParseParenthesizedArrowFunctionExpression(): Expression {
// Indicates whether we are certain that we should parse an arrow expression.
var triState = isParenthesizedArrowFunctionExpression();
if (triState === Tristate.False) {
return undefined;
}
var pos = getNodePos();
if (triState === Tristate.True) {
var sig = parseSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false);
// If we have an arrow, then try to parse the body.
// Even if not, try to parse if we have an opening brace, just in case we're in an error state.
if (parseExpected(SyntaxKind.EqualsGreaterThanToken) || token === SyntaxKind.OpenBraceToken) {
return parseArrowExpressionTail(pos, sig);
}
else {
// If not, we're probably better off bailing out and returning a bogus function expression.
return makeFunctionExpression(SyntaxKind.ArrowFunction, pos, /* name */ undefined, sig, createMissingNode());
}
}
// *Maybe* we had an arrow function and we need to try to parse it out,
// rolling back and trying other parses if we fail.
var sig = tryParseSignatureIfArrowOrBraceFollows();
if (sig) {
parseExpected(SyntaxKind.EqualsGreaterThanToken);
return parseArrowExpressionTail(pos, sig);
}
else {
return undefined;
}
}
// True -> We definitely expect a parenthesized arrow function here.
// False -> There *cannot* be a parenthesized arrow function here.
// Unknown -> There *might* be a parenthesized arrow function here.
// Speculatively look ahead to be sure, and rollback if not.
function isParenthesizedArrowFunctionExpression(): Tristate {
if (token === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken) {
return lookAhead(() => {
var first = token;
var second = nextToken();
if (first === SyntaxKind.OpenParenToken) {
if (second === SyntaxKind.CloseParenToken) {
// Simple cases: "() =>", "(): ", and "() {".
// This is an arrow function with no parameters.
// The last one is not actually an arrow function,
// but this is probably what the user intended.
var third = nextToken();
switch (third) {
case SyntaxKind.EqualsGreaterThanToken:
case SyntaxKind.ColonToken:
case SyntaxKind.OpenBraceToken:
return Tristate.True;
default:
return Tristate.False;
}
}
// Simple case: "(..."
// This is an arrow function with a rest parameter.
if (second === SyntaxKind.DotDotDotToken) {
return Tristate.True;
}
// If we had "(" followed by something that's not an identifier,
// then this definitely doesn't look like a lambda.
// Note: we could be a little more lenient and allow
// "(public" or "(private". These would not ever actually be allowed,
// but we could provide a good error message instead of bailing out.
if (!isIdentifier()) {
return Tristate.False;
}
// If we have something like "(a:", then we must have a
// type-annotated parameter in an arrow function expression.
if (nextToken() === SyntaxKind.ColonToken) {
return Tristate.True;
}
// This *could* be a parenthesized arrow function.
// Return Unknown to let the caller know.
return Tristate.Unknown;
}
else {
Debug.assert(first === SyntaxKind.LessThanToken);
// If we have "<" not followed by an identifier,
// then this definitely is not an arrow function.
if (!isIdentifier()) {
return Tristate.False;
}
// This *could* be a parenthesized arrow function.
return Tristate.Unknown;
}
});
}
if (token === SyntaxKind.EqualsGreaterThanToken) {
// ERROR RECOVERY TWEAK:
// If we see a standalone => try to parse it as an arrow function expression as that's
// likely what the user intended to write.
return Tristate.True;
}
// Definitely not a parenthesized arrow function.
return Tristate.False;
}
function tryParseSignatureIfArrowOrBraceFollows(): ParsedSignature {
return tryParse(() => {
var sig = parseSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false);
// Parsing a signature isn't enough.
// Parenthesized arrow signatures often look like other valid expressions.
// For instance:
// - "(x = 10)" is an assignment expression parsed as a signature with a default parameter value.
// - "(x,y)" is a comma expression parsed as a signature with two parameters.
// - "a ? (b): c" will have "(b):" parsed as a signature with a return type annotation.
//
// So we need just a bit of lookahead to ensure that it can only be a signature.
if (token === SyntaxKind.EqualsGreaterThanToken || token === SyntaxKind.OpenBraceToken) {
return sig;
}
return undefined;
});
}
function parseArrowExpressionTail(pos: number, sig: ParsedSignature): FunctionExpression {
var body: Node;
if (token === SyntaxKind.OpenBraceToken) {
body = parseFunctionBlock(/* ignoreMissingOpenBrace */ false);
}
else if (isStatement(/* inErrorRecovery */ true) && !isStartOfExpressionStatement() && token !== SyntaxKind.FunctionKeyword) {
// Check if we got a plain statement (i.e. no expression-statements, no functions expressions/declarations)
//
// Here we try to recover from a potential error situation in the case where the
// user meant to supply a block. For example, if the user wrote:
//
// a =>
// var v = 0;
// }
//
// they may be missing an open brace. Check to see if that's the case so we can
// try to recover better. If we don't do this, then the next close curly we see may end
// up preemptively closing the containing construct.
//
// Note: even when 'ignoreMissingOpenBrace' is passed as true, parseBody will still error.
body = parseFunctionBlock(/* ignoreMissingOpenBrace */ true);
}
else {
body = parseAssignmentExpression();
}
return makeFunctionExpression(SyntaxKind.ArrowFunction, pos, /* name */ undefined, sig, body);
}
function parseConditionalExpression(): Expression {
// Note: we explicitly 'allowIn' in the whenTrue part of the condition expression, and
// we do not that for the 'whenFalse' part.
var expr = parseBinaryOperators(parseUnaryExpression(), /*minPrecedence:*/ 0);
while (parseOptional(SyntaxKind.QuestionToken)) {
var node = createNode(SyntaxKind.ConditionalExpression, expr.pos);
node.condition = expr;
node.whenTrue = allowInAnd(parseAssignmentExpression);
parseExpected(SyntaxKind.ColonToken);
node.whenFalse = parseAssignmentExpression();
expr = finishNode(node);
}
return expr;
}
function parseBinaryOperators(expr: Expression, minPrecedence: number): Expression {
while (true) {
reScanGreaterToken();
var precedence = getOperatorPrecedence();
if (precedence && precedence > minPrecedence && (!disallowInContext || token !== SyntaxKind.InKeyword)) {
var operator = token;
nextToken();
expr = makeBinaryExpression(expr, operator, parseBinaryOperators(parseUnaryExpression(), precedence));
continue;
}
return expr;
}
}
function getOperatorPrecedence(): number {
switch (token) {
case SyntaxKind.BarBarToken:
return 1;
case SyntaxKind.AmpersandAmpersandToken:
return 2;
case SyntaxKind.BarToken:
return 3;
case SyntaxKind.CaretToken:
return 4;
case SyntaxKind.AmpersandToken:
return 5;
case SyntaxKind.EqualsEqualsToken:
case SyntaxKind.ExclamationEqualsToken:
case SyntaxKind.EqualsEqualsEqualsToken:
case SyntaxKind.ExclamationEqualsEqualsToken:
return 6;
case SyntaxKind.LessThanToken:
case SyntaxKind.GreaterThanToken:
case SyntaxKind.LessThanEqualsToken:
case SyntaxKind.GreaterThanEqualsToken:
case SyntaxKind.InstanceOfKeyword:
case SyntaxKind.InKeyword:
return 7;
case SyntaxKind.LessThanLessThanToken:
case SyntaxKind.GreaterThanGreaterThanToken:
case SyntaxKind.GreaterThanGreaterThanGreaterThanToken:
return 8;
case SyntaxKind.PlusToken:
case SyntaxKind.MinusToken:
return 9;
case SyntaxKind.AsteriskToken:
case SyntaxKind.SlashToken:
case SyntaxKind.PercentToken:
return 10;
}
return undefined;
}
function makeBinaryExpression(left: Expression, operator: SyntaxKind, right: Expression): BinaryExpression {
var node = createNode(SyntaxKind.BinaryExpression, left.pos);
node.left = left;
node.operator = operator;
node.right = right;
return finishNode(node);
}
function parseUnaryExpression(): Expression {
var pos = getNodePos();
switch (token) {
case SyntaxKind.PlusToken:
case SyntaxKind.MinusToken:
case SyntaxKind.TildeToken:
case SyntaxKind.ExclamationToken:
case SyntaxKind.DeleteKeyword:
case SyntaxKind.TypeOfKeyword:
case SyntaxKind.VoidKeyword:
case SyntaxKind.PlusPlusToken:
case SyntaxKind.MinusMinusToken:
var operator = token;
nextToken();
return makeUnaryExpression(SyntaxKind.PrefixOperator, pos, operator, parseUnaryExpression());
case SyntaxKind.LessThanToken:
return parseTypeAssertion();
}
var primaryExpression = parsePrimaryExpression();
// TS 1.0 spec (2014): 4.8
// CallExpression: ( Modified )
// super ( ArgumentListopt )
// super . IdentifierName
var illegalUsageOfSuperKeyword =
primaryExpression.kind === SyntaxKind.SuperKeyword && token !== SyntaxKind.OpenParenToken && token !== SyntaxKind.DotToken;
if (illegalUsageOfSuperKeyword) {
error(Diagnostics.super_must_be_followed_by_an_argument_list_or_member_access);
}
var expr = parseCallAndAccess(primaryExpression, /* inNewExpression */ false);
Debug.assert(isLeftHandSideExpression(expr));
if ((token === SyntaxKind.PlusPlusToken || token === SyntaxKind.MinusMinusToken) && !scanner.hasPrecedingLineBreak()) {
var operator = token;
nextToken();
expr = makeUnaryExpression(SyntaxKind.PostfixOperator, expr.pos, operator, expr);
}
return expr;
}
function parseTypeAssertion(): TypeAssertion {
var node = createNode(SyntaxKind.TypeAssertion);
parseExpected(SyntaxKind.LessThanToken);
node.type = parseType();
parseExpected(SyntaxKind.GreaterThanToken);
node.operand = parseUnaryExpression();
return finishNode(node);
}
function makeUnaryExpression(kind: SyntaxKind, pos: number, operator: SyntaxKind, operand: Expression): UnaryExpression {
var node = createNode(kind, pos);
node.operator = operator;
node.operand = operand;
return finishNode(node);
}
function parseCallAndAccess(expr: Expression, inNewExpression: boolean): Expression {
while (true) {
var dotOrBracketStart = scanner.getTokenPos();
if (parseOptional(SyntaxKind.DotToken)) {
var propertyAccess = createNode(SyntaxKind.PropertyAccess, expr.pos);
// Technically a keyword is valid here as all keywords are identifier names.
// However, often we'll encounter this in error situations when the keyword
// is actually starting another valid construct.
//
// So, we check for the following specific case:
//
// name.
// keyword identifierNameOrKeyword
//
// Note: the newlines are important here. For example, if that above code
// were rewritten into:
//
// name.keyword
// identifierNameOrKeyword
//
// Then we would consider it valid. That's because ASI would take effect and
// the code would be implicitly: "name.keyword; identifierNameOrKeyword".
// In the first case though, ASI will not take effect because there is not a
// line terminator after the keyword.
var id: Identifier;
if (scanner.hasPrecedingLineBreak() && scanner.isReservedWord()) {
var matchesPattern = lookAhead(() => {
nextToken();
return !scanner.hasPrecedingLineBreak() && (scanner.isIdentifier() || scanner.isReservedWord);
});
if (matchesPattern) {
errorAtPos(dotOrBracketStart + 1, 0, Diagnostics.Identifier_expected);
id = createMissingNode();
}
}
propertyAccess.left = expr;
propertyAccess.right = id || parseIdentifierName();
expr = finishNode(propertyAccess);
continue;
}
if (parseOptional(SyntaxKind.OpenBracketToken)) {
var indexedAccess = createNode(SyntaxKind.IndexedAccess, expr.pos);
indexedAccess.object = expr;
// It's not uncommon for a user to write: "new Type[]".
// Check for that common pattern and report a better error message.
if (inNewExpression && parseOptional(SyntaxKind.CloseBracketToken)) {
indexedAccess.index = createMissingNode();
}
else {
indexedAccess.index = allowInAnd(parseExpression);
if (indexedAccess.index.kind === SyntaxKind.StringLiteral || indexedAccess.index.kind === SyntaxKind.NumericLiteral) {
var literal = indexedAccess.index;
literal.text = internIdentifier(literal.text);
}
parseExpected(SyntaxKind.CloseBracketToken);
}
expr = finishNode(indexedAccess);
continue;
}
// Try to parse a Call Expression unless we are in a New Expression.
// If we are parsing a New Expression, then parentheses are optional,
// and is taken care of by the 'parseNewExpression' caller.
if ((token === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken) && !inNewExpression) {
var callExpr = createNode(SyntaxKind.CallExpression, expr.pos);
callExpr.func = expr;
if (token === SyntaxKind.LessThanToken) {
if (!(callExpr.typeArguments = tryParse(parseTypeArgumentsAndOpenParen))) return expr;
}
else {
parseExpected(SyntaxKind.OpenParenToken);
}
callExpr.arguments = parseDelimitedList(ParsingContext.ArgumentExpressions, parseArgumentExpression);
parseExpected(SyntaxKind.CloseParenToken);
expr = finishNode(callExpr);
continue;
}
if (token === SyntaxKind.NoSubstitutionTemplateLiteral || token === SyntaxKind.TemplateHead) {
var tagExpression = createNode(SyntaxKind.TaggedTemplateExpression, expr.pos);
tagExpression.tag = expr;
tagExpression.template = token === SyntaxKind.NoSubstitutionTemplateLiteral
? parseLiteralNode()
: parseTemplateExpression();
expr = finishNode(tagExpression);
continue;
}
return expr;
}
}
function parseTypeArgumentsAndOpenParen(): NodeArray {
var result = parseTypeArguments();
parseExpected(SyntaxKind.OpenParenToken);
return result;
}
function parseTypeArguments(): NodeArray {
// We pass parseSingleTypeArgument instead of parseType as the element parser
// because parseSingleTypeArgument knows how to parse a missing type argument.
// This is useful for signature help. parseType has the disadvantage that when
// it sees a missing type, it changes the LookAheadMode to Error, and the result
// is a broken binary expression, which breaks signature help.
return parseBracketedList(ParsingContext.TypeArguments, parseSingleTypeArgument, SyntaxKind.LessThanToken, SyntaxKind.GreaterThanToken);
}
function parseSingleTypeArgument(): TypeNode {
// Be resilient to something like: Foo<,,>();
// We want to parse this out as a type argument list (esp. for signature help), and we
// don't want to rollback just because we were missing a type arg. The grammar checker
// will report the actual error later on.
if (token === SyntaxKind.CommaToken) {
return createNode(SyntaxKind.Missing);
}
return parseType();
}
function parsePrimaryExpression(): Expression {
switch (token) {
case SyntaxKind.ThisKeyword:
case SyntaxKind.SuperKeyword:
case SyntaxKind.NullKeyword:
case SyntaxKind.TrueKeyword:
case SyntaxKind.FalseKeyword:
return parseTokenNode();
case SyntaxKind.NumericLiteral:
case SyntaxKind.StringLiteral:
case SyntaxKind.NoSubstitutionTemplateLiteral:
return parseLiteralNode();
case SyntaxKind.OpenParenToken:
return parseParenExpression();
case SyntaxKind.OpenBracketToken:
return parseArrayLiteral();
case SyntaxKind.OpenBraceToken:
return parseObjectLiteral();
case SyntaxKind.FunctionKeyword:
return parseFunctionExpression();
case SyntaxKind.NewKeyword:
return parseNewExpression();
case SyntaxKind.SlashToken:
case SyntaxKind.SlashEqualsToken:
if (reScanSlashToken() === SyntaxKind.RegularExpressionLiteral) {
return parseLiteralNode();
}
break;
case SyntaxKind.TemplateHead:
return parseTemplateExpression();
default:
if (isIdentifier()) {
return parseIdentifier();
}
}
error(Diagnostics.Expression_expected);
return createMissingNode();
}
function parseParenExpression(): ParenExpression {
var node = createNode(SyntaxKind.ParenExpression);
parseExpected(SyntaxKind.OpenParenToken);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
return finishNode(node);
}
function parseAssignmentExpressionOrOmittedExpression(): Expression {
return token === SyntaxKind.CommaToken
? createNode(SyntaxKind.OmittedExpression)
: parseAssignmentExpression();
}
function parseArrayLiteralElement(): Expression {
return parseAssignmentExpressionOrOmittedExpression();
}
function parseArgumentExpression(): Expression {
return allowInAnd(parseAssignmentExpressionOrOmittedExpression);
}
function parseArrayLiteral(): ArrayLiteral {
var node = createNode(SyntaxKind.ArrayLiteral);
parseExpected(SyntaxKind.OpenBracketToken);
if (scanner.hasPrecedingLineBreak()) node.flags |= NodeFlags.MultiLine;
node.elements = parseDelimitedList(ParsingContext.ArrayLiteralMembers, parseArrayLiteralElement);
parseExpected(SyntaxKind.CloseBracketToken);
return finishNode(node);
}
function parsePropertyAssignment(): Declaration {
var nodePos = scanner.getStartPos();
var tokenIsIdentifier = isIdentifier();
var nameToken = token;
var propertyName = parsePropertyName();
var node: Declaration;
if (token === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken) {
node = createNode(SyntaxKind.PropertyAssignment, nodePos);
node.name = propertyName;
var sig = parseSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false);
var body = parseFunctionBlock(/* ignoreMissingOpenBrace */ false);
// do not propagate property name as name for function expression
// for scenarios like
// var x = 1;
// var y = { x() { } }
// otherwise this will bring y.x into the scope of x which is incorrect
(node).initializer = makeFunctionExpression(SyntaxKind.FunctionExpression, node.pos, undefined, sig, body);
return finishNode(node);
}
var flags: NodeFlags = 0;
// Disallowing of optional property assignments happens in the grammar checker.
if (token === SyntaxKind.QuestionToken) {
flags |= NodeFlags.QuestionMark;
nextToken();
}
// Parse to check if it is short-hand property assignment or normal property assignment
if ((token === SyntaxKind.CommaToken || token === SyntaxKind.CloseBraceToken) && tokenIsIdentifier) {
node = createNode(SyntaxKind.ShorthandPropertyAssignment, nodePos);
node.name = propertyName;
}
else {
node = createNode(SyntaxKind.PropertyAssignment, nodePos);
node.name = propertyName;
parseExpected(SyntaxKind.ColonToken);
(node).initializer = allowInAnd(parseAssignmentExpression);
}
node.flags = flags;
return finishNode(node);
}
function parseObjectLiteralMember(): Node {
var initialPos = getNodePos();
var initialToken = token;
if (parseContextualModifier(SyntaxKind.GetKeyword) || parseContextualModifier(SyntaxKind.SetKeyword)) {
var kind = initialToken === SyntaxKind.GetKeyword ? SyntaxKind.GetAccessor : SyntaxKind.SetAccessor;
return parseMemberAccessorDeclaration(kind, initialPos, /*modifiers*/ undefined);
}
return parsePropertyAssignment();
}
function parseObjectLiteral(): ObjectLiteral {
var node = createNode(SyntaxKind.ObjectLiteral);
parseExpected(SyntaxKind.OpenBraceToken);
if (scanner.hasPrecedingLineBreak()) {
node.flags |= NodeFlags.MultiLine;
}
node.properties = parseDelimitedList(ParsingContext.ObjectLiteralMembers, parseObjectLiteralMember);
parseExpected(SyntaxKind.CloseBraceToken);
return finishNode(node);
}
function parseFunctionExpression(): FunctionExpression {
var pos = getNodePos();
parseExpected(SyntaxKind.FunctionKeyword);
var name = isIdentifier() ? parseIdentifier() : undefined;
var sig = parseSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false);
var body = parseFunctionBlock(/* ignoreMissingOpenBrace */ false);
return makeFunctionExpression(SyntaxKind.FunctionExpression, pos, name, sig, body);
}
function makeFunctionExpression(kind: SyntaxKind, pos: number, name: Identifier, sig: ParsedSignature, body: Node): FunctionExpression {
var node = createNode(kind, pos);
node.name = name;
node.typeParameters = sig.typeParameters;
node.parameters = sig.parameters;
node.type = sig.type;
node.body = body;
return finishNode(node);
}
function parseNewExpression(): NewExpression {
var node = createNode(SyntaxKind.NewExpression);
parseExpected(SyntaxKind.NewKeyword);
node.func = parseCallAndAccess(parsePrimaryExpression(), /* inNewExpression */ true);
if (parseOptional(SyntaxKind.OpenParenToken) || token === SyntaxKind.LessThanToken && (node.typeArguments = tryParse(parseTypeArgumentsAndOpenParen))) {
node.arguments = parseDelimitedList(ParsingContext.ArgumentExpressions, parseArgumentExpression);
parseExpected(SyntaxKind.CloseParenToken);
}
return finishNode(node);
}
// STATEMENTS
function parseBlock(ignoreMissingOpenBrace: boolean, checkForStrictMode: boolean): Block {
var node = createNode(SyntaxKind.Block);
if (parseExpected(SyntaxKind.OpenBraceToken) || ignoreMissingOpenBrace) {
node.statements = parseList(ParsingContext.BlockStatements, checkForStrictMode, parseStatement);
parseExpected(SyntaxKind.CloseBraceToken);
}
else {
node.statements = createMissingList();
}
return finishNode(node);
}
function parseFunctionBlock(ignoreMissingOpenBrace: boolean): Block {
var block = parseBlock(ignoreMissingOpenBrace, /*checkForStrictMode*/ true);
block.kind = SyntaxKind.FunctionBlock;
return block;
}
function parseEmptyStatement(): Statement {
var node = createNode(SyntaxKind.EmptyStatement);
parseExpected(SyntaxKind.SemicolonToken);
return finishNode(node);
}
function parseIfStatement(): IfStatement {
var node = createNode(SyntaxKind.IfStatement);
parseExpected(SyntaxKind.IfKeyword);
parseExpected(SyntaxKind.OpenParenToken);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
node.thenStatement = parseStatement();
node.elseStatement = parseOptional(SyntaxKind.ElseKeyword) ? parseStatement() : undefined;
return finishNode(node);
}
function parseDoStatement(): DoStatement {
var node = createNode(SyntaxKind.DoStatement);
parseExpected(SyntaxKind.DoKeyword);
node.statement = parseStatement();
parseExpected(SyntaxKind.WhileKeyword);
parseExpected(SyntaxKind.OpenParenToken);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
// From: https://mail.mozilla.org/pipermail/es-discuss/2011-August/016188.html
// 157 min --- All allen at wirfs-brock.com CONF --- "do{;}while(false)false" prohibited in
// spec but allowed in consensus reality. Approved -- this is the de-facto standard whereby
// do;while(0)x will have a semicolon inserted before x.
parseOptional(SyntaxKind.SemicolonToken);
return finishNode(node);
}
function parseWhileStatement(): WhileStatement {
var node = createNode(SyntaxKind.WhileStatement);
parseExpected(SyntaxKind.WhileKeyword);
parseExpected(SyntaxKind.OpenParenToken);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
node.statement = parseStatement();
return finishNode(node);
}
function parseForOrForInStatement(): Statement {
var pos = getNodePos();
parseExpected(SyntaxKind.ForKeyword);
parseExpected(SyntaxKind.OpenParenToken);
if (token !== SyntaxKind.SemicolonToken) {
if (parseOptional(SyntaxKind.VarKeyword)) {
var declarations = disallowInAnd(parseVariableDeclarationList);
}
else if (parseOptional(SyntaxKind.LetKeyword)) {
var declarations = setFlag(disallowInAnd(parseVariableDeclarationList), NodeFlags.Let);
}
else if (parseOptional(SyntaxKind.ConstKeyword)) {
var declarations = setFlag(disallowInAnd(parseVariableDeclarationList), NodeFlags.Const);
}
else {
var varOrInit = disallowInAnd(parseExpression);
}
}
var forOrForInStatement: IterationStatement;
if (parseOptional(SyntaxKind.InKeyword)) {
var forInStatement = createNode(SyntaxKind.ForInStatement, pos);
if (declarations) {
forInStatement.declarations = declarations;
}
else {
forInStatement.variable = varOrInit;
}
forInStatement.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
forOrForInStatement = forInStatement;
}
else {
var forStatement = createNode(SyntaxKind.ForStatement, pos);
if (declarations) {
forStatement.declarations = declarations;
}
if (varOrInit) {
forStatement.initializer = varOrInit;
}
parseExpected(SyntaxKind.SemicolonToken);
if (token !== SyntaxKind.SemicolonToken && token !== SyntaxKind.CloseParenToken) {
forStatement.condition = allowInAnd(parseExpression);
}
parseExpected(SyntaxKind.SemicolonToken);
if (token !== SyntaxKind.CloseParenToken) {
forStatement.iterator = allowInAnd(parseExpression);
}
parseExpected(SyntaxKind.CloseParenToken);
forOrForInStatement = forStatement;
}
forOrForInStatement.statement = parseStatement();
return finishNode(forOrForInStatement);
}
function parseBreakOrContinueStatement(kind: SyntaxKind): BreakOrContinueStatement {
var node = createNode(kind);
parseExpected(kind === SyntaxKind.BreakStatement ? SyntaxKind.BreakKeyword : SyntaxKind.ContinueKeyword);
if (!canParseSemicolon()) {
node.label = parseIdentifier();
}
parseSemicolon();
return finishNode(node);
}
function parseReturnStatement(): ReturnStatement {
var node = createNode(SyntaxKind.ReturnStatement);
parseExpected(SyntaxKind.ReturnKeyword);
if (!canParseSemicolon()) {
node.expression = allowInAnd(parseExpression);
}
parseSemicolon();
return finishNode(node);
}
function parseWithStatement(): WithStatement {
var node = createNode(SyntaxKind.WithStatement);
parseExpected(SyntaxKind.WithKeyword);
parseExpected(SyntaxKind.OpenParenToken);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
node.statement = parseStatement();
return finishNode(node);
}
function parseCaseClause(): CaseOrDefaultClause {
var node = createNode(SyntaxKind.CaseClause);
parseExpected(SyntaxKind.CaseKeyword);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.ColonToken);
node.statements = parseList(ParsingContext.SwitchClauseStatements, /*checkForStrictMode*/ false, parseStatement);
return finishNode(node);
}
function parseDefaultClause(): CaseOrDefaultClause {
var node = createNode(SyntaxKind.DefaultClause);
parseExpected(SyntaxKind.DefaultKeyword);
parseExpected(SyntaxKind.ColonToken);
node.statements = parseList(ParsingContext.SwitchClauseStatements, /*checkForStrictMode*/ false, parseStatement);
return finishNode(node);
}
function parseCaseOrDefaultClause(): CaseOrDefaultClause {
return token === SyntaxKind.CaseKeyword ? parseCaseClause() : parseDefaultClause();
}
function parseSwitchStatement(): SwitchStatement {
var node = createNode(SyntaxKind.SwitchStatement);
parseExpected(SyntaxKind.SwitchKeyword);
parseExpected(SyntaxKind.OpenParenToken);
node.expression = allowInAnd(parseExpression);
parseExpected(SyntaxKind.CloseParenToken);
parseExpected(SyntaxKind.OpenBraceToken);
node.clauses = parseList(ParsingContext.SwitchClauses, /*checkForStrictMode*/ false, parseCaseOrDefaultClause);
parseExpected(SyntaxKind.CloseBraceToken);
return finishNode(node);
}
function parseThrowStatement(): ThrowStatement {
var node = createNode(SyntaxKind.ThrowStatement);
parseExpected(SyntaxKind.ThrowKeyword);
if (scanner.hasPrecedingLineBreak()) {
error(Diagnostics.Line_break_not_permitted_here);
}
node.expression = allowInAnd(parseExpression);
parseSemicolon();
return finishNode(node);
}
// TODO: Review for error recovery
function parseTryStatement(): TryStatement {
var node = createNode(SyntaxKind.TryStatement);
node.tryBlock = parseTokenAndBlock(SyntaxKind.TryKeyword, SyntaxKind.TryBlock);
if (token === SyntaxKind.CatchKeyword) {
node.catchBlock = parseCatchBlock();
}
if (token === SyntaxKind.FinallyKeyword) {
node.finallyBlock = parseTokenAndBlock(SyntaxKind.FinallyKeyword, SyntaxKind.FinallyBlock);
}
if (!(node.catchBlock || node.finallyBlock)) {
error(Diagnostics.catch_or_finally_expected);
}
return finishNode(node);
}
function parseTokenAndBlock(token: SyntaxKind, kind: SyntaxKind): Block {
var pos = getNodePos();
parseExpected(token);
var result = parseBlock(/* ignoreMissingOpenBrace */ false, /*checkForStrictMode*/ false);
result.kind = kind;
result.pos = pos;
return result;
}
function parseCatchBlock(): CatchBlock {
var pos = getNodePos();
parseExpected(SyntaxKind.CatchKeyword);
parseExpected(SyntaxKind.OpenParenToken);
var variable = parseIdentifier();
var typeAnnotation = parseTypeAnnotation();
parseExpected(SyntaxKind.CloseParenToken);
var result = parseBlock(/* ignoreMissingOpenBrace */ false, /*checkForStrictMode*/ false);
result.kind = SyntaxKind.CatchBlock;
result.pos = pos;
result.variable = variable;
result.type = typeAnnotation;
return result;
}
function parseDebuggerStatement(): Statement {
var node = createNode(SyntaxKind.DebuggerStatement);
parseExpected(SyntaxKind.DebuggerKeyword);
parseSemicolon();
return finishNode(node);
}
function isLabel(): boolean {
return isIdentifier() && lookAhead(() => nextToken() === SyntaxKind.ColonToken);
}
function parseLabeledStatement(): LabeledStatement {
var node = createNode(SyntaxKind.LabeledStatement);
node.label = parseIdentifier();
parseExpected(SyntaxKind.ColonToken);
node.statement = parseStatement();
return finishNode(node);
}
function parseExpressionStatement(): ExpressionStatement {
var node = createNode(SyntaxKind.ExpressionStatement);
node.expression = allowInAnd(parseExpression);
parseSemicolon();
return finishNode(node);
}
function isStatement(inErrorRecovery: boolean): boolean {
switch (token) {
case SyntaxKind.SemicolonToken:
// If we're in error recovery, then we don't want to treat ';' as an empty statement.
// The problem is that ';' can show up in far too many contexts, and if we see one
// and assume it's a statement, then we may bail out inappropriately from whatever
// we're parsing. For example, if we have a semicolon in the middle of a class, then
// we really don't want to assume the class is over and we're on a statement in the
// outer module. We just want to consume and move on.
return !inErrorRecovery;
case SyntaxKind.OpenBraceToken:
case SyntaxKind.VarKeyword:
case SyntaxKind.LetKeyword:
case SyntaxKind.FunctionKeyword:
case SyntaxKind.IfKeyword:
case SyntaxKind.DoKeyword:
case SyntaxKind.WhileKeyword:
case SyntaxKind.ForKeyword:
case SyntaxKind.ContinueKeyword:
case SyntaxKind.BreakKeyword:
case SyntaxKind.ReturnKeyword:
case SyntaxKind.WithKeyword:
case SyntaxKind.SwitchKeyword:
case SyntaxKind.ThrowKeyword:
case SyntaxKind.TryKeyword:
case SyntaxKind.DebuggerKeyword:
// 'catch' and 'finally' do not actually indicate that the code is part of a statement,
// however, we say they are here so that we may gracefully parse them and error later.
case SyntaxKind.CatchKeyword:
case SyntaxKind.FinallyKeyword:
return true;
case SyntaxKind.ConstKeyword:
// const keyword can precede enum keyword when defining constant enums
// 'const enum' do not start statement.
// In ES 6 'enum' is a future reserved keyword, so it should not be used as identifier
var isConstEnum = lookAhead(() => nextToken() === SyntaxKind.EnumKeyword);
return !isConstEnum;
case SyntaxKind.InterfaceKeyword:
case SyntaxKind.ClassKeyword:
case SyntaxKind.ModuleKeyword:
case SyntaxKind.EnumKeyword:
case SyntaxKind.TypeKeyword:
// When followed by an identifier, these do not start a statement but might
// instead be following declarations
if (isDeclarationStart()) {
return false;
}
case SyntaxKind.PublicKeyword:
case SyntaxKind.PrivateKeyword:
case SyntaxKind.ProtectedKeyword:
case SyntaxKind.StaticKeyword:
// When followed by an identifier or keyword, these do not start a statement but
// might instead be following type members
if (lookAhead(() => nextToken() >= SyntaxKind.Identifier)) {
return false;
}
default:
return isStartOfExpression();
}
}
function parseStatement(): Statement {
switch (token) {
case SyntaxKind.OpenBraceToken:
return parseBlock(/* ignoreMissingOpenBrace */ false, /*checkForStrictMode*/ false);
case SyntaxKind.VarKeyword:
case SyntaxKind.LetKeyword:
case SyntaxKind.ConstKeyword:
// const here should always be parsed as const declaration because of check in 'isStatement'
return parseVariableStatement(scanner.getStartPos(), /*modifiers:*/ undefined);
case SyntaxKind.FunctionKeyword:
return parseFunctionDeclaration(scanner.getStartPos(), /*modifiers:*/ undefined);
case SyntaxKind.SemicolonToken:
return parseEmptyStatement();
case SyntaxKind.IfKeyword:
return parseIfStatement();
case SyntaxKind.DoKeyword:
return parseDoStatement();
case SyntaxKind.WhileKeyword:
return parseWhileStatement();
case SyntaxKind.ForKeyword:
return parseForOrForInStatement();
case SyntaxKind.ContinueKeyword:
return parseBreakOrContinueStatement(SyntaxKind.ContinueStatement);
case SyntaxKind.BreakKeyword:
return parseBreakOrContinueStatement(SyntaxKind.BreakStatement);
case SyntaxKind.ReturnKeyword:
return parseReturnStatement();
case SyntaxKind.WithKeyword:
return parseWithStatement();
case SyntaxKind.SwitchKeyword:
return parseSwitchStatement();
case SyntaxKind.ThrowKeyword:
return parseThrowStatement();
case SyntaxKind.TryKeyword:
// Include the next two for error recovery.
case SyntaxKind.CatchKeyword:
case SyntaxKind.FinallyKeyword:
return parseTryStatement();
case SyntaxKind.DebuggerKeyword:
return parseDebuggerStatement();
default:
return isLabel()
? parseLabeledStatement()
: parseExpressionStatement();
}
}
function parseFunctionBlockOrSemicolon(): Block {
if (token === SyntaxKind.OpenBraceToken) {
return parseFunctionBlock(/* ignoreMissingOpenBrace */ false);
}
if (canParseSemicolon()) {
parseSemicolon();
return undefined;
}
error(Diagnostics.Block_or_expected); // block or ';' expected
}
// DECLARATIONS
function parseVariableDeclaration(): VariableDeclaration {
var node = createNode(SyntaxKind.VariableDeclaration);
node.name = parseIdentifier();
node.type = parseTypeAnnotation();
node.initializer = parseInitializer(/*inParameter*/ false);
return finishNode(node);
}
function setFlag(array: NodeArray, flag: NodeFlags): NodeArray {
for (var i = 0, n = array.length; i < n; i++) {
array[i].flags |= flag;
}
return array;
}
function parseVariableDeclarationList(): NodeArray {
return parseDelimitedList(ParsingContext.VariableDeclarations, parseVariableDeclaration);
}
function parseVariableStatement(fullStart: number, modifiers: ModifiersArray): VariableStatement {
var node = createNode(SyntaxKind.VariableStatement, fullStart);
setModifiers(node, modifiers);
if (token === SyntaxKind.LetKeyword) {
node.flags |= NodeFlags.Let;
}
else if (token === SyntaxKind.ConstKeyword) {
node.flags |= NodeFlags.Const;
}
else {
Debug.assert(token === SyntaxKind.VarKeyword);
}
nextToken();
node.declarations = allowInAnd(parseVariableDeclarationList);
setFlag(node.declarations, node.flags);
parseSemicolon();
return finishNode(node);
}
function parseFunctionDeclaration(fullStart: number, modifiers: ModifiersArray): FunctionLikeDeclaration {
var node = createNode(SyntaxKind.FunctionDeclaration, fullStart);
setModifiers(node, modifiers);
parseExpected(SyntaxKind.FunctionKeyword);
node.name = parseIdentifier();
fillSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false, node);
node.body = parseFunctionBlockOrSemicolon();
return finishNode(node);
}
function parseConstructorDeclaration(pos: number, modifiers: ModifiersArray): ConstructorDeclaration {
var node = createNode(SyntaxKind.Constructor, pos);
setModifiers(node, modifiers);
parseExpected(SyntaxKind.ConstructorKeyword);
fillSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false, node);
node.body = parseFunctionBlockOrSemicolon();
return finishNode(node);
}
function parsePropertyMemberDeclaration(fullStart: number, modifiers: ModifiersArray): Declaration {
var name = parsePropertyName();
var flags = modifiers ? modifiers.flags : 0;
if (parseOptional(SyntaxKind.QuestionToken)) {
// Note: this is not legal as per the grammar. But we allow it in the parser and
// report an error in the grammar checker.
flags |= NodeFlags.QuestionMark;
}
if (token === SyntaxKind.OpenParenToken || token === SyntaxKind.LessThanToken) {
var method = createNode(SyntaxKind.Method, fullStart);
setModifiers(method, modifiers);
if (flags) {
method.flags = flags;
}
method.name = name;
fillSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false, method);
method.body = parseFunctionBlockOrSemicolon();
return finishNode(method);
}
else {
var property = createNode(SyntaxKind.Property, fullStart);
setModifiers(property, modifiers);
if (flags) {
property.flags = flags;
}
property.name = name;
property.type = parseTypeAnnotation();
property.initializer = allowInAnd(() => parseInitializer(/*inParameter*/ false));
parseSemicolon();
return finishNode(property);
}
}
function parseMemberAccessorDeclaration(kind: SyntaxKind, fullStart: number, modifiers: ModifiersArray): MethodDeclaration {
var node = createNode(kind, fullStart);
setModifiers(node, modifiers);
node.name = parsePropertyName();
fillSignature(SyntaxKind.CallSignature, SyntaxKind.ColonToken, /* returnTokenRequired */ false, node);
node.body = parseFunctionBlockOrSemicolon();
return finishNode(node);
}
function isClassMemberStart(): boolean {
var idToken: SyntaxKind;
// Eat up all modifiers, but hold on to the last one in case it is actually an identifier.
while (isModifier(token)) {
idToken = token;
nextToken();
}
// Try to get the first property-like token following all modifiers.
// This can either be an identifier or the 'get' or 'set' keywords.
if (isPropertyName()) {
idToken = token;
nextToken();
}
// Index signatures are class members; we can parse.
if (token === SyntaxKind.OpenBracketToken) {
return true;
}
// If we were able to get any potential identifier...
if (idToken !== undefined) {
// If we have a non-keyword identifier, or if we have an accessor, then it's safe to parse.
if (!isKeyword(idToken) || idToken === SyntaxKind.SetKeyword || idToken === SyntaxKind.GetKeyword) {
return true;
}
// If it *is* a keyword, but not an accessor, check a little farther along
// to see if it should actually be parsed as a class member.
switch (token) {
case SyntaxKind.OpenParenToken: // Method declaration
case SyntaxKind.LessThanToken: // Generic Method declaration
case SyntaxKind.ColonToken: // Type Annotation for declaration
case SyntaxKind.EqualsToken: // Initializer for declaration
case SyntaxKind.QuestionToken: // Not valid, but permitted so that it gets caught later on.
return true;
default:
// Covers
// - Semicolons (declaration termination)
// - Closing braces (end-of-class, must be declaration)
// - End-of-files (not valid, but permitted so that it gets caught later on)
// - Line-breaks (enabling *automatic semicolon insertion*)
return canParseSemicolon();
}
}
return false;
}
function parseModifiers(): ModifiersArray {
var flags = 0;
var modifiers: ModifiersArray;
while (true) {
var modifierStart = scanner.getTokenPos();
var modifierKind = token;
if (!parseAnyContextualModifier()) {
break;
}
if (!modifiers) {
modifiers = [];
}
flags |= modifierToFlag(modifierKind);
modifiers.push(finishNode(createNode(modifierKind, modifierStart)));
}
if (modifiers) {
modifiers.flags = flags;
}
return modifiers;
}
function parseClassMemberDeclaration(): Declaration {
var fullStart = getNodePos();
var modifiers = parseModifiers();
if (parseContextualModifier(SyntaxKind.GetKeyword)) {
return parseMemberAccessorDeclaration(SyntaxKind.GetAccessor, fullStart, modifiers);
}
if (parseContextualModifier(SyntaxKind.SetKeyword)) {
return parseMemberAccessorDeclaration(SyntaxKind.SetAccessor, fullStart, modifiers);
}
if (token === SyntaxKind.ConstructorKeyword) {
return parseConstructorDeclaration(fullStart, modifiers);
}
if (token >= SyntaxKind.Identifier || token === SyntaxKind.StringLiteral || token === SyntaxKind.NumericLiteral) {
return parsePropertyMemberDeclaration(fullStart, modifiers);
}
if (token === SyntaxKind.OpenBracketToken) {
return parseIndexSignatureMember(fullStart, modifiers);
}
// 'isClassMemberStart' should have hinted not to attempt parsing.
Debug.fail("Should not have attempted to parse class member declaration.");
}
function parseClassDeclaration(fullStart: number, modifiers: ModifiersArray): ClassDeclaration {
var node = createNode(SyntaxKind.ClassDeclaration, fullStart);
setModifiers(node, modifiers);
parseExpected(SyntaxKind.ClassKeyword);
node.name = parseIdentifier();
node.typeParameters = parseTypeParameters();
// TODO(jfreeman): Parse arbitrary sequence of heritage clauses and error for order and duplicates
node.baseType = parseOptional(SyntaxKind.ExtendsKeyword) ? parseTypeReference() : undefined;
if (parseOptional(SyntaxKind.ImplementsKeyword)) {
node.implementedTypes = parseDelimitedList(ParsingContext.BaseTypeReferences, parseTypeReference);
}
if (parseExpected(SyntaxKind.OpenBraceToken)) {
node.members = parseList(ParsingContext.ClassMembers, /*checkForStrictMode*/ false, parseClassMemberDeclaration);
parseExpected(SyntaxKind.CloseBraceToken);
}
else {
node.members = createMissingList();
}
return finishNode(node);
}
function parseInterfaceDeclaration(fullStart: number, modifiers: ModifiersArray): InterfaceDeclaration {
var node = createNode(SyntaxKind.InterfaceDeclaration, fullStart);
setModifiers(node, modifiers);
parseExpected(SyntaxKind.InterfaceKeyword);
node.name = parseIdentifier();
node.typeParameters = parseTypeParameters();
// TODO(jfreeman): Parse arbitrary sequence of heritage clauses and error for order and duplicates
if (parseOptional(SyntaxKind.ExtendsKeyword)) {
node.baseTypes = parseDelimitedList(ParsingContext.BaseTypeReferences, parseTypeReference);
}
node.members = parseObjectType();
return finishNode(node);
}
function parseTypeAliasDeclaration(fullStart: number, modifiers: ModifiersArray): TypeAliasDeclaration {
var node = createNode(SyntaxKind.TypeAliasDeclaration, fullStart);
setModifiers(node, modifiers);
parseExpected(SyntaxKind.TypeKeyword);
node.name = parseIdentifier();
parseExpected(SyntaxKind.EqualsToken);
node.type = parseType();
parseSemicolon();
return finishNode(node);
}
// In an ambient declaration, the grammar only allows integer literals as initializers.
// In a non-ambient declaration, the grammar allows uninitialized members only in a
// ConstantEnumMemberSection, which starts at the beginning of an enum declaration
// or any time an integer literal initializer is encountered.
function parseEnumMember(): EnumMember {
var node = createNode(SyntaxKind.EnumMember, scanner.getStartPos());
node.name = parsePropertyName();
node.initializer = allowInAnd(() => parseInitializer(/*inParameter*/ false));
return finishNode(node);
}
function parseAndCheckEnumDeclaration(fullStart: number, flags: NodeFlags): EnumDeclaration {
var node = createNode(SyntaxKind.EnumDeclaration, fullStart);
node.flags = flags;
if (flags & NodeFlags.Const) {
parseExpected(SyntaxKind.ConstKeyword);
}
parseExpected(SyntaxKind.EnumKeyword);
node.name = parseIdentifier();
if (parseExpected(SyntaxKind.OpenBraceToken)) {
node.members = parseDelimitedList(ParsingContext.EnumMembers, parseEnumMember);
parseExpected(SyntaxKind.CloseBraceToken);
}
else {
node.members = createMissingList();
}
return finishNode(node);
}
function parseModuleBody(): Block {
var node = createNode(SyntaxKind.ModuleBlock, scanner.getStartPos());
if (parseExpected(SyntaxKind.OpenBraceToken)) {
node.statements = parseList(ParsingContext.ModuleElements, /*checkForStrictMode*/ false, parseModuleElement);
parseExpected(SyntaxKind.CloseBraceToken);
}
else {
node.statements = createMissingList();
}
return finishNode(node);
}
function parseInternalModuleTail(fullStart: number, flags: NodeFlags): ModuleDeclaration {
var node = createNode(SyntaxKind.ModuleDeclaration, fullStart);
node.flags = flags;
node.name = parseIdentifier();
node.body = parseOptional(SyntaxKind.DotToken)
? parseInternalModuleTail(getNodePos(), NodeFlags.Export)
: parseModuleBody();
return finishNode(node);
}
function parseAmbientExternalModuleDeclaration(fullStart: number, flags: NodeFlags): ModuleDeclaration {
var node = createNode(SyntaxKind.ModuleDeclaration, fullStart);
node.flags = flags;
node.name = parseStringLiteral();
node.body = parseModuleBody();
return finishNode(node);
}
function parseModuleDeclaration(fullStart: number, flags: NodeFlags): ModuleDeclaration {
parseExpected(SyntaxKind.ModuleKeyword);
return token === SyntaxKind.StringLiteral
? parseAmbientExternalModuleDeclaration(fullStart, flags)
: parseInternalModuleTail(fullStart, flags);
}
function parseImportDeclaration(fullStart: number, modifiers: ModifiersArray): ImportDeclaration {
var node = createNode(SyntaxKind.ImportDeclaration, fullStart);
setModifiers(node, modifiers);
parseExpected(SyntaxKind.ImportKeyword);
node.name = parseIdentifier();
parseExpected(SyntaxKind.EqualsToken);
var entityName = parseEntityName(/*allowReservedWords*/ false);
if (entityName.kind === SyntaxKind.Identifier && (