/// /* @internal */ namespace ts { let nextSymbolId = 1; let nextNodeId = 1; let nextMergeId = 1; export function getNodeId(node: Node): number { if (!node.id) node.id = nextNodeId++; return node.id; } export let checkTime = 0; export function getSymbolId(symbol: Symbol): number { if (!symbol.id) { symbol.id = nextSymbolId++; } return symbol.id; } export function createTypeChecker(host: TypeCheckerHost, produceDiagnostics: boolean): TypeChecker { // Cancellation that controls whether or not we can cancel in the middle of type checking. // In general cancelling is *not* safe for the type checker. We might be in the middle of // computing something, and we will leave our internals in an inconsistent state. Callers // who set the cancellation token should catch if a cancellation exception occurs, and // should throw away and create a new TypeChecker. // // Currently we only support setting the cancellation token when getting diagnostics. This // is because diagnostics can be quite expensive, and we want to allow hosts to bail out if // they no longer need the information (for example, if the user started editing again). let cancellationToken: CancellationToken; let Symbol = objectAllocator.getSymbolConstructor(); let Type = objectAllocator.getTypeConstructor(); let Signature = objectAllocator.getSignatureConstructor(); let typeCount = 0; let emptyArray: any[] = []; let emptySymbols: SymbolTable = {}; let compilerOptions = host.getCompilerOptions(); let languageVersion = compilerOptions.target || ScriptTarget.ES3; let emitResolver = createResolver(); let undefinedSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Transient, "undefined"); let argumentsSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Transient, "arguments"); let checker: TypeChecker = { getNodeCount: () => sum(host.getSourceFiles(), "nodeCount"), getIdentifierCount: () => sum(host.getSourceFiles(), "identifierCount"), getSymbolCount: () => sum(host.getSourceFiles(), "symbolCount"), getTypeCount: () => typeCount, isUndefinedSymbol: symbol => symbol === undefinedSymbol, isArgumentsSymbol: symbol => symbol === argumentsSymbol, getDiagnostics, getGlobalDiagnostics, getTypeOfSymbolAtLocation, getDeclaredTypeOfSymbol, getPropertiesOfType, getPropertyOfType, getSignaturesOfType, getIndexTypeOfType, getReturnTypeOfSignature, getSymbolsInScope, getSymbolAtLocation, getShorthandAssignmentValueSymbol, getTypeAtLocation, typeToString, getSymbolDisplayBuilder, symbolToString, getAugmentedPropertiesOfType, getRootSymbols, getContextualType, getFullyQualifiedName, getResolvedSignature, getConstantValue, isValidPropertyAccess, getSignatureFromDeclaration, isImplementationOfOverload, getAliasedSymbol: resolveAlias, getEmitResolver, getExportsOfModule: getExportsOfModuleAsArray, getJsxElementAttributesType, getJsxIntrinsicTagNames }; let unknownSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Transient, "unknown"); let resolvingSymbol = createSymbol(SymbolFlags.Transient, "__resolving__"); let anyType = createIntrinsicType(TypeFlags.Any, "any"); let stringType = createIntrinsicType(TypeFlags.String, "string"); let numberType = createIntrinsicType(TypeFlags.Number, "number"); let booleanType = createIntrinsicType(TypeFlags.Boolean, "boolean"); let esSymbolType = createIntrinsicType(TypeFlags.ESSymbol, "symbol"); let voidType = createIntrinsicType(TypeFlags.Void, "void"); let undefinedType = createIntrinsicType(TypeFlags.Undefined | TypeFlags.ContainsUndefinedOrNull, "undefined"); let nullType = createIntrinsicType(TypeFlags.Null | TypeFlags.ContainsUndefinedOrNull, "null"); let unknownType = createIntrinsicType(TypeFlags.Any, "unknown"); let circularType = createIntrinsicType(TypeFlags.Any, "__circular__"); let emptyObjectType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); let emptyGenericType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); emptyGenericType.instantiations = {}; let anyFunctionType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); let noConstraintType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); let anySignature = createSignature(undefined, undefined, emptyArray, anyType, undefined, 0, false, false); let unknownSignature = createSignature(undefined, undefined, emptyArray, unknownType, undefined, 0, false, false); let globals: SymbolTable = {}; let globalESSymbolConstructorSymbol: Symbol; let getGlobalPromiseConstructorSymbol: () => Symbol; let globalObjectType: ObjectType; let globalFunctionType: ObjectType; let globalArrayType: GenericType; let globalStringType: ObjectType; let globalNumberType: ObjectType; let globalBooleanType: ObjectType; let globalRegExpType: ObjectType; let globalTemplateStringsArrayType: ObjectType; let globalESSymbolType: ObjectType; let jsxElementType: ObjectType; /** Lazily loaded, use getJsxIntrinsicElementType() */ let jsxIntrinsicElementsType: ObjectType; let globalIterableType: GenericType; let globalIteratorType: GenericType; let globalIterableIteratorType: GenericType; let anyArrayType: Type; let getGlobalClassDecoratorType: () => ObjectType; let getGlobalParameterDecoratorType: () => ObjectType; let getGlobalPropertyDecoratorType: () => ObjectType; let getGlobalMethodDecoratorType: () => ObjectType; let getGlobalTypedPropertyDescriptorType: () => ObjectType; let getGlobalPromiseType: () => ObjectType; let tryGetGlobalPromiseType: () => ObjectType; let getGlobalPromiseLikeType: () => ObjectType; let getInstantiatedGlobalPromiseLikeType: () => ObjectType; let getGlobalPromiseConstructorLikeType: () => ObjectType; let getGlobalThenableType: () => ObjectType; let tupleTypes: Map = {}; let unionTypes: Map = {}; let intersectionTypes: Map = {}; let stringLiteralTypes: Map = {}; let emitExtends = false; let emitDecorate = false; let emitParam = false; let emitAwaiter = false; let emitGenerator = false; let resolutionTargets: Object[] = []; let resolutionResults: boolean[] = []; let mergedSymbols: Symbol[] = []; let symbolLinks: SymbolLinks[] = []; let nodeLinks: NodeLinks[] = []; let potentialThisCollisions: Node[] = []; let awaitedTypeStack: number[] = []; let diagnostics = createDiagnosticCollection(); let primitiveTypeInfo: Map<{ type: Type; flags: TypeFlags }> = { "string": { type: stringType, flags: TypeFlags.StringLike }, "number": { type: numberType, flags: TypeFlags.NumberLike }, "boolean": { type: booleanType, flags: TypeFlags.Boolean }, "symbol": { type: esSymbolType, flags: TypeFlags.ESSymbol } }; const JsxNames = { JSX: "JSX", IntrinsicElements: "IntrinsicElements", ElementClass: "ElementClass", ElementAttributesPropertyNameContainer: "ElementAttributesProperty", Element: "Element" }; let subtypeRelation: Map = {}; let assignableRelation: Map = {}; let identityRelation: Map = {}; initializeTypeChecker(); return checker; function getEmitResolver(sourceFile: SourceFile, cancellationToken: CancellationToken) { // Ensure we have all the type information in place for this file so that all the // emitter questions of this resolver will return the right information. getDiagnostics(sourceFile, cancellationToken); return emitResolver; } function error(location: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): void { let diagnostic = location ? createDiagnosticForNode(location, message, arg0, arg1, arg2) : createCompilerDiagnostic(message, arg0, arg1, arg2); diagnostics.add(diagnostic); } function createSymbol(flags: SymbolFlags, name: string): Symbol { return new Symbol(flags, name); } function getExcludedSymbolFlags(flags: SymbolFlags): SymbolFlags { let result: SymbolFlags = 0; if (flags & SymbolFlags.BlockScopedVariable) result |= SymbolFlags.BlockScopedVariableExcludes; if (flags & SymbolFlags.FunctionScopedVariable) result |= SymbolFlags.FunctionScopedVariableExcludes; if (flags & SymbolFlags.Property) result |= SymbolFlags.PropertyExcludes; if (flags & SymbolFlags.EnumMember) result |= SymbolFlags.EnumMemberExcludes; if (flags & SymbolFlags.Function) result |= SymbolFlags.FunctionExcludes; if (flags & SymbolFlags.Class) result |= SymbolFlags.ClassExcludes; if (flags & SymbolFlags.Interface) result |= SymbolFlags.InterfaceExcludes; if (flags & SymbolFlags.RegularEnum) result |= SymbolFlags.RegularEnumExcludes; if (flags & SymbolFlags.ConstEnum) result |= SymbolFlags.ConstEnumExcludes; if (flags & SymbolFlags.ValueModule) result |= SymbolFlags.ValueModuleExcludes; if (flags & SymbolFlags.Method) result |= SymbolFlags.MethodExcludes; if (flags & SymbolFlags.GetAccessor) result |= SymbolFlags.GetAccessorExcludes; if (flags & SymbolFlags.SetAccessor) result |= SymbolFlags.SetAccessorExcludes; if (flags & SymbolFlags.TypeParameter) result |= SymbolFlags.TypeParameterExcludes; if (flags & SymbolFlags.TypeAlias) result |= SymbolFlags.TypeAliasExcludes; if (flags & SymbolFlags.Alias) result |= SymbolFlags.AliasExcludes; return result; } function recordMergedSymbol(target: Symbol, source: Symbol) { if (!source.mergeId) source.mergeId = nextMergeId++; mergedSymbols[source.mergeId] = target; } function cloneSymbol(symbol: Symbol): Symbol { let result = createSymbol(symbol.flags | SymbolFlags.Merged, symbol.name); result.declarations = symbol.declarations.slice(0); result.parent = symbol.parent; if (symbol.valueDeclaration) result.valueDeclaration = symbol.valueDeclaration; if (symbol.constEnumOnlyModule) result.constEnumOnlyModule = true; if (symbol.members) result.members = cloneSymbolTable(symbol.members); if (symbol.exports) result.exports = cloneSymbolTable(symbol.exports); recordMergedSymbol(result, symbol); return result; } function mergeSymbol(target: Symbol, source: Symbol) { if (!(target.flags & getExcludedSymbolFlags(source.flags))) { if (source.flags & SymbolFlags.ValueModule && target.flags & SymbolFlags.ValueModule && target.constEnumOnlyModule && !source.constEnumOnlyModule) { // reset flag when merging instantiated module into value module that has only const enums target.constEnumOnlyModule = false; } target.flags |= source.flags; if (!target.valueDeclaration && source.valueDeclaration) target.valueDeclaration = source.valueDeclaration; forEach(source.declarations, node => { target.declarations.push(node); }); if (source.members) { if (!target.members) target.members = {}; mergeSymbolTable(target.members, source.members); } if (source.exports) { if (!target.exports) target.exports = {}; mergeSymbolTable(target.exports, source.exports); } recordMergedSymbol(target, source); } else { let message = target.flags & SymbolFlags.BlockScopedVariable || source.flags & SymbolFlags.BlockScopedVariable ? Diagnostics.Cannot_redeclare_block_scoped_variable_0 : Diagnostics.Duplicate_identifier_0; forEach(source.declarations, node => { error(node.name ? node.name : node, message, symbolToString(source)); }); forEach(target.declarations, node => { error(node.name ? node.name : node, message, symbolToString(source)); }); } } function cloneSymbolTable(symbolTable: SymbolTable): SymbolTable { let result: SymbolTable = {}; for (let id in symbolTable) { if (hasProperty(symbolTable, id)) { result[id] = symbolTable[id]; } } return result; } function mergeSymbolTable(target: SymbolTable, source: SymbolTable) { for (let id in source) { if (hasProperty(source, id)) { if (!hasProperty(target, id)) { target[id] = source[id]; } else { let symbol = target[id]; if (!(symbol.flags & SymbolFlags.Merged)) { target[id] = symbol = cloneSymbol(symbol); } mergeSymbol(symbol, source[id]); } } } } function getSymbolLinks(symbol: Symbol): SymbolLinks { if (symbol.flags & SymbolFlags.Transient) return symbol; let id = getSymbolId(symbol); return symbolLinks[id] || (symbolLinks[id] = {}); } function getNodeLinks(node: Node): NodeLinks { let nodeId = getNodeId(node); return nodeLinks[nodeId] || (nodeLinks[nodeId] = {}); } function getSourceFile(node: Node): SourceFile { return getAncestor(node, SyntaxKind.SourceFile); } function isGlobalSourceFile(node: Node) { return node.kind === SyntaxKind.SourceFile && !isExternalModule(node); } function getSymbol(symbols: SymbolTable, name: string, meaning: SymbolFlags): Symbol { if (meaning && hasProperty(symbols, name)) { let symbol = symbols[name]; Debug.assert((symbol.flags & SymbolFlags.Instantiated) === 0, "Should never get an instantiated symbol here."); if (symbol.flags & meaning) { return symbol; } if (symbol.flags & SymbolFlags.Alias) { let target = resolveAlias(symbol); // Unknown symbol means an error occurred in alias resolution, treat it as positive answer to avoid cascading errors if (target === unknownSymbol || target.flags & meaning) { return symbol; } } } // return undefined if we can't find a symbol. } /** Returns true if node1 is defined before node 2**/ function isDefinedBefore(node1: Node, node2: Node): boolean { let file1 = getSourceFileOfNode(node1); let file2 = getSourceFileOfNode(node2); if (file1 === file2) { return node1.pos <= node2.pos; } if (!compilerOptions.out) { return true; } let sourceFiles = host.getSourceFiles(); return sourceFiles.indexOf(file1) <= sourceFiles.indexOf(file2); } // Resolve a given name for a given meaning at a given location. An error is reported if the name was not found and // the nameNotFoundMessage argument is not undefined. Returns the resolved symbol, or undefined if no symbol with // the given name can be found. function resolveName(location: Node, name: string, meaning: SymbolFlags, nameNotFoundMessage: DiagnosticMessage, nameArg: string | Identifier): Symbol { let result: Symbol; let lastLocation: Node; let propertyWithInvalidInitializer: Node; let errorLocation = location; let grandparent: Node; loop: while (location) { // Locals of a source file are not in scope (because they get merged into the global symbol table) if (location.locals && !isGlobalSourceFile(location)) { if (result = getSymbol(location.locals, name, meaning)) { // Type parameters of a function are in scope in the entire function declaration, including the parameter // list and return type. However, local types are only in scope in the function body. if (!(meaning & SymbolFlags.Type) || !(result.flags & (SymbolFlags.Type & ~SymbolFlags.TypeParameter)) || !isFunctionLike(location) || lastLocation === (location).body) { break loop; } result = undefined; } } switch (location.kind) { case SyntaxKind.SourceFile: if (!isExternalModule(location)) break; case SyntaxKind.ModuleDeclaration: let moduleExports = getSymbolOfNode(location).exports; if (location.kind === SyntaxKind.SourceFile || (location.kind === SyntaxKind.ModuleDeclaration && (location).name.kind === SyntaxKind.StringLiteral)) { // It's an external module. Because of module/namespace merging, a module's exports are in scope, // yet we never want to treat an export specifier as putting a member in scope. Therefore, // if the name we find is purely an export specifier, it is not actually considered in scope. // Two things to note about this: // 1. We have to check this without calling getSymbol. The problem with calling getSymbol // on an export specifier is that it might find the export specifier itself, and try to // resolve it as an alias. This will cause the checker to consider the export specifier // a circular alias reference when it might not be. // 2. We check === SymbolFlags.Alias in order to check that the symbol is *purely* // an alias. If we used &, we'd be throwing out symbols that have non alias aspects, // which is not the desired behavior. if (hasProperty(moduleExports, name) && moduleExports[name].flags === SymbolFlags.Alias && getDeclarationOfKind(moduleExports[name], SyntaxKind.ExportSpecifier)) { break; } result = moduleExports["default"]; let localSymbol = getLocalSymbolForExportDefault(result); if (result && localSymbol && (result.flags & meaning) && localSymbol.name === name) { break loop; } result = undefined; } if (result = getSymbol(moduleExports, name, meaning & SymbolFlags.ModuleMember)) { break loop; } break; case SyntaxKind.EnumDeclaration: if (result = getSymbol(getSymbolOfNode(location).exports, name, meaning & SymbolFlags.EnumMember)) { break loop; } break; case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: // TypeScript 1.0 spec (April 2014): 8.4.1 // Initializer expressions for instance member variables are evaluated in the scope // of the class constructor body but are not permitted to reference parameters or // local variables of the constructor. This effectively means that entities from outer scopes // by the same name as a constructor parameter or local variable are inaccessible // in initializer expressions for instance member variables. if (isClassLike(location.parent) && !(location.flags & NodeFlags.Static)) { let ctor = findConstructorDeclaration(location.parent); if (ctor && ctor.locals) { if (getSymbol(ctor.locals, name, meaning & SymbolFlags.Value)) { // Remember the property node, it will be used later to report appropriate error propertyWithInvalidInitializer = location; } } } break; case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: case SyntaxKind.InterfaceDeclaration: if (result = getSymbol(getSymbolOfNode(location).members, name, meaning & SymbolFlags.Type)) { if (lastLocation && lastLocation.flags & NodeFlags.Static) { // TypeScript 1.0 spec (April 2014): 3.4.1 // The scope of a type parameter extends over the entire declaration with which the type // parameter list is associated, with the exception of static member declarations in classes. error(errorLocation, Diagnostics.Static_members_cannot_reference_class_type_parameters); return undefined; } break loop; } if (location.kind === SyntaxKind.ClassExpression && meaning & SymbolFlags.Class) { let className = (location).name; if (className && name === className.text) { result = location.symbol; break loop; } } break; // It is not legal to reference a class's own type parameters from a computed property name that // belongs to the class. For example: // // function foo() { return '' } // class C { // <-- Class's own type parameter T // [foo()]() { } // <-- Reference to T from class's own computed property // } // case SyntaxKind.ComputedPropertyName: grandparent = location.parent.parent; if (isClassLike(grandparent) || grandparent.kind === SyntaxKind.InterfaceDeclaration) { // A reference to this grandparent's type parameters would be an error if (result = getSymbol(getSymbolOfNode(grandparent).members, name, meaning & SymbolFlags.Type)) { error(errorLocation, Diagnostics.A_computed_property_name_cannot_reference_a_type_parameter_from_its_containing_type); return undefined; } } break; case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.Constructor: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionDeclaration: case SyntaxKind.ArrowFunction: if (meaning & SymbolFlags.Variable && name === "arguments") { result = argumentsSymbol; break loop; } break; case SyntaxKind.FunctionExpression: if (meaning & SymbolFlags.Variable && name === "arguments") { result = argumentsSymbol; break loop; } if (meaning & SymbolFlags.Function) { let functionName = (location).name; if (functionName && name === functionName.text) { result = location.symbol; break loop; } } break; case SyntaxKind.Decorator: // Decorators are resolved at the class declaration. Resolving at the parameter // or member would result in looking up locals in the method. // // function y() {} // class C { // method(@y x, y) {} // <-- decorator y should be resolved at the class declaration, not the parameter. // } // if (location.parent && location.parent.kind === SyntaxKind.Parameter) { location = location.parent; } // // function y() {} // class C { // @y method(x, y) {} // <-- decorator y should be resolved at the class declaration, not the method. // } // if (location.parent && isClassElement(location.parent)) { location = location.parent; } break; } lastLocation = location; location = location.parent; } if (!result) { result = getSymbol(globals, name, meaning); } if (!result) { if (nameNotFoundMessage) { error(errorLocation, nameNotFoundMessage, typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg)); } return undefined; } // Perform extra checks only if error reporting was requested if (nameNotFoundMessage) { if (propertyWithInvalidInitializer) { // We have a match, but the reference occurred within a property initializer and the identifier also binds // to a local variable in the constructor where the code will be emitted. let propertyName = (propertyWithInvalidInitializer).name; error(errorLocation, Diagnostics.Initializer_of_instance_member_variable_0_cannot_reference_identifier_1_declared_in_the_constructor, declarationNameToString(propertyName), typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg)); return undefined; } if (result.flags & SymbolFlags.BlockScopedVariable) { checkResolvedBlockScopedVariable(result, errorLocation); } } return result; } function checkResolvedBlockScopedVariable(result: Symbol, errorLocation: Node): void { Debug.assert((result.flags & SymbolFlags.BlockScopedVariable) !== 0); // Block-scoped variables cannot be used before their definition let declaration = forEach(result.declarations, d => isBlockOrCatchScoped(d) ? d : undefined); Debug.assert(declaration !== undefined, "Block-scoped variable declaration is undefined"); // first check if usage is lexically located after the declaration let isUsedBeforeDeclaration = !isDefinedBefore(declaration, errorLocation); if (!isUsedBeforeDeclaration) { // lexical check succeeded however code still can be illegal. // - block scoped variables cannot be used in its initializers // let x = x; // illegal but usage is lexically after definition // - in ForIn/ForOf statements variable cannot be contained in expression part // for (let x in x) // for (let x of x) // climb up to the variable declaration skipping binding patterns let variableDeclaration = getAncestor(declaration, SyntaxKind.VariableDeclaration); let container = getEnclosingBlockScopeContainer(variableDeclaration); if (variableDeclaration.parent.parent.kind === SyntaxKind.VariableStatement || variableDeclaration.parent.parent.kind === SyntaxKind.ForStatement) { // variable statement/for statement case, // use site should not be inside variable declaration (initializer of declaration or binding element) isUsedBeforeDeclaration = isSameScopeDescendentOf(errorLocation, variableDeclaration, container); } else if (variableDeclaration.parent.parent.kind === SyntaxKind.ForOfStatement || variableDeclaration.parent.parent.kind === SyntaxKind.ForInStatement) { // ForIn/ForOf case - use site should not be used in expression part let expression = (variableDeclaration.parent.parent).expression; isUsedBeforeDeclaration = isSameScopeDescendentOf(errorLocation, expression, container); } } if (isUsedBeforeDeclaration) { error(errorLocation, Diagnostics.Block_scoped_variable_0_used_before_its_declaration, declarationNameToString(declaration.name)); } } /* Starting from 'initial' node walk up the parent chain until 'stopAt' node is reached. * If at any point current node is equal to 'parent' node - return true. * Return false if 'stopAt' node is reached or isFunctionLike(current) === true. */ function isSameScopeDescendentOf(initial: Node, parent: Node, stopAt: Node): boolean { if (!parent) { return false; } for (let current = initial; current && current !== stopAt && !isFunctionLike(current); current = current.parent) { if (current === parent) { return true; } } return false; } function getAnyImportSyntax(node: Node): AnyImportSyntax { if (isAliasSymbolDeclaration(node)) { if (node.kind === SyntaxKind.ImportEqualsDeclaration) { return node; } while (node && node.kind !== SyntaxKind.ImportDeclaration) { node = node.parent; } return node; } } function getDeclarationOfAliasSymbol(symbol: Symbol): Declaration { return forEach(symbol.declarations, d => isAliasSymbolDeclaration(d) ? d : undefined); } function getTargetOfImportEqualsDeclaration(node: ImportEqualsDeclaration): Symbol { if (node.moduleReference.kind === SyntaxKind.ExternalModuleReference) { return resolveExternalModuleSymbol(resolveExternalModuleName(node, getExternalModuleImportEqualsDeclarationExpression(node))); } return getSymbolOfPartOfRightHandSideOfImportEquals(node.moduleReference, node); } function getTargetOfImportClause(node: ImportClause): Symbol { let moduleSymbol = resolveExternalModuleName(node, (node.parent).moduleSpecifier); if (moduleSymbol) { let exportDefaultSymbol = resolveSymbol(moduleSymbol.exports["default"]); if (!exportDefaultSymbol) { error(node.name, Diagnostics.Module_0_has_no_default_export, symbolToString(moduleSymbol)); } return exportDefaultSymbol; } } function getTargetOfNamespaceImport(node: NamespaceImport): Symbol { let moduleSpecifier = (node.parent.parent).moduleSpecifier; return resolveESModuleSymbol(resolveExternalModuleName(node, moduleSpecifier), moduleSpecifier); } function getMemberOfModuleVariable(moduleSymbol: Symbol, name: string): Symbol { if (moduleSymbol.flags & SymbolFlags.Variable) { let typeAnnotation = (moduleSymbol.valueDeclaration).type; if (typeAnnotation) { return getPropertyOfType(getTypeFromTypeNode(typeAnnotation), name); } } } // This function creates a synthetic symbol that combines the value side of one symbol with the // type/namespace side of another symbol. Consider this example: // // declare module graphics { // interface Point { // x: number; // y: number; // } // } // declare var graphics: { // Point: new (x: number, y: number) => graphics.Point; // } // declare module "graphics" { // export = graphics; // } // // An 'import { Point } from "graphics"' needs to create a symbol that combines the value side 'Point' // property with the type/namespace side interface 'Point'. function combineValueAndTypeSymbols(valueSymbol: Symbol, typeSymbol: Symbol): Symbol { if (valueSymbol.flags & (SymbolFlags.Type | SymbolFlags.Namespace)) { return valueSymbol; } let result = createSymbol(valueSymbol.flags | typeSymbol.flags, valueSymbol.name); result.declarations = concatenate(valueSymbol.declarations, typeSymbol.declarations); result.parent = valueSymbol.parent || typeSymbol.parent; if (valueSymbol.valueDeclaration) result.valueDeclaration = valueSymbol.valueDeclaration; if (typeSymbol.members) result.members = typeSymbol.members; if (valueSymbol.exports) result.exports = valueSymbol.exports; return result; } function getExportOfModule(symbol: Symbol, name: string): Symbol { if (symbol.flags & SymbolFlags.Module) { let exports = getExportsOfSymbol(symbol); if (hasProperty(exports, name)) { return resolveSymbol(exports[name]); } } } function getPropertyOfVariable(symbol: Symbol, name: string): Symbol { if (symbol.flags & SymbolFlags.Variable) { let typeAnnotation = (symbol.valueDeclaration).type; if (typeAnnotation) { return resolveSymbol(getPropertyOfType(getTypeFromTypeNode(typeAnnotation), name)); } } } function getExternalModuleMember(node: ImportDeclaration | ExportDeclaration, specifier: ImportOrExportSpecifier): Symbol { let moduleSymbol = resolveExternalModuleName(node, node.moduleSpecifier); let targetSymbol = resolveESModuleSymbol(moduleSymbol, node.moduleSpecifier); if (targetSymbol) { let name = specifier.propertyName || specifier.name; if (name.text) { let symbolFromModule = getExportOfModule(targetSymbol, name.text); let symbolFromVariable = getPropertyOfVariable(targetSymbol, name.text); let symbol = symbolFromModule && symbolFromVariable ? combineValueAndTypeSymbols(symbolFromVariable, symbolFromModule) : symbolFromModule || symbolFromVariable; if (!symbol) { error(name, Diagnostics.Module_0_has_no_exported_member_1, getFullyQualifiedName(moduleSymbol), declarationNameToString(name)); } return symbol; } } } function getTargetOfImportSpecifier(node: ImportSpecifier): Symbol { return getExternalModuleMember(node.parent.parent.parent, node); } function getTargetOfExportSpecifier(node: ExportSpecifier): Symbol { return (node.parent.parent).moduleSpecifier ? getExternalModuleMember(node.parent.parent, node) : resolveEntityName(node.propertyName || node.name, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace); } function getTargetOfExportAssignment(node: ExportAssignment): Symbol { return resolveEntityName(node.expression, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace); } function getTargetOfAliasDeclaration(node: Declaration): Symbol { switch (node.kind) { case SyntaxKind.ImportEqualsDeclaration: return getTargetOfImportEqualsDeclaration(node); case SyntaxKind.ImportClause: return getTargetOfImportClause(node); case SyntaxKind.NamespaceImport: return getTargetOfNamespaceImport(node); case SyntaxKind.ImportSpecifier: return getTargetOfImportSpecifier(node); case SyntaxKind.ExportSpecifier: return getTargetOfExportSpecifier(node); case SyntaxKind.ExportAssignment: return getTargetOfExportAssignment(node); } } function resolveSymbol(symbol: Symbol): Symbol { return symbol && symbol.flags & SymbolFlags.Alias && !(symbol.flags & (SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace)) ? resolveAlias(symbol) : symbol; } function resolveAlias(symbol: Symbol): Symbol { Debug.assert((symbol.flags & SymbolFlags.Alias) !== 0, "Should only get Alias here."); let links = getSymbolLinks(symbol); if (!links.target) { links.target = resolvingSymbol; let node = getDeclarationOfAliasSymbol(symbol); let target = getTargetOfAliasDeclaration(node); if (links.target === resolvingSymbol) { links.target = target || unknownSymbol; } else { error(node, Diagnostics.Circular_definition_of_import_alias_0, symbolToString(symbol)); } } else if (links.target === resolvingSymbol) { links.target = unknownSymbol; } return links.target; } function markExportAsReferenced(node: ImportEqualsDeclaration | ExportAssignment | ExportSpecifier) { let symbol = getSymbolOfNode(node); let target = resolveAlias(symbol); if (target) { let markAlias = (target === unknownSymbol && compilerOptions.isolatedModules) || (target !== unknownSymbol && (target.flags & SymbolFlags.Value) && !isConstEnumOrConstEnumOnlyModule(target)); if (markAlias) { markAliasSymbolAsReferenced(symbol); } } } // When an alias symbol is referenced, we need to mark the entity it references as referenced and in turn repeat that until // we reach a non-alias or an exported entity (which is always considered referenced). We do this by checking the target of // the alias as an expression (which recursively takes us back here if the target references another alias). function markAliasSymbolAsReferenced(symbol: Symbol) { let links = getSymbolLinks(symbol); if (!links.referenced) { links.referenced = true; let node = getDeclarationOfAliasSymbol(symbol); if (node.kind === SyntaxKind.ExportAssignment) { // export default checkExpressionCached((node).expression); } else if (node.kind === SyntaxKind.ExportSpecifier) { // export { } or export { as foo } checkExpressionCached((node).propertyName || (node).name); } else if (isInternalModuleImportEqualsDeclaration(node)) { // import foo = checkExpressionCached((node).moduleReference); } } } // This function is only for imports with entity names function getSymbolOfPartOfRightHandSideOfImportEquals(entityName: EntityName, importDeclaration?: ImportEqualsDeclaration): Symbol { if (!importDeclaration) { importDeclaration = getAncestor(entityName, SyntaxKind.ImportEqualsDeclaration); Debug.assert(importDeclaration !== undefined); } // There are three things we might try to look for. In the following examples, // the search term is enclosed in |...|: // // import a = |b|; // Namespace // import a = |b.c|; // Value, type, namespace // import a = |b.c|.d; // Namespace if (entityName.kind === SyntaxKind.Identifier && isRightSideOfQualifiedNameOrPropertyAccess(entityName)) { entityName = entityName.parent; } // Check for case 1 and 3 in the above example if (entityName.kind === SyntaxKind.Identifier || entityName.parent.kind === SyntaxKind.QualifiedName) { return resolveEntityName(entityName, SymbolFlags.Namespace); } else { // Case 2 in above example // entityName.kind could be a QualifiedName or a Missing identifier Debug.assert(entityName.parent.kind === SyntaxKind.ImportEqualsDeclaration); return resolveEntityName(entityName, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace); } } function getFullyQualifiedName(symbol: Symbol): string { return symbol.parent ? getFullyQualifiedName(symbol.parent) + "." + symbolToString(symbol) : symbolToString(symbol); } // Resolves a qualified name and any involved aliases function resolveEntityName(name: EntityName | Expression, meaning: SymbolFlags): Symbol { if (nodeIsMissing(name)) { return undefined; } let symbol: Symbol; if (name.kind === SyntaxKind.Identifier) { let message = meaning === SymbolFlags.Namespace ? Diagnostics.Cannot_find_namespace_0 : Diagnostics.Cannot_find_name_0; symbol = resolveName(name, (name).text, meaning, message, name); if (!symbol) { return undefined; } } else if (name.kind === SyntaxKind.QualifiedName || name.kind === SyntaxKind.PropertyAccessExpression) { let left = name.kind === SyntaxKind.QualifiedName ? (name).left : (name).expression; let right = name.kind === SyntaxKind.QualifiedName ? (name).right : (name).name; let namespace = resolveEntityName(left, SymbolFlags.Namespace); if (!namespace || namespace === unknownSymbol || nodeIsMissing(right)) { return undefined; } symbol = getSymbol(getExportsOfSymbol(namespace), right.text, meaning); if (!symbol) { error(right, Diagnostics.Module_0_has_no_exported_member_1, getFullyQualifiedName(namespace), declarationNameToString(right)); return undefined; } } else { Debug.fail("Unknown entity name kind."); } Debug.assert((symbol.flags & SymbolFlags.Instantiated) === 0, "Should never get an instantiated symbol here."); return symbol.flags & meaning ? symbol : resolveAlias(symbol); } function isExternalModuleNameRelative(moduleName: string): boolean { // TypeScript 1.0 spec (April 2014): 11.2.1 // An external module name is "relative" if the first term is "." or "..". return moduleName.substr(0, 2) === "./" || moduleName.substr(0, 3) === "../" || moduleName.substr(0, 2) === ".\\" || moduleName.substr(0, 3) === "..\\"; } function resolveExternalModuleName(location: Node, moduleReferenceExpression: Expression): Symbol { if (moduleReferenceExpression.kind !== SyntaxKind.StringLiteral) { return; } let moduleReferenceLiteral = moduleReferenceExpression; let searchPath = getDirectoryPath(getSourceFile(location).fileName); // Module names are escaped in our symbol table. However, string literal values aren't. // Escape the name in the "require(...)" clause to ensure we find the right symbol. let moduleName = escapeIdentifier(moduleReferenceLiteral.text); if (!moduleName) return; let isRelative = isExternalModuleNameRelative(moduleName); if (!isRelative) { let symbol = getSymbol(globals, '"' + moduleName + '"', SymbolFlags.ValueModule); if (symbol) { return symbol; } } let fileName: string; let sourceFile: SourceFile; while (true) { fileName = normalizePath(combinePaths(searchPath, moduleName)); sourceFile = forEach(supportedExtensions, extension => host.getSourceFile(fileName + extension)); if (sourceFile || isRelative) { break; } let parentPath = getDirectoryPath(searchPath); if (parentPath === searchPath) { break; } searchPath = parentPath; } if (sourceFile) { if (sourceFile.symbol) { return sourceFile.symbol; } error(moduleReferenceLiteral, Diagnostics.File_0_is_not_a_module, sourceFile.fileName); return; } error(moduleReferenceLiteral, Diagnostics.Cannot_find_module_0, moduleName); } // An external module with an 'export =' declaration resolves to the target of the 'export =' declaration, // and an external module with no 'export =' declaration resolves to the module itself. function resolveExternalModuleSymbol(moduleSymbol: Symbol): Symbol { return moduleSymbol && resolveSymbol(moduleSymbol.exports["export="]) || moduleSymbol; } // An external module with an 'export =' declaration may be referenced as an ES6 module provided the 'export =' // references a symbol that is at least declared as a module or a variable. The target of the 'export =' may // combine other declarations with the module or variable (e.g. a class/module, function/module, interface/variable). function resolveESModuleSymbol(moduleSymbol: Symbol, moduleReferenceExpression: Expression): Symbol { let symbol = resolveExternalModuleSymbol(moduleSymbol); if (symbol && !(symbol.flags & (SymbolFlags.Module | SymbolFlags.Variable))) { error(moduleReferenceExpression, Diagnostics.Module_0_resolves_to_a_non_module_entity_and_cannot_be_imported_using_this_construct, symbolToString(moduleSymbol)); symbol = undefined; } return symbol; } function getExportAssignmentSymbol(moduleSymbol: Symbol): Symbol { return moduleSymbol.exports["export="]; } function getExportsOfModuleAsArray(moduleSymbol: Symbol): Symbol[] { return symbolsToArray(getExportsOfModule(moduleSymbol)); } function getExportsOfSymbol(symbol: Symbol): SymbolTable { return symbol.flags & SymbolFlags.Module ? getExportsOfModule(symbol) : symbol.exports || emptySymbols; } function getExportsOfModule(moduleSymbol: Symbol): SymbolTable { let links = getSymbolLinks(moduleSymbol); return links.resolvedExports || (links.resolvedExports = getExportsForModule(moduleSymbol)); } function extendExportSymbols(target: SymbolTable, source: SymbolTable) { for (let id in source) { if (id !== "default" && !hasProperty(target, id)) { target[id] = source[id]; } } } function getExportsForModule(moduleSymbol: Symbol): SymbolTable { let result: SymbolTable; let visitedSymbols: Symbol[] = []; visit(moduleSymbol); return result || moduleSymbol.exports; // The ES6 spec permits export * declarations in a module to circularly reference the module itself. For example, // module 'a' can 'export * from "b"' and 'b' can 'export * from "a"' without error. function visit(symbol: Symbol) { if (symbol && symbol.flags & SymbolFlags.HasExports && !contains(visitedSymbols, symbol)) { visitedSymbols.push(symbol); if (symbol !== moduleSymbol) { if (!result) { result = cloneSymbolTable(moduleSymbol.exports); } extendExportSymbols(result, symbol.exports); } // All export * declarations are collected in an __export symbol by the binder let exportStars = symbol.exports["__export"]; if (exportStars) { for (let node of exportStars.declarations) { visit(resolveExternalModuleName(node, (node).moduleSpecifier)); } } } } } function getMergedSymbol(symbol: Symbol): Symbol { let merged: Symbol; return symbol && symbol.mergeId && (merged = mergedSymbols[symbol.mergeId]) ? merged : symbol; } function getSymbolOfNode(node: Node): Symbol { return getMergedSymbol(node.symbol); } function getParentOfSymbol(symbol: Symbol): Symbol { return getMergedSymbol(symbol.parent); } function getExportSymbolOfValueSymbolIfExported(symbol: Symbol): Symbol { return symbol && (symbol.flags & SymbolFlags.ExportValue) !== 0 ? getMergedSymbol(symbol.exportSymbol) : symbol; } function symbolIsValue(symbol: Symbol): boolean { // If it is an instantiated symbol, then it is a value if the symbol it is an // instantiation of is a value. if (symbol.flags & SymbolFlags.Instantiated) { return symbolIsValue(getSymbolLinks(symbol).target); } // If the symbol has the value flag, it is trivially a value. if (symbol.flags & SymbolFlags.Value) { return true; } // If it is an alias, then it is a value if the symbol it resolves to is a value. if (symbol.flags & SymbolFlags.Alias) { return (resolveAlias(symbol).flags & SymbolFlags.Value) !== 0; } return false; } function findConstructorDeclaration(node: ClassLikeDeclaration): ConstructorDeclaration { let members = node.members; for (let member of members) { if (member.kind === SyntaxKind.Constructor && nodeIsPresent((member).body)) { return member; } } } function createType(flags: TypeFlags): Type { let result = new Type(checker, flags); result.id = typeCount++; return result; } function createIntrinsicType(kind: TypeFlags, intrinsicName: string): IntrinsicType { let type = createType(kind); type.intrinsicName = intrinsicName; return type; } function createObjectType(kind: TypeFlags, symbol?: Symbol): ObjectType { let type = createType(kind); type.symbol = symbol; return type; } // A reserved member name starts with two underscores, but the third character cannot be an underscore // or the @ symbol. A third underscore indicates an escaped form of an identifer that started // with at least two underscores. The @ character indicates that the name is denoted by a well known ES // Symbol instance. function isReservedMemberName(name: string) { return name.charCodeAt(0) === CharacterCodes._ && name.charCodeAt(1) === CharacterCodes._ && name.charCodeAt(2) !== CharacterCodes._ && name.charCodeAt(2) !== CharacterCodes.at; } function getNamedMembers(members: SymbolTable): Symbol[] { let result: Symbol[]; for (let id in members) { if (hasProperty(members, id)) { if (!isReservedMemberName(id)) { if (!result) result = []; let symbol = members[id]; if (symbolIsValue(symbol)) { result.push(symbol); } } } } return result || emptyArray; } function setObjectTypeMembers(type: ObjectType, members: SymbolTable, callSignatures: Signature[], constructSignatures: Signature[], stringIndexType: Type, numberIndexType: Type): ResolvedType { (type).members = members; (type).properties = getNamedMembers(members); (type).callSignatures = callSignatures; (type).constructSignatures = constructSignatures; if (stringIndexType) (type).stringIndexType = stringIndexType; if (numberIndexType) (type).numberIndexType = numberIndexType; return type; } function createAnonymousType(symbol: Symbol, members: SymbolTable, callSignatures: Signature[], constructSignatures: Signature[], stringIndexType: Type, numberIndexType: Type): ResolvedType { return setObjectTypeMembers(createObjectType(TypeFlags.Anonymous, symbol), members, callSignatures, constructSignatures, stringIndexType, numberIndexType); } function forEachSymbolTableInScope(enclosingDeclaration: Node, callback: (symbolTable: SymbolTable) => T): T { let result: T; for (let location = enclosingDeclaration; location; location = location.parent) { // Locals of a source file are not in scope (because they get merged into the global symbol table) if (location.locals && !isGlobalSourceFile(location)) { if (result = callback(location.locals)) { return result; } } switch (location.kind) { case SyntaxKind.SourceFile: if (!isExternalModule(location)) { break; } case SyntaxKind.ModuleDeclaration: if (result = callback(getSymbolOfNode(location).exports)) { return result; } break; case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: if (result = callback(getSymbolOfNode(location).members)) { return result; } break; } } return callback(globals); } function getQualifiedLeftMeaning(rightMeaning: SymbolFlags) { // If we are looking in value space, the parent meaning is value, other wise it is namespace return rightMeaning === SymbolFlags.Value ? SymbolFlags.Value : SymbolFlags.Namespace; } function getAccessibleSymbolChain(symbol: Symbol, enclosingDeclaration: Node, meaning: SymbolFlags, useOnlyExternalAliasing: boolean): Symbol[] { function getAccessibleSymbolChainFromSymbolTable(symbols: SymbolTable): Symbol[] { function canQualifySymbol(symbolFromSymbolTable: Symbol, meaning: SymbolFlags) { // If the symbol is equivalent and doesn't need further qualification, this symbol is accessible if (!needsQualification(symbolFromSymbolTable, enclosingDeclaration, meaning)) { return true; } // If symbol needs qualification, make sure that parent is accessible, if it is then this symbol is accessible too let accessibleParent = getAccessibleSymbolChain(symbolFromSymbolTable.parent, enclosingDeclaration, getQualifiedLeftMeaning(meaning), useOnlyExternalAliasing); return !!accessibleParent; } function isAccessible(symbolFromSymbolTable: Symbol, resolvedAliasSymbol?: Symbol) { if (symbol === (resolvedAliasSymbol || symbolFromSymbolTable)) { // if the symbolFromSymbolTable is not external module (it could be if it was determined as ambient external module and would be in globals table) // and if symbolfrom symbolTable or alias resolution matches the symbol, // check the symbol can be qualified, it is only then this symbol is accessible return !forEach(symbolFromSymbolTable.declarations, hasExternalModuleSymbol) && canQualifySymbol(symbolFromSymbolTable, meaning); } } // If symbol is directly available by its name in the symbol table if (isAccessible(lookUp(symbols, symbol.name))) { return [symbol]; } // Check if symbol is any of the alias return forEachValue(symbols, symbolFromSymbolTable => { if (symbolFromSymbolTable.flags & SymbolFlags.Alias && symbolFromSymbolTable.name !== "export=" && !getDeclarationOfKind(symbolFromSymbolTable, SyntaxKind.ExportSpecifier)) { if (!useOnlyExternalAliasing || // We can use any type of alias to get the name // Is this external alias, then use it to name ts.forEach(symbolFromSymbolTable.declarations, isExternalModuleImportEqualsDeclaration)) { let resolvedImportedSymbol = resolveAlias(symbolFromSymbolTable); if (isAccessible(symbolFromSymbolTable, resolveAlias(symbolFromSymbolTable))) { return [symbolFromSymbolTable]; } // Look in the exported members, if we can find accessibleSymbolChain, symbol is accessible using this chain // but only if the symbolFromSymbolTable can be qualified let accessibleSymbolsFromExports = resolvedImportedSymbol.exports ? getAccessibleSymbolChainFromSymbolTable(resolvedImportedSymbol.exports) : undefined; if (accessibleSymbolsFromExports && canQualifySymbol(symbolFromSymbolTable, getQualifiedLeftMeaning(meaning))) { return [symbolFromSymbolTable].concat(accessibleSymbolsFromExports); } } } }); } if (symbol) { return forEachSymbolTableInScope(enclosingDeclaration, getAccessibleSymbolChainFromSymbolTable); } } function needsQualification(symbol: Symbol, enclosingDeclaration: Node, meaning: SymbolFlags) { let qualify = false; forEachSymbolTableInScope(enclosingDeclaration, symbolTable => { // If symbol of this name is not available in the symbol table we are ok if (!hasProperty(symbolTable, symbol.name)) { // Continue to the next symbol table return false; } // If the symbol with this name is present it should refer to the symbol let symbolFromSymbolTable = symbolTable[symbol.name]; if (symbolFromSymbolTable === symbol) { // No need to qualify return true; } // Qualify if the symbol from symbol table has same meaning as expected symbolFromSymbolTable = (symbolFromSymbolTable.flags & SymbolFlags.Alias && !getDeclarationOfKind(symbolFromSymbolTable, SyntaxKind.ExportSpecifier)) ? resolveAlias(symbolFromSymbolTable) : symbolFromSymbolTable; if (symbolFromSymbolTable.flags & meaning) { qualify = true; return true; } // Continue to the next symbol table return false; }); return qualify; } function isSymbolAccessible(symbol: Symbol, enclosingDeclaration: Node, meaning: SymbolFlags): SymbolAccessiblityResult { if (symbol && enclosingDeclaration && !(symbol.flags & SymbolFlags.TypeParameter)) { let initialSymbol = symbol; let meaningToLook = meaning; while (symbol) { // Symbol is accessible if it by itself is accessible let accessibleSymbolChain = getAccessibleSymbolChain(symbol, enclosingDeclaration, meaningToLook, /*useOnlyExternalAliasing*/ false); if (accessibleSymbolChain) { let hasAccessibleDeclarations = hasVisibleDeclarations(accessibleSymbolChain[0]); if (!hasAccessibleDeclarations) { return { accessibility: SymbolAccessibility.NotAccessible, errorSymbolName: symbolToString(initialSymbol, enclosingDeclaration, meaning), errorModuleName: symbol !== initialSymbol ? symbolToString(symbol, enclosingDeclaration, SymbolFlags.Namespace) : undefined, }; } return hasAccessibleDeclarations; } // If we haven't got the accessible symbol, it doesn't mean the symbol is actually inaccessible. // It could be a qualified symbol and hence verify the path // e.g.: // module m { // export class c { // } // } // let x: typeof m.c // In the above example when we start with checking if typeof m.c symbol is accessible, // we are going to see if c can be accessed in scope directly. // But it can't, hence the accessible is going to be undefined, but that doesn't mean m.c is inaccessible // It is accessible if the parent m is accessible because then m.c can be accessed through qualification meaningToLook = getQualifiedLeftMeaning(meaning); symbol = getParentOfSymbol(symbol); } // This could be a symbol that is not exported in the external module // or it could be a symbol from different external module that is not aliased and hence cannot be named let symbolExternalModule = forEach(initialSymbol.declarations, getExternalModuleContainer); if (symbolExternalModule) { let enclosingExternalModule = getExternalModuleContainer(enclosingDeclaration); if (symbolExternalModule !== enclosingExternalModule) { // name from different external module that is not visible return { accessibility: SymbolAccessibility.CannotBeNamed, errorSymbolName: symbolToString(initialSymbol, enclosingDeclaration, meaning), errorModuleName: symbolToString(symbolExternalModule) }; } } // Just a local name that is not accessible return { accessibility: SymbolAccessibility.NotAccessible, errorSymbolName: symbolToString(initialSymbol, enclosingDeclaration, meaning), }; } return { accessibility: SymbolAccessibility.Accessible }; function getExternalModuleContainer(declaration: Node) { for (; declaration; declaration = declaration.parent) { if (hasExternalModuleSymbol(declaration)) { return getSymbolOfNode(declaration); } } } } function hasExternalModuleSymbol(declaration: Node) { return (declaration.kind === SyntaxKind.ModuleDeclaration && (declaration).name.kind === SyntaxKind.StringLiteral) || (declaration.kind === SyntaxKind.SourceFile && isExternalModule(declaration)); } function hasVisibleDeclarations(symbol: Symbol): SymbolVisibilityResult { let aliasesToMakeVisible: AnyImportSyntax[]; if (forEach(symbol.declarations, declaration => !getIsDeclarationVisible(declaration))) { return undefined; } return { accessibility: SymbolAccessibility.Accessible, aliasesToMakeVisible }; function getIsDeclarationVisible(declaration: Declaration) { if (!isDeclarationVisible(declaration)) { // Mark the unexported alias as visible if its parent is visible // because these kind of aliases can be used to name types in declaration file let anyImportSyntax = getAnyImportSyntax(declaration); if (anyImportSyntax && !(anyImportSyntax.flags & NodeFlags.Export) && // import clause without export isDeclarationVisible(anyImportSyntax.parent)) { getNodeLinks(declaration).isVisible = true; if (aliasesToMakeVisible) { if (!contains(aliasesToMakeVisible, anyImportSyntax)) { aliasesToMakeVisible.push(anyImportSyntax); } } else { aliasesToMakeVisible = [anyImportSyntax]; } return true; } // Declaration is not visible return false; } return true; } } function isEntityNameVisible(entityName: EntityName | Expression, enclosingDeclaration: Node): SymbolVisibilityResult { // get symbol of the first identifier of the entityName let meaning: SymbolFlags; if (entityName.parent.kind === SyntaxKind.TypeQuery) { // Typeof value meaning = SymbolFlags.Value | SymbolFlags.ExportValue; } else if (entityName.kind === SyntaxKind.QualifiedName || entityName.kind === SyntaxKind.PropertyAccessExpression || entityName.parent.kind === SyntaxKind.ImportEqualsDeclaration) { // Left identifier from type reference or TypeAlias // Entity name of the import declaration meaning = SymbolFlags.Namespace; } else { // Type Reference or TypeAlias entity = Identifier meaning = SymbolFlags.Type; } let firstIdentifier = getFirstIdentifier(entityName); let symbol = resolveName(enclosingDeclaration, (firstIdentifier).text, meaning, /*nodeNotFoundErrorMessage*/ undefined, /*nameArg*/ undefined); // Verify if the symbol is accessible return (symbol && hasVisibleDeclarations(symbol)) || { accessibility: SymbolAccessibility.NotAccessible, errorSymbolName: getTextOfNode(firstIdentifier), errorNode: firstIdentifier }; } function writeKeyword(writer: SymbolWriter, kind: SyntaxKind) { writer.writeKeyword(tokenToString(kind)); } function writePunctuation(writer: SymbolWriter, kind: SyntaxKind) { writer.writePunctuation(tokenToString(kind)); } function writeSpace(writer: SymbolWriter) { writer.writeSpace(" "); } function symbolToString(symbol: Symbol, enclosingDeclaration?: Node, meaning?: SymbolFlags): string { let writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildSymbolDisplay(symbol, writer, enclosingDeclaration, meaning); let result = writer.string(); releaseStringWriter(writer); return result; } function signatureToString(signature: Signature, enclosingDeclaration?: Node, flags?: TypeFormatFlags): string { let writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildSignatureDisplay(signature, writer, enclosingDeclaration, flags); let result = writer.string(); releaseStringWriter(writer); return result; } function typeToString(type: Type, enclosingDeclaration?: Node, flags?: TypeFormatFlags): string { let writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildTypeDisplay(type, writer, enclosingDeclaration, flags); let result = writer.string(); releaseStringWriter(writer); let maxLength = compilerOptions.noErrorTruncation || flags & TypeFormatFlags.NoTruncation ? undefined : 100; if (maxLength && result.length >= maxLength) { result = result.substr(0, maxLength - "...".length) + "..."; } return result; } function getTypeAliasForTypeLiteral(type: Type): Symbol { if (type.symbol && type.symbol.flags & SymbolFlags.TypeLiteral) { let node = type.symbol.declarations[0].parent; while (node.kind === SyntaxKind.ParenthesizedType) { node = node.parent; } if (node.kind === SyntaxKind.TypeAliasDeclaration) { return getSymbolOfNode(node); } } return undefined; } // This is for caching the result of getSymbolDisplayBuilder. Do not access directly. let _displayBuilder: SymbolDisplayBuilder; function getSymbolDisplayBuilder(): SymbolDisplayBuilder { function getNameOfSymbol(symbol: Symbol): string { if (symbol.declarations && symbol.declarations.length) { let declaration = symbol.declarations[0]; if (declaration.name) { return declarationNameToString(declaration.name); } switch (declaration.kind) { case SyntaxKind.ClassExpression: return "(Anonymous class)"; case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return "(Anonymous function)"; } } return symbol.name; } /** * Writes only the name of the symbol out to the writer. Uses the original source text * for the name of the symbol if it is available to match how the user inputted the name. */ function appendSymbolNameOnly(symbol: Symbol, writer: SymbolWriter): void { writer.writeSymbol(getNameOfSymbol(symbol), symbol); } /** * Enclosing declaration is optional when we don't want to get qualified name in the enclosing declaration scope * Meaning needs to be specified if the enclosing declaration is given */ function buildSymbolDisplay(symbol: Symbol, writer: SymbolWriter, enclosingDeclaration?: Node, meaning?: SymbolFlags, flags?: SymbolFormatFlags, typeFlags?: TypeFormatFlags): void { let parentSymbol: Symbol; function appendParentTypeArgumentsAndSymbolName(symbol: Symbol): void { if (parentSymbol) { // Write type arguments of instantiated class/interface here if (flags & SymbolFormatFlags.WriteTypeParametersOrArguments) { if (symbol.flags & SymbolFlags.Instantiated) { buildDisplayForTypeArgumentsAndDelimiters(getTypeParametersOfClassOrInterface(parentSymbol), (symbol).mapper, writer, enclosingDeclaration); } else { buildTypeParameterDisplayFromSymbol(parentSymbol, writer, enclosingDeclaration); } } writePunctuation(writer, SyntaxKind.DotToken); } parentSymbol = symbol; appendSymbolNameOnly(symbol, writer); } // Let the writer know we just wrote out a symbol. The declaration emitter writer uses // this to determine if an import it has previously seen (and not written out) needs // to be written to the file once the walk of the tree is complete. // // NOTE(cyrusn): This approach feels somewhat unfortunate. A simple pass over the tree // up front (for example, during checking) could determine if we need to emit the imports // and we could then access that data during declaration emit. writer.trackSymbol(symbol, enclosingDeclaration, meaning); function walkSymbol(symbol: Symbol, meaning: SymbolFlags): void { if (symbol) { let accessibleSymbolChain = getAccessibleSymbolChain(symbol, enclosingDeclaration, meaning, !!(flags & SymbolFormatFlags.UseOnlyExternalAliasing)); if (!accessibleSymbolChain || needsQualification(accessibleSymbolChain[0], enclosingDeclaration, accessibleSymbolChain.length === 1 ? meaning : getQualifiedLeftMeaning(meaning))) { // Go up and add our parent. walkSymbol( getParentOfSymbol(accessibleSymbolChain ? accessibleSymbolChain[0] : symbol), getQualifiedLeftMeaning(meaning)); } if (accessibleSymbolChain) { for (let accessibleSymbol of accessibleSymbolChain) { appendParentTypeArgumentsAndSymbolName(accessibleSymbol); } } else { // If we didn't find accessible symbol chain for this symbol, break if this is external module if (!parentSymbol && ts.forEach(symbol.declarations, hasExternalModuleSymbol)) { return; } // if this is anonymous type break if (symbol.flags & SymbolFlags.TypeLiteral || symbol.flags & SymbolFlags.ObjectLiteral) { return; } appendParentTypeArgumentsAndSymbolName(symbol); } } } // Get qualified name if the symbol is not a type parameter // and there is an enclosing declaration or we specifically // asked for it let isTypeParameter = symbol.flags & SymbolFlags.TypeParameter; let typeFormatFlag = TypeFormatFlags.UseFullyQualifiedType & typeFlags; if (!isTypeParameter && (enclosingDeclaration || typeFormatFlag)) { walkSymbol(symbol, meaning); return; } return appendParentTypeArgumentsAndSymbolName(symbol); } function buildTypeDisplay(type: Type, writer: SymbolWriter, enclosingDeclaration?: Node, globalFlags?: TypeFormatFlags, symbolStack?: Symbol[]) { let globalFlagsToPass = globalFlags & TypeFormatFlags.WriteOwnNameForAnyLike; return writeType(type, globalFlags); function writeType(type: Type, flags: TypeFormatFlags) { // Write undefined/null type as any if (type.flags & TypeFlags.Intrinsic) { // Special handling for unknown / resolving types, they should show up as any and not unknown or __resolving writer.writeKeyword(!(globalFlags & TypeFormatFlags.WriteOwnNameForAnyLike) && isTypeAny(type) ? "any" : (type).intrinsicName); } else if (type.flags & TypeFlags.Reference) { writeTypeReference(type, flags); } else if (type.flags & (TypeFlags.Class | TypeFlags.Interface | TypeFlags.Enum | TypeFlags.TypeParameter)) { // The specified symbol flags need to be reinterpreted as type flags buildSymbolDisplay(type.symbol, writer, enclosingDeclaration, SymbolFlags.Type, SymbolFormatFlags.None, flags); } else if (type.flags & TypeFlags.Tuple) { writeTupleType(type); } else if (type.flags & TypeFlags.UnionOrIntersection) { writeUnionOrIntersectionType(type, flags); } else if (type.flags & TypeFlags.Anonymous) { writeAnonymousType(type, flags); } else if (type.flags & TypeFlags.StringLiteral) { writer.writeStringLiteral((type).text); } else { // Should never get here // { ... } writePunctuation(writer, SyntaxKind.OpenBraceToken); writeSpace(writer); writePunctuation(writer, SyntaxKind.DotDotDotToken); writeSpace(writer); writePunctuation(writer, SyntaxKind.CloseBraceToken); } } function writeTypeList(types: Type[], delimiter: SyntaxKind) { for (let i = 0; i < types.length; i++) { if (i > 0) { if (delimiter !== SyntaxKind.CommaToken) { writeSpace(writer); } writePunctuation(writer, delimiter); writeSpace(writer); } writeType(types[i], delimiter === SyntaxKind.CommaToken ? TypeFormatFlags.None : TypeFormatFlags.InElementType); } } function writeSymbolTypeReference(symbol: Symbol, typeArguments: Type[], pos: number, end: number) { // Unnamed function expressions, arrow functions, and unnamed class expressions have reserved names that // we don't want to display if (!isReservedMemberName(symbol.name)) { buildSymbolDisplay(symbol, writer, enclosingDeclaration, SymbolFlags.Type); } if (pos < end) { writePunctuation(writer, SyntaxKind.LessThanToken); writeType(typeArguments[pos++], TypeFormatFlags.None); while (pos < end) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); writeType(typeArguments[pos++], TypeFormatFlags.None); } writePunctuation(writer, SyntaxKind.GreaterThanToken); } } function writeTypeReference(type: TypeReference, flags: TypeFormatFlags) { let typeArguments = type.typeArguments; if (type.target === globalArrayType && !(flags & TypeFormatFlags.WriteArrayAsGenericType)) { writeType(typeArguments[0], TypeFormatFlags.InElementType); writePunctuation(writer, SyntaxKind.OpenBracketToken); writePunctuation(writer, SyntaxKind.CloseBracketToken); } else { // Write the type reference in the format f.g.C where A and B are type arguments // for outer type parameters, and f and g are the respective declaring containers of those // type parameters. let outerTypeParameters = type.target.outerTypeParameters; let i = 0; if (outerTypeParameters) { let length = outerTypeParameters.length; while (i < length) { // Find group of type arguments for type parameters with the same declaring container. let start = i; let parent = getParentSymbolOfTypeParameter(outerTypeParameters[i]); do { i++; } while (i < length && getParentSymbolOfTypeParameter(outerTypeParameters[i]) === parent); // When type parameters are their own type arguments for the whole group (i.e. we have // the default outer type arguments), we don't show the group. if (!rangeEquals(outerTypeParameters, typeArguments, start, i)) { writeSymbolTypeReference(parent, typeArguments, start, i); writePunctuation(writer, SyntaxKind.DotToken); } } } writeSymbolTypeReference(type.symbol, typeArguments, i, typeArguments.length); } } function writeTupleType(type: TupleType) { writePunctuation(writer, SyntaxKind.OpenBracketToken); writeTypeList(type.elementTypes, SyntaxKind.CommaToken); writePunctuation(writer, SyntaxKind.CloseBracketToken); } function writeUnionOrIntersectionType(type: UnionOrIntersectionType, flags: TypeFormatFlags) { if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.OpenParenToken); } writeTypeList(type.types, type.flags & TypeFlags.Union ? SyntaxKind.BarToken : SyntaxKind.AmpersandToken); if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.CloseParenToken); } } function writeAnonymousType(type: ObjectType, flags: TypeFormatFlags) { let symbol = type.symbol; if (symbol) { // Always use 'typeof T' for type of class, enum, and module objects if (symbol.flags & (SymbolFlags.Class | SymbolFlags.Enum | SymbolFlags.ValueModule)) { writeTypeofSymbol(type, flags); } else if (shouldWriteTypeOfFunctionSymbol()) { writeTypeofSymbol(type, flags); } else if (contains(symbolStack, symbol)) { // If type is an anonymous type literal in a type alias declaration, use type alias name let typeAlias = getTypeAliasForTypeLiteral(type); if (typeAlias) { // The specified symbol flags need to be reinterpreted as type flags buildSymbolDisplay(typeAlias, writer, enclosingDeclaration, SymbolFlags.Type, SymbolFormatFlags.None, flags); } else { // Recursive usage, use any writeKeyword(writer, SyntaxKind.AnyKeyword); } } else { // Since instantiations of the same anonymous type have the same symbol, tracking symbols instead // of types allows us to catch circular references to instantiations of the same anonymous type if (!symbolStack) { symbolStack = []; } symbolStack.push(symbol); writeLiteralType(type, flags); symbolStack.pop(); } } else { // Anonymous types with no symbol are never circular writeLiteralType(type, flags); } function shouldWriteTypeOfFunctionSymbol() { let isStaticMethodSymbol = !!(symbol.flags & SymbolFlags.Method && // typeof static method forEach(symbol.declarations, declaration => declaration.flags & NodeFlags.Static)); let isNonLocalFunctionSymbol = !!(symbol.flags & SymbolFlags.Function) && (symbol.parent || // is exported function symbol forEach(symbol.declarations, declaration => declaration.parent.kind === SyntaxKind.SourceFile || declaration.parent.kind === SyntaxKind.ModuleBlock)); if (isStaticMethodSymbol || isNonLocalFunctionSymbol) { // typeof is allowed only for static/non local functions return !!(flags & TypeFormatFlags.UseTypeOfFunction) || // use typeof if format flags specify it (contains(symbolStack, symbol)); // it is type of the symbol uses itself recursively } } } function writeTypeofSymbol(type: ObjectType, typeFormatFlags?: TypeFormatFlags) { writeKeyword(writer, SyntaxKind.TypeOfKeyword); writeSpace(writer); buildSymbolDisplay(type.symbol, writer, enclosingDeclaration, SymbolFlags.Value, SymbolFormatFlags.None, typeFormatFlags); } function getIndexerParameterName(type: ObjectType, indexKind: IndexKind, fallbackName: string): string { let declaration = getIndexDeclarationOfSymbol(type.symbol, indexKind); if (!declaration) { // declaration might not be found if indexer was added from the contextual type. // in this case use fallback name return fallbackName; } Debug.assert(declaration.parameters.length !== 0); return declarationNameToString(declaration.parameters[0].name); } function writeLiteralType(type: ObjectType, flags: TypeFormatFlags) { let resolved = resolveStructuredTypeMembers(type); if (!resolved.properties.length && !resolved.stringIndexType && !resolved.numberIndexType) { if (!resolved.callSignatures.length && !resolved.constructSignatures.length) { writePunctuation(writer, SyntaxKind.OpenBraceToken); writePunctuation(writer, SyntaxKind.CloseBraceToken); return; } if (resolved.callSignatures.length === 1 && !resolved.constructSignatures.length) { if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.OpenParenToken); } buildSignatureDisplay(resolved.callSignatures[0], writer, enclosingDeclaration, globalFlagsToPass | TypeFormatFlags.WriteArrowStyleSignature, symbolStack); if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.CloseParenToken); } return; } if (resolved.constructSignatures.length === 1 && !resolved.callSignatures.length) { if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.OpenParenToken); } writeKeyword(writer, SyntaxKind.NewKeyword); writeSpace(writer); buildSignatureDisplay(resolved.constructSignatures[0], writer, enclosingDeclaration, globalFlagsToPass | TypeFormatFlags.WriteArrowStyleSignature, symbolStack); if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.CloseParenToken); } return; } } writePunctuation(writer, SyntaxKind.OpenBraceToken); writer.writeLine(); writer.increaseIndent(); for (let signature of resolved.callSignatures) { buildSignatureDisplay(signature, writer, enclosingDeclaration, globalFlagsToPass, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } for (let signature of resolved.constructSignatures) { writeKeyword(writer, SyntaxKind.NewKeyword); writeSpace(writer); buildSignatureDisplay(signature, writer, enclosingDeclaration, globalFlagsToPass, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } if (resolved.stringIndexType) { // [x: string]: writePunctuation(writer, SyntaxKind.OpenBracketToken); writer.writeParameter(getIndexerParameterName(resolved, IndexKind.String, /*fallbackName*/"x")); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeKeyword(writer, SyntaxKind.StringKeyword); writePunctuation(writer, SyntaxKind.CloseBracketToken); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeType(resolved.stringIndexType, TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } if (resolved.numberIndexType) { // [x: number]: writePunctuation(writer, SyntaxKind.OpenBracketToken); writer.writeParameter(getIndexerParameterName(resolved, IndexKind.Number, /*fallbackName*/"x")); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeKeyword(writer, SyntaxKind.NumberKeyword); writePunctuation(writer, SyntaxKind.CloseBracketToken); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeType(resolved.numberIndexType, TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } for (let p of resolved.properties) { let t = getTypeOfSymbol(p); if (p.flags & (SymbolFlags.Function | SymbolFlags.Method) && !getPropertiesOfObjectType(t).length) { let signatures = getSignaturesOfType(t, SignatureKind.Call); for (let signature of signatures) { buildSymbolDisplay(p, writer); if (p.flags & SymbolFlags.Optional) { writePunctuation(writer, SyntaxKind.QuestionToken); } buildSignatureDisplay(signature, writer, enclosingDeclaration, globalFlagsToPass, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } } else { buildSymbolDisplay(p, writer); if (p.flags & SymbolFlags.Optional) { writePunctuation(writer, SyntaxKind.QuestionToken); } writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeType(t, TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } } writer.decreaseIndent(); writePunctuation(writer, SyntaxKind.CloseBraceToken); } } function buildTypeParameterDisplayFromSymbol(symbol: Symbol, writer: SymbolWriter, enclosingDeclaraiton?: Node, flags?: TypeFormatFlags) { let targetSymbol = getTargetSymbol(symbol); if (targetSymbol.flags & SymbolFlags.Class || targetSymbol.flags & SymbolFlags.Interface) { buildDisplayForTypeParametersAndDelimiters(getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol), writer, enclosingDeclaraiton, flags); } } function buildTypeParameterDisplay(tp: TypeParameter, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { appendSymbolNameOnly(tp.symbol, writer); let constraint = getConstraintOfTypeParameter(tp); if (constraint) { writeSpace(writer); writeKeyword(writer, SyntaxKind.ExtendsKeyword); writeSpace(writer); buildTypeDisplay(constraint, writer, enclosingDeclaration, flags, symbolStack); } } function buildParameterDisplay(p: Symbol, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { let parameterNode = p.valueDeclaration; if (isRestParameter(parameterNode)) { writePunctuation(writer, SyntaxKind.DotDotDotToken); } appendSymbolNameOnly(p, writer); if (isOptionalParameter(parameterNode)) { writePunctuation(writer, SyntaxKind.QuestionToken); } writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); buildTypeDisplay(getTypeOfSymbol(p), writer, enclosingDeclaration, flags, symbolStack); } function buildDisplayForTypeParametersAndDelimiters(typeParameters: TypeParameter[], writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (typeParameters && typeParameters.length) { writePunctuation(writer, SyntaxKind.LessThanToken); for (let i = 0; i < typeParameters.length; i++) { if (i > 0) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); } buildTypeParameterDisplay(typeParameters[i], writer, enclosingDeclaration, flags, symbolStack); } writePunctuation(writer, SyntaxKind.GreaterThanToken); } } function buildDisplayForTypeArgumentsAndDelimiters(typeParameters: TypeParameter[], mapper: TypeMapper, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (typeParameters && typeParameters.length) { writePunctuation(writer, SyntaxKind.LessThanToken); for (let i = 0; i < typeParameters.length; i++) { if (i > 0) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); } buildTypeDisplay(mapper(typeParameters[i]), writer, enclosingDeclaration, TypeFormatFlags.None); } writePunctuation(writer, SyntaxKind.GreaterThanToken); } } function buildDisplayForParametersAndDelimiters(parameters: Symbol[], writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { writePunctuation(writer, SyntaxKind.OpenParenToken); for (let i = 0; i < parameters.length; i++) { if (i > 0) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); } buildParameterDisplay(parameters[i], writer, enclosingDeclaration, flags, symbolStack); } writePunctuation(writer, SyntaxKind.CloseParenToken); } function buildReturnTypeDisplay(signature: Signature, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (flags & TypeFormatFlags.WriteArrowStyleSignature) { writeSpace(writer); writePunctuation(writer, SyntaxKind.EqualsGreaterThanToken); } else { writePunctuation(writer, SyntaxKind.ColonToken); } writeSpace(writer); buildTypeDisplay(getReturnTypeOfSignature(signature), writer, enclosingDeclaration, flags, symbolStack); } function buildSignatureDisplay(signature: Signature, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (signature.target && (flags & TypeFormatFlags.WriteTypeArgumentsOfSignature)) { // Instantiated signature, write type arguments instead // This is achieved by passing in the mapper separately buildDisplayForTypeArgumentsAndDelimiters(signature.target.typeParameters, signature.mapper, writer, enclosingDeclaration); } else { buildDisplayForTypeParametersAndDelimiters(signature.typeParameters, writer, enclosingDeclaration, flags, symbolStack); } buildDisplayForParametersAndDelimiters(signature.parameters, writer, enclosingDeclaration, flags, symbolStack); buildReturnTypeDisplay(signature, writer, enclosingDeclaration, flags, symbolStack); } return _displayBuilder || (_displayBuilder = { symbolToString: symbolToString, typeToString: typeToString, buildSymbolDisplay: buildSymbolDisplay, buildTypeDisplay: buildTypeDisplay, buildTypeParameterDisplay: buildTypeParameterDisplay, buildParameterDisplay: buildParameterDisplay, buildDisplayForParametersAndDelimiters: buildDisplayForParametersAndDelimiters, buildDisplayForTypeParametersAndDelimiters: buildDisplayForTypeParametersAndDelimiters, buildDisplayForTypeArgumentsAndDelimiters: buildDisplayForTypeArgumentsAndDelimiters, buildTypeParameterDisplayFromSymbol: buildTypeParameterDisplayFromSymbol, buildSignatureDisplay: buildSignatureDisplay, buildReturnTypeDisplay: buildReturnTypeDisplay }); } function isDeclarationVisible(node: Declaration): boolean { function getContainingExternalModule(node: Node) { for (; node; node = node.parent) { if (node.kind === SyntaxKind.ModuleDeclaration) { if ((node).name.kind === SyntaxKind.StringLiteral) { return node; } } else if (node.kind === SyntaxKind.SourceFile) { return isExternalModule(node) ? node : undefined; } } Debug.fail("getContainingModule cant reach here"); } function isUsedInExportAssignment(node: Node) { // Get source File and see if it is external module and has export assigned symbol let externalModule = getContainingExternalModule(node); let exportAssignmentSymbol: Symbol; let resolvedExportSymbol: Symbol; if (externalModule) { // This is export assigned symbol node let externalModuleSymbol = getSymbolOfNode(externalModule); exportAssignmentSymbol = getExportAssignmentSymbol(externalModuleSymbol); let symbolOfNode = getSymbolOfNode(node); if (isSymbolUsedInExportAssignment(symbolOfNode)) { return true; } // if symbolOfNode is alias declaration, resolve the symbol declaration and check if (symbolOfNode.flags & SymbolFlags.Alias) { return isSymbolUsedInExportAssignment(resolveAlias(symbolOfNode)); } } // Check if the symbol is used in export assignment function isSymbolUsedInExportAssignment(symbol: Symbol) { if (exportAssignmentSymbol === symbol) { return true; } if (exportAssignmentSymbol && !!(exportAssignmentSymbol.flags & SymbolFlags.Alias)) { // if export assigned symbol is alias declaration, resolve the alias resolvedExportSymbol = resolvedExportSymbol || resolveAlias(exportAssignmentSymbol); if (resolvedExportSymbol === symbol) { return true; } // Container of resolvedExportSymbol is visible return forEach(resolvedExportSymbol.declarations, (current: Node) => { while (current) { if (current === node) { return true; } current = current.parent; } }); } } } function determineIfDeclarationIsVisible() { switch (node.kind) { case SyntaxKind.BindingElement: return isDeclarationVisible(node.parent.parent); case SyntaxKind.VariableDeclaration: if (isBindingPattern(node.name) && !(node.name).elements.length) { // If the binding pattern is empty, this variable declaration is not visible return false; } // Otherwise fall through case SyntaxKind.ModuleDeclaration: case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.TypeAliasDeclaration: case SyntaxKind.FunctionDeclaration: case SyntaxKind.EnumDeclaration: case SyntaxKind.ImportEqualsDeclaration: let parent = getDeclarationContainer(node); // If the node is not exported or it is not ambient module element (except import declaration) if (!(getCombinedNodeFlags(node) & NodeFlags.Export) && !(node.kind !== SyntaxKind.ImportEqualsDeclaration && parent.kind !== SyntaxKind.SourceFile && isInAmbientContext(parent))) { return isGlobalSourceFile(parent); } // Exported members/ambient module elements (exception import declaration) are visible if parent is visible return isDeclarationVisible(parent); case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: if (node.flags & (NodeFlags.Private | NodeFlags.Protected)) { // Private/protected properties/methods are not visible return false; } // Public properties/methods are visible if its parents are visible, so let it fall into next case statement case SyntaxKind.Constructor: case SyntaxKind.ConstructSignature: case SyntaxKind.CallSignature: case SyntaxKind.IndexSignature: case SyntaxKind.Parameter: case SyntaxKind.ModuleBlock: case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.TypeLiteral: case SyntaxKind.TypeReference: case SyntaxKind.ArrayType: case SyntaxKind.TupleType: case SyntaxKind.UnionType: case SyntaxKind.IntersectionType: case SyntaxKind.ParenthesizedType: return isDeclarationVisible(node.parent); // Default binding, import specifier and namespace import is visible // only on demand so by default it is not visible case SyntaxKind.ImportClause: case SyntaxKind.NamespaceImport: case SyntaxKind.ImportSpecifier: return false; // Type parameters are always visible case SyntaxKind.TypeParameter: // Source file is always visible case SyntaxKind.SourceFile: return true; // Export assignements do not create name bindings outside the module case SyntaxKind.ExportAssignment: return false; default: Debug.fail("isDeclarationVisible unknown: SyntaxKind: " + node.kind); } } if (node) { let links = getNodeLinks(node); if (links.isVisible === undefined) { links.isVisible = !!determineIfDeclarationIsVisible(); } return links.isVisible; } } function collectLinkedAliases(node: Identifier): Node[] { let exportSymbol: Symbol; if (node.parent && node.parent.kind === SyntaxKind.ExportAssignment) { exportSymbol = resolveName(node.parent, node.text, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace, Diagnostics.Cannot_find_name_0, node); } else if (node.parent.kind === SyntaxKind.ExportSpecifier) { exportSymbol = getTargetOfExportSpecifier(node.parent); } let result: Node[] = []; if (exportSymbol) { buildVisibleNodeList(exportSymbol.declarations); } return result; function buildVisibleNodeList(declarations: Declaration[]) { forEach(declarations, declaration => { getNodeLinks(declaration).isVisible = true; let resultNode = getAnyImportSyntax(declaration) || declaration; if (!contains(result, resultNode)) { result.push(resultNode); } if (isInternalModuleImportEqualsDeclaration(declaration)) { // Add the referenced top container visible let internalModuleReference = (declaration).moduleReference; let firstIdentifier = getFirstIdentifier(internalModuleReference); let importSymbol = resolveName(declaration, firstIdentifier.text, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace, Diagnostics.Cannot_find_name_0, firstIdentifier); buildVisibleNodeList(importSymbol.declarations); } }); } } // Push an entry on the type resolution stack. If an entry with the given target is not already on the stack, // a new entry with that target and an associated result value of true is pushed on the stack, and the value // true is returned. Otherwise, a circularity has occurred and the result values of the existing entry and // all entries pushed after it are changed to false, and the value false is returned. The target object provides // a unique identity for a particular type resolution result: Symbol instances are used to track resolution of // SymbolLinks.type, SymbolLinks instances are used to track resolution of SymbolLinks.declaredType, and // Signature instances are used to track resolution of Signature.resolvedReturnType. function pushTypeResolution(target: Object): boolean { let i = 0; let count = resolutionTargets.length; while (i < count && resolutionTargets[i] !== target) { i++; } if (i < count) { do { resolutionResults[i++] = false; } while (i < count); return false; } resolutionTargets.push(target); resolutionResults.push(true); return true; } // Pop an entry from the type resolution stack and return its associated result value. The result value will // be true if no circularities were detected, or false if a circularity was found. function popTypeResolution(): boolean { resolutionTargets.pop(); return resolutionResults.pop(); } function getDeclarationContainer(node: Node): Node { node = getRootDeclaration(node); // Parent chain: // VaribleDeclaration -> VariableDeclarationList -> VariableStatement -> 'Declaration Container' return node.kind === SyntaxKind.VariableDeclaration ? node.parent.parent.parent : node.parent; } function getTypeOfPrototypeProperty(prototype: Symbol): Type { // TypeScript 1.0 spec (April 2014): 8.4 // Every class automatically contains a static property member named 'prototype', // the type of which is an instantiation of the class type with type Any supplied as a type argument for each type parameter. // It is an error to explicitly declare a static property member with the name 'prototype'. let classType = getDeclaredTypeOfSymbol(prototype.parent); return classType.typeParameters ? createTypeReference(classType, map(classType.typeParameters, _ => anyType)) : classType; } // Return the type of the given property in the given type, or undefined if no such property exists function getTypeOfPropertyOfType(type: Type, name: string): Type { let prop = getPropertyOfType(type, name); return prop ? getTypeOfSymbol(prop) : undefined; } function isTypeAny(type: Type) { return type && (type.flags & TypeFlags.Any) !== 0; } // Return the inferred type for a binding element function getTypeForBindingElement(declaration: BindingElement): Type { let pattern = declaration.parent; let parentType = getTypeForVariableLikeDeclaration(pattern.parent); // If parent has the unknown (error) type, then so does this binding element if (parentType === unknownType) { return unknownType; } // If no type was specified or inferred for parent, or if the specified or inferred type is any, // infer from the initializer of the binding element if one is present. Otherwise, go with the // undefined or any type of the parent. if (!parentType || isTypeAny(parentType)) { if (declaration.initializer) { return checkExpressionCached(declaration.initializer); } return parentType; } let type: Type; if (pattern.kind === SyntaxKind.ObjectBindingPattern) { // Use explicitly specified property name ({ p: xxx } form), or otherwise the implied name ({ p } form) let name = declaration.propertyName || declaration.name; // Use type of the specified property, or otherwise, for a numeric name, the type of the numeric index signature, // or otherwise the type of the string index signature. type = getTypeOfPropertyOfType(parentType, name.text) || isNumericLiteralName(name.text) && getIndexTypeOfType(parentType, IndexKind.Number) || getIndexTypeOfType(parentType, IndexKind.String); if (!type) { error(name, Diagnostics.Type_0_has_no_property_1_and_no_string_index_signature, typeToString(parentType), declarationNameToString(name)); return unknownType; } } else { // This elementType will be used if the specific property corresponding to this index is not // present (aka the tuple element property). This call also checks that the parentType is in // fact an iterable or array (depending on target language). let elementType = checkIteratedTypeOrElementType(parentType, pattern, /*allowStringInput*/ false); if (!declaration.dotDotDotToken) { if (isTypeAny(elementType)) { return elementType; } // Use specific property type when parent is a tuple or numeric index type when parent is an array let propName = "" + indexOf(pattern.elements, declaration); type = isTupleLikeType(parentType) ? getTypeOfPropertyOfType(parentType, propName) : elementType; if (!type) { if (isTupleType(parentType)) { error(declaration, Diagnostics.Tuple_type_0_with_length_1_cannot_be_assigned_to_tuple_with_length_2, typeToString(parentType), (parentType).elementTypes.length, pattern.elements.length); } else { error(declaration, Diagnostics.Type_0_has_no_property_1, typeToString(parentType), propName); } return unknownType; } } else { // Rest element has an array type with the same element type as the parent type type = createArrayType(elementType); } } return type; } // Return the inferred type for a variable, parameter, or property declaration function getTypeForVariableLikeDeclaration(declaration: VariableLikeDeclaration): Type { // A variable declared in a for..in statement is always of type any if (declaration.parent.parent.kind === SyntaxKind.ForInStatement) { return anyType; } if (declaration.parent.parent.kind === SyntaxKind.ForOfStatement) { // checkRightHandSideOfForOf will return undefined if the for-of expression type was // missing properties/signatures required to get its iteratedType (like // [Symbol.iterator] or next). This may be because we accessed properties from anyType, // or it may have led to an error inside getElementTypeOfIterable. return checkRightHandSideOfForOf((declaration.parent.parent).expression) || anyType; } if (isBindingPattern(declaration.parent)) { return getTypeForBindingElement(declaration); } // Use type from type annotation if one is present if (declaration.type) { return getTypeFromTypeNode(declaration.type); } if (declaration.kind === SyntaxKind.Parameter) { let func = declaration.parent; // For a parameter of a set accessor, use the type of the get accessor if one is present if (func.kind === SyntaxKind.SetAccessor && !hasDynamicName(func)) { let getter = getDeclarationOfKind(declaration.parent.symbol, SyntaxKind.GetAccessor); if (getter) { return getReturnTypeOfSignature(getSignatureFromDeclaration(getter)); } } // Use contextual parameter type if one is available let type = getContextuallyTypedParameterType(declaration); if (type) { return type; } } // Use the type of the initializer expression if one is present if (declaration.initializer) { return checkExpressionCached(declaration.initializer); } // If it is a short-hand property assignment, use the type of the identifier if (declaration.kind === SyntaxKind.ShorthandPropertyAssignment) { return checkIdentifier(declaration.name); } // No type specified and nothing can be inferred return undefined; } // Return the type implied by a binding pattern element. This is the type of the initializer of the element if // one is present. Otherwise, if the element is itself a binding pattern, it is the type implied by the binding // pattern. Otherwise, it is the type any. function getTypeFromBindingElement(element: BindingElement): Type { if (element.initializer) { return getWidenedType(checkExpressionCached(element.initializer)); } if (isBindingPattern(element.name)) { return getTypeFromBindingPattern(element.name); } return anyType; } // Return the type implied by an object binding pattern function getTypeFromObjectBindingPattern(pattern: BindingPattern): Type { let members: SymbolTable = {}; forEach(pattern.elements, e => { let flags = SymbolFlags.Property | SymbolFlags.Transient | (e.initializer ? SymbolFlags.Optional : 0); let name = e.propertyName || e.name; let symbol = createSymbol(flags, name.text); symbol.type = getTypeFromBindingElement(e); members[symbol.name] = symbol; }); return createAnonymousType(undefined, members, emptyArray, emptyArray, undefined, undefined); } // Return the type implied by an array binding pattern function getTypeFromArrayBindingPattern(pattern: BindingPattern): Type { let hasSpreadElement: boolean = false; let elementTypes: Type[] = []; forEach(pattern.elements, e => { elementTypes.push(e.kind === SyntaxKind.OmittedExpression || e.dotDotDotToken ? anyType : getTypeFromBindingElement(e)); if (e.dotDotDotToken) { hasSpreadElement = true; } }); if (!elementTypes.length) { return languageVersion >= ScriptTarget.ES6 ? createIterableType(anyType) : anyArrayType; } else if (hasSpreadElement) { let unionOfElements = getUnionType(elementTypes); return languageVersion >= ScriptTarget.ES6 ? createIterableType(unionOfElements) : createArrayType(unionOfElements); } // If the pattern has at least one element, and no rest element, then it should imply a tuple type. return createTupleType(elementTypes); } // Return the type implied by a binding pattern. This is the type implied purely by the binding pattern itself // and without regard to its context (i.e. without regard any type annotation or initializer associated with the // declaration in which the binding pattern is contained). For example, the implied type of [x, y] is [any, any] // and the implied type of { x, y: z = 1 } is { x: any; y: number; }. The type implied by a binding pattern is // used as the contextual type of an initializer associated with the binding pattern. Also, for a destructuring // parameter with no type annotation or initializer, the type implied by the binding pattern becomes the type of // the parameter. function getTypeFromBindingPattern(pattern: BindingPattern): Type { return pattern.kind === SyntaxKind.ObjectBindingPattern ? getTypeFromObjectBindingPattern(pattern) : getTypeFromArrayBindingPattern(pattern); } // Return the type associated with a variable, parameter, or property declaration. In the simple case this is the type // specified in a type annotation or inferred from an initializer. However, in the case of a destructuring declaration it // is a bit more involved. For example: // // var [x, s = ""] = [1, "one"]; // // Here, the array literal [1, "one"] is contextually typed by the type [any, string], which is the implied type of the // binding pattern [x, s = ""]. Because the contextual type is a tuple type, the resulting type of [1, "one"] is the // tuple type [number, string]. Thus, the type inferred for 'x' is number and the type inferred for 's' is string. function getWidenedTypeForVariableLikeDeclaration(declaration: VariableLikeDeclaration, reportErrors?: boolean): Type { let type = getTypeForVariableLikeDeclaration(declaration); if (type) { if (reportErrors) { reportErrorsFromWidening(declaration, type); } // During a normal type check we'll never get to here with a property assignment (the check of the containing // object literal uses a different path). We exclude widening only so that language services and type verification // tools see the actual type. return declaration.kind !== SyntaxKind.PropertyAssignment ? getWidenedType(type) : type; } // If no type was specified and nothing could be inferred, and if the declaration specifies a binding pattern, use // the type implied by the binding pattern if (isBindingPattern(declaration.name)) { return getTypeFromBindingPattern(declaration.name); } // Rest parameters default to type any[], other parameters default to type any type = declaration.dotDotDotToken ? anyArrayType : anyType; // Report implicit any errors unless this is a private property within an ambient declaration if (reportErrors && compilerOptions.noImplicitAny) { let root = getRootDeclaration(declaration); if (!isPrivateWithinAmbient(root) && !(root.kind === SyntaxKind.Parameter && isPrivateWithinAmbient(root.parent))) { reportImplicitAnyError(declaration, type); } } return type; } function getTypeOfVariableOrParameterOrProperty(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.type) { // Handle prototype property if (symbol.flags & SymbolFlags.Prototype) { return links.type = getTypeOfPrototypeProperty(symbol); } // Handle catch clause variables let declaration = symbol.valueDeclaration; if (declaration.parent.kind === SyntaxKind.CatchClause) { return links.type = anyType; } // Handle export default expressions if (declaration.kind === SyntaxKind.ExportAssignment) { return links.type = checkExpression((declaration).expression); } // Handle variable, parameter or property if (!pushTypeResolution(symbol)) { return unknownType; } let type = getWidenedTypeForVariableLikeDeclaration(declaration, /*reportErrors*/ true); if (!popTypeResolution()) { if ((symbol.valueDeclaration).type) { // Variable has type annotation that circularly references the variable itself type = unknownType; error(symbol.valueDeclaration, Diagnostics._0_is_referenced_directly_or_indirectly_in_its_own_type_annotation, symbolToString(symbol)); } else { // Variable has initializer that circularly references the variable itself type = anyType; if (compilerOptions.noImplicitAny) { error(symbol.valueDeclaration, Diagnostics._0_implicitly_has_type_any_because_it_does_not_have_a_type_annotation_and_is_referenced_directly_or_indirectly_in_its_own_initializer, symbolToString(symbol)); } } } links.type = type; } return links.type; } function getSetAccessorTypeAnnotationNode(accessor: AccessorDeclaration): TypeNode { return accessor && accessor.parameters.length > 0 && accessor.parameters[0].type; } function getAnnotatedAccessorType(accessor: AccessorDeclaration): Type { if (accessor) { if (accessor.kind === SyntaxKind.GetAccessor) { return accessor.type && getTypeFromTypeNode(accessor.type); } else { let setterTypeAnnotation = getSetAccessorTypeAnnotationNode(accessor); return setterTypeAnnotation && getTypeFromTypeNode(setterTypeAnnotation); } } return undefined; } function getTypeOfAccessors(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.type) { if (!pushTypeResolution(symbol)) { return unknownType; } let getter = getDeclarationOfKind(symbol, SyntaxKind.GetAccessor); let setter = getDeclarationOfKind(symbol, SyntaxKind.SetAccessor); let type: Type; // First try to see if the user specified a return type on the get-accessor. let getterReturnType = getAnnotatedAccessorType(getter); if (getterReturnType) { type = getterReturnType; } else { // If the user didn't specify a return type, try to use the set-accessor's parameter type. let setterParameterType = getAnnotatedAccessorType(setter); if (setterParameterType) { type = setterParameterType; } else { // If there are no specified types, try to infer it from the body of the get accessor if it exists. if (getter && getter.body) { type = getReturnTypeFromBody(getter); } // Otherwise, fall back to 'any'. else { if (compilerOptions.noImplicitAny) { error(setter, Diagnostics.Property_0_implicitly_has_type_any_because_its_set_accessor_lacks_a_type_annotation, symbolToString(symbol)); } type = anyType; } } } if (!popTypeResolution()) { type = anyType; if (compilerOptions.noImplicitAny) { let getter = getDeclarationOfKind(symbol, SyntaxKind.GetAccessor); error(getter, Diagnostics._0_implicitly_has_return_type_any_because_it_does_not_have_a_return_type_annotation_and_is_referenced_directly_or_indirectly_in_one_of_its_return_expressions, symbolToString(symbol)); } } links.type = type; } return links.type; } function getTypeOfFuncClassEnumModule(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.type) { links.type = createObjectType(TypeFlags.Anonymous, symbol); } return links.type; } function getTypeOfEnumMember(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.type) { links.type = getDeclaredTypeOfEnum(getParentOfSymbol(symbol)); } return links.type; } function getTypeOfAlias(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.type) { let targetSymbol = resolveAlias(symbol); // It only makes sense to get the type of a value symbol. If the result of resolving // the alias is not a value, then it has no type. To get the type associated with a // type symbol, call getDeclaredTypeOfSymbol. // This check is important because without it, a call to getTypeOfSymbol could end // up recursively calling getTypeOfAlias, causing a stack overflow. links.type = targetSymbol.flags & SymbolFlags.Value ? getTypeOfSymbol(targetSymbol) : unknownType; } return links.type; } function getTypeOfInstantiatedSymbol(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.type) { links.type = instantiateType(getTypeOfSymbol(links.target), links.mapper); } return links.type; } function getTypeOfSymbol(symbol: Symbol): Type { if (symbol.flags & SymbolFlags.Instantiated) { return getTypeOfInstantiatedSymbol(symbol); } if (symbol.flags & (SymbolFlags.Variable | SymbolFlags.Property)) { return getTypeOfVariableOrParameterOrProperty(symbol); } if (symbol.flags & (SymbolFlags.Function | SymbolFlags.Method | SymbolFlags.Class | SymbolFlags.Enum | SymbolFlags.ValueModule)) { return getTypeOfFuncClassEnumModule(symbol); } if (symbol.flags & SymbolFlags.EnumMember) { return getTypeOfEnumMember(symbol); } if (symbol.flags & SymbolFlags.Accessor) { return getTypeOfAccessors(symbol); } if (symbol.flags & SymbolFlags.Alias) { return getTypeOfAlias(symbol); } return unknownType; } function getTargetType(type: ObjectType): Type { return type.flags & TypeFlags.Reference ? (type).target : type; } function hasBaseType(type: InterfaceType, checkBase: InterfaceType) { return check(type); function check(type: InterfaceType): boolean { let target = getTargetType(type); return target === checkBase || forEach(getBaseTypes(target), check); } } // Appends the type parameters given by a list of declarations to a set of type parameters and returns the resulting set. // The function allocates a new array if the input type parameter set is undefined, but otherwise it modifies the set // in-place and returns the same array. function appendTypeParameters(typeParameters: TypeParameter[], declarations: TypeParameterDeclaration[]): TypeParameter[] { for (let declaration of declarations) { let tp = getDeclaredTypeOfTypeParameter(getSymbolOfNode(declaration)); if (!typeParameters) { typeParameters = [tp]; } else if (!contains(typeParameters, tp)) { typeParameters.push(tp); } } return typeParameters; } // Appends the outer type parameters of a node to a set of type parameters and returns the resulting set. The function // allocates a new array if the input type parameter set is undefined, but otherwise it modifies the set in-place and // returns the same array. function appendOuterTypeParameters(typeParameters: TypeParameter[], node: Node): TypeParameter[] { while (true) { node = node.parent; if (!node) { return typeParameters; } if (node.kind === SyntaxKind.ClassDeclaration || node.kind === SyntaxKind.ClassExpression || node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.FunctionExpression || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.ArrowFunction) { let declarations = (node).typeParameters; if (declarations) { return appendTypeParameters(appendOuterTypeParameters(typeParameters, node), declarations); } } } } // The outer type parameters are those defined by enclosing generic classes, methods, or functions. function getOuterTypeParametersOfClassOrInterface(symbol: Symbol): TypeParameter[] { let declaration = symbol.flags & SymbolFlags.Class ? symbol.valueDeclaration : getDeclarationOfKind(symbol, SyntaxKind.InterfaceDeclaration); return appendOuterTypeParameters(undefined, declaration); } // The local type parameters are the combined set of type parameters from all declarations of the class, // interface, or type alias. function getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol: Symbol): TypeParameter[] { let result: TypeParameter[]; for (let node of symbol.declarations) { if (node.kind === SyntaxKind.InterfaceDeclaration || node.kind === SyntaxKind.ClassDeclaration || node.kind === SyntaxKind.ClassExpression || node.kind === SyntaxKind.TypeAliasDeclaration) { let declaration = node; if (declaration.typeParameters) { result = appendTypeParameters(result, declaration.typeParameters); } } } return result; } // The full set of type parameters for a generic class or interface type consists of its outer type parameters plus // its locally declared type parameters. function getTypeParametersOfClassOrInterface(symbol: Symbol): TypeParameter[] { return concatenate(getOuterTypeParametersOfClassOrInterface(symbol), getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol)); } function isConstructorType(type: Type): boolean { return type.flags & TypeFlags.ObjectType && getSignaturesOfType(type, SignatureKind.Construct).length > 0; } function getBaseTypeNodeOfClass(type: InterfaceType): ExpressionWithTypeArguments { return getClassExtendsHeritageClauseElement(type.symbol.valueDeclaration); } function getConstructorsForTypeArguments(type: ObjectType, typeArgumentNodes: TypeNode[]): Signature[] { let typeArgCount = typeArgumentNodes ? typeArgumentNodes.length : 0; return filter(getSignaturesOfType(type, SignatureKind.Construct), sig => (sig.typeParameters ? sig.typeParameters.length : 0) === typeArgCount); } function getInstantiatedConstructorsForTypeArguments(type: ObjectType, typeArgumentNodes: TypeNode[]): Signature[] { let signatures = getConstructorsForTypeArguments(type, typeArgumentNodes); if (typeArgumentNodes) { let typeArguments = map(typeArgumentNodes, getTypeFromTypeNode); signatures = map(signatures, sig => getSignatureInstantiation(sig, typeArguments)); } return signatures; } // The base constructor of a class can resolve to // undefinedType if the class has no extends clause, // unknownType if an error occurred during resolution of the extends expression, // nullType if the extends expression is the null value, or // an object type with at least one construct signature. function getBaseConstructorTypeOfClass(type: InterfaceType): ObjectType { if (!type.resolvedBaseConstructorType) { let baseTypeNode = getBaseTypeNodeOfClass(type); if (!baseTypeNode) { return type.resolvedBaseConstructorType = undefinedType; } if (!pushTypeResolution(type)) { return unknownType; } let baseConstructorType = checkExpression(baseTypeNode.expression); if (baseConstructorType.flags & TypeFlags.ObjectType) { // Resolving the members of a class requires us to resolve the base class of that class. // We force resolution here such that we catch circularities now. resolveStructuredTypeMembers(baseConstructorType); } if (!popTypeResolution()) { error(type.symbol.valueDeclaration, Diagnostics._0_is_referenced_directly_or_indirectly_in_its_own_base_expression, symbolToString(type.symbol)); return type.resolvedBaseConstructorType = unknownType; } if (baseConstructorType !== unknownType && baseConstructorType !== nullType && !isConstructorType(baseConstructorType)) { error(baseTypeNode.expression, Diagnostics.Type_0_is_not_a_constructor_function_type, typeToString(baseConstructorType)); return type.resolvedBaseConstructorType = unknownType; } type.resolvedBaseConstructorType = baseConstructorType; } return type.resolvedBaseConstructorType; } function getBaseTypes(type: InterfaceType): ObjectType[] { if (!type.resolvedBaseTypes) { if (type.symbol.flags & SymbolFlags.Class) { resolveBaseTypesOfClass(type); } else if (type.symbol.flags & SymbolFlags.Interface) { resolveBaseTypesOfInterface(type); } else { Debug.fail("type must be class or interface"); } } return type.resolvedBaseTypes; } function resolveBaseTypesOfClass(type: InterfaceType): void { type.resolvedBaseTypes = emptyArray; let baseContructorType = getBaseConstructorTypeOfClass(type); if (!(baseContructorType.flags & TypeFlags.ObjectType)) { return; } let baseTypeNode = getBaseTypeNodeOfClass(type); let baseType: Type; if (baseContructorType.symbol && baseContructorType.symbol.flags & SymbolFlags.Class) { // When base constructor type is a class we know that the constructors all have the same type parameters as the // class and all return the instance type of the class. There is no need for further checks and we can apply the // type arguments in the same manner as a type reference to get the same error reporting experience. baseType = getTypeFromClassOrInterfaceReference(baseTypeNode, baseContructorType.symbol); } else { // The class derives from a "class-like" constructor function, check that we have at least one construct signature // with a matching number of type parameters and use the return type of the first instantiated signature. Elsewhere // we check that all instantiated signatures return the same type. let constructors = getInstantiatedConstructorsForTypeArguments(baseContructorType, baseTypeNode.typeArguments); if (!constructors.length) { error(baseTypeNode.expression, Diagnostics.No_base_constructor_has_the_specified_number_of_type_arguments); return; } baseType = getReturnTypeOfSignature(constructors[0]); } if (baseType === unknownType) { return; } if (!(getTargetType(baseType).flags & (TypeFlags.Class | TypeFlags.Interface))) { error(baseTypeNode.expression, Diagnostics.Base_constructor_return_type_0_is_not_a_class_or_interface_type, typeToString(baseType)); return; } if (type === baseType || hasBaseType(baseType, type)) { error(type.symbol.valueDeclaration, Diagnostics.Type_0_recursively_references_itself_as_a_base_type, typeToString(type, /*enclosingDeclaration*/ undefined, TypeFormatFlags.WriteArrayAsGenericType)); return; } type.resolvedBaseTypes = [baseType]; } function resolveBaseTypesOfInterface(type: InterfaceType): void { type.resolvedBaseTypes = []; for (let declaration of type.symbol.declarations) { if (declaration.kind === SyntaxKind.InterfaceDeclaration && getInterfaceBaseTypeNodes(declaration)) { for (let node of getInterfaceBaseTypeNodes(declaration)) { let baseType = getTypeFromTypeNode(node); if (baseType !== unknownType) { if (getTargetType(baseType).flags & (TypeFlags.Class | TypeFlags.Interface)) { if (type !== baseType && !hasBaseType(baseType, type)) { type.resolvedBaseTypes.push(baseType); } else { error(declaration, Diagnostics.Type_0_recursively_references_itself_as_a_base_type, typeToString(type, /*enclosingDeclaration*/ undefined, TypeFormatFlags.WriteArrayAsGenericType)); } } else { error(node, Diagnostics.An_interface_may_only_extend_a_class_or_another_interface); } } } } } } function getDeclaredTypeOfClassOrInterface(symbol: Symbol): InterfaceType { let links = getSymbolLinks(symbol); if (!links.declaredType) { let kind = symbol.flags & SymbolFlags.Class ? TypeFlags.Class : TypeFlags.Interface; let type = links.declaredType = createObjectType(kind, symbol); let outerTypeParameters = getOuterTypeParametersOfClassOrInterface(symbol); let localTypeParameters = getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol); if (outerTypeParameters || localTypeParameters) { type.flags |= TypeFlags.Reference; type.typeParameters = concatenate(outerTypeParameters, localTypeParameters); type.outerTypeParameters = outerTypeParameters; type.localTypeParameters = localTypeParameters; (type).instantiations = {}; (type).instantiations[getTypeListId(type.typeParameters)] = type; (type).target = type; (type).typeArguments = type.typeParameters; } } return links.declaredType; } function getDeclaredTypeOfTypeAlias(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.declaredType) { // Note that we use the links object as the target here because the symbol object is used as the unique // identity for resolution of the 'type' property in SymbolLinks. if (!pushTypeResolution(links)) { return unknownType; } let declaration = getDeclarationOfKind(symbol, SyntaxKind.TypeAliasDeclaration); let type = getTypeFromTypeNode(declaration.type); if (popTypeResolution()) { links.typeParameters = getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol); if (links.typeParameters) { // Initialize the instantiation cache for generic type aliases. The declared type corresponds to // an instantiation of the type alias with the type parameters supplied as type arguments. links.instantiations = {}; links.instantiations[getTypeListId(links.typeParameters)] = type; } } else { type = unknownType; error(declaration.name, Diagnostics.Type_alias_0_circularly_references_itself, symbolToString(symbol)); } links.declaredType = type; } return links.declaredType; } function getDeclaredTypeOfEnum(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.declaredType) { let type = createType(TypeFlags.Enum); type.symbol = symbol; links.declaredType = type; } return links.declaredType; } function getDeclaredTypeOfTypeParameter(symbol: Symbol): TypeParameter { let links = getSymbolLinks(symbol); if (!links.declaredType) { let type = createType(TypeFlags.TypeParameter); type.symbol = symbol; if (!(getDeclarationOfKind(symbol, SyntaxKind.TypeParameter)).constraint) { type.constraint = noConstraintType; } links.declaredType = type; } return links.declaredType; } function getDeclaredTypeOfAlias(symbol: Symbol): Type { let links = getSymbolLinks(symbol); if (!links.declaredType) { links.declaredType = getDeclaredTypeOfSymbol(resolveAlias(symbol)); } return links.declaredType; } function getDeclaredTypeOfSymbol(symbol: Symbol): Type { Debug.assert((symbol.flags & SymbolFlags.Instantiated) === 0); if (symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface)) { return getDeclaredTypeOfClassOrInterface(symbol); } if (symbol.flags & SymbolFlags.TypeAlias) { return getDeclaredTypeOfTypeAlias(symbol); } if (symbol.flags & SymbolFlags.Enum) { return getDeclaredTypeOfEnum(symbol); } if (symbol.flags & SymbolFlags.TypeParameter) { return getDeclaredTypeOfTypeParameter(symbol); } if (symbol.flags & SymbolFlags.Alias) { return getDeclaredTypeOfAlias(symbol); } return unknownType; } function createSymbolTable(symbols: Symbol[]): SymbolTable { let result: SymbolTable = {}; for (let symbol of symbols) { result[symbol.name] = symbol; } return result; } function createInstantiatedSymbolTable(symbols: Symbol[], mapper: TypeMapper): SymbolTable { let result: SymbolTable = {}; for (let symbol of symbols) { result[symbol.name] = instantiateSymbol(symbol, mapper); } return result; } function addInheritedMembers(symbols: SymbolTable, baseSymbols: Symbol[]) { for (let s of baseSymbols) { if (!hasProperty(symbols, s.name)) { symbols[s.name] = s; } } } function addInheritedSignatures(signatures: Signature[], baseSignatures: Signature[]) { if (baseSignatures) { for (let signature of baseSignatures) { signatures.push(signature); } } } function resolveDeclaredMembers(type: InterfaceType): InterfaceTypeWithDeclaredMembers { if (!(type).declaredProperties) { let symbol = type.symbol; (type).declaredProperties = getNamedMembers(symbol.members); (type).declaredCallSignatures = getSignaturesOfSymbol(symbol.members["__call"]); (type).declaredConstructSignatures = getSignaturesOfSymbol(symbol.members["__new"]); (type).declaredStringIndexType = getIndexTypeOfSymbol(symbol, IndexKind.String); (type).declaredNumberIndexType = getIndexTypeOfSymbol(symbol, IndexKind.Number); } return type; } function resolveClassOrInterfaceMembers(type: InterfaceType): void { let target = resolveDeclaredMembers(type); let members = target.symbol.members; let callSignatures = target.declaredCallSignatures; let constructSignatures = target.declaredConstructSignatures; let stringIndexType = target.declaredStringIndexType; let numberIndexType = target.declaredNumberIndexType; let baseTypes = getBaseTypes(target); if (baseTypes.length) { members = createSymbolTable(target.declaredProperties); for (let baseType of baseTypes) { addInheritedMembers(members, getPropertiesOfObjectType(baseType)); callSignatures = concatenate(callSignatures, getSignaturesOfType(baseType, SignatureKind.Call)); constructSignatures = concatenate(constructSignatures, getSignaturesOfType(baseType, SignatureKind.Construct)); stringIndexType = stringIndexType || getIndexTypeOfType(baseType, IndexKind.String); numberIndexType = numberIndexType || getIndexTypeOfType(baseType, IndexKind.Number); } } setObjectTypeMembers(type, members, callSignatures, constructSignatures, stringIndexType, numberIndexType); } function resolveTypeReferenceMembers(type: TypeReference): void { let target = resolveDeclaredMembers(type.target); let mapper = createTypeMapper(target.typeParameters, type.typeArguments); let members = createInstantiatedSymbolTable(target.declaredProperties, mapper); let callSignatures = instantiateList(target.declaredCallSignatures, mapper, instantiateSignature); let constructSignatures = instantiateList(target.declaredConstructSignatures, mapper, instantiateSignature); let stringIndexType = target.declaredStringIndexType ? instantiateType(target.declaredStringIndexType, mapper) : undefined; let numberIndexType = target.declaredNumberIndexType ? instantiateType(target.declaredNumberIndexType, mapper) : undefined; forEach(getBaseTypes(target), baseType => { let instantiatedBaseType = instantiateType(baseType, mapper); addInheritedMembers(members, getPropertiesOfObjectType(instantiatedBaseType)); callSignatures = concatenate(callSignatures, getSignaturesOfType(instantiatedBaseType, SignatureKind.Call)); constructSignatures = concatenate(constructSignatures, getSignaturesOfType(instantiatedBaseType, SignatureKind.Construct)); stringIndexType = stringIndexType || getIndexTypeOfType(instantiatedBaseType, IndexKind.String); numberIndexType = numberIndexType || getIndexTypeOfType(instantiatedBaseType, IndexKind.Number); }); setObjectTypeMembers(type, members, callSignatures, constructSignatures, stringIndexType, numberIndexType); } function createSignature(declaration: SignatureDeclaration, typeParameters: TypeParameter[], parameters: Symbol[], resolvedReturnType: Type, typePredicate: TypePredicate, minArgumentCount: number, hasRestParameter: boolean, hasStringLiterals: boolean): Signature { let sig = new Signature(checker); sig.declaration = declaration; sig.typeParameters = typeParameters; sig.parameters = parameters; sig.resolvedReturnType = resolvedReturnType; sig.typePredicate = typePredicate; sig.minArgumentCount = minArgumentCount; sig.hasRestParameter = hasRestParameter; sig.hasStringLiterals = hasStringLiterals; return sig; } function cloneSignature(sig: Signature): Signature { return createSignature(sig.declaration, sig.typeParameters, sig.parameters, sig.resolvedReturnType, sig.typePredicate, sig.minArgumentCount, sig.hasRestParameter, sig.hasStringLiterals); } function getDefaultConstructSignatures(classType: InterfaceType): Signature[] { if (!getBaseTypes(classType).length) { return [createSignature(undefined, classType.localTypeParameters, emptyArray, classType, undefined, 0, false, false)]; } let baseConstructorType = getBaseConstructorTypeOfClass(classType); let baseSignatures = getSignaturesOfType(baseConstructorType, SignatureKind.Construct); let baseTypeNode = getBaseTypeNodeOfClass(classType); let typeArguments = map(baseTypeNode.typeArguments, getTypeFromTypeNode); let typeArgCount = typeArguments ? typeArguments.length : 0; let result: Signature[] = []; for (let baseSig of baseSignatures) { let typeParamCount = baseSig.typeParameters ? baseSig.typeParameters.length : 0; if (typeParamCount === typeArgCount) { let sig = typeParamCount ? getSignatureInstantiation(baseSig, typeArguments) : cloneSignature(baseSig); sig.typeParameters = classType.localTypeParameters; sig.resolvedReturnType = classType; result.push(sig); } } return result; } function createTupleTypeMemberSymbols(memberTypes: Type[]): SymbolTable { let members: SymbolTable = {}; for (let i = 0; i < memberTypes.length; i++) { let symbol = createSymbol(SymbolFlags.Property | SymbolFlags.Transient, "" + i); symbol.type = memberTypes[i]; members[i] = symbol; } return members; } function resolveTupleTypeMembers(type: TupleType) { let arrayType = resolveStructuredTypeMembers(createArrayType(getUnionType(type.elementTypes))); let members = createTupleTypeMemberSymbols(type.elementTypes); addInheritedMembers(members, arrayType.properties); setObjectTypeMembers(type, members, arrayType.callSignatures, arrayType.constructSignatures, arrayType.stringIndexType, arrayType.numberIndexType); } function signatureListsIdentical(s: Signature[], t: Signature[]): boolean { if (s.length !== t.length) { return false; } for (let i = 0; i < s.length; i++) { if (!compareSignatures(s[i], t[i], /*compareReturnTypes*/ false, compareTypes)) { return false; } } return true; } // If the lists of call or construct signatures in the given types are all identical except for return types, // and if none of the signatures are generic, return a list of signatures that has substitutes a union of the // return types of the corresponding signatures in each resulting signature. function getUnionSignatures(types: Type[], kind: SignatureKind): Signature[] { let signatureLists = map(types, t => getSignaturesOfType(t, kind)); let signatures = signatureLists[0]; for (let signature of signatures) { if (signature.typeParameters) { return emptyArray; } } for (let i = 1; i < signatureLists.length; i++) { if (!signatureListsIdentical(signatures, signatureLists[i])) { return emptyArray; } } let result = map(signatures, cloneSignature); for (var i = 0; i < result.length; i++) { let s = result[i]; // Clear resolved return type we possibly got from cloneSignature s.resolvedReturnType = undefined; s.unionSignatures = map(signatureLists, signatures => signatures[i]); } return result; } function getUnionIndexType(types: Type[], kind: IndexKind): Type { let indexTypes: Type[] = []; for (let type of types) { let indexType = getIndexTypeOfType(type, kind); if (!indexType) { return undefined; } indexTypes.push(indexType); } return getUnionType(indexTypes); } function resolveUnionTypeMembers(type: UnionType) { // The members and properties collections are empty for union types. To get all properties of a union // type use getPropertiesOfType (only the language service uses this). let callSignatures = getUnionSignatures(type.types, SignatureKind.Call); let constructSignatures = getUnionSignatures(type.types, SignatureKind.Construct); let stringIndexType = getUnionIndexType(type.types, IndexKind.String); let numberIndexType = getUnionIndexType(type.types, IndexKind.Number); setObjectTypeMembers(type, emptySymbols, callSignatures, constructSignatures, stringIndexType, numberIndexType); } function intersectTypes(type1: Type, type2: Type): Type { return !type1 ? type2 : !type2 ? type1 : getIntersectionType([type1, type2]); } function resolveIntersectionTypeMembers(type: IntersectionType) { // The members and properties collections are empty for intersection types. To get all properties of an // intersection type use getPropertiesOfType (only the language service uses this). let callSignatures: Signature[] = emptyArray; let constructSignatures: Signature[] = emptyArray; let stringIndexType: Type = undefined; let numberIndexType: Type = undefined; for (let t of type.types) { callSignatures = concatenate(callSignatures, getSignaturesOfType(t, SignatureKind.Call)); constructSignatures = concatenate(constructSignatures, getSignaturesOfType(t, SignatureKind.Construct)); stringIndexType = intersectTypes(stringIndexType, getIndexTypeOfType(t, IndexKind.String)); numberIndexType = intersectTypes(numberIndexType, getIndexTypeOfType(t, IndexKind.Number)); } setObjectTypeMembers(type, emptySymbols, callSignatures, constructSignatures, stringIndexType, numberIndexType); } function resolveAnonymousTypeMembers(type: ObjectType) { let symbol = type.symbol; let members: SymbolTable; let callSignatures: Signature[]; let constructSignatures: Signature[]; let stringIndexType: Type; let numberIndexType: Type; if (symbol.flags & SymbolFlags.TypeLiteral) { members = symbol.members; callSignatures = getSignaturesOfSymbol(members["__call"]); constructSignatures = getSignaturesOfSymbol(members["__new"]); stringIndexType = getIndexTypeOfSymbol(symbol, IndexKind.String); numberIndexType = getIndexTypeOfSymbol(symbol, IndexKind.Number); } else { // Combinations of function, class, enum and module members = emptySymbols; callSignatures = emptyArray; constructSignatures = emptyArray; if (symbol.flags & SymbolFlags.HasExports) { members = getExportsOfSymbol(symbol); } if (symbol.flags & (SymbolFlags.Function | SymbolFlags.Method)) { callSignatures = getSignaturesOfSymbol(symbol); } if (symbol.flags & SymbolFlags.Class) { let classType = getDeclaredTypeOfClassOrInterface(symbol); constructSignatures = getSignaturesOfSymbol(symbol.members["__constructor"]); if (!constructSignatures.length) { constructSignatures = getDefaultConstructSignatures(classType); } let baseConstructorType = getBaseConstructorTypeOfClass(classType); if (baseConstructorType.flags & TypeFlags.ObjectType) { members = createSymbolTable(getNamedMembers(members)); addInheritedMembers(members, getPropertiesOfObjectType(baseConstructorType)); } } stringIndexType = undefined; numberIndexType = (symbol.flags & SymbolFlags.Enum) ? stringType : undefined; } setObjectTypeMembers(type, members, callSignatures, constructSignatures, stringIndexType, numberIndexType); } function resolveStructuredTypeMembers(type: ObjectType): ResolvedType { if (!(type).members) { if (type.flags & (TypeFlags.Class | TypeFlags.Interface)) { resolveClassOrInterfaceMembers(type); } else if (type.flags & TypeFlags.Anonymous) { resolveAnonymousTypeMembers(type); } else if (type.flags & TypeFlags.Tuple) { resolveTupleTypeMembers(type); } else if (type.flags & TypeFlags.Union) { resolveUnionTypeMembers(type); } else if (type.flags & TypeFlags.Intersection) { resolveIntersectionTypeMembers(type); } else { resolveTypeReferenceMembers(type); } } return type; } // Return properties of an object type or an empty array for other types function getPropertiesOfObjectType(type: Type): Symbol[] { if (type.flags & TypeFlags.ObjectType) { return resolveStructuredTypeMembers(type).properties; } return emptyArray; } // If the given type is an object type and that type has a property by the given name, // return the symbol for that property.Otherwise return undefined. function getPropertyOfObjectType(type: Type, name: string): Symbol { if (type.flags & TypeFlags.ObjectType) { let resolved = resolveStructuredTypeMembers(type); if (hasProperty(resolved.members, name)) { let symbol = resolved.members[name]; if (symbolIsValue(symbol)) { return symbol; } } } } function getPropertiesOfUnionOrIntersectionType(type: UnionOrIntersectionType): Symbol[] { for (let current of type.types) { for (let prop of getPropertiesOfType(current)) { getPropertyOfUnionOrIntersectionType(type, prop.name); } // The properties of a union type are those that are present in all constituent types, so // we only need to check the properties of the first type if (type.flags & TypeFlags.Union) { break; } } return type.resolvedProperties ? symbolsToArray(type.resolvedProperties) : emptyArray; } function getPropertiesOfType(type: Type): Symbol[] { type = getApparentType(type); return type.flags & TypeFlags.UnionOrIntersection ? getPropertiesOfUnionOrIntersectionType(type) : getPropertiesOfObjectType(type); } /** * For a type parameter, return the base constraint of the type parameter. For the string, number, * boolean, and symbol primitive types, return the corresponding object types. Otherwise return the * type itself. Note that the apparent type of a union type is the union type itself. */ function getApparentType(type: Type): Type { if (type.flags & TypeFlags.Union) { type = getReducedTypeOfUnionType(type); } if (type.flags & TypeFlags.TypeParameter) { do { type = getConstraintOfTypeParameter(type); } while (type && type.flags & TypeFlags.TypeParameter); if (!type) { type = emptyObjectType; } } if (type.flags & TypeFlags.StringLike) { type = globalStringType; } else if (type.flags & TypeFlags.NumberLike) { type = globalNumberType; } else if (type.flags & TypeFlags.Boolean) { type = globalBooleanType; } else if (type.flags & TypeFlags.ESSymbol) { type = globalESSymbolType; } return type; } function createUnionOrIntersectionProperty(containingType: UnionOrIntersectionType, name: string): Symbol { let types = containingType.types; let props: Symbol[]; for (let current of types) { let type = getApparentType(current); if (type !== unknownType) { let prop = getPropertyOfType(type, name); if (prop && !(getDeclarationFlagsFromSymbol(prop) & (NodeFlags.Private | NodeFlags.Protected))) { if (!props) { props = [prop]; } else if (!contains(props, prop)) { props.push(prop); } } else if (containingType.flags & TypeFlags.Union) { // A union type requires the property to be present in all constituent types return undefined; } } } if (!props) { return undefined; } if (props.length === 1) { return props[0]; } let propTypes: Type[] = []; let declarations: Declaration[] = []; for (let prop of props) { if (prop.declarations) { declarations.push.apply(declarations, prop.declarations); } propTypes.push(getTypeOfSymbol(prop)); } let result = createSymbol(SymbolFlags.Property | SymbolFlags.Transient | SymbolFlags.SyntheticProperty, name); result.containingType = containingType; result.declarations = declarations; result.type = containingType.flags & TypeFlags.Union ? getUnionType(propTypes) : getIntersectionType(propTypes); return result; } function getPropertyOfUnionOrIntersectionType(type: UnionOrIntersectionType, name: string): Symbol { let properties = type.resolvedProperties || (type.resolvedProperties = {}); if (hasProperty(properties, name)) { return properties[name]; } let property = createUnionOrIntersectionProperty(type, name); if (property) { properties[name] = property; } return property; } // Return the symbol for the property with the given name in the given type. Creates synthetic union properties when // necessary, maps primitive types and type parameters are to their apparent types, and augments with properties from // Object and Function as appropriate. function getPropertyOfType(type: Type, name: string): Symbol { type = getApparentType(type); if (type.flags & TypeFlags.ObjectType) { let resolved = resolveStructuredTypeMembers(type); if (hasProperty(resolved.members, name)) { let symbol = resolved.members[name]; if (symbolIsValue(symbol)) { return symbol; } } if (resolved === anyFunctionType || resolved.callSignatures.length || resolved.constructSignatures.length) { let symbol = getPropertyOfObjectType(globalFunctionType, name); if (symbol) { return symbol; } } return getPropertyOfObjectType(globalObjectType, name); } if (type.flags & TypeFlags.UnionOrIntersection) { return getPropertyOfUnionOrIntersectionType(type, name); } return undefined; } function getSignaturesOfStructuredType(type: Type, kind: SignatureKind): Signature[] { if (type.flags & TypeFlags.StructuredType) { let resolved = resolveStructuredTypeMembers(type); return kind === SignatureKind.Call ? resolved.callSignatures : resolved.constructSignatures; } return emptyArray; } // Return the signatures of the given kind in the given type. Creates synthetic union signatures when necessary and // maps primitive types and type parameters are to their apparent types. function getSignaturesOfType(type: Type, kind: SignatureKind): Signature[] { return getSignaturesOfStructuredType(getApparentType(type), kind); } function typeHasCallOrConstructSignatures(type: Type): boolean { let apparentType = getApparentType(type); if (apparentType.flags & TypeFlags.StructuredType) { let resolved = resolveStructuredTypeMembers(type); return resolved.callSignatures.length > 0 || resolved.constructSignatures.length > 0; } return false; } function getIndexTypeOfStructuredType(type: Type, kind: IndexKind): Type { if (type.flags & TypeFlags.StructuredType) { let resolved = resolveStructuredTypeMembers(type); return kind === IndexKind.String ? resolved.stringIndexType : resolved.numberIndexType; } } // Return the index type of the given kind in the given type. Creates synthetic union index types when necessary and // maps primitive types and type parameters are to their apparent types. function getIndexTypeOfType(type: Type, kind: IndexKind): Type { return getIndexTypeOfStructuredType(getApparentType(type), kind); } // Return list of type parameters with duplicates removed (duplicate identifier errors are generated in the actual // type checking functions). function getTypeParametersFromDeclaration(typeParameterDeclarations: TypeParameterDeclaration[]): TypeParameter[] { let result: TypeParameter[] = []; forEach(typeParameterDeclarations, node => { let tp = getDeclaredTypeOfTypeParameter(node.symbol); if (!contains(result, tp)) { result.push(tp); } }); return result; } function symbolsToArray(symbols: SymbolTable): Symbol[] { let result: Symbol[] = []; for (let id in symbols) { if (!isReservedMemberName(id)) { result.push(symbols[id]); } } return result; } function isOptionalParameter(node: ParameterDeclaration) { return hasQuestionToken(node) || !!node.initializer; } function getSignatureFromDeclaration(declaration: SignatureDeclaration): Signature { let links = getNodeLinks(declaration); if (!links.resolvedSignature) { let classType = declaration.kind === SyntaxKind.Constructor ? getDeclaredTypeOfClassOrInterface((declaration.parent).symbol) : undefined; let typeParameters = classType ? classType.localTypeParameters : declaration.typeParameters ? getTypeParametersFromDeclaration(declaration.typeParameters) : undefined; let parameters: Symbol[] = []; let hasStringLiterals = false; let minArgumentCount = -1; for (let i = 0, n = declaration.parameters.length; i < n; i++) { let param = declaration.parameters[i]; parameters.push(param.symbol); if (param.type && param.type.kind === SyntaxKind.StringLiteral) { hasStringLiterals = true; } if (minArgumentCount < 0) { if (param.initializer || param.questionToken || param.dotDotDotToken) { minArgumentCount = i; } } } if (minArgumentCount < 0) { minArgumentCount = declaration.parameters.length; } let returnType: Type; let typePredicate: TypePredicate; if (classType) { returnType = classType; } else if (declaration.type) { returnType = getTypeFromTypeNode(declaration.type); if (declaration.type.kind === SyntaxKind.TypePredicate) { let typePredicateNode = declaration.type; typePredicate = { parameterName: typePredicateNode.parameterName ? typePredicateNode.parameterName.text : undefined, parameterIndex: typePredicateNode.parameterName ? getTypePredicateParameterIndex(declaration.parameters, typePredicateNode.parameterName) : undefined, type: getTypeFromTypeNode(typePredicateNode.type) }; } } else { // TypeScript 1.0 spec (April 2014): // If only one accessor includes a type annotation, the other behaves as if it had the same type annotation. if (declaration.kind === SyntaxKind.GetAccessor && !hasDynamicName(declaration)) { let setter = getDeclarationOfKind(declaration.symbol, SyntaxKind.SetAccessor); returnType = getAnnotatedAccessorType(setter); } if (!returnType && nodeIsMissing((declaration).body)) { returnType = anyType; } } links.resolvedSignature = createSignature(declaration, typeParameters, parameters, returnType, typePredicate, minArgumentCount, hasRestParameter(declaration), hasStringLiterals); } return links.resolvedSignature; } function getSignaturesOfSymbol(symbol: Symbol): Signature[] { if (!symbol) return emptyArray; let result: Signature[] = []; for (let i = 0, len = symbol.declarations.length; i < len; i++) { let node = symbol.declarations[i]; switch (node.kind) { case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.FunctionDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.Constructor: case SyntaxKind.CallSignature: case SyntaxKind.ConstructSignature: case SyntaxKind.IndexSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: // Don't include signature if node is the implementation of an overloaded function. A node is considered // an implementation node if it has a body and the previous node is of the same kind and immediately // precedes the implementation node (i.e. has the same parent and ends where the implementation starts). if (i > 0 && (node).body) { let previous = symbol.declarations[i - 1]; if (node.parent === previous.parent && node.kind === previous.kind && node.pos === previous.end) { break; } } result.push(getSignatureFromDeclaration(node)); } } return result; } function getReturnTypeOfSignature(signature: Signature): Type { if (!signature.resolvedReturnType) { if (!pushTypeResolution(signature)) { return unknownType; } let type: Type; if (signature.target) { type = instantiateType(getReturnTypeOfSignature(signature.target), signature.mapper); } else if (signature.unionSignatures) { type = getUnionType(map(signature.unionSignatures, getReturnTypeOfSignature)); } else { type = getReturnTypeFromBody(signature.declaration); } if (!popTypeResolution()) { type = anyType; if (compilerOptions.noImplicitAny) { let declaration = signature.declaration; if (declaration.name) { error(declaration.name, Diagnostics._0_implicitly_has_return_type_any_because_it_does_not_have_a_return_type_annotation_and_is_referenced_directly_or_indirectly_in_one_of_its_return_expressions, declarationNameToString(declaration.name)); } else { error(declaration, Diagnostics.Function_implicitly_has_return_type_any_because_it_does_not_have_a_return_type_annotation_and_is_referenced_directly_or_indirectly_in_one_of_its_return_expressions); } } } signature.resolvedReturnType = type; } return signature.resolvedReturnType; } function getRestTypeOfSignature(signature: Signature): Type { if (signature.hasRestParameter) { let type = getTypeOfSymbol(lastOrUndefined(signature.parameters)); if (type.flags & TypeFlags.Reference && (type).target === globalArrayType) { return (type).typeArguments[0]; } } return anyType; } function getSignatureInstantiation(signature: Signature, typeArguments: Type[]): Signature { return instantiateSignature(signature, createTypeMapper(signature.typeParameters, typeArguments), true); } function getErasedSignature(signature: Signature): Signature { if (!signature.typeParameters) return signature; if (!signature.erasedSignatureCache) { if (signature.target) { signature.erasedSignatureCache = instantiateSignature(getErasedSignature(signature.target), signature.mapper); } else { signature.erasedSignatureCache = instantiateSignature(signature, createTypeEraser(signature.typeParameters), true); } } return signature.erasedSignatureCache; } function getOrCreateTypeFromSignature(signature: Signature): ObjectType { // There are two ways to declare a construct signature, one is by declaring a class constructor // using the constructor keyword, and the other is declaring a bare construct signature in an // object type literal or interface (using the new keyword). Each way of declaring a constructor // will result in a different declaration kind. if (!signature.isolatedSignatureType) { let isConstructor = signature.declaration.kind === SyntaxKind.Constructor || signature.declaration.kind === SyntaxKind.ConstructSignature; let type = createObjectType(TypeFlags.Anonymous | TypeFlags.FromSignature); type.members = emptySymbols; type.properties = emptyArray; type.callSignatures = !isConstructor ? [signature] : emptyArray; type.constructSignatures = isConstructor ? [signature] : emptyArray; signature.isolatedSignatureType = type; } return signature.isolatedSignatureType; } function getIndexSymbol(symbol: Symbol): Symbol { return symbol.members["__index"]; } function getIndexDeclarationOfSymbol(symbol: Symbol, kind: IndexKind): SignatureDeclaration { let syntaxKind = kind === IndexKind.Number ? SyntaxKind.NumberKeyword : SyntaxKind.StringKeyword; let indexSymbol = getIndexSymbol(symbol); if (indexSymbol) { for (let decl of indexSymbol.declarations) { let node = decl; if (node.parameters.length === 1) { let parameter = node.parameters[0]; if (parameter && parameter.type && parameter.type.kind === syntaxKind) { return node; } } } } return undefined; } function getIndexTypeOfSymbol(symbol: Symbol, kind: IndexKind): Type { let declaration = getIndexDeclarationOfSymbol(symbol, kind); return declaration ? declaration.type ? getTypeFromTypeNode(declaration.type) : anyType : undefined; } function getConstraintOfTypeParameter(type: TypeParameter): Type { if (!type.constraint) { if (type.target) { let targetConstraint = getConstraintOfTypeParameter(type.target); type.constraint = targetConstraint ? instantiateType(targetConstraint, type.mapper) : noConstraintType; } else { type.constraint = getTypeFromTypeNode((getDeclarationOfKind(type.symbol, SyntaxKind.TypeParameter)).constraint); } } return type.constraint === noConstraintType ? undefined : type.constraint; } function getParentSymbolOfTypeParameter(typeParameter: TypeParameter): Symbol { return getSymbolOfNode(getDeclarationOfKind(typeParameter.symbol, SyntaxKind.TypeParameter).parent); } function getTypeListId(types: Type[]) { switch (types.length) { case 1: return "" + types[0].id; case 2: return types[0].id + "," + types[1].id; default: let result = ""; for (let i = 0; i < types.length; i++) { if (i > 0) { result += ","; } result += types[i].id; } return result; } } // This function is used to propagate widening flags when creating new object types references and union types. // It is only necessary to do so if a constituent type might be the undefined type, the null type, or the type // of an object literal (since those types have widening related information we need to track). function getWideningFlagsOfTypes(types: Type[]): TypeFlags { let result: TypeFlags = 0; for (let type of types) { result |= type.flags; } return result & TypeFlags.RequiresWidening; } function createTypeReference(target: GenericType, typeArguments: Type[]): TypeReference { let id = getTypeListId(typeArguments); let type = target.instantiations[id]; if (!type) { let flags = TypeFlags.Reference | getWideningFlagsOfTypes(typeArguments); type = target.instantiations[id] = createObjectType(flags, target.symbol); type.target = target; type.typeArguments = typeArguments; } return type; } function isTypeParameterReferenceIllegalInConstraint(typeReferenceNode: TypeReferenceNode | ExpressionWithTypeArguments, typeParameterSymbol: Symbol): boolean { let links = getNodeLinks(typeReferenceNode); if (links.isIllegalTypeReferenceInConstraint !== undefined) { return links.isIllegalTypeReferenceInConstraint; } // bubble up to the declaration let currentNode: Node = typeReferenceNode; // forEach === exists while (!forEach(typeParameterSymbol.declarations, d => d.parent === currentNode.parent)) { currentNode = currentNode.parent; } // if last step was made from the type parameter this means that path has started somewhere in constraint which is illegal links.isIllegalTypeReferenceInConstraint = currentNode.kind === SyntaxKind.TypeParameter; return links.isIllegalTypeReferenceInConstraint; } function checkTypeParameterHasIllegalReferencesInConstraint(typeParameter: TypeParameterDeclaration): void { let typeParameterSymbol: Symbol; function check(n: Node): void { if (n.kind === SyntaxKind.TypeReference && (n).typeName.kind === SyntaxKind.Identifier) { let links = getNodeLinks(n); if (links.isIllegalTypeReferenceInConstraint === undefined) { let symbol = resolveName(typeParameter, ((n).typeName).text, SymbolFlags.Type, /*nameNotFoundMessage*/ undefined, /*nameArg*/ undefined); if (symbol && (symbol.flags & SymbolFlags.TypeParameter)) { // TypeScript 1.0 spec (April 2014): 3.4.1 // Type parameters declared in a particular type parameter list // may not be referenced in constraints in that type parameter list // symbol.declaration.parent === typeParameter.parent // -> typeParameter and symbol.declaration originate from the same type parameter list // -> illegal for all declarations in symbol // forEach === exists links.isIllegalTypeReferenceInConstraint = forEach(symbol.declarations, d => d.parent === typeParameter.parent); } } if (links.isIllegalTypeReferenceInConstraint) { error(typeParameter, Diagnostics.Constraint_of_a_type_parameter_cannot_reference_any_type_parameter_from_the_same_type_parameter_list); } } forEachChild(n, check); } if (typeParameter.constraint) { typeParameterSymbol = getSymbolOfNode(typeParameter); check(typeParameter.constraint); } } // Get type from reference to class or interface function getTypeFromClassOrInterfaceReference(node: TypeReferenceNode | ExpressionWithTypeArguments, symbol: Symbol): Type { let type = getDeclaredTypeOfSymbol(symbol); let typeParameters = (type).localTypeParameters; if (typeParameters) { if (!node.typeArguments || node.typeArguments.length !== typeParameters.length) { error(node, Diagnostics.Generic_type_0_requires_1_type_argument_s, typeToString(type, /*enclosingDeclaration*/ undefined, TypeFormatFlags.WriteArrayAsGenericType), typeParameters.length); return unknownType; } // In a type reference, the outer type parameters of the referenced class or interface are automatically // supplied as type arguments and the type reference only specifies arguments for the local type parameters // of the class or interface. return createTypeReference(type, concatenate((type).outerTypeParameters, map(node.typeArguments, getTypeFromTypeNode))); } if (node.typeArguments) { error(node, Diagnostics.Type_0_is_not_generic, typeToString(type)); return unknownType; } return type; } // Get type from reference to type alias. When a type alias is generic, the declared type of the type alias may include // references to the type parameters of the alias. We replace those with the actual type arguments by instantiating the // declared type. Instantiations are cached using the type identities of the type arguments as the key. function getTypeFromTypeAliasReference(node: TypeReferenceNode | ExpressionWithTypeArguments, symbol: Symbol): Type { let type = getDeclaredTypeOfSymbol(symbol); let links = getSymbolLinks(symbol); let typeParameters = links.typeParameters; if (typeParameters) { if (!node.typeArguments || node.typeArguments.length !== typeParameters.length) { error(node, Diagnostics.Generic_type_0_requires_1_type_argument_s, symbolToString(symbol), typeParameters.length); return unknownType; } let typeArguments = map(node.typeArguments, getTypeFromTypeNode); let id = getTypeListId(typeArguments); return links.instantiations[id] || (links.instantiations[id] = instantiateType(type, createTypeMapper(typeParameters, typeArguments))); } if (node.typeArguments) { error(node, Diagnostics.Type_0_is_not_generic, symbolToString(symbol)); return unknownType; } return type; } // Get type from reference to named type that cannot be generic (enum or type parameter) function getTypeFromNonGenericTypeReference(node: TypeReferenceNode | ExpressionWithTypeArguments, symbol: Symbol): Type { if (symbol.flags & SymbolFlags.TypeParameter && isTypeParameterReferenceIllegalInConstraint(node, symbol)) { // TypeScript 1.0 spec (April 2014): 3.4.1 // Type parameters declared in a particular type parameter list // may not be referenced in constraints in that type parameter list // Implementation: such type references are resolved to 'unknown' type that usually denotes error return unknownType; } if (node.typeArguments) { error(node, Diagnostics.Type_0_is_not_generic, symbolToString(symbol)); return unknownType; } return getDeclaredTypeOfSymbol(symbol); } function getTypeFromTypeReference(node: TypeReferenceNode | ExpressionWithTypeArguments): Type { let links = getNodeLinks(node); if (!links.resolvedType) { // We only support expressions that are simple qualified names. For other expressions this produces undefined. let typeNameOrExpression = node.kind === SyntaxKind.TypeReference ? (node).typeName : isSupportedExpressionWithTypeArguments(node) ? (node).expression : undefined; let symbol = typeNameOrExpression && resolveEntityName(typeNameOrExpression, SymbolFlags.Type) || unknownSymbol; let type = symbol === unknownSymbol ? unknownType : symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface) ? getTypeFromClassOrInterfaceReference(node, symbol) : symbol.flags & SymbolFlags.TypeAlias ? getTypeFromTypeAliasReference(node, symbol) : getTypeFromNonGenericTypeReference(node, symbol); // Cache both the resolved symbol and the resolved type. The resolved symbol is needed in when we check the // type reference in checkTypeReferenceOrExpressionWithTypeArguments. links.resolvedSymbol = symbol; links.resolvedType = type; } return links.resolvedType; } function getTypeFromTypeQueryNode(node: TypeQueryNode): Type { let links = getNodeLinks(node); if (!links.resolvedType) { // TypeScript 1.0 spec (April 2014): 3.6.3 // The expression is processed as an identifier expression (section 4.3) // or property access expression(section 4.10), // the widened type(section 3.9) of which becomes the result. links.resolvedType = getWidenedType(checkExpression(node.exprName)); } return links.resolvedType; } function getTypeOfGlobalSymbol(symbol: Symbol, arity: number): ObjectType { function getTypeDeclaration(symbol: Symbol): Declaration { let declarations = symbol.declarations; for (let declaration of declarations) { switch (declaration.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.EnumDeclaration: return declaration; } } } if (!symbol) { return arity ? emptyGenericType : emptyObjectType; } let type = getDeclaredTypeOfSymbol(symbol); if (!(type.flags & TypeFlags.ObjectType)) { error(getTypeDeclaration(symbol), Diagnostics.Global_type_0_must_be_a_class_or_interface_type, symbol.name); return arity ? emptyGenericType : emptyObjectType; } if (((type).typeParameters ? (type).typeParameters.length : 0) !== arity) { error(getTypeDeclaration(symbol), Diagnostics.Global_type_0_must_have_1_type_parameter_s, symbol.name, arity); return arity ? emptyGenericType : emptyObjectType; } return type; } function getGlobalValueSymbol(name: string): Symbol { return getGlobalSymbol(name, SymbolFlags.Value, Diagnostics.Cannot_find_global_value_0); } function getGlobalTypeSymbol(name: string): Symbol { return getGlobalSymbol(name, SymbolFlags.Type, Diagnostics.Cannot_find_global_type_0); } function getGlobalSymbol(name: string, meaning: SymbolFlags, diagnostic: DiagnosticMessage): Symbol { return resolveName(undefined, name, meaning, diagnostic, name); } function getGlobalType(name: string, arity = 0): ObjectType { return getTypeOfGlobalSymbol(getGlobalTypeSymbol(name), arity); } function tryGetGlobalType(name: string, arity = 0): ObjectType { return getTypeOfGlobalSymbol(getGlobalSymbol(name, SymbolFlags.Type, /*diagnostic*/ undefined), arity); } /** * Returns a type that is inside a namespace at the global scope, e.g. * getExportedTypeFromNamespace('JSX', 'Element') returns the JSX.Element type */ function getExportedTypeFromNamespace(namespace: string, name: string): Type { let namespaceSymbol = getGlobalSymbol(namespace, SymbolFlags.Namespace, /*diagnosticMessage*/ undefined); let typeSymbol = namespaceSymbol && getSymbol(namespaceSymbol.exports, name, SymbolFlags.Type); return typeSymbol && getDeclaredTypeOfSymbol(typeSymbol); } function getGlobalESSymbolConstructorSymbol() { return globalESSymbolConstructorSymbol || (globalESSymbolConstructorSymbol = getGlobalValueSymbol("Symbol")); } /** * Creates a TypeReference for a generic `TypedPropertyDescriptor`. */ function createTypedPropertyDescriptorType(propertyType: Type): Type { let globalTypedPropertyDescriptorType = getGlobalTypedPropertyDescriptorType(); return globalTypedPropertyDescriptorType !== emptyObjectType ? createTypeReference(globalTypedPropertyDescriptorType, [propertyType]) : emptyObjectType; } /** * Instantiates a global type that is generic with some element type, and returns that instantiation. */ function createTypeFromGenericGlobalType(genericGlobalType: GenericType, elementType: Type): Type { return genericGlobalType !== emptyGenericType ? createTypeReference(genericGlobalType, [elementType]) : emptyObjectType; } function createIterableType(elementType: Type): Type { return createTypeFromGenericGlobalType(globalIterableType, elementType); } function createIterableIteratorType(elementType: Type): Type { return createTypeFromGenericGlobalType(globalIterableIteratorType, elementType); } function createArrayType(elementType: Type): Type { return createTypeFromGenericGlobalType(globalArrayType, elementType); } function getTypeFromArrayTypeNode(node: ArrayTypeNode): Type { let links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = createArrayType(getTypeFromTypeNode(node.elementType)); } return links.resolvedType; } function createTupleType(elementTypes: Type[]) { let id = getTypeListId(elementTypes); let type = tupleTypes[id]; if (!type) { type = tupleTypes[id] = createObjectType(TypeFlags.Tuple); type.elementTypes = elementTypes; } return type; } function getTypeFromTupleTypeNode(node: TupleTypeNode): Type { let links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = createTupleType(map(node.elementTypes, getTypeFromTypeNode)); } return links.resolvedType; } function addTypeToSet(typeSet: Type[], type: Type, typeSetKind: TypeFlags) { if (type.flags & typeSetKind) { addTypesToSet(typeSet, (type).types, typeSetKind); } else if (!contains(typeSet, type)) { typeSet.push(type); } } // Add the given types to the given type set. Order is preserved, duplicates are removed, // and nested types of the given kind are flattened into the set. function addTypesToSet(typeSet: Type[], types: Type[], typeSetKind: TypeFlags) { for (let type of types) { addTypeToSet(typeSet, type, typeSetKind); } } function isSubtypeOfAny(candidate: Type, types: Type[]): boolean { for (let type of types) { if (candidate !== type && isTypeSubtypeOf(candidate, type)) { return true; } } return false; } function removeSubtypes(types: Type[]) { let i = types.length; while (i > 0) { i--; if (isSubtypeOfAny(types[i], types)) { types.splice(i, 1); } } } function containsTypeAny(types: Type[]) { for (let type of types) { if (isTypeAny(type)) { return true; } } return false; } function removeAllButLast(types: Type[], typeToRemove: Type) { let i = types.length; while (i > 0 && types.length > 1) { i--; if (types[i] === typeToRemove) { types.splice(i, 1); } } } function compareTypeIds(type1: Type, type2: Type): number { return type1.id - type2.id; } // The noSubtypeReduction flag is there because it isn't possible to always do subtype reduction. The flag // is true when creating a union type from a type node and when instantiating a union type. In both of those // cases subtype reduction has to be deferred to properly support recursive union types. For example, a // type alias of the form "type Item = string | (() => Item)" cannot be reduced during its declaration. function getUnionType(types: Type[], noSubtypeReduction?: boolean): Type { if (types.length === 0) { return emptyObjectType; } let typeSet: Type[] = []; addTypesToSet(typeSet, types, TypeFlags.Union); typeSet.sort(compareTypeIds); if (noSubtypeReduction) { if (containsTypeAny(typeSet)) { return anyType; } removeAllButLast(typeSet, undefinedType); removeAllButLast(typeSet, nullType); } else { removeSubtypes(typeSet); } if (typeSet.length === 1) { return typeSet[0]; } let id = getTypeListId(typeSet); let type = unionTypes[id]; if (!type) { type = unionTypes[id] = createObjectType(TypeFlags.Union | getWideningFlagsOfTypes(typeSet)); type.types = typeSet; type.reducedType = noSubtypeReduction ? undefined : type; } return type; } // Subtype reduction is basically an optimization we do to avoid excessively large union types, which take longer // to process and look strange in quick info and error messages. Semantically there is no difference between the // reduced type and the type itself. So, when we detect a circularity we simply say that the reduced type is the // type itself. function getReducedTypeOfUnionType(type: UnionType): Type { if (!type.reducedType) { type.reducedType = circularType; let reducedType = getUnionType(type.types, /*noSubtypeReduction*/ false); if (type.reducedType === circularType) { type.reducedType = reducedType; } } else if (type.reducedType === circularType) { type.reducedType = type; } return type.reducedType; } function getTypeFromUnionTypeNode(node: UnionTypeNode): Type { let links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getUnionType(map(node.types, getTypeFromTypeNode), /*noSubtypeReduction*/ true); } return links.resolvedType; } // We do not perform supertype reduction on intersection types. Intersection types are created only by the & // type operator and we can't reduce those because we want to support recursive intersection types. For example, // a type alias of the form "type List = T & { next: List }" cannot be reduced during its declaration. // Also, unlike union types, the order of the constituent types is preserved in order that overload resolution // for intersections of types with signatures can be deterministic. function getIntersectionType(types: Type[]): Type { if (types.length === 0) { return emptyObjectType; } let typeSet: Type[] = []; addTypesToSet(typeSet, types, TypeFlags.Intersection); if (containsTypeAny(typeSet)) { return anyType; } if (typeSet.length === 1) { return typeSet[0]; } let id = getTypeListId(typeSet); let type = intersectionTypes[id]; if (!type) { type = intersectionTypes[id] = createObjectType(TypeFlags.Intersection | getWideningFlagsOfTypes(typeSet)); type.types = typeSet; } return type; } function getTypeFromIntersectionTypeNode(node: IntersectionTypeNode): Type { let links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getIntersectionType(map(node.types, getTypeFromTypeNode)); } return links.resolvedType; } function getTypeFromTypeLiteralOrFunctionOrConstructorTypeNode(node: Node): Type { let links = getNodeLinks(node); if (!links.resolvedType) { // Deferred resolution of members is handled by resolveObjectTypeMembers links.resolvedType = createObjectType(TypeFlags.Anonymous, node.symbol); } return links.resolvedType; } function getStringLiteralType(node: StringLiteral): StringLiteralType { if (hasProperty(stringLiteralTypes, node.text)) { return stringLiteralTypes[node.text]; } let type = stringLiteralTypes[node.text] = createType(TypeFlags.StringLiteral); type.text = getTextOfNode(node); return type; } function getTypeFromStringLiteral(node: StringLiteral): Type { let links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getStringLiteralType(node); } return links.resolvedType; } function getTypeFromTypeNode(node: TypeNode): Type { switch (node.kind) { case SyntaxKind.AnyKeyword: return anyType; case SyntaxKind.StringKeyword: return stringType; case SyntaxKind.NumberKeyword: return numberType; case SyntaxKind.BooleanKeyword: return booleanType; case SyntaxKind.SymbolKeyword: return esSymbolType; case SyntaxKind.VoidKeyword: return voidType; case SyntaxKind.StringLiteral: return getTypeFromStringLiteral(node); case SyntaxKind.TypeReference: return getTypeFromTypeReference(node); case SyntaxKind.TypePredicate: return booleanType; case SyntaxKind.ExpressionWithTypeArguments: return getTypeFromTypeReference(node); case SyntaxKind.TypeQuery: return getTypeFromTypeQueryNode(node); case SyntaxKind.ArrayType: return getTypeFromArrayTypeNode(node); case SyntaxKind.TupleType: return getTypeFromTupleTypeNode(node); case SyntaxKind.UnionType: return getTypeFromUnionTypeNode(node); case SyntaxKind.IntersectionType: return getTypeFromIntersectionTypeNode(node); case SyntaxKind.ParenthesizedType: return getTypeFromTypeNode((node).type); case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.TypeLiteral: return getTypeFromTypeLiteralOrFunctionOrConstructorTypeNode(node); // This function assumes that an identifier or qualified name is a type expression // Callers should first ensure this by calling isTypeNode case SyntaxKind.Identifier: case SyntaxKind.QualifiedName: let symbol = getSymbolInfo(node); return symbol && getDeclaredTypeOfSymbol(symbol); default: return unknownType; } } function instantiateList(items: T[], mapper: TypeMapper, instantiator: (item: T, mapper: TypeMapper) => T): T[] { if (items && items.length) { let result: T[] = []; for (let v of items) { result.push(instantiator(v, mapper)); } return result; } return items; } function createUnaryTypeMapper(source: Type, target: Type): TypeMapper { return t => t === source ? target : t; } function createBinaryTypeMapper(source1: Type, target1: Type, source2: Type, target2: Type): TypeMapper { return t => t === source1 ? target1 : t === source2 ? target2 : t; } function createTypeMapper(sources: Type[], targets: Type[]): TypeMapper { switch (sources.length) { case 1: return createUnaryTypeMapper(sources[0], targets[0]); case 2: return createBinaryTypeMapper(sources[0], targets[0], sources[1], targets[1]); } return t => { for (let i = 0; i < sources.length; i++) { if (t === sources[i]) { return targets[i]; } } return t; }; } function createUnaryTypeEraser(source: Type): TypeMapper { return t => t === source ? anyType : t; } function createBinaryTypeEraser(source1: Type, source2: Type): TypeMapper { return t => t === source1 || t === source2 ? anyType : t; } function createTypeEraser(sources: Type[]): TypeMapper { switch (sources.length) { case 1: return createUnaryTypeEraser(sources[0]); case 2: return createBinaryTypeEraser(sources[0], sources[1]); } return t => { for (let source of sources) { if (t === source) { return anyType; } } return t; }; } function createInferenceMapper(context: InferenceContext): TypeMapper { return t => { for (let i = 0; i < context.typeParameters.length; i++) { if (t === context.typeParameters[i]) { context.inferences[i].isFixed = true; return getInferredType(context, i); } } return t; }; } function identityMapper(type: Type): Type { return type; } function combineTypeMappers(mapper1: TypeMapper, mapper2: TypeMapper): TypeMapper { return t => instantiateType(mapper1(t), mapper2); } function instantiateTypeParameter(typeParameter: TypeParameter, mapper: TypeMapper): TypeParameter { let result = createType(TypeFlags.TypeParameter); result.symbol = typeParameter.symbol; if (typeParameter.constraint) { result.constraint = instantiateType(typeParameter.constraint, mapper); } else { result.target = typeParameter; result.mapper = mapper; } return result; } function instantiateSignature(signature: Signature, mapper: TypeMapper, eraseTypeParameters?: boolean): Signature { let freshTypeParameters: TypeParameter[]; let freshTypePredicate: TypePredicate; if (signature.typeParameters && !eraseTypeParameters) { freshTypeParameters = instantiateList(signature.typeParameters, mapper, instantiateTypeParameter); mapper = combineTypeMappers(createTypeMapper(signature.typeParameters, freshTypeParameters), mapper); } if (signature.typePredicate) { freshTypePredicate = { parameterName: signature.typePredicate.parameterName, parameterIndex: signature.typePredicate.parameterIndex, type: instantiateType(signature.typePredicate.type, mapper) }; } let result = createSignature(signature.declaration, freshTypeParameters, instantiateList(signature.parameters, mapper, instantiateSymbol), signature.resolvedReturnType ? instantiateType(signature.resolvedReturnType, mapper) : undefined, freshTypePredicate, signature.minArgumentCount, signature.hasRestParameter, signature.hasStringLiterals); result.target = signature; result.mapper = mapper; return result; } function instantiateSymbol(symbol: Symbol, mapper: TypeMapper): Symbol { if (symbol.flags & SymbolFlags.Instantiated) { let links = getSymbolLinks(symbol); // If symbol being instantiated is itself a instantiation, fetch the original target and combine the // type mappers. This ensures that original type identities are properly preserved and that aliases // always reference a non-aliases. symbol = links.target; mapper = combineTypeMappers(links.mapper, mapper); } // Keep the flags from the symbol we're instantiating. Mark that is instantiated, and // also transient so that we can just store data on it directly. let result = createSymbol(SymbolFlags.Instantiated | SymbolFlags.Transient | symbol.flags, symbol.name); result.declarations = symbol.declarations; result.parent = symbol.parent; result.target = symbol; result.mapper = mapper; if (symbol.valueDeclaration) { result.valueDeclaration = symbol.valueDeclaration; } return result; } function instantiateAnonymousType(type: ObjectType, mapper: TypeMapper): ObjectType { // Mark the anonymous type as instantiated such that our infinite instantiation detection logic can recognize it let result = createObjectType(TypeFlags.Anonymous | TypeFlags.Instantiated, type.symbol); result.properties = instantiateList(getPropertiesOfObjectType(type), mapper, instantiateSymbol); result.members = createSymbolTable(result.properties); result.callSignatures = instantiateList(getSignaturesOfType(type, SignatureKind.Call), mapper, instantiateSignature); result.constructSignatures = instantiateList(getSignaturesOfType(type, SignatureKind.Construct), mapper, instantiateSignature); let stringIndexType = getIndexTypeOfType(type, IndexKind.String); let numberIndexType = getIndexTypeOfType(type, IndexKind.Number); if (stringIndexType) result.stringIndexType = instantiateType(stringIndexType, mapper); if (numberIndexType) result.numberIndexType = instantiateType(numberIndexType, mapper); return result; } function instantiateType(type: Type, mapper: TypeMapper): Type { if (mapper !== identityMapper) { if (type.flags & TypeFlags.TypeParameter) { return mapper(type); } if (type.flags & TypeFlags.Anonymous) { return type.symbol && type.symbol.flags & (SymbolFlags.Function | SymbolFlags.Method | SymbolFlags.Class | SymbolFlags.TypeLiteral | SymbolFlags.ObjectLiteral) ? instantiateAnonymousType(type, mapper) : type; } if (type.flags & TypeFlags.Reference) { return createTypeReference((type).target, instantiateList((type).typeArguments, mapper, instantiateType)); } if (type.flags & TypeFlags.Tuple) { return createTupleType(instantiateList((type).elementTypes, mapper, instantiateType)); } if (type.flags & TypeFlags.Union) { return getUnionType(instantiateList((type).types, mapper, instantiateType), /*noSubtypeReduction*/ true); } if (type.flags & TypeFlags.Intersection) { return getIntersectionType(instantiateList((type).types, mapper, instantiateType)); } } return type; } // Returns true if the given expression contains (at any level of nesting) a function or arrow expression // that is subject to contextual typing. function isContextSensitive(node: Expression | MethodDeclaration | ObjectLiteralElement): boolean { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); switch (node.kind) { case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return isContextSensitiveFunctionLikeDeclaration(node); case SyntaxKind.ObjectLiteralExpression: return forEach((node).properties, isContextSensitive); case SyntaxKind.ArrayLiteralExpression: return forEach((node).elements, isContextSensitive); case SyntaxKind.ConditionalExpression: return isContextSensitive((node).whenTrue) || isContextSensitive((node).whenFalse); case SyntaxKind.BinaryExpression: return (node).operatorToken.kind === SyntaxKind.BarBarToken && (isContextSensitive((node).left) || isContextSensitive((node).right)); case SyntaxKind.PropertyAssignment: return isContextSensitive((node).initializer); case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: return isContextSensitiveFunctionLikeDeclaration(node); case SyntaxKind.ParenthesizedExpression: return isContextSensitive((node).expression); } return false; } function isContextSensitiveFunctionLikeDeclaration(node: FunctionLikeDeclaration) { return !node.typeParameters && node.parameters.length && !forEach(node.parameters, p => p.type); } function getTypeWithoutSignatures(type: Type): Type { if (type.flags & TypeFlags.ObjectType) { let resolved = resolveStructuredTypeMembers(type); if (resolved.constructSignatures.length) { let result = createObjectType(TypeFlags.Anonymous, type.symbol); result.members = resolved.members; result.properties = resolved.properties; result.callSignatures = emptyArray; result.constructSignatures = emptyArray; type = result; } } return type; } // TYPE CHECKING function isTypeIdenticalTo(source: Type, target: Type): boolean { return checkTypeRelatedTo(source, target, identityRelation, /*errorNode*/ undefined); } function compareTypes(source: Type, target: Type): Ternary { return checkTypeRelatedTo(source, target, identityRelation, /*errorNode*/ undefined) ? Ternary.True : Ternary.False; } function isTypeSubtypeOf(source: Type, target: Type): boolean { return checkTypeSubtypeOf(source, target, /*errorNode*/ undefined); } function isTypeAssignableTo(source: Type, target: Type): boolean { return checkTypeAssignableTo(source, target, /*errorNode*/ undefined); } function checkTypeSubtypeOf(source: Type, target: Type, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { return checkTypeRelatedTo(source, target, subtypeRelation, errorNode, headMessage, containingMessageChain); } function checkTypeAssignableTo(source: Type, target: Type, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { return checkTypeRelatedTo(source, target, assignableRelation, errorNode, headMessage, containingMessageChain); } function isSignatureAssignableTo(source: Signature, target: Signature): boolean { let sourceType = getOrCreateTypeFromSignature(source); let targetType = getOrCreateTypeFromSignature(target); return checkTypeRelatedTo(sourceType, targetType, assignableRelation, /*errorNode*/ undefined); } /** * Checks if 'source' is related to 'target' (e.g.: is a assignable to). * @param source The left-hand-side of the relation. * @param target The right-hand-side of the relation. * @param relation The relation considered. One of 'identityRelation', 'assignableRelation', or 'subTypeRelation'. * Used as both to determine which checks are performed and as a cache of previously computed results. * @param errorNode The node upon which all errors will be reported, if defined. * @param headMessage If the error chain should be prepended by a head message, then headMessage will be used. * @param containingMessageChain A chain of errors to prepend any new errors found. */ function checkTypeRelatedTo( source: Type, target: Type, relation: Map, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { let errorInfo: DiagnosticMessageChain; let sourceStack: ObjectType[]; let targetStack: ObjectType[]; let maybeStack: Map[]; let expandingFlags: number; let depth = 0; let overflow = false; let elaborateErrors = false; Debug.assert(relation !== identityRelation || !errorNode, "no error reporting in identity checking"); let result = isRelatedTo(source, target, errorNode !== undefined, headMessage); if (overflow) { error(errorNode, Diagnostics.Excessive_stack_depth_comparing_types_0_and_1, typeToString(source), typeToString(target)); } else if (errorInfo) { // If we already computed this relation, but in a context where we didn't want to report errors (e.g. overload resolution), // then we'll only have a top-level error (e.g. 'Class X does not implement interface Y') without any details. If this happened, // request a recompuation to get a complete error message. This will be skipped if we've already done this computation in a context // where errors were being reported. if (errorInfo.next === undefined) { errorInfo = undefined; elaborateErrors = true; isRelatedTo(source, target, errorNode !== undefined, headMessage); } if (containingMessageChain) { errorInfo = concatenateDiagnosticMessageChains(containingMessageChain, errorInfo); } diagnostics.add(createDiagnosticForNodeFromMessageChain(errorNode, errorInfo)); } return result !== Ternary.False; function reportError(message: DiagnosticMessage, arg0?: string, arg1?: string, arg2?: string): void { errorInfo = chainDiagnosticMessages(errorInfo, message, arg0, arg1, arg2); } // Compare two types and return // Ternary.True if they are related with no assumptions, // Ternary.Maybe if they are related with assumptions of other relationships, or // Ternary.False if they are not related. function isRelatedTo(source: Type, target: Type, reportErrors?: boolean, headMessage?: DiagnosticMessage): Ternary { let result: Ternary; // both types are the same - covers 'they are the same primitive type or both are Any' or the same type parameter cases if (source === target) return Ternary.True; if (relation !== identityRelation) { if (isTypeAny(target)) return Ternary.True; if (source === undefinedType) return Ternary.True; if (source === nullType && target !== undefinedType) return Ternary.True; if (source.flags & TypeFlags.Enum && target === numberType) return Ternary.True; if (source.flags & TypeFlags.StringLiteral && target === stringType) return Ternary.True; if (relation === assignableRelation) { if (isTypeAny(source)) return Ternary.True; if (source === numberType && target.flags & TypeFlags.Enum) return Ternary.True; } } let saveErrorInfo = errorInfo; if (source.flags & TypeFlags.Reference && target.flags & TypeFlags.Reference && (source).target === (target).target) { // We have type references to same target type, see if relationship holds for all type arguments if (result = typesRelatedTo((source).typeArguments, (target).typeArguments, reportErrors)) { return result; } } else if (source.flags & TypeFlags.TypeParameter && target.flags & TypeFlags.TypeParameter) { if (result = typeParameterRelatedTo(source, target, reportErrors)) { return result; } } else if (relation !== identityRelation) { // Note that the "each" checks must precede the "some" checks to produce the correct results if (source.flags & TypeFlags.Union) { if (result = eachTypeRelatedToType(source, target, reportErrors)) { return result; } } else if (target.flags & TypeFlags.Intersection) { if (result = typeRelatedToEachType(source, target, reportErrors)) { return result; } } else { // It is necessary to try "each" checks on both sides because there may be nested "some" checks // on either side that need to be prioritized. For example, A | B = (A | B) & (C | D) or // A & B = (A & B) | (C & D). if (source.flags & TypeFlags.Intersection) { // If target is a union type the following check will report errors so we suppress them here if (result = someTypeRelatedToType(source, target, reportErrors && !(target.flags & TypeFlags.Union))) { return result; } } if (target.flags & TypeFlags.Union) { if (result = typeRelatedToSomeType(source, target, reportErrors)) { return result; } } } } else { if (source.flags & TypeFlags.Union && target.flags & TypeFlags.Union || source.flags & TypeFlags.Intersection && target.flags & TypeFlags.Intersection) { if (result = eachTypeRelatedToSomeType(source, target)) { if (result &= eachTypeRelatedToSomeType(target, source)) { return result; } } } } // Even if relationship doesn't hold for unions, type parameters, or generic type references, // it may hold in a structural comparison. // Report structural errors only if we haven't reported any errors yet let reportStructuralErrors = reportErrors && errorInfo === saveErrorInfo; // Identity relation does not use apparent type let sourceOrApparentType = relation === identityRelation ? source : getApparentType(source); // In a check of the form X = A & B, we will have previously checked if A relates to X or B relates // to X. Failing both of those we want to check if the aggregation of A and B's members structurally // relates to X. Thus, we include intersection types on the source side here. if (sourceOrApparentType.flags & (TypeFlags.ObjectType | TypeFlags.Intersection) && target.flags & TypeFlags.ObjectType) { if (result = objectTypeRelatedTo(sourceOrApparentType, target, reportStructuralErrors)) { errorInfo = saveErrorInfo; return result; } } else if (source.flags & TypeFlags.TypeParameter && sourceOrApparentType.flags & TypeFlags.UnionOrIntersection) { // We clear the errors first because the following check often gives a better error than // the union or intersection comparison above if it is applicable. errorInfo = saveErrorInfo; if (result = isRelatedTo(sourceOrApparentType, target, reportErrors)) { return result; } } if (reportErrors) { headMessage = headMessage || Diagnostics.Type_0_is_not_assignable_to_type_1; let sourceType = typeToString(source); let targetType = typeToString(target); if (sourceType === targetType) { sourceType = typeToString(source, /*enclosingDeclaration*/ undefined, TypeFormatFlags.UseFullyQualifiedType); targetType = typeToString(target, /*enclosingDeclaration*/ undefined, TypeFormatFlags.UseFullyQualifiedType); } reportError(headMessage, sourceType, targetType); } return Ternary.False; } function eachTypeRelatedToSomeType(source: UnionOrIntersectionType, target: UnionOrIntersectionType): Ternary { let result = Ternary.True; let sourceTypes = source.types; for (let sourceType of sourceTypes) { let related = typeRelatedToSomeType(sourceType, target, false); if (!related) { return Ternary.False; } result &= related; } return result; } function typeRelatedToSomeType(source: Type, target: UnionOrIntersectionType, reportErrors: boolean): Ternary { let targetTypes = target.types; for (let i = 0, len = targetTypes.length; i < len; i++) { let related = isRelatedTo(source, targetTypes[i], reportErrors && i === len - 1); if (related) { return related; } } return Ternary.False; } function typeRelatedToEachType(source: Type, target: UnionOrIntersectionType, reportErrors: boolean): Ternary { let result = Ternary.True; let targetTypes = target.types; for (let targetType of targetTypes) { let related = isRelatedTo(source, targetType, reportErrors); if (!related) { return Ternary.False; } result &= related; } return result; } function someTypeRelatedToType(source: UnionOrIntersectionType, target: Type, reportErrors: boolean): Ternary { let sourceTypes = source.types; for (let i = 0, len = sourceTypes.length; i < len; i++) { let related = isRelatedTo(sourceTypes[i], target, reportErrors && i === len - 1); if (related) { return related; } } return Ternary.False; } function eachTypeRelatedToType(source: UnionOrIntersectionType, target: Type, reportErrors: boolean): Ternary { let result = Ternary.True; let sourceTypes = source.types; for (let sourceType of sourceTypes) { let related = isRelatedTo(sourceType, target, reportErrors); if (!related) { return Ternary.False; } result &= related; } return result; } function typesRelatedTo(sources: Type[], targets: Type[], reportErrors: boolean): Ternary { let result = Ternary.True; for (let i = 0, len = sources.length; i < len; i++) { let related = isRelatedTo(sources[i], targets[i], reportErrors); if (!related) { return Ternary.False; } result &= related; } return result; } function typeParameterRelatedTo(source: TypeParameter, target: TypeParameter, reportErrors: boolean): Ternary { if (relation === identityRelation) { if (source.symbol.name !== target.symbol.name) { return Ternary.False; } // covers case when both type parameters does not have constraint (both equal to noConstraintType) if (source.constraint === target.constraint) { return Ternary.True; } if (source.constraint === noConstraintType || target.constraint === noConstraintType) { return Ternary.False; } return isRelatedTo(source.constraint, target.constraint, reportErrors); } else { while (true) { let constraint = getConstraintOfTypeParameter(source); if (constraint === target) return Ternary.True; if (!(constraint && constraint.flags & TypeFlags.TypeParameter)) break; source = constraint; } return Ternary.False; } } // Determine if two object types are related by structure. First, check if the result is already available in the global cache. // Second, check if we have already started a comparison of the given two types in which case we assume the result to be true. // Third, check if both types are part of deeply nested chains of generic type instantiations and if so assume the types are // equal and infinitely expanding. Fourth, if we have reached a depth of 100 nested comparisons, assume we have runaway recursion // and issue an error. Otherwise, actually compare the structure of the two types. function objectTypeRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (overflow) { return Ternary.False; } let id = relation !== identityRelation || source.id < target.id ? source.id + "," + target.id : target.id + "," + source.id; let related = relation[id]; if (related !== undefined) { // If we computed this relation already and it was failed and reported, or if we're not being asked to elaborate // errors, we can use the cached value. Otherwise, recompute the relation if (!elaborateErrors || (related === RelationComparisonResult.FailedAndReported)) { return related === RelationComparisonResult.Succeeded ? Ternary.True : Ternary.False; } } if (depth > 0) { for (let i = 0; i < depth; i++) { // If source and target are already being compared, consider them related with assumptions if (maybeStack[i][id]) { return Ternary.Maybe; } } if (depth === 100) { overflow = true; return Ternary.False; } } else { sourceStack = []; targetStack = []; maybeStack = []; expandingFlags = 0; } sourceStack[depth] = source; targetStack[depth] = target; maybeStack[depth] = {}; maybeStack[depth][id] = RelationComparisonResult.Succeeded; depth++; let saveExpandingFlags = expandingFlags; if (!(expandingFlags & 1) && isDeeplyNestedGeneric(source, sourceStack, depth)) expandingFlags |= 1; if (!(expandingFlags & 2) && isDeeplyNestedGeneric(target, targetStack, depth)) expandingFlags |= 2; let result: Ternary; if (expandingFlags === 3) { result = Ternary.Maybe; } else { result = propertiesRelatedTo(source, target, reportErrors); if (result) { result &= signaturesRelatedTo(source, target, SignatureKind.Call, reportErrors); if (result) { result &= signaturesRelatedTo(source, target, SignatureKind.Construct, reportErrors); if (result) { result &= stringIndexTypesRelatedTo(source, target, reportErrors); if (result) { result &= numberIndexTypesRelatedTo(source, target, reportErrors); } } } } } expandingFlags = saveExpandingFlags; depth--; if (result) { let maybeCache = maybeStack[depth]; // If result is definitely true, copy assumptions to global cache, else copy to next level up let destinationCache = (result === Ternary.True || depth === 0) ? relation : maybeStack[depth - 1]; copyMap(maybeCache, destinationCache); } else { // A false result goes straight into global cache (when something is false under assumptions it // will also be false without assumptions) relation[id] = reportErrors ? RelationComparisonResult.FailedAndReported : RelationComparisonResult.Failed; } return result; } function propertiesRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (relation === identityRelation) { return propertiesIdenticalTo(source, target); } let result = Ternary.True; let properties = getPropertiesOfObjectType(target); let requireOptionalProperties = relation === subtypeRelation && !(source.flags & TypeFlags.ObjectLiteral); for (let targetProp of properties) { let sourceProp = getPropertyOfType(source, targetProp.name); if (sourceProp !== targetProp) { if (!sourceProp) { if (!(targetProp.flags & SymbolFlags.Optional) || requireOptionalProperties) { if (reportErrors) { reportError(Diagnostics.Property_0_is_missing_in_type_1, symbolToString(targetProp), typeToString(source)); } return Ternary.False; } } else if (!(targetProp.flags & SymbolFlags.Prototype)) { let sourcePropFlags = getDeclarationFlagsFromSymbol(sourceProp); let targetPropFlags = getDeclarationFlagsFromSymbol(targetProp); if (sourcePropFlags & NodeFlags.Private || targetPropFlags & NodeFlags.Private) { if (sourceProp.valueDeclaration !== targetProp.valueDeclaration) { if (reportErrors) { if (sourcePropFlags & NodeFlags.Private && targetPropFlags & NodeFlags.Private) { reportError(Diagnostics.Types_have_separate_declarations_of_a_private_property_0, symbolToString(targetProp)); } else { reportError(Diagnostics.Property_0_is_private_in_type_1_but_not_in_type_2, symbolToString(targetProp), typeToString(sourcePropFlags & NodeFlags.Private ? source : target), typeToString(sourcePropFlags & NodeFlags.Private ? target : source)); } } return Ternary.False; } } else if (targetPropFlags & NodeFlags.Protected) { let sourceDeclaredInClass = sourceProp.parent && sourceProp.parent.flags & SymbolFlags.Class; let sourceClass = sourceDeclaredInClass ? getDeclaredTypeOfSymbol(sourceProp.parent) : undefined; let targetClass = getDeclaredTypeOfSymbol(targetProp.parent); if (!sourceClass || !hasBaseType(sourceClass, targetClass)) { if (reportErrors) { reportError(Diagnostics.Property_0_is_protected_but_type_1_is_not_a_class_derived_from_2, symbolToString(targetProp), typeToString(sourceClass || source), typeToString(targetClass)); } return Ternary.False; } } else if (sourcePropFlags & NodeFlags.Protected) { if (reportErrors) { reportError(Diagnostics.Property_0_is_protected_in_type_1_but_public_in_type_2, symbolToString(targetProp), typeToString(source), typeToString(target)); } return Ternary.False; } let related = isRelatedTo(getTypeOfSymbol(sourceProp), getTypeOfSymbol(targetProp), reportErrors); if (!related) { if (reportErrors) { reportError(Diagnostics.Types_of_property_0_are_incompatible, symbolToString(targetProp)); } return Ternary.False; } result &= related; if (sourceProp.flags & SymbolFlags.Optional && !(targetProp.flags & SymbolFlags.Optional)) { // TypeScript 1.0 spec (April 2014): 3.8.3 // S is a subtype of a type T, and T is a supertype of S if ... // S' and T are object types and, for each member M in T.. // M is a property and S' contains a property N where // if M is a required property, N is also a required property // (M - property in T) // (N - property in S) if (reportErrors) { reportError(Diagnostics.Property_0_is_optional_in_type_1_but_required_in_type_2, symbolToString(targetProp), typeToString(source), typeToString(target)); } return Ternary.False; } } } } return result; } function propertiesIdenticalTo(source: Type, target: Type): Ternary { if (!(source.flags & TypeFlags.ObjectType && target.flags & TypeFlags.ObjectType)) { return Ternary.False; } let sourceProperties = getPropertiesOfObjectType(source); let targetProperties = getPropertiesOfObjectType(target); if (sourceProperties.length !== targetProperties.length) { return Ternary.False; } let result = Ternary.True; for (let sourceProp of sourceProperties) { let targetProp = getPropertyOfObjectType(target, sourceProp.name); if (!targetProp) { return Ternary.False; } let related = compareProperties(sourceProp, targetProp, isRelatedTo); if (!related) { return Ternary.False; } result &= related; } return result; } function signaturesRelatedTo(source: Type, target: Type, kind: SignatureKind, reportErrors: boolean): Ternary { if (relation === identityRelation) { return signaturesIdenticalTo(source, target, kind); } if (target === anyFunctionType || source === anyFunctionType) { return Ternary.True; } let sourceSignatures = getSignaturesOfType(source, kind); let targetSignatures = getSignaturesOfType(target, kind); let result = Ternary.True; let saveErrorInfo = errorInfo; outer: for (let t of targetSignatures) { if (!t.hasStringLiterals || target.flags & TypeFlags.FromSignature) { let localErrors = reportErrors; for (let s of sourceSignatures) { if (!s.hasStringLiterals || source.flags & TypeFlags.FromSignature) { let related = signatureRelatedTo(s, t, localErrors); if (related) { result &= related; errorInfo = saveErrorInfo; continue outer; } // Only report errors from the first failure localErrors = false; } } return Ternary.False; } } return result; } function signatureRelatedTo(source: Signature, target: Signature, reportErrors: boolean): Ternary { if (source === target) { return Ternary.True; } if (!target.hasRestParameter && source.minArgumentCount > target.parameters.length) { return Ternary.False; } let sourceMax = source.parameters.length; let targetMax = target.parameters.length; let checkCount: number; if (source.hasRestParameter && target.hasRestParameter) { checkCount = sourceMax > targetMax ? sourceMax : targetMax; sourceMax--; targetMax--; } else if (source.hasRestParameter) { sourceMax--; checkCount = targetMax; } else if (target.hasRestParameter) { targetMax--; checkCount = sourceMax; } else { checkCount = sourceMax < targetMax ? sourceMax : targetMax; } // Spec 1.0 Section 3.8.3 & 3.8.4: // M and N (the signatures) are instantiated using type Any as the type argument for all type parameters declared by M and N source = getErasedSignature(source); target = getErasedSignature(target); let result = Ternary.True; for (let i = 0; i < checkCount; i++) { let s = i < sourceMax ? getTypeOfSymbol(source.parameters[i]) : getRestTypeOfSignature(source); let t = i < targetMax ? getTypeOfSymbol(target.parameters[i]) : getRestTypeOfSignature(target); let saveErrorInfo = errorInfo; let related = isRelatedTo(s, t, reportErrors); if (!related) { related = isRelatedTo(t, s, false); if (!related) { if (reportErrors) { reportError(Diagnostics.Types_of_parameters_0_and_1_are_incompatible, source.parameters[i < sourceMax ? i : sourceMax].name, target.parameters[i < targetMax ? i : targetMax].name); } return Ternary.False; } errorInfo = saveErrorInfo; } result &= related; } if (source.typePredicate && target.typePredicate) { let hasDifferentParameterIndex = source.typePredicate.parameterIndex !== target.typePredicate.parameterIndex; let hasDifferentTypes: boolean; if (hasDifferentParameterIndex || (hasDifferentTypes = !isTypeIdenticalTo(source.typePredicate.type, target.typePredicate.type))) { if (reportErrors) { let sourceParamText = source.typePredicate.parameterName; let targetParamText = target.typePredicate.parameterName; let sourceTypeText = typeToString(source.typePredicate.type); let targetTypeText = typeToString(target.typePredicate.type); if (hasDifferentParameterIndex) { reportError(Diagnostics.Parameter_0_is_not_in_the_same_position_as_parameter_1, sourceParamText, targetParamText); } else if (hasDifferentTypes) { reportError(Diagnostics.Type_0_is_not_assignable_to_type_1, sourceTypeText, targetTypeText); } reportError(Diagnostics.Type_predicate_0_is_not_assignable_to_1, `${sourceParamText} is ${sourceTypeText}`, `${targetParamText} is ${targetTypeText}`); } return Ternary.False; } } else if (!source.typePredicate && target.typePredicate) { if (reportErrors) { reportError(Diagnostics.Signature_0_must_have_a_type_predicate, signatureToString(source)); } return Ternary.False; } let t = getReturnTypeOfSignature(target); if (t === voidType) return result; let s = getReturnTypeOfSignature(source); return result & isRelatedTo(s, t, reportErrors); } function signaturesIdenticalTo(source: Type, target: Type, kind: SignatureKind): Ternary { let sourceSignatures = getSignaturesOfType(source, kind); let targetSignatures = getSignaturesOfType(target, kind); if (sourceSignatures.length !== targetSignatures.length) { return Ternary.False; } let result = Ternary.True; for (let i = 0, len = sourceSignatures.length; i < len; ++i) { let related = compareSignatures(sourceSignatures[i], targetSignatures[i], /*compareReturnTypes*/ true, isRelatedTo); if (!related) { return Ternary.False; } result &= related; } return result; } function stringIndexTypesRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (relation === identityRelation) { return indexTypesIdenticalTo(IndexKind.String, source, target); } let targetType = getIndexTypeOfType(target, IndexKind.String); if (targetType) { let sourceType = getIndexTypeOfType(source, IndexKind.String); if (!sourceType) { if (reportErrors) { reportError(Diagnostics.Index_signature_is_missing_in_type_0, typeToString(source)); } return Ternary.False; } let related = isRelatedTo(sourceType, targetType, reportErrors); if (!related) { if (reportErrors) { reportError(Diagnostics.Index_signatures_are_incompatible); } return Ternary.False; } return related; } return Ternary.True; } function numberIndexTypesRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (relation === identityRelation) { return indexTypesIdenticalTo(IndexKind.Number, source, target); } let targetType = getIndexTypeOfType(target, IndexKind.Number); if (targetType) { let sourceStringType = getIndexTypeOfType(source, IndexKind.String); let sourceNumberType = getIndexTypeOfType(source, IndexKind.Number); if (!(sourceStringType || sourceNumberType)) { if (reportErrors) { reportError(Diagnostics.Index_signature_is_missing_in_type_0, typeToString(source)); } return Ternary.False; } let related: Ternary; if (sourceStringType && sourceNumberType) { // If we know for sure we're testing both string and numeric index types then only report errors from the second one related = isRelatedTo(sourceStringType, targetType, false) || isRelatedTo(sourceNumberType, targetType, reportErrors); } else { related = isRelatedTo(sourceStringType || sourceNumberType, targetType, reportErrors); } if (!related) { if (reportErrors) { reportError(Diagnostics.Index_signatures_are_incompatible); } return Ternary.False; } return related; } return Ternary.True; } function indexTypesIdenticalTo(indexKind: IndexKind, source: Type, target: Type): Ternary { let targetType = getIndexTypeOfType(target, indexKind); let sourceType = getIndexTypeOfType(source, indexKind); if (!sourceType && !targetType) { return Ternary.True; } if (sourceType && targetType) { return isRelatedTo(sourceType, targetType); } return Ternary.False; } } // Return true if the given type is part of a deeply nested chain of generic instantiations. We consider this to be the case // when structural type comparisons have been started for 10 or more instantiations of the same generic type. It is possible, // though highly unlikely, for this test to be true in a situation where a chain of instantiations is not infinitely expanding. // Effectively, we will generate a false positive when two types are structurally equal to at least 10 levels, but unequal at // some level beyond that. function isDeeplyNestedGeneric(type: Type, stack: Type[], depth: number): boolean { // We track type references (created by createTypeReference) and instantiated types (created by instantiateType) if (type.flags & (TypeFlags.Reference | TypeFlags.Instantiated) && depth >= 5) { let symbol = type.symbol; let count = 0; for (let i = 0; i < depth; i++) { let t = stack[i]; if (t.flags & (TypeFlags.Reference | TypeFlags.Instantiated) && t.symbol === symbol) { count++; if (count >= 5) return true; } } } return false; } function isPropertyIdenticalTo(sourceProp: Symbol, targetProp: Symbol): boolean { return compareProperties(sourceProp, targetProp, compareTypes) !== Ternary.False; } function compareProperties(sourceProp: Symbol, targetProp: Symbol, compareTypes: (source: Type, target: Type) => Ternary): Ternary { // Two members are considered identical when // - they are public properties with identical names, optionality, and types, // - they are private or protected properties originating in the same declaration and having identical types if (sourceProp === targetProp) { return Ternary.True; } let sourcePropAccessibility = getDeclarationFlagsFromSymbol(sourceProp) & (NodeFlags.Private | NodeFlags.Protected); let targetPropAccessibility = getDeclarationFlagsFromSymbol(targetProp) & (NodeFlags.Private | NodeFlags.Protected); if (sourcePropAccessibility !== targetPropAccessibility) { return Ternary.False; } if (sourcePropAccessibility) { if (getTargetSymbol(sourceProp) !== getTargetSymbol(targetProp)) { return Ternary.False; } } else { if ((sourceProp.flags & SymbolFlags.Optional) !== (targetProp.flags & SymbolFlags.Optional)) { return Ternary.False; } } return compareTypes(getTypeOfSymbol(sourceProp), getTypeOfSymbol(targetProp)); } function compareSignatures(source: Signature, target: Signature, compareReturnTypes: boolean, compareTypes: (s: Type, t: Type) => Ternary): Ternary { if (source === target) { return Ternary.True; } if (source.parameters.length !== target.parameters.length || source.minArgumentCount !== target.minArgumentCount || source.hasRestParameter !== target.hasRestParameter) { return Ternary.False; } let result = Ternary.True; if (source.typeParameters && target.typeParameters) { if (source.typeParameters.length !== target.typeParameters.length) { return Ternary.False; } for (let i = 0, len = source.typeParameters.length; i < len; ++i) { let related = compareTypes(source.typeParameters[i], target.typeParameters[i]); if (!related) { return Ternary.False; } result &= related; } } else if (source.typeParameters || target.typeParameters) { return Ternary.False; } // Spec 1.0 Section 3.8.3 & 3.8.4: // M and N (the signatures) are instantiated using type Any as the type argument for all type parameters declared by M and N source = getErasedSignature(source); target = getErasedSignature(target); for (let i = 0, len = source.parameters.length; i < len; i++) { let s = source.hasRestParameter && i === len - 1 ? getRestTypeOfSignature(source) : getTypeOfSymbol(source.parameters[i]); let t = target.hasRestParameter && i === len - 1 ? getRestTypeOfSignature(target) : getTypeOfSymbol(target.parameters[i]); let related = compareTypes(s, t); if (!related) { return Ternary.False; } result &= related; } if (compareReturnTypes) { result &= compareTypes(getReturnTypeOfSignature(source), getReturnTypeOfSignature(target)); } return result; } function isSupertypeOfEach(candidate: Type, types: Type[]): boolean { for (let type of types) { if (candidate !== type && !isTypeSubtypeOf(type, candidate)) return false; } return true; } function getCommonSupertype(types: Type[]): Type { return forEach(types, t => isSupertypeOfEach(t, types) ? t : undefined); } function reportNoCommonSupertypeError(types: Type[], errorLocation: Node, errorMessageChainHead: DiagnosticMessageChain): void { // The downfallType/bestSupertypeDownfallType is the first type that caused a particular candidate // to not be the common supertype. So if it weren't for this one downfallType (and possibly others), // the type in question could have been the common supertype. let bestSupertype: Type; let bestSupertypeDownfallType: Type; let bestSupertypeScore = 0; for (let i = 0; i < types.length; i++) { let score = 0; let downfallType: Type = undefined; for (let j = 0; j < types.length; j++) { if (isTypeSubtypeOf(types[j], types[i])) { score++; } else if (!downfallType) { downfallType = types[j]; } } Debug.assert(!!downfallType, "If there is no common supertype, each type should have a downfallType"); if (score > bestSupertypeScore) { bestSupertype = types[i]; bestSupertypeDownfallType = downfallType; bestSupertypeScore = score; } // types.length - 1 is the maximum score, given that getCommonSupertype returned false if (bestSupertypeScore === types.length - 1) { break; } } // In the following errors, the {1} slot is before the {0} slot because checkTypeSubtypeOf supplies the // subtype as the first argument to the error checkTypeSubtypeOf(bestSupertypeDownfallType, bestSupertype, errorLocation, Diagnostics.Type_argument_candidate_1_is_not_a_valid_type_argument_because_it_is_not_a_supertype_of_candidate_0, errorMessageChainHead); } function isArrayType(type: Type): boolean { return type.flags & TypeFlags.Reference && (type).target === globalArrayType; } function isArrayLikeType(type: Type): boolean { // A type is array-like if it is not the undefined or null type and if it is assignable to any[] return !(type.flags & (TypeFlags.Undefined | TypeFlags.Null)) && isTypeAssignableTo(type, anyArrayType); } function isTupleLikeType(type: Type): boolean { return !!getPropertyOfType(type, "0"); } /** * Check if a Type was written as a tuple type literal. * Prefer using isTupleLikeType() unless the use of `elementTypes` is required. */ function isTupleType(type: Type): boolean { return (type.flags & TypeFlags.Tuple) && !!(type).elementTypes; } function getWidenedTypeOfObjectLiteral(type: Type): Type { let properties = getPropertiesOfObjectType(type); let members: SymbolTable = {}; forEach(properties, p => { let propType = getTypeOfSymbol(p); let widenedType = getWidenedType(propType); if (propType !== widenedType) { let symbol = createSymbol(p.flags | SymbolFlags.Transient, p.name); symbol.declarations = p.declarations; symbol.parent = p.parent; symbol.type = widenedType; symbol.target = p; if (p.valueDeclaration) symbol.valueDeclaration = p.valueDeclaration; p = symbol; } members[p.name] = p; }); let stringIndexType = getIndexTypeOfType(type, IndexKind.String); let numberIndexType = getIndexTypeOfType(type, IndexKind.Number); if (stringIndexType) stringIndexType = getWidenedType(stringIndexType); if (numberIndexType) numberIndexType = getWidenedType(numberIndexType); return createAnonymousType(type.symbol, members, emptyArray, emptyArray, stringIndexType, numberIndexType); } function getWidenedType(type: Type): Type { if (type.flags & TypeFlags.RequiresWidening) { if (type.flags & (TypeFlags.Undefined | TypeFlags.Null)) { return anyType; } if (type.flags & TypeFlags.ObjectLiteral) { return getWidenedTypeOfObjectLiteral(type); } if (type.flags & TypeFlags.Union) { return getUnionType(map((type).types, getWidenedType)); } if (isArrayType(type)) { return createArrayType(getWidenedType((type).typeArguments[0])); } } return type; } function reportWideningErrorsInType(type: Type): boolean { if (type.flags & TypeFlags.Union) { let errorReported = false; forEach((type).types, t => { if (reportWideningErrorsInType(t)) { errorReported = true; } }); return errorReported; } if (isArrayType(type)) { return reportWideningErrorsInType((type).typeArguments[0]); } if (type.flags & TypeFlags.ObjectLiteral) { let errorReported = false; forEach(getPropertiesOfObjectType(type), p => { let t = getTypeOfSymbol(p); if (t.flags & TypeFlags.ContainsUndefinedOrNull) { if (!reportWideningErrorsInType(t)) { error(p.valueDeclaration, Diagnostics.Object_literal_s_property_0_implicitly_has_an_1_type, p.name, typeToString(getWidenedType(t))); } errorReported = true; } }); return errorReported; } return false; } function reportImplicitAnyError(declaration: Declaration, type: Type) { let typeAsString = typeToString(getWidenedType(type)); let diagnostic: DiagnosticMessage; switch (declaration.kind) { case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: diagnostic = Diagnostics.Member_0_implicitly_has_an_1_type; break; case SyntaxKind.Parameter: diagnostic = (declaration).dotDotDotToken ? Diagnostics.Rest_parameter_0_implicitly_has_an_any_type : Diagnostics.Parameter_0_implicitly_has_an_1_type; break; case SyntaxKind.FunctionDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: if (!declaration.name) { error(declaration, Diagnostics.Function_expression_which_lacks_return_type_annotation_implicitly_has_an_0_return_type, typeAsString); return; } diagnostic = Diagnostics._0_which_lacks_return_type_annotation_implicitly_has_an_1_return_type; break; default: diagnostic = Diagnostics.Variable_0_implicitly_has_an_1_type; } error(declaration, diagnostic, declarationNameToString(declaration.name), typeAsString); } function reportErrorsFromWidening(declaration: Declaration, type: Type) { if (produceDiagnostics && compilerOptions.noImplicitAny && type.flags & TypeFlags.ContainsUndefinedOrNull) { // Report implicit any error within type if possible, otherwise report error on declaration if (!reportWideningErrorsInType(type)) { reportImplicitAnyError(declaration, type); } } } function forEachMatchingParameterType(source: Signature, target: Signature, callback: (s: Type, t: Type) => void) { let sourceMax = source.parameters.length; let targetMax = target.parameters.length; let count: number; if (source.hasRestParameter && target.hasRestParameter) { count = sourceMax > targetMax ? sourceMax : targetMax; sourceMax--; targetMax--; } else if (source.hasRestParameter) { sourceMax--; count = targetMax; } else if (target.hasRestParameter) { targetMax--; count = sourceMax; } else { count = sourceMax < targetMax ? sourceMax : targetMax; } for (let i = 0; i < count; i++) { let s = i < sourceMax ? getTypeOfSymbol(source.parameters[i]) : getRestTypeOfSignature(source); let t = i < targetMax ? getTypeOfSymbol(target.parameters[i]) : getRestTypeOfSignature(target); callback(s, t); } } function createInferenceContext(typeParameters: TypeParameter[], inferUnionTypes: boolean): InferenceContext { let inferences: TypeInferences[] = []; for (let unused of typeParameters) { inferences.push({ primary: undefined, secondary: undefined, isFixed: false }); } return { typeParameters, inferUnionTypes, inferences, inferredTypes: new Array(typeParameters.length), }; } function inferTypes(context: InferenceContext, source: Type, target: Type) { let sourceStack: Type[]; let targetStack: Type[]; let depth = 0; let inferiority = 0; inferFromTypes(source, target); function isInProcess(source: Type, target: Type) { for (let i = 0; i < depth; i++) { if (source === sourceStack[i] && target === targetStack[i]) { return true; } } return false; } function inferFromTypes(source: Type, target: Type) { if (source === anyFunctionType) { return; } if (target.flags & TypeFlags.TypeParameter) { // If target is a type parameter, make an inference let typeParameters = context.typeParameters; for (let i = 0; i < typeParameters.length; i++) { if (target === typeParameters[i]) { let inferences = context.inferences[i]; if (!inferences.isFixed) { // Any inferences that are made to a type parameter in a union type are inferior // to inferences made to a flat (non-union) type. This is because if we infer to // T | string[], we really don't know if we should be inferring to T or not (because // the correct constituent on the target side could be string[]). Therefore, we put // such inferior inferences into a secondary bucket, and only use them if the primary // bucket is empty. let candidates = inferiority ? inferences.secondary || (inferences.secondary = []) : inferences.primary || (inferences.primary = []); if (!contains(candidates, source)) { candidates.push(source); } } return; } } } else if (source.flags & TypeFlags.Reference && target.flags & TypeFlags.Reference && (source).target === (target).target) { // If source and target are references to the same generic type, infer from type arguments let sourceTypes = (source).typeArguments; let targetTypes = (target).typeArguments; for (let i = 0; i < sourceTypes.length; i++) { inferFromTypes(sourceTypes[i], targetTypes[i]); } } else if (target.flags & TypeFlags.UnionOrIntersection) { let targetTypes = (target).types; let typeParameterCount = 0; let typeParameter: TypeParameter; // First infer to each type in union or intersection that isn't a type parameter for (let t of targetTypes) { if (t.flags & TypeFlags.TypeParameter && contains(context.typeParameters, t)) { typeParameter = t; typeParameterCount++; } else { inferFromTypes(source, t); } } // Next, if target is a union type containing a single naked type parameter, make a // secondary inference to that type parameter. We don't do this for intersection types // because in a target type like Foo & T we don't know how which parts of the source type // should be matched by Foo and which should be inferred to T. if (target.flags & TypeFlags.Union && typeParameterCount === 1) { inferiority++; inferFromTypes(source, typeParameter); inferiority--; } } else if (source.flags & TypeFlags.UnionOrIntersection) { // Source is a union or intersection type, infer from each consituent type let sourceTypes = (source).types; for (let sourceType of sourceTypes) { inferFromTypes(sourceType, target); } } else if (source.flags & TypeFlags.ObjectType && (target.flags & (TypeFlags.Reference | TypeFlags.Tuple) || (target.flags & TypeFlags.Anonymous) && target.symbol && target.symbol.flags & (SymbolFlags.Method | SymbolFlags.TypeLiteral))) { // If source is an object type, and target is a type reference, a tuple type, the type of a method, or a type literal, infer from members if (isInProcess(source, target)) { return; } if (isDeeplyNestedGeneric(source, sourceStack, depth) && isDeeplyNestedGeneric(target, targetStack, depth)) { return; } if (depth === 0) { sourceStack = []; targetStack = []; } sourceStack[depth] = source; targetStack[depth] = target; depth++; inferFromProperties(source, target); inferFromSignatures(source, target, SignatureKind.Call); inferFromSignatures(source, target, SignatureKind.Construct); inferFromIndexTypes(source, target, IndexKind.String, IndexKind.String); inferFromIndexTypes(source, target, IndexKind.Number, IndexKind.Number); inferFromIndexTypes(source, target, IndexKind.String, IndexKind.Number); depth--; } } function inferFromProperties(source: Type, target: Type) { let properties = getPropertiesOfObjectType(target); for (let targetProp of properties) { let sourceProp = getPropertyOfObjectType(source, targetProp.name); if (sourceProp) { inferFromTypes(getTypeOfSymbol(sourceProp), getTypeOfSymbol(targetProp)); } } } function inferFromSignatures(source: Type, target: Type, kind: SignatureKind) { let sourceSignatures = getSignaturesOfType(source, kind); let targetSignatures = getSignaturesOfType(target, kind); let sourceLen = sourceSignatures.length; let targetLen = targetSignatures.length; let len = sourceLen < targetLen ? sourceLen : targetLen; for (let i = 0; i < len; i++) { inferFromSignature(getErasedSignature(sourceSignatures[sourceLen - len + i]), getErasedSignature(targetSignatures[targetLen - len + i])); } } function inferFromSignature(source: Signature, target: Signature) { forEachMatchingParameterType(source, target, inferFromTypes); if (source.typePredicate && target.typePredicate) { if (target.typePredicate.parameterIndex === source.typePredicate.parameterIndex) { // Return types from type predicates are treated as booleans. In order to infer types // from type predicates we would need to infer using the type within the type predicate // (i.e. 'Foo' from 'x is Foo'). inferFromTypes(source.typePredicate.type, target.typePredicate.type); } } else { inferFromTypes(getReturnTypeOfSignature(source), getReturnTypeOfSignature(target)); } } function inferFromIndexTypes(source: Type, target: Type, sourceKind: IndexKind, targetKind: IndexKind) { let targetIndexType = getIndexTypeOfType(target, targetKind); if (targetIndexType) { let sourceIndexType = getIndexTypeOfType(source, sourceKind); if (sourceIndexType) { inferFromTypes(sourceIndexType, targetIndexType); } } } } function getInferenceCandidates(context: InferenceContext, index: number): Type[] { let inferences = context.inferences[index]; return inferences.primary || inferences.secondary || emptyArray; } function getInferredType(context: InferenceContext, index: number): Type { let inferredType = context.inferredTypes[index]; let inferenceSucceeded: boolean; if (!inferredType) { let inferences = getInferenceCandidates(context, index); if (inferences.length) { // Infer widened union or supertype, or the unknown type for no common supertype let unionOrSuperType = context.inferUnionTypes ? getUnionType(inferences) : getCommonSupertype(inferences); inferredType = unionOrSuperType ? getWidenedType(unionOrSuperType) : unknownType; inferenceSucceeded = !!unionOrSuperType; } else { // Infer the empty object type when no inferences were made. It is important to remember that // in this case, inference still succeeds, meaning there is no error for not having inference // candidates. An inference error only occurs when there are *conflicting* candidates, i.e. // candidates with no common supertype. inferredType = emptyObjectType; inferenceSucceeded = true; } // Only do the constraint check if inference succeeded (to prevent cascading errors) if (inferenceSucceeded) { let constraint = getConstraintOfTypeParameter(context.typeParameters[index]); inferredType = constraint && !isTypeAssignableTo(inferredType, constraint) ? constraint : inferredType; } else if (context.failedTypeParameterIndex === undefined || context.failedTypeParameterIndex > index) { // If inference failed, it is necessary to record the index of the failed type parameter (the one we are on). // It might be that inference has already failed on a later type parameter on a previous call to inferTypeArguments. // So if this failure is on preceding type parameter, this type parameter is the new failure index. context.failedTypeParameterIndex = index; } context.inferredTypes[index] = inferredType; } return inferredType; } function getInferredTypes(context: InferenceContext): Type[] { for (let i = 0; i < context.inferredTypes.length; i++) { getInferredType(context, i); } return context.inferredTypes; } function hasAncestor(node: Node, kind: SyntaxKind): boolean { return getAncestor(node, kind) !== undefined; } // EXPRESSION TYPE CHECKING function getResolvedSymbol(node: Identifier): Symbol { let links = getNodeLinks(node); if (!links.resolvedSymbol) { links.resolvedSymbol = (!nodeIsMissing(node) && resolveName(node, node.text, SymbolFlags.Value | SymbolFlags.ExportValue, Diagnostics.Cannot_find_name_0, node)) || unknownSymbol; } return links.resolvedSymbol; } function isInTypeQuery(node: Node): boolean { // TypeScript 1.0 spec (April 2014): 3.6.3 // A type query consists of the keyword typeof followed by an expression. // The expression is restricted to a single identifier or a sequence of identifiers separated by periods while (node) { switch (node.kind) { case SyntaxKind.TypeQuery: return true; case SyntaxKind.Identifier: case SyntaxKind.QualifiedName: node = node.parent; continue; default: return false; } } Debug.fail("should not get here"); } // For a union type, remove all constituent types that are of the given type kind (when isOfTypeKind is true) // or not of the given type kind (when isOfTypeKind is false) function removeTypesFromUnionType(type: Type, typeKind: TypeFlags, isOfTypeKind: boolean, allowEmptyUnionResult: boolean): Type { if (type.flags & TypeFlags.Union) { let types = (type).types; if (forEach(types, t => !!(t.flags & typeKind) === isOfTypeKind)) { // Above we checked if we have anything to remove, now use the opposite test to do the removal let narrowedType = getUnionType(filter(types, t => !(t.flags & typeKind) === isOfTypeKind)); if (allowEmptyUnionResult || narrowedType !== emptyObjectType) { return narrowedType; } } } else if (allowEmptyUnionResult && !!(type.flags & typeKind) === isOfTypeKind) { // Use getUnionType(emptyArray) instead of emptyObjectType in case the way empty union types // are represented ever changes. return getUnionType(emptyArray); } return type; } function hasInitializer(node: VariableLikeDeclaration): boolean { return !!(node.initializer || isBindingPattern(node.parent) && hasInitializer(node.parent.parent)); } // Check if a given variable is assigned within a given syntax node function isVariableAssignedWithin(symbol: Symbol, node: Node): boolean { let links = getNodeLinks(node); if (links.assignmentChecks) { let cachedResult = links.assignmentChecks[symbol.id]; if (cachedResult !== undefined) { return cachedResult; } } else { links.assignmentChecks = {}; } return links.assignmentChecks[symbol.id] = isAssignedIn(node); function isAssignedInBinaryExpression(node: BinaryExpression) { if (node.operatorToken.kind >= SyntaxKind.FirstAssignment && node.operatorToken.kind <= SyntaxKind.LastAssignment) { let n = node.left; while (n.kind === SyntaxKind.ParenthesizedExpression) { n = (n).expression; } if (n.kind === SyntaxKind.Identifier && getResolvedSymbol(n) === symbol) { return true; } } return forEachChild(node, isAssignedIn); } function isAssignedInVariableDeclaration(node: VariableLikeDeclaration) { if (!isBindingPattern(node.name) && getSymbolOfNode(node) === symbol && hasInitializer(node)) { return true; } return forEachChild(node, isAssignedIn); } function isAssignedIn(node: Node): boolean { switch (node.kind) { case SyntaxKind.BinaryExpression: return isAssignedInBinaryExpression(node); case SyntaxKind.VariableDeclaration: case SyntaxKind.BindingElement: return isAssignedInVariableDeclaration(node); case SyntaxKind.ObjectBindingPattern: case SyntaxKind.ArrayBindingPattern: case SyntaxKind.ArrayLiteralExpression: case SyntaxKind.ObjectLiteralExpression: case SyntaxKind.PropertyAccessExpression: case SyntaxKind.ElementAccessExpression: case SyntaxKind.CallExpression: case SyntaxKind.NewExpression: case SyntaxKind.TypeAssertionExpression: case SyntaxKind.AsExpression: case SyntaxKind.ParenthesizedExpression: case SyntaxKind.PrefixUnaryExpression: case SyntaxKind.DeleteExpression: case SyntaxKind.AwaitExpression: case SyntaxKind.TypeOfExpression: case SyntaxKind.VoidExpression: case SyntaxKind.PostfixUnaryExpression: case SyntaxKind.YieldExpression: case SyntaxKind.ConditionalExpression: case SyntaxKind.SpreadElementExpression: case SyntaxKind.Block: case SyntaxKind.VariableStatement: case SyntaxKind.ExpressionStatement: case SyntaxKind.IfStatement: case SyntaxKind.DoStatement: case SyntaxKind.WhileStatement: case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: case SyntaxKind.ReturnStatement: case SyntaxKind.WithStatement: case SyntaxKind.SwitchStatement: case SyntaxKind.CaseClause: case SyntaxKind.DefaultClause: case SyntaxKind.LabeledStatement: case SyntaxKind.ThrowStatement: case SyntaxKind.TryStatement: case SyntaxKind.CatchClause: case SyntaxKind.JsxElement: case SyntaxKind.JsxSelfClosingElement: case SyntaxKind.JsxAttribute: case SyntaxKind.JsxSpreadAttribute: case SyntaxKind.JsxOpeningElement: case SyntaxKind.JsxExpression: return forEachChild(node, isAssignedIn); } return false; } } function resolveLocation(node: Node) { // Resolve location from top down towards node if it is a context sensitive expression // That helps in making sure not assigning types as any when resolved out of order let containerNodes: Node[] = []; for (let parent = node.parent; parent; parent = parent.parent) { if ((isExpression(parent) || isObjectLiteralMethod(node)) && isContextSensitive(parent)) { containerNodes.unshift(parent); } } ts.forEach(containerNodes, node => { getTypeOfNode(node); }); } function getSymbolAtLocation(node: Node): Symbol { resolveLocation(node); return getSymbolInfo(node); } function getTypeAtLocation(node: Node): Type { resolveLocation(node); return getTypeOfNode(node); } function getTypeOfSymbolAtLocation(symbol: Symbol, node: Node): Type { resolveLocation(node); // Get the narrowed type of symbol at given location instead of just getting // the type of the symbol. // eg. // function foo(a: string | number) { // if (typeof a === "string") { // a/**/ // } // } // getTypeOfSymbol for a would return type of parameter symbol string | number // Unless we provide location /**/, checker wouldn't know how to narrow the type // By using getNarrowedTypeOfSymbol would return string since it would be able to narrow // it by typeguard in the if true condition return getNarrowedTypeOfSymbol(symbol, node); } // Get the narrowed type of a given symbol at a given location function getNarrowedTypeOfSymbol(symbol: Symbol, node: Node) { let type = getTypeOfSymbol(symbol); // Only narrow when symbol is variable of type any or an object, union, or type parameter type if (node && symbol.flags & SymbolFlags.Variable) { if (isTypeAny(type) || type.flags & (TypeFlags.ObjectType | TypeFlags.Union | TypeFlags.TypeParameter)) { loop: while (node.parent) { let child = node; node = node.parent; let narrowedType = type; switch (node.kind) { case SyntaxKind.IfStatement: // In a branch of an if statement, narrow based on controlling expression if (child !== (node).expression) { narrowedType = narrowType(type, (node).expression, /*assumeTrue*/ child === (node).thenStatement); } break; case SyntaxKind.ConditionalExpression: // In a branch of a conditional expression, narrow based on controlling condition if (child !== (node).condition) { narrowedType = narrowType(type, (node).condition, /*assumeTrue*/ child === (node).whenTrue); } break; case SyntaxKind.BinaryExpression: // In the right operand of an && or ||, narrow based on left operand if (child === (node).right) { if ((node).operatorToken.kind === SyntaxKind.AmpersandAmpersandToken) { narrowedType = narrowType(type, (node).left, /*assumeTrue*/ true); } else if ((node).operatorToken.kind === SyntaxKind.BarBarToken) { narrowedType = narrowType(type, (node).left, /*assumeTrue*/ false); } } break; case SyntaxKind.SourceFile: case SyntaxKind.ModuleDeclaration: case SyntaxKind.FunctionDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.Constructor: // Stop at the first containing function or module declaration break loop; } // Use narrowed type if construct contains no assignments to variable if (narrowedType !== type) { if (isVariableAssignedWithin(symbol, node)) { break; } type = narrowedType; } } } } return type; function narrowTypeByEquality(type: Type, expr: BinaryExpression, assumeTrue: boolean): Type { // Check that we have 'typeof ' on the left and string literal on the right if (expr.left.kind !== SyntaxKind.TypeOfExpression || expr.right.kind !== SyntaxKind.StringLiteral) { return type; } let left = expr.left; let right = expr.right; if (left.expression.kind !== SyntaxKind.Identifier || getResolvedSymbol(left.expression) !== symbol) { return type; } let typeInfo = primitiveTypeInfo[right.text]; if (expr.operatorToken.kind === SyntaxKind.ExclamationEqualsEqualsToken) { assumeTrue = !assumeTrue; } if (assumeTrue) { // Assumed result is true. If check was not for a primitive type, remove all primitive types if (!typeInfo) { return removeTypesFromUnionType(type, /*typeKind*/ TypeFlags.StringLike | TypeFlags.NumberLike | TypeFlags.Boolean | TypeFlags.ESSymbol, /*isOfTypeKind*/ true, /*allowEmptyUnionResult*/ false); } // Check was for a primitive type, return that primitive type if it is a subtype if (isTypeSubtypeOf(typeInfo.type, type)) { return typeInfo.type; } // Otherwise, remove all types that aren't of the primitive type kind. This can happen when the type is // union of enum types and other types. return removeTypesFromUnionType(type, /*typeKind*/ typeInfo.flags, /*isOfTypeKind*/ false, /*allowEmptyUnionResult*/ false); } else { // Assumed result is false. If check was for a primitive type, remove that primitive type if (typeInfo) { return removeTypesFromUnionType(type, /*typeKind*/ typeInfo.flags, /*isOfTypeKind*/ true, /*allowEmptyUnionResult*/ false); } // Otherwise we don't have enough information to do anything. return type; } } function narrowTypeByAnd(type: Type, expr: BinaryExpression, assumeTrue: boolean): Type { if (assumeTrue) { // The assumed result is true, therefore we narrow assuming each operand to be true. return narrowType(narrowType(type, expr.left, /*assumeTrue*/ true), expr.right, /*assumeTrue*/ true); } else { // The assumed result is false. This means either the first operand was false, or the first operand was true // and the second operand was false. We narrow with those assumptions and union the two resulting types. return getUnionType([ narrowType(type, expr.left, /*assumeTrue*/ false), narrowType(narrowType(type, expr.left, /*assumeTrue*/ true), expr.right, /*assumeTrue*/ false) ]); } } function narrowTypeByOr(type: Type, expr: BinaryExpression, assumeTrue: boolean): Type { if (assumeTrue) { // The assumed result is true. This means either the first operand was true, or the first operand was false // and the second operand was true. We narrow with those assumptions and union the two resulting types. return getUnionType([ narrowType(type, expr.left, /*assumeTrue*/ true), narrowType(narrowType(type, expr.left, /*assumeTrue*/ false), expr.right, /*assumeTrue*/ true) ]); } else { // The assumed result is false, therefore we narrow assuming each operand to be false. return narrowType(narrowType(type, expr.left, /*assumeTrue*/ false), expr.right, /*assumeTrue*/ false); } } function narrowTypeByInstanceof(type: Type, expr: BinaryExpression, assumeTrue: boolean): Type { // Check that type is not any, assumed result is true, and we have variable symbol on the left if (isTypeAny(type) || !assumeTrue || expr.left.kind !== SyntaxKind.Identifier || getResolvedSymbol(expr.left) !== symbol) { return type; } // Check that right operand is a function type with a prototype property let rightType = checkExpression(expr.right); if (!isTypeSubtypeOf(rightType, globalFunctionType)) { return type; } let targetType: Type; let prototypeProperty = getPropertyOfType(rightType, "prototype"); if (prototypeProperty) { // Target type is type of the prototype property let prototypePropertyType = getTypeOfSymbol(prototypeProperty); if (!isTypeAny(prototypePropertyType)) { targetType = prototypePropertyType; } } if (!targetType) { // Target type is type of construct signature let constructSignatures: Signature[]; if (rightType.flags & TypeFlags.Interface) { constructSignatures = resolveDeclaredMembers(rightType).declaredConstructSignatures; } else if (rightType.flags & TypeFlags.Anonymous) { constructSignatures = getSignaturesOfType(rightType, SignatureKind.Construct); } if (constructSignatures && constructSignatures.length) { targetType = getUnionType(map(constructSignatures, signature => getReturnTypeOfSignature(getErasedSignature(signature)))); } } if (targetType) { return getNarrowedType(type, targetType); } return type; } function getNarrowedType(originalType: Type, narrowedTypeCandidate: Type) { // Narrow to the target type if it's a subtype of the current type if (isTypeSubtypeOf(narrowedTypeCandidate, originalType)) { return narrowedTypeCandidate; } // If the current type is a union type, remove all constituents that aren't subtypes of the target. if (originalType.flags & TypeFlags.Union) { return getUnionType(filter((originalType).types, t => isTypeSubtypeOf(t, narrowedTypeCandidate))); } return originalType; } function narrowTypeByTypePredicate(type: Type, expr: CallExpression, assumeTrue: boolean): Type { if (type.flags & TypeFlags.Any) { return type; } let signature = getResolvedSignature(expr); if (signature.typePredicate && expr.arguments[signature.typePredicate.parameterIndex] && getSymbolAtLocation(expr.arguments[signature.typePredicate.parameterIndex]) === symbol) { if (!assumeTrue) { if (type.flags & TypeFlags.Union) { return getUnionType(filter((type).types, t => !isTypeSubtypeOf(t, signature.typePredicate.type))); } return type; } return getNarrowedType(type, signature.typePredicate.type); } return type; } // Narrow the given type based on the given expression having the assumed boolean value. The returned type // will be a subtype or the same type as the argument. function narrowType(type: Type, expr: Expression, assumeTrue: boolean): Type { switch (expr.kind) { case SyntaxKind.CallExpression: return narrowTypeByTypePredicate(type, expr, assumeTrue); case SyntaxKind.ParenthesizedExpression: return narrowType(type, (expr).expression, assumeTrue); case SyntaxKind.BinaryExpression: let operator = (expr).operatorToken.kind; if (operator === SyntaxKind.EqualsEqualsEqualsToken || operator === SyntaxKind.ExclamationEqualsEqualsToken) { return narrowTypeByEquality(type, expr, assumeTrue); } else if (operator === SyntaxKind.AmpersandAmpersandToken) { return narrowTypeByAnd(type, expr, assumeTrue); } else if (operator === SyntaxKind.BarBarToken) { return narrowTypeByOr(type, expr, assumeTrue); } else if (operator === SyntaxKind.InstanceOfKeyword) { return narrowTypeByInstanceof(type, expr, assumeTrue); } break; case SyntaxKind.PrefixUnaryExpression: if ((expr).operator === SyntaxKind.ExclamationToken) { return narrowType(type, (expr).operand, !assumeTrue); } break; } return type; } } function checkIdentifier(node: Identifier): Type { let symbol = getResolvedSymbol(node); // As noted in ECMAScript 6 language spec, arrow functions never have an arguments objects. // Although in down-level emit of arrow function, we emit it using function expression which means that // arguments objects will be bound to the inner object; emitting arrow function natively in ES6, arguments objects // will be bound to non-arrow function that contain this arrow function. This results in inconsistent behavior. // To avoid that we will give an error to users if they use arguments objects in arrow function so that they // can explicitly bound arguments objects if (symbol === argumentsSymbol) { let container = getContainingFunction(node); if (container.kind === SyntaxKind.ArrowFunction) { if (languageVersion < ScriptTarget.ES6) { error(node, Diagnostics.The_arguments_object_cannot_be_referenced_in_an_arrow_function_in_ES3_and_ES5_Consider_using_a_standard_function_expression); } } if (node.parserContextFlags & ParserContextFlags.Await) { getNodeLinks(container).flags |= NodeCheckFlags.CaptureArguments; getNodeLinks(node).flags |= NodeCheckFlags.LexicalArguments; } } if (symbol.flags & SymbolFlags.Alias && !isInTypeQuery(node) && !isConstEnumOrConstEnumOnlyModule(resolveAlias(symbol))) { markAliasSymbolAsReferenced(symbol); } checkCollisionWithCapturedSuperVariable(node, node); checkCollisionWithCapturedThisVariable(node, node); checkBlockScopedBindingCapturedInLoop(node, symbol); return getNarrowedTypeOfSymbol(getExportSymbolOfValueSymbolIfExported(symbol), node); } function isInsideFunction(node: Node, threshold: Node): boolean { let current = node; while (current && current !== threshold) { if (isFunctionLike(current)) { return true; } current = current.parent; } return false; } function checkBlockScopedBindingCapturedInLoop(node: Identifier, symbol: Symbol): void { if (languageVersion >= ScriptTarget.ES6 || (symbol.flags & SymbolFlags.BlockScopedVariable) === 0 || symbol.valueDeclaration.parent.kind === SyntaxKind.CatchClause) { return; } // - check if binding is used in some function // (stop the walk when reaching container of binding declaration) // - if first check succeeded - check if variable is declared inside the loop // nesting structure: // (variable declaration or binding element) -> variable declaration list -> container let container: Node = symbol.valueDeclaration; while (container.kind !== SyntaxKind.VariableDeclarationList) { container = container.parent; } // get the parent of variable declaration list container = container.parent; if (container.kind === SyntaxKind.VariableStatement) { // if parent is variable statement - get its parent container = container.parent; } let inFunction = isInsideFunction(node.parent, container); let current = container; while (current && !nodeStartsNewLexicalEnvironment(current)) { if (isIterationStatement(current, /*lookInLabeledStatements*/ false)) { if (inFunction) { grammarErrorOnFirstToken(current, Diagnostics.Loop_contains_block_scoped_variable_0_referenced_by_a_function_in_the_loop_This_is_only_supported_in_ECMAScript_6_or_higher, declarationNameToString(node)); } // mark value declaration so during emit they can have a special handling getNodeLinks(symbol.valueDeclaration).flags |= NodeCheckFlags.BlockScopedBindingInLoop; break; } current = current.parent; } } function captureLexicalThis(node: Node, container: Node): void { getNodeLinks(node).flags |= NodeCheckFlags.LexicalThis; if (container.kind === SyntaxKind.PropertyDeclaration || container.kind === SyntaxKind.Constructor) { let classNode = container.parent; getNodeLinks(classNode).flags |= NodeCheckFlags.CaptureThis; } else { getNodeLinks(container).flags |= NodeCheckFlags.CaptureThis; } } function checkThisExpression(node: Node): Type { // Stop at the first arrow function so that we can // tell whether 'this' needs to be captured. let container = getThisContainer(node, /* includeArrowFunctions */ true); let needToCaptureLexicalThis = false; // Now skip arrow functions to get the "real" owner of 'this'. if (container.kind === SyntaxKind.ArrowFunction) { container = getThisContainer(container, /* includeArrowFunctions */ false); // When targeting es6, arrow function lexically bind "this" so we do not need to do the work of binding "this" in emitted code needToCaptureLexicalThis = (languageVersion < ScriptTarget.ES6); } switch (container.kind) { case SyntaxKind.ModuleDeclaration: error(node, Diagnostics.this_cannot_be_referenced_in_a_module_or_namespace_body); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks break; case SyntaxKind.EnumDeclaration: error(node, Diagnostics.this_cannot_be_referenced_in_current_location); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks break; case SyntaxKind.Constructor: if (isInConstructorArgumentInitializer(node, container)) { error(node, Diagnostics.this_cannot_be_referenced_in_constructor_arguments); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks } break; case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: if (container.flags & NodeFlags.Static) { error(node, Diagnostics.this_cannot_be_referenced_in_a_static_property_initializer); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks } break; case SyntaxKind.ComputedPropertyName: error(node, Diagnostics.this_cannot_be_referenced_in_a_computed_property_name); break; } if (needToCaptureLexicalThis) { captureLexicalThis(node, container); } if (isClassLike(container.parent)) { let symbol = getSymbolOfNode(container.parent); return container.flags & NodeFlags.Static ? getTypeOfSymbol(symbol) : getDeclaredTypeOfSymbol(symbol); } return anyType; } function isInConstructorArgumentInitializer(node: Node, constructorDecl: Node): boolean { for (let n = node; n && n !== constructorDecl; n = n.parent) { if (n.kind === SyntaxKind.Parameter) { return true; } } return false; } function checkSuperExpression(node: Node): Type { let isCallExpression = node.parent.kind === SyntaxKind.CallExpression && (node.parent).expression === node; let classDeclaration = getContainingClass(node); let classType = classDeclaration && getDeclaredTypeOfSymbol(getSymbolOfNode(classDeclaration)); let baseClassType = classType && getBaseTypes(classType)[0]; if (!baseClassType) { if (!classDeclaration || !getClassExtendsHeritageClauseElement(classDeclaration)) { error(node, Diagnostics.super_can_only_be_referenced_in_a_derived_class); } return unknownType; } let container = getSuperContainer(node, /*includeFunctions*/ true); if (container) { let canUseSuperExpression = false; let needToCaptureLexicalThis: boolean; if (isCallExpression) { // TS 1.0 SPEC (April 2014): 4.8.1 // Super calls are only permitted in constructors of derived classes canUseSuperExpression = container.kind === SyntaxKind.Constructor; } else { // TS 1.0 SPEC (April 2014) // 'super' property access is allowed // - In a constructor, instance member function, instance member accessor, or instance member variable initializer where this references a derived class instance // - In a static member function or static member accessor // super property access might appear in arrow functions with arbitrary deep nesting needToCaptureLexicalThis = false; while (container && container.kind === SyntaxKind.ArrowFunction) { container = getSuperContainer(container, /*includeFunctions*/ true); needToCaptureLexicalThis = languageVersion < ScriptTarget.ES6; } // topmost container must be something that is directly nested in the class declaration if (container && isClassLike(container.parent)) { if (container.flags & NodeFlags.Static) { canUseSuperExpression = container.kind === SyntaxKind.MethodDeclaration || container.kind === SyntaxKind.MethodSignature || container.kind === SyntaxKind.GetAccessor || container.kind === SyntaxKind.SetAccessor; } else { canUseSuperExpression = container.kind === SyntaxKind.MethodDeclaration || container.kind === SyntaxKind.MethodSignature || container.kind === SyntaxKind.GetAccessor || container.kind === SyntaxKind.SetAccessor || container.kind === SyntaxKind.PropertyDeclaration || container.kind === SyntaxKind.PropertySignature || container.kind === SyntaxKind.Constructor; } } } if (canUseSuperExpression) { let returnType: Type; if ((container.flags & NodeFlags.Static) || isCallExpression) { getNodeLinks(node).flags |= NodeCheckFlags.SuperStatic; returnType = getBaseConstructorTypeOfClass(classType); } else { getNodeLinks(node).flags |= NodeCheckFlags.SuperInstance; returnType = baseClassType; } if (container.kind === SyntaxKind.Constructor && isInConstructorArgumentInitializer(node, container)) { // issue custom error message for super property access in constructor arguments (to be aligned with old compiler) error(node, Diagnostics.super_cannot_be_referenced_in_constructor_arguments); returnType = unknownType; } if (!isCallExpression && needToCaptureLexicalThis) { // call expressions are allowed only in constructors so they should always capture correct 'this' // super property access expressions can also appear in arrow functions - // in this case they should also use correct lexical this captureLexicalThis(node.parent, container); } return returnType; } } if (container && container.kind === SyntaxKind.ComputedPropertyName) { error(node, Diagnostics.super_cannot_be_referenced_in_a_computed_property_name); } else if (isCallExpression) { error(node, Diagnostics.Super_calls_are_not_permitted_outside_constructors_or_in_nested_functions_inside_constructors); } else { error(node, Diagnostics.super_property_access_is_permitted_only_in_a_constructor_member_function_or_member_accessor_of_a_derived_class); } return unknownType; } // Return contextual type of parameter or undefined if no contextual type is available function getContextuallyTypedParameterType(parameter: ParameterDeclaration): Type { if (isFunctionExpressionOrArrowFunction(parameter.parent)) { let func = parameter.parent; if (isContextSensitive(func)) { let contextualSignature = getContextualSignature(func); if (contextualSignature) { let funcHasRestParameters = hasRestParameter(func); let len = func.parameters.length - (funcHasRestParameters ? 1 : 0); let indexOfParameter = indexOf(func.parameters, parameter); if (indexOfParameter < len) { return getTypeAtPosition(contextualSignature, indexOfParameter); } // If last parameter is contextually rest parameter get its type if (indexOfParameter === (func.parameters.length - 1) && funcHasRestParameters && contextualSignature.hasRestParameter && func.parameters.length >= contextualSignature.parameters.length) { return getTypeOfSymbol(lastOrUndefined(contextualSignature.parameters)); } } } } return undefined; } // In a variable, parameter or property declaration with a type annotation, the contextual type of an initializer // expression is the type of the variable, parameter or property. Otherwise, in a parameter declaration of a // contextually typed function expression, the contextual type of an initializer expression is the contextual type // of the parameter. Otherwise, in a variable or parameter declaration with a binding pattern name, the contextual // type of an initializer expression is the type implied by the binding pattern. function getContextualTypeForInitializerExpression(node: Expression): Type { let declaration = node.parent; if (node === declaration.initializer) { if (declaration.type) { return getTypeFromTypeNode(declaration.type); } if (declaration.kind === SyntaxKind.Parameter) { let type = getContextuallyTypedParameterType(declaration); if (type) { return type; } } if (isBindingPattern(declaration.name)) { return getTypeFromBindingPattern(declaration.name); } } return undefined; } function getContextualTypeForReturnExpression(node: Expression): Type { let func = getContainingFunction(node); if (func && !func.asteriskToken) { return getContextualReturnType(func); } return undefined; } function getContextualTypeForYieldOperand(node: YieldExpression): Type { let func = getContainingFunction(node); if (func) { let contextualReturnType = getContextualReturnType(func); if (contextualReturnType) { return node.asteriskToken ? contextualReturnType : getElementTypeOfIterableIterator(contextualReturnType); } } return undefined; } function isInParameterInitializerBeforeContainingFunction(node: Node) { while (node.parent && !isFunctionLike(node.parent)) { if (node.parent.kind === SyntaxKind.Parameter && (node.parent).initializer === node) { return true; } node = node.parent; } return false; } function getContextualReturnType(functionDecl: FunctionLikeDeclaration): Type { // If the containing function has a return type annotation, is a constructor, or is a get accessor whose // corresponding set accessor has a type annotation, return statements in the function are contextually typed if (functionDecl.type || functionDecl.kind === SyntaxKind.Constructor || functionDecl.kind === SyntaxKind.GetAccessor && getSetAccessorTypeAnnotationNode(getDeclarationOfKind(functionDecl.symbol, SyntaxKind.SetAccessor))) { return getReturnTypeOfSignature(getSignatureFromDeclaration(functionDecl)); } // Otherwise, if the containing function is contextually typed by a function type with exactly one call signature // and that call signature is non-generic, return statements are contextually typed by the return type of the signature let signature = getContextualSignatureForFunctionLikeDeclaration(functionDecl); if (signature) { return getReturnTypeOfSignature(signature); } return undefined; } // In a typed function call, an argument or substitution expression is contextually typed by the type of the corresponding parameter. function getContextualTypeForArgument(callTarget: CallLikeExpression, arg: Expression): Type { let args = getEffectiveCallArguments(callTarget); let argIndex = indexOf(args, arg); if (argIndex >= 0) { let signature = getResolvedSignature(callTarget); return getTypeAtPosition(signature, argIndex); } return undefined; } function getContextualTypeForSubstitutionExpression(template: TemplateExpression, substitutionExpression: Expression) { if (template.parent.kind === SyntaxKind.TaggedTemplateExpression) { return getContextualTypeForArgument(template.parent, substitutionExpression); } return undefined; } function getContextualTypeForBinaryOperand(node: Expression): Type { let binaryExpression = node.parent; let operator = binaryExpression.operatorToken.kind; if (operator >= SyntaxKind.FirstAssignment && operator <= SyntaxKind.LastAssignment) { // In an assignment expression, the right operand is contextually typed by the type of the left operand. if (node === binaryExpression.right) { return checkExpression(binaryExpression.left); } } else if (operator === SyntaxKind.BarBarToken) { // When an || expression has a contextual type, the operands are contextually typed by that type. When an || // expression has no contextual type, the right operand is contextually typed by the type of the left operand. let type = getContextualType(binaryExpression); if (!type && node === binaryExpression.right) { type = checkExpression(binaryExpression.left); } return type; } return undefined; } // Apply a mapping function to a contextual type and return the resulting type. If the contextual type // is a union type, the mapping function is applied to each constituent type and a union of the resulting // types is returned. function applyToContextualType(type: Type, mapper: (t: Type) => Type): Type { if (!(type.flags & TypeFlags.Union)) { return mapper(type); } let types = (type).types; let mappedType: Type; let mappedTypes: Type[]; for (let current of types) { let t = mapper(current); if (t) { if (!mappedType) { mappedType = t; } else if (!mappedTypes) { mappedTypes = [mappedType, t]; } else { mappedTypes.push(t); } } } return mappedTypes ? getUnionType(mappedTypes) : mappedType; } function getTypeOfPropertyOfContextualType(type: Type, name: string) { return applyToContextualType(type, t => { let prop = t.flags & TypeFlags.StructuredType ? getPropertyOfType(t, name) : undefined; return prop ? getTypeOfSymbol(prop) : undefined; }); } function getIndexTypeOfContextualType(type: Type, kind: IndexKind) { return applyToContextualType(type, t => getIndexTypeOfStructuredType(t, kind)); } // Return true if the given contextual type is a tuple-like type function contextualTypeIsTupleLikeType(type: Type): boolean { return !!(type.flags & TypeFlags.Union ? forEach((type).types, isTupleLikeType) : isTupleLikeType(type)); } // Return true if the given contextual type provides an index signature of the given kind function contextualTypeHasIndexSignature(type: Type, kind: IndexKind): boolean { return !!(type.flags & TypeFlags.Union ? forEach((type).types, t => getIndexTypeOfStructuredType(t, kind)) : getIndexTypeOfStructuredType(type, kind)); } // In an object literal contextually typed by a type T, the contextual type of a property assignment is the type of // the matching property in T, if one exists. Otherwise, it is the type of the numeric index signature in T, if one // exists. Otherwise, it is the type of the string index signature in T, if one exists. function getContextualTypeForObjectLiteralMethod(node: MethodDeclaration): Type { Debug.assert(isObjectLiteralMethod(node)); if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return undefined; } return getContextualTypeForObjectLiteralElement(node); } function getContextualTypeForObjectLiteralElement(element: ObjectLiteralElement) { let objectLiteral = element.parent; let type = getContextualType(objectLiteral); if (type) { if (!hasDynamicName(element)) { // For a (non-symbol) computed property, there is no reason to look up the name // in the type. It will just be "__computed", which does not appear in any // SymbolTable. let symbolName = getSymbolOfNode(element).name; let propertyType = getTypeOfPropertyOfContextualType(type, symbolName); if (propertyType) { return propertyType; } } return isNumericName(element.name) && getIndexTypeOfContextualType(type, IndexKind.Number) || getIndexTypeOfContextualType(type, IndexKind.String); } return undefined; } // In an array literal contextually typed by a type T, the contextual type of an element expression at index N is // the type of the property with the numeric name N in T, if one exists. Otherwise, if T has a numeric index signature, // it is the type of the numeric index signature in T. Otherwise, in ES6 and higher, the contextual type is the iterated // type of T. function getContextualTypeForElementExpression(node: Expression): Type { let arrayLiteral = node.parent; let type = getContextualType(arrayLiteral); if (type) { let index = indexOf(arrayLiteral.elements, node); return getTypeOfPropertyOfContextualType(type, "" + index) || getIndexTypeOfContextualType(type, IndexKind.Number) || (languageVersion >= ScriptTarget.ES6 ? getElementTypeOfIterable(type, /*errorNode*/ undefined) : undefined); } return undefined; } // In a contextually typed conditional expression, the true/false expressions are contextually typed by the same type. function getContextualTypeForConditionalOperand(node: Expression): Type { let conditional = node.parent; return node === conditional.whenTrue || node === conditional.whenFalse ? getContextualType(conditional) : undefined; } function getContextualTypeForJsxExpression(expr: JsxExpression|JsxSpreadAttribute): Type { // Contextual type only applies to JSX expressions that are in attribute assignments (not in 'Children' positions) if (expr.parent.kind === SyntaxKind.JsxAttribute) { let attrib = expr.parent; let attrsType = getJsxElementAttributesType(attrib.parent); if (!attrsType || isTypeAny(attrsType)) { return undefined; } else { return getTypeOfPropertyOfType(attrsType, attrib.name.text); } } if (expr.kind === SyntaxKind.JsxSpreadAttribute) { return getJsxElementAttributesType(expr.parent); } return undefined; } // Return the contextual type for a given expression node. During overload resolution, a contextual type may temporarily // be "pushed" onto a node using the contextualType property. function getContextualType(node: Expression): Type { let type = getContextualTypeWorker(node); return type && getApparentType(type); } function getContextualTypeWorker(node: Expression): Type { if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return undefined; } if (node.contextualType) { return node.contextualType; } let parent = node.parent; switch (parent.kind) { case SyntaxKind.VariableDeclaration: case SyntaxKind.Parameter: case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.BindingElement: return getContextualTypeForInitializerExpression(node); case SyntaxKind.ArrowFunction: case SyntaxKind.ReturnStatement: return getContextualTypeForReturnExpression(node); case SyntaxKind.YieldExpression: return getContextualTypeForYieldOperand(parent); case SyntaxKind.CallExpression: case SyntaxKind.NewExpression: return getContextualTypeForArgument(parent, node); case SyntaxKind.TypeAssertionExpression: case SyntaxKind.AsExpression: return getTypeFromTypeNode((parent).type); case SyntaxKind.BinaryExpression: return getContextualTypeForBinaryOperand(node); case SyntaxKind.PropertyAssignment: return getContextualTypeForObjectLiteralElement(parent); case SyntaxKind.ArrayLiteralExpression: return getContextualTypeForElementExpression(node); case SyntaxKind.ConditionalExpression: return getContextualTypeForConditionalOperand(node); case SyntaxKind.TemplateSpan: Debug.assert(parent.parent.kind === SyntaxKind.TemplateExpression); return getContextualTypeForSubstitutionExpression(parent.parent, node); case SyntaxKind.ParenthesizedExpression: return getContextualType(parent); case SyntaxKind.JsxExpression: case SyntaxKind.JsxSpreadAttribute: return getContextualTypeForJsxExpression(parent); } return undefined; } // If the given type is an object or union type, if that type has a single signature, and if // that signature is non-generic, return the signature. Otherwise return undefined. function getNonGenericSignature(type: Type): Signature { let signatures = getSignaturesOfStructuredType(type, SignatureKind.Call); if (signatures.length === 1) { let signature = signatures[0]; if (!signature.typeParameters) { return signature; } } } function isFunctionExpressionOrArrowFunction(node: Node): boolean { return node.kind === SyntaxKind.FunctionExpression || node.kind === SyntaxKind.ArrowFunction; } function getContextualSignatureForFunctionLikeDeclaration(node: FunctionLikeDeclaration): Signature { // Only function expressions, arrow functions, and object literal methods are contextually typed. return isFunctionExpressionOrArrowFunction(node) || isObjectLiteralMethod(node) ? getContextualSignature(node) : undefined; } // Return the contextual signature for a given expression node. A contextual type provides a // contextual signature if it has a single call signature and if that call signature is non-generic. // If the contextual type is a union type, get the signature from each type possible and if they are // all identical ignoring their return type, the result is same signature but with return type as // union type of return types from these signatures function getContextualSignature(node: FunctionExpression | MethodDeclaration): Signature { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); let type = isObjectLiteralMethod(node) ? getContextualTypeForObjectLiteralMethod(node) : getContextualType(node); if (!type) { return undefined; } if (!(type.flags & TypeFlags.Union)) { return getNonGenericSignature(type); } let signatureList: Signature[]; let types = (type).types; for (let current of types) { // The signature set of all constituent type with call signatures should match // So number of signatures allowed is either 0 or 1 if (signatureList && getSignaturesOfStructuredType(current, SignatureKind.Call).length > 1) { return undefined; } let signature = getNonGenericSignature(current); if (signature) { if (!signatureList) { // This signature will contribute to contextual union signature signatureList = [signature]; } else if (!compareSignatures(signatureList[0], signature, /*compareReturnTypes*/ false, compareTypes)) { // Signatures aren't identical, do not use return undefined; } else { // Use this signature for contextual union signature signatureList.push(signature); } } } // Result is union of signatures collected (return type is union of return types of this signature set) let result: Signature; if (signatureList) { result = cloneSignature(signatureList[0]); // Clear resolved return type we possibly got from cloneSignature result.resolvedReturnType = undefined; result.unionSignatures = signatureList; } return result; } // Presence of a contextual type mapper indicates inferential typing, except the identityMapper object is // used as a special marker for other purposes. function isInferentialContext(mapper: TypeMapper) { return mapper && mapper !== identityMapper; } // A node is an assignment target if it is on the left hand side of an '=' token, if it is parented by a property // assignment in an object literal that is an assignment target, or if it is parented by an array literal that is // an assignment target. Examples include 'a = xxx', '{ p: a } = xxx', '[{ p: a}] = xxx'. function isAssignmentTarget(node: Node): boolean { let parent = node.parent; if (parent.kind === SyntaxKind.BinaryExpression && (parent).operatorToken.kind === SyntaxKind.EqualsToken && (parent).left === node) { return true; } if (parent.kind === SyntaxKind.PropertyAssignment) { return isAssignmentTarget(parent.parent); } if (parent.kind === SyntaxKind.ArrayLiteralExpression) { return isAssignmentTarget(parent); } return false; } function checkSpreadElementExpression(node: SpreadElementExpression, contextualMapper?: TypeMapper): Type { // It is usually not safe to call checkExpressionCached if we can be contextually typing. // You can tell that we are contextually typing because of the contextualMapper parameter. // While it is true that a spread element can have a contextual type, it does not do anything // with this type. It is neither affected by it, nor does it propagate it to its operand. // So the fact that contextualMapper is passed is not important, because the operand of a spread // element is not contextually typed. let arrayOrIterableType = checkExpressionCached(node.expression, contextualMapper); return checkIteratedTypeOrElementType(arrayOrIterableType, node.expression, /*allowStringInput*/ false); } function checkArrayLiteral(node: ArrayLiteralExpression, contextualMapper?: TypeMapper): Type { let elements = node.elements; if (!elements.length) { return createArrayType(undefinedType); } let hasSpreadElement = false; let elementTypes: Type[] = []; let inDestructuringPattern = isAssignmentTarget(node); for (let e of elements) { if (inDestructuringPattern && e.kind === SyntaxKind.SpreadElementExpression) { // Given the following situation: // var c: {}; // [...c] = ["", 0]; // // c is represented in the tree as a spread element in an array literal. // But c really functions as a rest element, and its purpose is to provide // a contextual type for the right hand side of the assignment. Therefore, // instead of calling checkExpression on "...c", which will give an error // if c is not iterable/array-like, we need to act as if we are trying to // get the contextual element type from it. So we do something similar to // getContextualTypeForElementExpression, which will crucially not error // if there is no index type / iterated type. let restArrayType = checkExpression((e).expression, contextualMapper); let restElementType = getIndexTypeOfType(restArrayType, IndexKind.Number) || (languageVersion >= ScriptTarget.ES6 ? getElementTypeOfIterable(restArrayType, /*errorNode*/ undefined) : undefined); if (restElementType) { elementTypes.push(restElementType); } } else { let type = checkExpression(e, contextualMapper); elementTypes.push(type); } hasSpreadElement = hasSpreadElement || e.kind === SyntaxKind.SpreadElementExpression; } if (!hasSpreadElement) { let contextualType = getContextualType(node); if (contextualType && contextualTypeIsTupleLikeType(contextualType) || inDestructuringPattern) { return createTupleType(elementTypes); } } return createArrayType(getUnionType(elementTypes)); } function isNumericName(name: DeclarationName): boolean { return name.kind === SyntaxKind.ComputedPropertyName ? isNumericComputedName(name) : isNumericLiteralName((name).text); } function isNumericComputedName(name: ComputedPropertyName): boolean { // It seems odd to consider an expression of type Any to result in a numeric name, // but this behavior is consistent with checkIndexedAccess return isTypeAnyOrAllConstituentTypesHaveKind(checkComputedPropertyName(name), TypeFlags.NumberLike); } function isTypeAnyOrAllConstituentTypesHaveKind(type: Type, kind: TypeFlags): boolean { return isTypeAny(type) || allConstituentTypesHaveKind(type, kind); } function isNumericLiteralName(name: string) { // The intent of numeric names is that // - they are names with text in a numeric form, and that // - setting properties/indexing with them is always equivalent to doing so with the numeric literal 'numLit', // acquired by applying the abstract 'ToNumber' operation on the name's text. // // The subtlety is in the latter portion, as we cannot reliably say that anything that looks like a numeric literal is a numeric name. // In fact, it is the case that the text of the name must be equal to 'ToString(numLit)' for this to hold. // // Consider the property name '"0xF00D"'. When one indexes with '0xF00D', they are actually indexing with the value of 'ToString(0xF00D)' // according to the ECMAScript specification, so it is actually as if the user indexed with the string '"61453"'. // Thus, the text of all numeric literals equivalent to '61543' such as '0xF00D', '0xf00D', '0170015', etc. are not valid numeric names // because their 'ToString' representation is not equal to their original text. // This is motivated by ECMA-262 sections 9.3.1, 9.8.1, 11.1.5, and 11.2.1. // // Here, we test whether 'ToString(ToNumber(name))' is exactly equal to 'name'. // The '+' prefix operator is equivalent here to applying the abstract ToNumber operation. // Applying the 'toString()' method on a number gives us the abstract ToString operation on a number. // // Note that this accepts the values 'Infinity', '-Infinity', and 'NaN', and that this is intentional. // This is desired behavior, because when indexing with them as numeric entities, you are indexing // with the strings '"Infinity"', '"-Infinity"', and '"NaN"' respectively. return (+name).toString() === name; } function checkComputedPropertyName(node: ComputedPropertyName): Type { let links = getNodeLinks(node.expression); if (!links.resolvedType) { links.resolvedType = checkExpression(node.expression); // This will allow types number, string, symbol or any. It will also allow enums, the unknown // type, and any union of these types (like string | number). if (!isTypeAnyOrAllConstituentTypesHaveKind(links.resolvedType, TypeFlags.NumberLike | TypeFlags.StringLike | TypeFlags.ESSymbol)) { error(node, Diagnostics.A_computed_property_name_must_be_of_type_string_number_symbol_or_any); } else { checkThatExpressionIsProperSymbolReference(node.expression, links.resolvedType, /*reportError*/ true); } } return links.resolvedType; } function checkObjectLiteral(node: ObjectLiteralExpression, contextualMapper?: TypeMapper): Type { // Grammar checking checkGrammarObjectLiteralExpression(node); let propertiesTable: SymbolTable = {}; let propertiesArray: Symbol[] = []; let contextualType = getContextualType(node); let typeFlags: TypeFlags; for (let memberDecl of node.properties) { let member = memberDecl.symbol; if (memberDecl.kind === SyntaxKind.PropertyAssignment || memberDecl.kind === SyntaxKind.ShorthandPropertyAssignment || isObjectLiteralMethod(memberDecl)) { let type: Type; if (memberDecl.kind === SyntaxKind.PropertyAssignment) { type = checkPropertyAssignment(memberDecl, contextualMapper); } else if (memberDecl.kind === SyntaxKind.MethodDeclaration) { type = checkObjectLiteralMethod(memberDecl, contextualMapper); } else { Debug.assert(memberDecl.kind === SyntaxKind.ShorthandPropertyAssignment); type = checkExpression((memberDecl).name, contextualMapper); } typeFlags |= type.flags; let prop = createSymbol(SymbolFlags.Property | SymbolFlags.Transient | member.flags, member.name); prop.declarations = member.declarations; prop.parent = member.parent; if (member.valueDeclaration) { prop.valueDeclaration = member.valueDeclaration; } prop.type = type; prop.target = member; member = prop; } else { // TypeScript 1.0 spec (April 2014) // A get accessor declaration is processed in the same manner as // an ordinary function declaration(section 6.1) with no parameters. // A set accessor declaration is processed in the same manner // as an ordinary function declaration with a single parameter and a Void return type. Debug.assert(memberDecl.kind === SyntaxKind.GetAccessor || memberDecl.kind === SyntaxKind.SetAccessor); checkAccessorDeclaration(memberDecl); } if (!hasDynamicName(memberDecl)) { propertiesTable[member.name] = member; } propertiesArray.push(member); } let stringIndexType = getIndexType(IndexKind.String); let numberIndexType = getIndexType(IndexKind.Number); let result = createAnonymousType(node.symbol, propertiesTable, emptyArray, emptyArray, stringIndexType, numberIndexType); result.flags |= TypeFlags.ObjectLiteral | TypeFlags.ContainsObjectLiteral | (typeFlags & TypeFlags.ContainsUndefinedOrNull); return result; function getIndexType(kind: IndexKind) { if (contextualType && contextualTypeHasIndexSignature(contextualType, kind)) { let propTypes: Type[] = []; for (let i = 0; i < propertiesArray.length; i++) { let propertyDecl = node.properties[i]; if (kind === IndexKind.String || isNumericName(propertyDecl.name)) { // Do not call getSymbolOfNode(propertyDecl), as that will get the // original symbol for the node. We actually want to get the symbol // created by checkObjectLiteral, since that will be appropriately // contextually typed and resolved. let type = getTypeOfSymbol(propertiesArray[i]); if (!contains(propTypes, type)) { propTypes.push(type); } } } let result = propTypes.length ? getUnionType(propTypes) : undefinedType; typeFlags |= result.flags; return result; } return undefined; } } function checkJsxSelfClosingElement(node: JsxSelfClosingElement) { checkJsxOpeningLikeElement(node); return jsxElementType || anyType; } function tagNamesAreEquivalent(lhs: EntityName, rhs: EntityName): boolean { if (lhs.kind !== rhs.kind) { return false; } if (lhs.kind === SyntaxKind.Identifier) { return (lhs).text === (rhs).text; } return (lhs).right.text === (rhs).right.text && tagNamesAreEquivalent((lhs).left, (rhs).left); } function checkJsxElement(node: JsxElement) { // Check that the closing tag matches if (!tagNamesAreEquivalent(node.openingElement.tagName, node.closingElement.tagName)) { error(node.closingElement, Diagnostics.Expected_corresponding_JSX_closing_tag_for_0, getTextOfNode(node.openingElement.tagName)); } // Check attributes checkJsxOpeningLikeElement(node.openingElement); // Check children for (let child of node.children) { switch (child.kind) { case SyntaxKind.JsxExpression: checkJsxExpression(child); break; case SyntaxKind.JsxElement: checkJsxElement(child); break; case SyntaxKind.JsxSelfClosingElement: checkJsxSelfClosingElement(child); break; default: // No checks for JSX Text Debug.assert(child.kind === SyntaxKind.JsxText); } } return jsxElementType || anyType; } /** * Returns true iff the JSX element name would be a valid JS identifier, ignoring restrictions about keywords not being identifiers */ function isUnhyphenatedJsxName(name: string) { // - is the only character supported in JSX attribute names that isn't valid in JavaScript identifiers return name.indexOf("-") < 0; } /** * Returns true iff React would emit this tag name as a string rather than an identifier or qualified name */ function isJsxIntrinsicIdentifier(tagName: Identifier|QualifiedName) { if (tagName.kind === SyntaxKind.QualifiedName) { return false; } else { return isIntrinsicJsxName((tagName).text); } } function checkJsxAttribute(node: JsxAttribute, elementAttributesType: Type, nameTable: Map) { let correspondingPropType: Type = undefined; // Look up the corresponding property for this attribute if (elementAttributesType === emptyObjectType && isUnhyphenatedJsxName(node.name.text)) { // If there is no 'props' property, you may not have non-"data-" attributes error(node.parent, Diagnostics.JSX_element_class_does_not_support_attributes_because_it_does_not_have_a_0_property, getJsxElementPropertiesName()); } else if (elementAttributesType && !isTypeAny(elementAttributesType)) { let correspondingPropSymbol = getPropertyOfType(elementAttributesType, node.name.text); correspondingPropType = correspondingPropSymbol && getTypeOfSymbol(correspondingPropSymbol); // If there's no corresponding property with this name, error if (!correspondingPropType && isUnhyphenatedJsxName(node.name.text)) { error(node.name, Diagnostics.Property_0_does_not_exist_on_type_1, node.name.text, typeToString(elementAttributesType)); return unknownType; } } let exprType: Type; if (node.initializer) { exprType = checkExpression(node.initializer); } else { // is sugar for exprType = booleanType; } if (correspondingPropType) { checkTypeAssignableTo(exprType, correspondingPropType, node); } nameTable[node.name.text] = true; return exprType; } function checkJsxSpreadAttribute(node: JsxSpreadAttribute, elementAttributesType: Type, nameTable: Map) { let type = checkExpression(node.expression); let props = getPropertiesOfType(type); for (let prop of props) { // Is there a corresponding property in the element attributes type? Skip checking of properties // that have already been assigned to, as these are not actually pushed into the resulting type if (!nameTable[prop.name]) { let targetPropSym = getPropertyOfType(elementAttributesType, prop.name); if (targetPropSym) { let msg = chainDiagnosticMessages(undefined, Diagnostics.Property_0_of_JSX_spread_attribute_is_not_assignable_to_target_property, prop.name); checkTypeAssignableTo(getTypeOfSymbol(prop), getTypeOfSymbol(targetPropSym), node, undefined, msg); } nameTable[prop.name] = true; } } return type; } /// Returns the type JSX.IntrinsicElements. May return `unknownType` if that type is not present. function getJsxIntrinsicElementsType() { if (!jsxIntrinsicElementsType) { jsxIntrinsicElementsType = getExportedTypeFromNamespace(JsxNames.JSX, JsxNames.IntrinsicElements) || unknownType; } return jsxIntrinsicElementsType; } /// Given a JSX opening element or self-closing element, return the symbol of the property that the tag name points to if /// this is an intrinsic tag. This might be a named /// property of the IntrinsicElements interface, or its string indexer. /// If this is a class-based tag (otherwise returns undefined), returns the symbol of the class /// type or factory function. /// Otherwise, returns unknownSymbol. function getJsxElementTagSymbol(node: JsxOpeningLikeElement): Symbol { let flags: JsxFlags = JsxFlags.UnknownElement; let links = getNodeLinks(node); if (!links.resolvedSymbol) { if (isJsxIntrinsicIdentifier(node.tagName)) { links.resolvedSymbol = lookupIntrinsicTag(node); } else { links.resolvedSymbol = lookupClassTag(node); } } return links.resolvedSymbol; function lookupIntrinsicTag(node: JsxOpeningLikeElement): Symbol { let intrinsicElementsType = getJsxIntrinsicElementsType(); if (intrinsicElementsType !== unknownType) { // Property case let intrinsicProp = getPropertyOfType(intrinsicElementsType, (node.tagName).text); if (intrinsicProp) { links.jsxFlags |= JsxFlags.IntrinsicNamedElement; return intrinsicProp; } // Intrinsic string indexer case let indexSignatureType = getIndexTypeOfType(intrinsicElementsType, IndexKind.String); if (indexSignatureType) { links.jsxFlags |= JsxFlags.IntrinsicIndexedElement; return intrinsicElementsType.symbol; } // Wasn't found error(node, Diagnostics.Property_0_does_not_exist_on_type_1, (node.tagName).text, 'JSX.' + JsxNames.IntrinsicElements); return unknownSymbol; } else { if (compilerOptions.noImplicitAny) { error(node, Diagnostics.JSX_element_implicitly_has_type_any_because_no_interface_JSX_0_exists, JsxNames.IntrinsicElements); } } } function lookupClassTag(node: JsxOpeningLikeElement): Symbol { let valueSymbol: Symbol; // Look up the value in the current scope if (node.tagName.kind === SyntaxKind.Identifier) { valueSymbol = getResolvedSymbol(node.tagName); } else { valueSymbol = checkQualifiedName(node.tagName).symbol; } if (valueSymbol !== unknownSymbol) { links.jsxFlags |= JsxFlags.ClassElement; } return valueSymbol || unknownSymbol; } } /** * Given a JSX element that is a class element, finds the Element Instance Type. If the * element is not a class element, or the class element type cannot be determined, returns 'undefined'. * For example, in the element , the element instance type is `MyClass` (not `typeof MyClass`). */ function getJsxElementInstanceType(node: JsxOpeningLikeElement) { if (!(getNodeLinks(node).jsxFlags & JsxFlags.ClassElement)) { // There is no such thing as an instance type for a non-class element return undefined; } let classSymbol = getJsxElementTagSymbol(node); if (classSymbol === unknownSymbol) { // Couldn't find the class instance type. Error has already been issued return anyType; } let valueType = getTypeOfSymbol(classSymbol); if (isTypeAny(valueType)) { // Short-circuit if the class tag is using an element type 'any' return anyType; } // Resolve the signatures, preferring constructors let signatures = getSignaturesOfType(valueType, SignatureKind.Construct); if (signatures.length === 0) { // No construct signatures, try call signatures signatures = getSignaturesOfType(valueType, SignatureKind.Call); if (signatures.length === 0) { // We found no signatures at all, which is an error error(node.tagName, Diagnostics.JSX_element_type_0_does_not_have_any_construct_or_call_signatures, getTextOfNode(node.tagName)); return undefined; } } // Check that the constructor/factory returns an object type let returnType = getUnionType(signatures.map(s => getReturnTypeOfSignature(s))); if (!isTypeAny(returnType) && !(returnType.flags & TypeFlags.ObjectType)) { error(node.tagName, Diagnostics.The_return_type_of_a_JSX_element_constructor_must_return_an_object_type); return undefined; } // Issue an error if this return type isn't assignable to JSX.ElementClass let elemClassType = getJsxGlobalElementClassType(); if (elemClassType) { checkTypeRelatedTo(returnType, elemClassType, assignableRelation, node, Diagnostics.JSX_element_type_0_is_not_a_constructor_function_for_JSX_elements); } return returnType; } /// e.g. "props" for React.d.ts, /// or 'undefined' if ElementAttributesPropery doesn't exist (which means all /// non-intrinsic elements' attributes type is 'any'), /// or '' if it has 0 properties (which means every /// non-instrinsic elements' attributes type is the element instance type) function getJsxElementPropertiesName() { // JSX let jsxNamespace = getGlobalSymbol(JsxNames.JSX, SymbolFlags.Namespace, /*diagnosticMessage*/undefined); // JSX.ElementAttributesProperty [symbol] let attribsPropTypeSym = jsxNamespace && getSymbol(jsxNamespace.exports, JsxNames.ElementAttributesPropertyNameContainer, SymbolFlags.Type); // JSX.ElementAttributesProperty [type] let attribPropType = attribsPropTypeSym && getDeclaredTypeOfSymbol(attribsPropTypeSym); // The properites of JSX.ElementAttributesProperty let attribProperties = attribPropType && getPropertiesOfType(attribPropType); if (attribProperties) { // Element Attributes has zero properties, so the element attributes type will be the class instance type if (attribProperties.length === 0) { return ""; } // Element Attributes has one property, so the element attributes type will be the type of the corresponding // property of the class instance type else if (attribProperties.length === 1) { return attribProperties[0].name; } // More than one property on ElementAttributesProperty is an error else { error(attribsPropTypeSym.declarations[0], Diagnostics.The_global_type_JSX_0_may_not_have_more_than_one_property, JsxNames.ElementAttributesPropertyNameContainer); return undefined; } } else { // No interface exists, so the element attributes type will be an implicit any return undefined; } } /** * Given an opening/self-closing element, get the 'element attributes type', i.e. the type that tells * us which attributes are valid on a given element. */ function getJsxElementAttributesType(node: JsxOpeningLikeElement): Type { let links = getNodeLinks(node); if (!links.resolvedJsxType) { let sym = getJsxElementTagSymbol(node); if (links.jsxFlags & JsxFlags.ClassElement) { let elemInstanceType = getJsxElementInstanceType(node); if (isTypeAny(elemInstanceType)) { return links.resolvedJsxType = anyType; } let propsName = getJsxElementPropertiesName(); if (propsName === undefined) { // There is no type ElementAttributesProperty, return 'any' return links.resolvedJsxType = anyType; } else if (propsName === "") { // If there is no e.g. 'props' member in ElementAttributesProperty, use the element class type instead return links.resolvedJsxType = elemInstanceType; } else { let attributesType = getTypeOfPropertyOfType(elemInstanceType, propsName); if (!attributesType) { // There is no property named 'props' on this instance type return links.resolvedJsxType = emptyObjectType; } else if (isTypeAny(attributesType) || (attributesType === unknownType)) { return links.resolvedJsxType = attributesType; } else if (!(attributesType.flags & TypeFlags.ObjectType)) { error(node.tagName, Diagnostics.JSX_element_attributes_type_0_must_be_an_object_type, typeToString(attributesType)); return links.resolvedJsxType = anyType; } else { return links.resolvedJsxType = attributesType; } } } else if (links.jsxFlags & JsxFlags.IntrinsicNamedElement) { return links.resolvedJsxType = getTypeOfSymbol(sym); } else if (links.jsxFlags & JsxFlags.IntrinsicIndexedElement) { return links.resolvedJsxType = getIndexTypeOfSymbol(sym, IndexKind.String); } else { // Resolution failed, so we don't know return links.resolvedJsxType = anyType; } } return links.resolvedJsxType; } /** * Given a JSX attribute, returns the symbol for the corresponds property * of the element attributes type. Will return unknownSymbol for attributes * that have no matching element attributes type property. */ function getJsxAttributePropertySymbol(attrib: JsxAttribute): Symbol { let attributesType = getJsxElementAttributesType(attrib.parent); let prop = getPropertyOfType(attributesType, attrib.name.text); return prop || unknownSymbol; } let jsxElementClassType: Type = undefined; function getJsxGlobalElementClassType(): Type { if (!jsxElementClassType) { jsxElementClassType = getExportedTypeFromNamespace(JsxNames.JSX, JsxNames.ElementClass); } return jsxElementClassType; } /// Returns all the properties of the Jsx.IntrinsicElements interface function getJsxIntrinsicTagNames(): Symbol[] { let intrinsics = getJsxIntrinsicElementsType(); return intrinsics ? getPropertiesOfType(intrinsics) : emptyArray; } function checkJsxPreconditions(errorNode: Node) { // Preconditions for using JSX if ((compilerOptions.jsx || JsxEmit.None) === JsxEmit.None) { error(errorNode, Diagnostics.Cannot_use_JSX_unless_the_jsx_flag_is_provided); } if (jsxElementType === undefined) { if (compilerOptions.noImplicitAny) { error(errorNode, Diagnostics.JSX_element_implicitly_has_type_any_because_the_global_type_JSX_Element_does_not_exist); } } } function checkJsxOpeningLikeElement(node: JsxOpeningLikeElement) { checkGrammarJsxElement(node); checkJsxPreconditions(node); // If we're compiling under --jsx react, the symbol 'React' should // be marked as 'used' so we don't incorrectly elide its import. And if there // is no 'React' symbol in scope, we should issue an error. if (compilerOptions.jsx === JsxEmit.React) { let reactSym = resolveName(node.tagName, 'React', SymbolFlags.Value, Diagnostics.Cannot_find_name_0, 'React'); if (reactSym) { getSymbolLinks(reactSym).referenced = true; } } let targetAttributesType = getJsxElementAttributesType(node); if (getNodeLinks(node).jsxFlags & JsxFlags.ClassElement) { if (node.tagName.kind === SyntaxKind.Identifier) { checkIdentifier(node.tagName); } else { checkQualifiedName(node.tagName); } } let nameTable: Map = {}; // Process this array in right-to-left order so we know which // attributes (mostly from spreads) are being overwritten and // thus should have their types ignored let sawSpreadedAny = false; for (let i = node.attributes.length - 1; i >= 0; i--) { if (node.attributes[i].kind === SyntaxKind.JsxAttribute) { checkJsxAttribute((node.attributes[i]), targetAttributesType, nameTable); } else { Debug.assert(node.attributes[i].kind === SyntaxKind.JsxSpreadAttribute); let spreadType = checkJsxSpreadAttribute((node.attributes[i]), targetAttributesType, nameTable); if (isTypeAny(spreadType)) { sawSpreadedAny = true; } } } // Check that all required properties have been provided. If an 'any' // was spreaded in, though, assume that it provided all required properties if (targetAttributesType && !sawSpreadedAny) { let targetProperties = getPropertiesOfType(targetAttributesType); for (let i = 0; i < targetProperties.length; i++) { if (!(targetProperties[i].flags & SymbolFlags.Optional) && nameTable[targetProperties[i].name] === undefined) { error(node, Diagnostics.Property_0_is_missing_in_type_1, targetProperties[i].name, typeToString(targetAttributesType)); } } } } function checkJsxExpression(node: JsxExpression) { if (node.expression) { return checkExpression(node.expression); } else { return unknownType; } } // If a symbol is a synthesized symbol with no value declaration, we assume it is a property. Example of this are the synthesized // '.prototype' property as well as synthesized tuple index properties. function getDeclarationKindFromSymbol(s: Symbol) { return s.valueDeclaration ? s.valueDeclaration.kind : SyntaxKind.PropertyDeclaration; } function getDeclarationFlagsFromSymbol(s: Symbol): NodeFlags { return s.valueDeclaration ? getCombinedNodeFlags(s.valueDeclaration) : s.flags & SymbolFlags.Prototype ? NodeFlags.Public | NodeFlags.Static : 0; } /** * Check whether the requested property access is valid. * Returns true if node is a valid property access, and false otherwise. * @param node The node to be checked. * @param left The left hand side of the property access (e.g.: the super in `super.foo`). * @param type The type of left. * @param prop The symbol for the right hand side of the property access. */ function checkClassPropertyAccess(node: PropertyAccessExpression | QualifiedName, left: Expression | QualifiedName, type: Type, prop: Symbol): boolean { let flags = getDeclarationFlagsFromSymbol(prop); let declaringClass = getDeclaredTypeOfSymbol(prop.parent); if (left.kind === SyntaxKind.SuperKeyword) { let errorNode = node.kind === SyntaxKind.PropertyAccessExpression ? (node).name : (node).right; // TS 1.0 spec (April 2014): 4.8.2 // - In a constructor, instance member function, instance member accessor, or // instance member variable initializer where this references a derived class instance, // a super property access is permitted and must specify a public instance member function of the base class. // - In a static member function or static member accessor // where this references the constructor function object of a derived class, // a super property access is permitted and must specify a public static member function of the base class. if (getDeclarationKindFromSymbol(prop) !== SyntaxKind.MethodDeclaration) { // `prop` refers to a *property* declared in the super class // rather than a *method*, so it does not satisfy the above criteria. error(errorNode, Diagnostics.Only_public_and_protected_methods_of_the_base_class_are_accessible_via_the_super_keyword); return false; } if (flags & NodeFlags.Abstract) { // A method cannot be accessed in a super property access if the method is abstract. // This error could mask a private property access error. But, a member // cannot simultaneously be private and abstract, so this will trigger an // additional error elsewhere. error(errorNode, Diagnostics.Abstract_method_0_in_class_1_cannot_be_accessed_via_super_expression, symbolToString(prop), typeToString(declaringClass)); return false; } } // Public properties are otherwise accessible. if (!(flags & (NodeFlags.Private | NodeFlags.Protected))) { return true; } // Property is known to be private or protected at this point // Get the declaring and enclosing class instance types let enclosingClassDeclaration = getContainingClass(node); let enclosingClass = enclosingClassDeclaration ? getDeclaredTypeOfSymbol(getSymbolOfNode(enclosingClassDeclaration)) : undefined; // Private property is accessible if declaring and enclosing class are the same if (flags & NodeFlags.Private) { if (declaringClass !== enclosingClass) { error(node, Diagnostics.Property_0_is_private_and_only_accessible_within_class_1, symbolToString(prop), typeToString(declaringClass)); return false; } return true; } // Property is known to be protected at this point // All protected properties of a supertype are accessible in a super access if (left.kind === SyntaxKind.SuperKeyword) { return true; } // A protected property is accessible in the declaring class and classes derived from it if (!enclosingClass || !hasBaseType(enclosingClass, declaringClass)) { error(node, Diagnostics.Property_0_is_protected_and_only_accessible_within_class_1_and_its_subclasses, symbolToString(prop), typeToString(declaringClass)); return false; } // No further restrictions for static properties if (flags & NodeFlags.Static) { return true; } // An instance property must be accessed through an instance of the enclosing class // TODO: why is the first part of this check here? if (!(getTargetType(type).flags & (TypeFlags.Class | TypeFlags.Interface) && hasBaseType(type, enclosingClass))) { error(node, Diagnostics.Property_0_is_protected_and_only_accessible_through_an_instance_of_class_1, symbolToString(prop), typeToString(enclosingClass)); return false; } return true; } function checkPropertyAccessExpression(node: PropertyAccessExpression) { return checkPropertyAccessExpressionOrQualifiedName(node, node.expression, node.name); } function checkQualifiedName(node: QualifiedName) { return checkPropertyAccessExpressionOrQualifiedName(node, node.left, node.right); } function checkPropertyAccessExpressionOrQualifiedName(node: PropertyAccessExpression | QualifiedName, left: Expression | QualifiedName, right: Identifier) { let type = checkExpression(left); if (isTypeAny(type)) { return type; } let apparentType = getApparentType(getWidenedType(type)); if (apparentType === unknownType) { // handle cases when type is Type parameter with invalid constraint return unknownType; } let prop = getPropertyOfType(apparentType, right.text); if (!prop) { if (right.text) { error(right, Diagnostics.Property_0_does_not_exist_on_type_1, declarationNameToString(right), typeToString(type)); } return unknownType; } getNodeLinks(node).resolvedSymbol = prop; if (prop.parent && prop.parent.flags & SymbolFlags.Class) { checkClassPropertyAccess(node, left, type, prop); } return getTypeOfSymbol(prop); } function isValidPropertyAccess(node: PropertyAccessExpression | QualifiedName, propertyName: string): boolean { let left = node.kind === SyntaxKind.PropertyAccessExpression ? (node).expression : (node).left; let type = checkExpression(left); if (type !== unknownType && !isTypeAny(type)) { let prop = getPropertyOfType(getWidenedType(type), propertyName); if (prop && prop.parent && prop.parent.flags & SymbolFlags.Class) { return checkClassPropertyAccess(node, left, type, prop); } } return true; } function checkIndexedAccess(node: ElementAccessExpression): Type { // Grammar checking if (!node.argumentExpression) { let sourceFile = getSourceFile(node); if (node.parent.kind === SyntaxKind.NewExpression && (node.parent).expression === node) { let start = skipTrivia(sourceFile.text, node.expression.end); let end = node.end; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.new_T_cannot_be_used_to_create_an_array_Use_new_Array_T_instead); } else { let start = node.end - "]".length; let end = node.end; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.Expression_expected); } } // Obtain base constraint such that we can bail out if the constraint is an unknown type let objectType = getApparentType(checkExpression(node.expression)); let indexType = node.argumentExpression ? checkExpression(node.argumentExpression) : unknownType; if (objectType === unknownType) { return unknownType; } let isConstEnum = isConstEnumObjectType(objectType); if (isConstEnum && (!node.argumentExpression || node.argumentExpression.kind !== SyntaxKind.StringLiteral)) { error(node.argumentExpression, Diagnostics.A_const_enum_member_can_only_be_accessed_using_a_string_literal); return unknownType; } // TypeScript 1.0 spec (April 2014): 4.10 Property Access // - If IndexExpr is a string literal or a numeric literal and ObjExpr's apparent type has a property with the name // given by that literal(converted to its string representation in the case of a numeric literal), the property access is of the type of that property. // - Otherwise, if ObjExpr's apparent type has a numeric index signature and IndexExpr is of type Any, the Number primitive type, or an enum type, // the property access is of the type of that index signature. // - Otherwise, if ObjExpr's apparent type has a string index signature and IndexExpr is of type Any, the String or Number primitive type, or an enum type, // the property access is of the type of that index signature. // - Otherwise, if IndexExpr is of type Any, the String or Number primitive type, or an enum type, the property access is of type Any. // See if we can index as a property. if (node.argumentExpression) { let name = getPropertyNameForIndexedAccess(node.argumentExpression, indexType); if (name !== undefined) { let prop = getPropertyOfType(objectType, name); if (prop) { getNodeLinks(node).resolvedSymbol = prop; return getTypeOfSymbol(prop); } else if (isConstEnum) { error(node.argumentExpression, Diagnostics.Property_0_does_not_exist_on_const_enum_1, name, symbolToString(objectType.symbol)); return unknownType; } } } // Check for compatible indexer types. if (isTypeAnyOrAllConstituentTypesHaveKind(indexType, TypeFlags.StringLike | TypeFlags.NumberLike | TypeFlags.ESSymbol)) { // Try to use a number indexer. if (isTypeAnyOrAllConstituentTypesHaveKind(indexType, TypeFlags.NumberLike)) { let numberIndexType = getIndexTypeOfType(objectType, IndexKind.Number); if (numberIndexType) { return numberIndexType; } } // Try to use string indexing. let stringIndexType = getIndexTypeOfType(objectType, IndexKind.String); if (stringIndexType) { return stringIndexType; } // Fall back to any. if (compilerOptions.noImplicitAny && !compilerOptions.suppressImplicitAnyIndexErrors && !isTypeAny(objectType)) { error(node, Diagnostics.Index_signature_of_object_type_implicitly_has_an_any_type); } return anyType; } // REVIEW: Users should know the type that was actually used. error(node, Diagnostics.An_index_expression_argument_must_be_of_type_string_number_symbol_or_any); return unknownType; } /** * If indexArgumentExpression is a string literal or number literal, returns its text. * If indexArgumentExpression is a well known symbol, returns the property name corresponding * to this symbol, as long as it is a proper symbol reference. * Otherwise, returns undefined. */ function getPropertyNameForIndexedAccess(indexArgumentExpression: Expression, indexArgumentType: Type): string { if (indexArgumentExpression.kind === SyntaxKind.StringLiteral || indexArgumentExpression.kind === SyntaxKind.NumericLiteral) { return (indexArgumentExpression).text; } if (checkThatExpressionIsProperSymbolReference(indexArgumentExpression, indexArgumentType, /*reportError*/ false)) { let rightHandSideName = ((indexArgumentExpression).name).text; return getPropertyNameForKnownSymbolName(rightHandSideName); } return undefined; } /** * A proper symbol reference requires the following: * 1. The property access denotes a property that exists * 2. The expression is of the form Symbol. * 3. The property access is of the primitive type symbol. * 4. Symbol in this context resolves to the global Symbol object */ function checkThatExpressionIsProperSymbolReference(expression: Expression, expressionType: Type, reportError: boolean): boolean { if (expressionType === unknownType) { // There is already an error, so no need to report one. return false; } if (!isWellKnownSymbolSyntactically(expression)) { return false; } // Make sure the property type is the primitive symbol type if ((expressionType.flags & TypeFlags.ESSymbol) === 0) { if (reportError) { error(expression, Diagnostics.A_computed_property_name_of_the_form_0_must_be_of_type_symbol, getTextOfNode(expression)); } return false; } // The name is Symbol., so make sure Symbol actually resolves to the // global Symbol object let leftHandSide = (expression).expression; let leftHandSideSymbol = getResolvedSymbol(leftHandSide); if (!leftHandSideSymbol) { return false; } let globalESSymbol = getGlobalESSymbolConstructorSymbol(); if (!globalESSymbol) { // Already errored when we tried to look up the symbol return false; } if (leftHandSideSymbol !== globalESSymbol) { if (reportError) { error(leftHandSide, Diagnostics.Symbol_reference_does_not_refer_to_the_global_Symbol_constructor_object); } return false; } return true; } function resolveUntypedCall(node: CallLikeExpression): Signature { if (node.kind === SyntaxKind.TaggedTemplateExpression) { checkExpression((node).template); } else if (node.kind !== SyntaxKind.Decorator) { forEach((node).arguments, argument => { checkExpression(argument); }); } return anySignature; } function resolveErrorCall(node: CallLikeExpression): Signature { resolveUntypedCall(node); return unknownSignature; } // Re-order candidate signatures into the result array. Assumes the result array to be empty. // The candidate list orders groups in reverse, but within a group signatures are kept in declaration order // A nit here is that we reorder only signatures that belong to the same symbol, // so order how inherited signatures are processed is still preserved. // interface A { (x: string): void } // interface B extends A { (x: 'foo'): string } // let b: B; // b('foo') // <- here overloads should be processed as [(x:'foo'): string, (x: string): void] function reorderCandidates(signatures: Signature[], result: Signature[]): void { let lastParent: Node; let lastSymbol: Symbol; let cutoffIndex: number = 0; let index: number; let specializedIndex: number = -1; let spliceIndex: number; Debug.assert(!result.length); for (let signature of signatures) { let symbol = signature.declaration && getSymbolOfNode(signature.declaration); let parent = signature.declaration && signature.declaration.parent; if (!lastSymbol || symbol === lastSymbol) { if (lastParent && parent === lastParent) { index++; } else { lastParent = parent; index = cutoffIndex; } } else { // current declaration belongs to a different symbol // set cutoffIndex so re-orderings in the future won't change result set from 0 to cutoffIndex index = cutoffIndex = result.length; lastParent = parent; } lastSymbol = symbol; // specialized signatures always need to be placed before non-specialized signatures regardless // of the cutoff position; see GH#1133 if (signature.hasStringLiterals) { specializedIndex++; spliceIndex = specializedIndex; // The cutoff index always needs to be greater than or equal to the specialized signature index // in order to prevent non-specialized signatures from being added before a specialized // signature. cutoffIndex++; } else { spliceIndex = index; } result.splice(spliceIndex, 0, signature); } } function getSpreadArgumentIndex(args: Expression[]): number { for (let i = 0; i < args.length; i++) { let arg = args[i]; if (arg && arg.kind === SyntaxKind.SpreadElementExpression) { return i; } } return -1; } function hasCorrectArity(node: CallLikeExpression, args: Expression[], signature: Signature) { let adjustedArgCount: number; // Apparent number of arguments we will have in this call let typeArguments: NodeArray; // Type arguments (undefined if none) let callIsIncomplete: boolean; // In incomplete call we want to be lenient when we have too few arguments let isDecorator: boolean; let spreadArgIndex = -1; if (node.kind === SyntaxKind.TaggedTemplateExpression) { let tagExpression = node; // Even if the call is incomplete, we'll have a missing expression as our last argument, // so we can say the count is just the arg list length adjustedArgCount = args.length; typeArguments = undefined; if (tagExpression.template.kind === SyntaxKind.TemplateExpression) { // If a tagged template expression lacks a tail literal, the call is incomplete. // Specifically, a template only can end in a TemplateTail or a Missing literal. let templateExpression = tagExpression.template; let lastSpan = lastOrUndefined(templateExpression.templateSpans); Debug.assert(lastSpan !== undefined); // we should always have at least one span. callIsIncomplete = nodeIsMissing(lastSpan.literal) || !!lastSpan.literal.isUnterminated; } else { // If the template didn't end in a backtick, or its beginning occurred right prior to EOF, // then this might actually turn out to be a TemplateHead in the future; // so we consider the call to be incomplete. let templateLiteral = tagExpression.template; Debug.assert(templateLiteral.kind === SyntaxKind.NoSubstitutionTemplateLiteral); callIsIncomplete = !!templateLiteral.isUnterminated; } } else if (node.kind === SyntaxKind.Decorator) { isDecorator = true; typeArguments = undefined; adjustedArgCount = getEffectiveArgumentCount(node, /*args*/ undefined, signature); } else { let callExpression = node; if (!callExpression.arguments) { // This only happens when we have something of the form: 'new C' Debug.assert(callExpression.kind === SyntaxKind.NewExpression); return signature.minArgumentCount === 0; } // For IDE scenarios we may have an incomplete call, so a trailing comma is tantamount to adding another argument. adjustedArgCount = callExpression.arguments.hasTrailingComma ? args.length + 1 : args.length; // If we are missing the close paren, the call is incomplete. callIsIncomplete = (callExpression).arguments.end === callExpression.end; typeArguments = callExpression.typeArguments; spreadArgIndex = getSpreadArgumentIndex(args); } // If the user supplied type arguments, but the number of type arguments does not match // the declared number of type parameters, the call has an incorrect arity. let hasRightNumberOfTypeArgs = !typeArguments || (signature.typeParameters && typeArguments.length === signature.typeParameters.length); if (!hasRightNumberOfTypeArgs) { return false; } // If spread arguments are present, check that they correspond to a rest parameter. If so, no // further checking is necessary. if (spreadArgIndex >= 0) { return signature.hasRestParameter && spreadArgIndex >= signature.parameters.length - 1; } // Too many arguments implies incorrect arity. if (!signature.hasRestParameter && adjustedArgCount > signature.parameters.length) { return false; } // If the call is incomplete, we should skip the lower bound check. let hasEnoughArguments = adjustedArgCount >= signature.minArgumentCount; return callIsIncomplete || hasEnoughArguments; } // If type has a single call signature and no other members, return that signature. Otherwise, return undefined. function getSingleCallSignature(type: Type): Signature { if (type.flags & TypeFlags.ObjectType) { let resolved = resolveStructuredTypeMembers(type); if (resolved.callSignatures.length === 1 && resolved.constructSignatures.length === 0 && resolved.properties.length === 0 && !resolved.stringIndexType && !resolved.numberIndexType) { return resolved.callSignatures[0]; } } return undefined; } // Instantiate a generic signature in the context of a non-generic signature (section 3.8.5 in TypeScript spec) function instantiateSignatureInContextOf(signature: Signature, contextualSignature: Signature, contextualMapper: TypeMapper): Signature { let context = createInferenceContext(signature.typeParameters, /*inferUnionTypes*/ true); forEachMatchingParameterType(contextualSignature, signature, (source, target) => { // Type parameters from outer context referenced by source type are fixed by instantiation of the source type inferTypes(context, instantiateType(source, contextualMapper), target); }); return getSignatureInstantiation(signature, getInferredTypes(context)); } function inferTypeArguments(node: CallLikeExpression, signature: Signature, args: Expression[], excludeArgument: boolean[], context: InferenceContext): void { let typeParameters = signature.typeParameters; let inferenceMapper = createInferenceMapper(context); // Clear out all the inference results from the last time inferTypeArguments was called on this context for (let i = 0; i < typeParameters.length; i++) { // As an optimization, we don't have to clear (and later recompute) inferred types // for type parameters that have already been fixed on the previous call to inferTypeArguments. // It would be just as correct to reset all of them. But then we'd be repeating the same work // for the type parameters that were fixed, namely the work done by getInferredType. if (!context.inferences[i].isFixed) { context.inferredTypes[i] = undefined; } } // On this call to inferTypeArguments, we may get more inferences for certain type parameters that were not // fixed last time. This means that a type parameter that failed inference last time may succeed this time, // or vice versa. Therefore, the failedTypeParameterIndex is useless if it points to an unfixed type parameter, // because it may change. So here we reset it. However, getInferredType will not revisit any type parameters // that were previously fixed. So if a fixed type parameter failed previously, it will fail again because // it will contain the exact same set of inferences. So if we reset the index from a fixed type parameter, // we will lose information that we won't recover this time around. if (context.failedTypeParameterIndex !== undefined && !context.inferences[context.failedTypeParameterIndex].isFixed) { context.failedTypeParameterIndex = undefined; } // We perform two passes over the arguments. In the first pass we infer from all arguments, but use // wildcards for all context sensitive function expressions. let argCount = getEffectiveArgumentCount(node, args, signature); for (let i = 0; i < argCount; i++) { let arg = getEffectiveArgument(node, args, i); // If the effective argument is 'undefined', then it is an argument that is present but is synthetic. if (arg === undefined || arg.kind !== SyntaxKind.OmittedExpression) { let paramType = getTypeAtPosition(signature, i); let argType = getEffectiveArgumentType(node, i, arg); // If the effective argument type is 'undefined', there is no synthetic type // for the argument. In that case, we should check the argument. if (argType === undefined) { // For context sensitive arguments we pass the identityMapper, which is a signal to treat all // context sensitive function expressions as wildcards let mapper = excludeArgument && excludeArgument[i] !== undefined ? identityMapper : inferenceMapper; argType = checkExpressionWithContextualType(arg, paramType, mapper); } inferTypes(context, argType, paramType); } } // In the second pass we visit only context sensitive arguments, and only those that aren't excluded, this // time treating function expressions normally (which may cause previously inferred type arguments to be fixed // as we construct types for contextually typed parameters) // Decorators will not have `excludeArgument`, as their arguments cannot be contextually typed. // Tagged template expressions will always have `undefined` for `excludeArgument[0]`. if (excludeArgument) { for (let i = 0; i < argCount; i++) { // No need to check for omitted args and template expressions, their exlusion value is always undefined if (excludeArgument[i] === false) { let arg = args[i]; let paramType = getTypeAtPosition(signature, i); inferTypes(context, checkExpressionWithContextualType(arg, paramType, inferenceMapper), paramType); } } } getInferredTypes(context); } function checkTypeArguments(signature: Signature, typeArguments: TypeNode[], typeArgumentResultTypes: Type[], reportErrors: boolean, headMessage?: DiagnosticMessage): boolean { let typeParameters = signature.typeParameters; let typeArgumentsAreAssignable = true; for (let i = 0; i < typeParameters.length; i++) { let typeArgNode = typeArguments[i]; let typeArgument = getTypeFromTypeNode(typeArgNode); // Do not push on this array! It has a preallocated length typeArgumentResultTypes[i] = typeArgument; if (typeArgumentsAreAssignable /* so far */) { let constraint = getConstraintOfTypeParameter(typeParameters[i]); if (constraint) { let errorInfo: DiagnosticMessageChain; let typeArgumentHeadMessage = Diagnostics.Type_0_does_not_satisfy_the_constraint_1; if (reportErrors && headMessage) { errorInfo = chainDiagnosticMessages(errorInfo, typeArgumentHeadMessage); typeArgumentHeadMessage = headMessage; } typeArgumentsAreAssignable = checkTypeAssignableTo( typeArgument, constraint, reportErrors ? typeArgNode : undefined, typeArgumentHeadMessage, errorInfo); } } } return typeArgumentsAreAssignable; } function checkApplicableSignature(node: CallLikeExpression, args: Expression[], signature: Signature, relation: Map, excludeArgument: boolean[], reportErrors: boolean) { let argCount = getEffectiveArgumentCount(node, args, signature); for (let i = 0; i < argCount; i++) { let arg = getEffectiveArgument(node, args, i); // If the effective argument is 'undefined', then it is an argument that is present but is synthetic. if (arg === undefined || arg.kind !== SyntaxKind.OmittedExpression) { // Check spread elements against rest type (from arity check we know spread argument corresponds to a rest parameter) let paramType = getTypeAtPosition(signature, i); let argType = getEffectiveArgumentType(node, i, arg); // If the effective argument type is 'undefined', there is no synthetic type // for the argument. In that case, we should check the argument. if (argType === undefined) { argType = arg.kind === SyntaxKind.StringLiteral && !reportErrors ? getStringLiteralType(arg) : checkExpressionWithContextualType(arg, paramType, excludeArgument && excludeArgument[i] ? identityMapper : undefined); } // Use argument expression as error location when reporting errors let errorNode = reportErrors ? getEffectiveArgumentErrorNode(node, i, arg) : undefined; let headMessage = Diagnostics.Argument_of_type_0_is_not_assignable_to_parameter_of_type_1; if (!checkTypeRelatedTo(argType, paramType, relation, errorNode, headMessage)) { return false; } } } return true; } /** * Returns the effective arguments for an expression that works like a function invocation. * * If 'node' is a CallExpression or a NewExpression, then its argument list is returned. * If 'node' is a TaggedTemplateExpression, a new argument list is constructed from the substitution * expressions, where the first element of the list is `undefined`. * If 'node' is a Decorator, the argument list will be `undefined`, and its arguments and types * will be supplied from calls to `getEffectiveArgumentCount` and `getEffectiveArgumentType`. */ function getEffectiveCallArguments(node: CallLikeExpression): Expression[] { let args: Expression[]; if (node.kind === SyntaxKind.TaggedTemplateExpression) { let template = (node).template; args = [undefined]; if (template.kind === SyntaxKind.TemplateExpression) { forEach((template).templateSpans, span => { args.push(span.expression); }); } } else if (node.kind === SyntaxKind.Decorator) { // For a decorator, we return undefined as we will determine // the number and types of arguments for a decorator using // `getEffectiveArgumentCount` and `getEffectiveArgumentType` below. return undefined; } else { args = (node).arguments || emptyArray; } return args; } /** * Returns the effective argument count for a node that works like a function invocation. * If 'node' is a Decorator, the number of arguments is derived from the decoration * target and the signature: * If 'node.target' is a class declaration or class expression, the effective argument * count is 1. * If 'node.target' is a parameter declaration, the effective argument count is 3. * If 'node.target' is a property declaration, the effective argument count is 2. * If 'node.target' is a method or accessor declaration, the effective argument count * is 3, although it can be 2 if the signature only accepts two arguments, allowing * us to match a property decorator. * Otherwise, the argument count is the length of the 'args' array. */ function getEffectiveArgumentCount(node: CallLikeExpression, args: Expression[], signature: Signature) { if (node.kind === SyntaxKind.Decorator) { switch (node.parent.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: // A class decorator will have one argument (see `ClassDecorator` in core.d.ts) return 1; case SyntaxKind.PropertyDeclaration: // A property declaration decorator will have two arguments (see // `PropertyDecorator` in core.d.ts) return 2; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: // A method or accessor declaration decorator will have two or three arguments (see // `PropertyDecorator` and `MethodDecorator` in core.d.ts) // If the method decorator signature only accepts a target and a key, we will only // type check those arguments. return signature.parameters.length >= 3 ? 3 : 2; case SyntaxKind.Parameter: // A parameter declaration decorator will have three arguments (see // `ParameterDecorator` in core.d.ts) return 3; } } else { return args.length; } } /** * Returns the effective type of the first argument to a decorator. * If 'node' is a class declaration or class expression, the effective argument type * is the type of the static side of the class. * If 'node' is a parameter declaration, the effective argument type is either the type * of the static or instance side of the class for the parameter's parent method, * depending on whether the method is declared static. * For a constructor, the type is always the type of the static side of the class. * If 'node' is a property, method, or accessor declaration, the effective argument * type is the type of the static or instance side of the parent class for class * element, depending on whether the element is declared static. */ function getEffectiveDecoratorFirstArgumentType(node: Node): Type { // The first argument to a decorator is its `target`. switch (node.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: // For a class decorator, the `target` is the type of the class (e.g. the // "static" or "constructor" side of the class) let classSymbol = getSymbolOfNode(node); return getTypeOfSymbol(classSymbol); case SyntaxKind.Parameter: // For a parameter decorator, the `target` is the parent type of the // parameter's containing method. node = node.parent; if (node.kind === SyntaxKind.Constructor) { let classSymbol = getSymbolOfNode(node); return getTypeOfSymbol(classSymbol); } // fall-through case SyntaxKind.PropertyDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: // For a property or method decorator, the `target` is the // "static"-side type of the parent of the member if the member is // declared "static"; otherwise, it is the "instance"-side type of the // parent of the member. return getParentTypeOfClassElement(node); default: Debug.fail("Unsupported decorator target."); return unknownType; } } /** * Returns the effective type for the second argument to a decorator. * If 'node' is a parameter, its effective argument type is one of the following: * If 'node.parent' is a constructor, the effective argument type is 'any', as we * will emit `undefined`. * If 'node.parent' is a member with an identifier, numeric, or string literal name, * the effective argument type will be a string literal type for the member name. * If 'node.parent' is a computed property name, the effective argument type will * either be a symbol type or the string type. * If 'node' is a member with an identifier, numeric, or string literal name, the * effective argument type will be a string literal type for the member name. * If 'node' is a computed property name, the effective argument type will either * be a symbol type or the string type. * A class decorator does not have a second argument type. */ function getEffectiveDecoratorSecondArgumentType(node: Node) { // The second argument to a decorator is its `propertyKey` switch (node.kind) { case SyntaxKind.ClassDeclaration: Debug.fail("Class decorators should not have a second synthetic argument."); return unknownType; case SyntaxKind.Parameter: node = node.parent; if (node.kind === SyntaxKind.Constructor) { // For a constructor parameter decorator, the `propertyKey` will be `undefined`. return anyType; } // For a non-constructor parameter decorator, the `propertyKey` will be either // a string or a symbol, based on the name of the parameter's containing method. // fall-through case SyntaxKind.PropertyDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: // The `propertyKey` for a property or method decorator will be a // string literal type if the member name is an identifier, number, or string; // otherwise, if the member name is a computed property name it will // be either string or symbol. let element = node; switch (element.name.kind) { case SyntaxKind.Identifier: case SyntaxKind.NumericLiteral: case SyntaxKind.StringLiteral: return getStringLiteralType(element.name); case SyntaxKind.ComputedPropertyName: let nameType = checkComputedPropertyName(element.name); if (allConstituentTypesHaveKind(nameType, TypeFlags.ESSymbol)) { return nameType; } else { return stringType; } default: Debug.fail("Unsupported property name."); return unknownType; } default: Debug.fail("Unsupported decorator target."); return unknownType; } } /** * Returns the effective argument type for the third argument to a decorator. * If 'node' is a parameter, the effective argument type is the number type. * If 'node' is a method or accessor, the effective argument type is a * `TypedPropertyDescriptor` instantiated with the type of the member. * Class and property decorators do not have a third effective argument. */ function getEffectiveDecoratorThirdArgumentType(node: Node) { // The third argument to a decorator is either its `descriptor` for a method decorator // or its `parameterIndex` for a paramter decorator switch (node.kind) { case SyntaxKind.ClassDeclaration: Debug.fail("Class decorators should not have a third synthetic argument."); return unknownType; case SyntaxKind.Parameter: // The `parameterIndex` for a parameter decorator is always a number return numberType; case SyntaxKind.PropertyDeclaration: Debug.fail("Property decorators should not have a third synthetic argument."); return unknownType; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: // The `descriptor` for a method decorator will be a `TypedPropertyDescriptor` // for the type of the member. let propertyType = getTypeOfNode(node); return createTypedPropertyDescriptorType(propertyType); default: Debug.fail("Unsupported decorator target."); return unknownType; } } /** * Returns the effective argument type for the provided argument to a decorator. */ function getEffectiveDecoratorArgumentType(node: Decorator, argIndex: number): Type { if (argIndex === 0) { return getEffectiveDecoratorFirstArgumentType(node.parent); } else if (argIndex === 1) { return getEffectiveDecoratorSecondArgumentType(node.parent); } else if (argIndex === 2) { return getEffectiveDecoratorThirdArgumentType(node.parent); } Debug.fail("Decorators should not have a fourth synthetic argument."); return unknownType; } /** * Gets the effective argument type for an argument in a call expression. */ function getEffectiveArgumentType(node: CallLikeExpression, argIndex: number, arg: Expression): Type { // Decorators provide special arguments, a tagged template expression provides // a special first argument, and string literals get string literal types // unless we're reporting errors if (node.kind === SyntaxKind.Decorator) { return getEffectiveDecoratorArgumentType(node, argIndex); } else if (argIndex === 0 && node.kind === SyntaxKind.TaggedTemplateExpression) { return globalTemplateStringsArrayType; } // This is not a synthetic argument, so we return 'undefined' // to signal that the caller needs to check the argument. return undefined; } /** * Gets the effective argument expression for an argument in a call expression. */ function getEffectiveArgument(node: CallLikeExpression, args: Expression[], argIndex: number) { // For a decorator or the first argument of a tagged template expression we return undefined. if (node.kind === SyntaxKind.Decorator || (argIndex === 0 && node.kind === SyntaxKind.TaggedTemplateExpression)) { return undefined; } return args[argIndex]; } /** * Gets the error node to use when reporting errors for an effective argument. */ function getEffectiveArgumentErrorNode(node: CallLikeExpression, argIndex: number, arg: Expression) { if (node.kind === SyntaxKind.Decorator) { // For a decorator, we use the expression of the decorator for error reporting. return (node).expression; } else if (argIndex === 0 && node.kind === SyntaxKind.TaggedTemplateExpression) { // For a the first argument of a tagged template expression, we use the template of the tag for error reporting. return (node).template; } else { return arg; } } function resolveCall(node: CallLikeExpression, signatures: Signature[], candidatesOutArray: Signature[], headMessage?: DiagnosticMessage): Signature { let isTaggedTemplate = node.kind === SyntaxKind.TaggedTemplateExpression; let isDecorator = node.kind === SyntaxKind.Decorator; let typeArguments: TypeNode[]; if (!isTaggedTemplate && !isDecorator) { typeArguments = (node).typeArguments; // We already perform checking on the type arguments on the class declaration itself. if ((node).expression.kind !== SyntaxKind.SuperKeyword) { forEach(typeArguments, checkSourceElement); } } let candidates = candidatesOutArray || []; // reorderCandidates fills up the candidates array directly reorderCandidates(signatures, candidates); if (!candidates.length) { reportError(Diagnostics.Supplied_parameters_do_not_match_any_signature_of_call_target); return resolveErrorCall(node); } let args = getEffectiveCallArguments(node); // The following applies to any value of 'excludeArgument[i]': // - true: the argument at 'i' is susceptible to a one-time permanent contextual typing. // - undefined: the argument at 'i' is *not* susceptible to permanent contextual typing. // - false: the argument at 'i' *was* and *has been* permanently contextually typed. // // The idea is that we will perform type argument inference & assignability checking once // without using the susceptible parameters that are functions, and once more for each of those // parameters, contextually typing each as we go along. // // For a tagged template, then the first argument be 'undefined' if necessary // because it represents a TemplateStringsArray. // // For a decorator, no arguments are susceptible to contextual typing due to the fact // decorators are applied to a declaration by the emitter, and not to an expression. let excludeArgument: boolean[]; if (!isDecorator) { // We do not need to call `getEffectiveArgumentCount` here as it only // applies when calculating the number of arguments for a decorator. for (let i = isTaggedTemplate ? 1 : 0; i < args.length; i++) { if (isContextSensitive(args[i])) { if (!excludeArgument) { excludeArgument = new Array(args.length); } excludeArgument[i] = true; } } } // The following variables are captured and modified by calls to chooseOverload. // If overload resolution or type argument inference fails, we want to report the // best error possible. The best error is one which says that an argument was not // assignable to a parameter. This implies that everything else about the overload // was fine. So if there is any overload that is only incorrect because of an // argument, we will report an error on that one. // // function foo(s: string) {} // function foo(n: number) {} // Report argument error on this overload // function foo() {} // foo(true); // // If none of the overloads even made it that far, there are two possibilities. // There was a problem with type arguments for some overload, in which case // report an error on that. Or none of the overloads even had correct arity, // in which case give an arity error. // // function foo(x: T, y: T) {} // Report type argument inference error // function foo() {} // foo(0, true); // let candidateForArgumentError: Signature; let candidateForTypeArgumentError: Signature; let resultOfFailedInference: InferenceContext; let result: Signature; // Section 4.12.1: // if the candidate list contains one or more signatures for which the type of each argument // expression is a subtype of each corresponding parameter type, the return type of the first // of those signatures becomes the return type of the function call. // Otherwise, the return type of the first signature in the candidate list becomes the return // type of the function call. // // Whether the call is an error is determined by assignability of the arguments. The subtype pass // is just important for choosing the best signature. So in the case where there is only one // signature, the subtype pass is useless. So skipping it is an optimization. if (candidates.length > 1) { result = chooseOverload(candidates, subtypeRelation); } if (!result) { // Reinitialize these pointers for round two candidateForArgumentError = undefined; candidateForTypeArgumentError = undefined; resultOfFailedInference = undefined; result = chooseOverload(candidates, assignableRelation); } if (result) { return result; } // No signatures were applicable. Now report errors based on the last applicable signature with // no arguments excluded from assignability checks. // If candidate is undefined, it means that no candidates had a suitable arity. In that case, // skip the checkApplicableSignature check. if (candidateForArgumentError) { // excludeArgument is undefined, in this case also equivalent to [undefined, undefined, ...] // The importance of excludeArgument is to prevent us from typing function expression parameters // in arguments too early. If possible, we'd like to only type them once we know the correct // overload. However, this matters for the case where the call is correct. When the call is // an error, we don't need to exclude any arguments, although it would cause no harm to do so. checkApplicableSignature(node, args, candidateForArgumentError, assignableRelation, /*excludeArgument*/ undefined, /*reportErrors*/ true); } else if (candidateForTypeArgumentError) { if (!isTaggedTemplate && !isDecorator && typeArguments) { checkTypeArguments(candidateForTypeArgumentError, (node).typeArguments, [], /*reportErrors*/ true, headMessage); } else { Debug.assert(resultOfFailedInference.failedTypeParameterIndex >= 0); let failedTypeParameter = candidateForTypeArgumentError.typeParameters[resultOfFailedInference.failedTypeParameterIndex]; let inferenceCandidates = getInferenceCandidates(resultOfFailedInference, resultOfFailedInference.failedTypeParameterIndex); let diagnosticChainHead = chainDiagnosticMessages(/*details*/ undefined, // details will be provided by call to reportNoCommonSupertypeError Diagnostics.The_type_argument_for_type_parameter_0_cannot_be_inferred_from_the_usage_Consider_specifying_the_type_arguments_explicitly, typeToString(failedTypeParameter)); if (headMessage) { diagnosticChainHead = chainDiagnosticMessages(diagnosticChainHead, headMessage); } reportNoCommonSupertypeError(inferenceCandidates, (node).expression || (node).tag, diagnosticChainHead); } } else { reportError(Diagnostics.Supplied_parameters_do_not_match_any_signature_of_call_target); } // No signature was applicable. We have already reported the errors for the invalid signature. // If this is a type resolution session, e.g. Language Service, try to get better information that anySignature. // Pick the first candidate that matches the arity. This way we can get a contextual type for cases like: // declare function f(a: { xa: number; xb: number; }); // f({ | if (!produceDiagnostics) { for (let candidate of candidates) { if (hasCorrectArity(node, args, candidate)) { return candidate; } } } return resolveErrorCall(node); function reportError(message: DiagnosticMessage, arg0?: string, arg1?: string, arg2?: string): void { let errorInfo: DiagnosticMessageChain; errorInfo = chainDiagnosticMessages(errorInfo, message, arg0, arg1, arg2); if (headMessage) { errorInfo = chainDiagnosticMessages(errorInfo, headMessage); } diagnostics.add(createDiagnosticForNodeFromMessageChain(node, errorInfo)); } function chooseOverload(candidates: Signature[], relation: Map) { for (let originalCandidate of candidates) { if (!hasCorrectArity(node, args, originalCandidate)) { continue; } let candidate: Signature; let typeArgumentsAreValid: boolean; let inferenceContext = originalCandidate.typeParameters ? createInferenceContext(originalCandidate.typeParameters, /*inferUnionTypes*/ false) : undefined; while (true) { candidate = originalCandidate; if (candidate.typeParameters) { let typeArgumentTypes: Type[]; if (typeArguments) { typeArgumentTypes = new Array(candidate.typeParameters.length); typeArgumentsAreValid = checkTypeArguments(candidate, typeArguments, typeArgumentTypes, /*reportErrors*/ false); } else { inferTypeArguments(node, candidate, args, excludeArgument, inferenceContext); typeArgumentsAreValid = inferenceContext.failedTypeParameterIndex === undefined; typeArgumentTypes = inferenceContext.inferredTypes; } if (!typeArgumentsAreValid) { break; } candidate = getSignatureInstantiation(candidate, typeArgumentTypes); } if (!checkApplicableSignature(node, args, candidate, relation, excludeArgument, /*reportErrors*/ false)) { break; } let index = excludeArgument ? indexOf(excludeArgument, true) : -1; if (index < 0) { return candidate; } excludeArgument[index] = false; } // A post-mortem of this iteration of the loop. The signature was not applicable, // so we want to track it as a candidate for reporting an error. If the candidate // had no type parameters, or had no issues related to type arguments, we can // report an error based on the arguments. If there was an issue with type // arguments, then we can only report an error based on the type arguments. if (originalCandidate.typeParameters) { let instantiatedCandidate = candidate; if (typeArgumentsAreValid) { candidateForArgumentError = instantiatedCandidate; } else { candidateForTypeArgumentError = originalCandidate; if (!typeArguments) { resultOfFailedInference = inferenceContext; } } } else { Debug.assert(originalCandidate === candidate); candidateForArgumentError = originalCandidate; } } return undefined; } } function resolveCallExpression(node: CallExpression, candidatesOutArray: Signature[]): Signature { if (node.expression.kind === SyntaxKind.SuperKeyword) { let superType = checkSuperExpression(node.expression); if (superType !== unknownType) { // In super call, the candidate signatures are the matching arity signatures of the base constructor function instantiated // with the type arguments specified in the extends clause. let baseTypeNode = getClassExtendsHeritageClauseElement(getContainingClass(node)); let baseConstructors = getInstantiatedConstructorsForTypeArguments(superType, baseTypeNode.typeArguments); return resolveCall(node, baseConstructors, candidatesOutArray); } return resolveUntypedCall(node); } let funcType = checkExpression(node.expression); let apparentType = getApparentType(funcType); if (apparentType === unknownType) { // Another error has already been reported return resolveErrorCall(node); } // Technically, this signatures list may be incomplete. We are taking the apparent type, // but we are not including call signatures that may have been added to the Object or // Function interface, since they have none by default. This is a bit of a leap of faith // that the user will not add any. let callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); let constructSignatures = getSignaturesOfType(apparentType, SignatureKind.Construct); // TS 1.0 spec: 4.12 // If FuncExpr is of type Any, or of an object type that has no call or construct signatures // but is a subtype of the Function interface, the call is an untyped function call. In an // untyped function call no TypeArgs are permitted, Args can be any argument list, no contextual // types are provided for the argument expressions, and the result is always of type Any. // We exclude union types because we may have a union of function types that happen to have // no common signatures. if (isTypeAny(funcType) || (!callSignatures.length && !constructSignatures.length && !(funcType.flags & TypeFlags.Union) && isTypeAssignableTo(funcType, globalFunctionType))) { // The unknownType indicates that an error already occured (and was reported). No // need to report another error in this case. if (funcType !== unknownType && node.typeArguments) { error(node, Diagnostics.Untyped_function_calls_may_not_accept_type_arguments); } return resolveUntypedCall(node); } // If FuncExpr's apparent type(section 3.8.1) is a function type, the call is a typed function call. // TypeScript employs overload resolution in typed function calls in order to support functions // with multiple call signatures. if (!callSignatures.length) { if (constructSignatures.length) { error(node, Diagnostics.Value_of_type_0_is_not_callable_Did_you_mean_to_include_new, typeToString(funcType)); } else { error(node, Diagnostics.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature); } return resolveErrorCall(node); } return resolveCall(node, callSignatures, candidatesOutArray); } function resolveNewExpression(node: NewExpression, candidatesOutArray: Signature[]): Signature { if (node.arguments && languageVersion < ScriptTarget.ES5) { let spreadIndex = getSpreadArgumentIndex(node.arguments); if (spreadIndex >= 0) { error(node.arguments[spreadIndex], Diagnostics.Spread_operator_in_new_expressions_is_only_available_when_targeting_ECMAScript_5_and_higher); } } let expressionType = checkExpression(node.expression); // If expressionType's apparent type(section 3.8.1) is an object type with one or // more construct signatures, the expression is processed in the same manner as a // function call, but using the construct signatures as the initial set of candidate // signatures for overload resolution. The result type of the function call becomes // the result type of the operation. expressionType = getApparentType(expressionType); if (expressionType === unknownType) { // Another error has already been reported return resolveErrorCall(node); } // If the expression is a class of abstract type, then it cannot be instantiated. // Note, only class declarations can be declared abstract. // In the case of a merged class-module or class-interface declaration, // only the class declaration node will have the Abstract flag set. let valueDecl = expressionType.symbol && getDeclarationOfKind(expressionType.symbol, SyntaxKind.ClassDeclaration); if (valueDecl && valueDecl.flags & NodeFlags.Abstract) { error(node, Diagnostics.Cannot_create_an_instance_of_the_abstract_class_0, declarationNameToString(valueDecl.name)); return resolveErrorCall(node); } // TS 1.0 spec: 4.11 // If expressionType is of type Any, Args can be any argument // list and the result of the operation is of type Any. if (isTypeAny(expressionType)) { if (node.typeArguments) { error(node, Diagnostics.Untyped_function_calls_may_not_accept_type_arguments); } return resolveUntypedCall(node); } // Technically, this signatures list may be incomplete. We are taking the apparent type, // but we are not including construct signatures that may have been added to the Object or // Function interface, since they have none by default. This is a bit of a leap of faith // that the user will not add any. let constructSignatures = getSignaturesOfType(expressionType, SignatureKind.Construct); if (constructSignatures.length) { return resolveCall(node, constructSignatures, candidatesOutArray); } // If expressionType's apparent type is an object type with no construct signatures but // one or more call signatures, the expression is processed as a function call. A compile-time // error occurs if the result of the function call is not Void. The type of the result of the // operation is Any. let callSignatures = getSignaturesOfType(expressionType, SignatureKind.Call); if (callSignatures.length) { let signature = resolveCall(node, callSignatures, candidatesOutArray); if (getReturnTypeOfSignature(signature) !== voidType) { error(node, Diagnostics.Only_a_void_function_can_be_called_with_the_new_keyword); } return signature; } error(node, Diagnostics.Cannot_use_new_with_an_expression_whose_type_lacks_a_call_or_construct_signature); return resolveErrorCall(node); } function resolveTaggedTemplateExpression(node: TaggedTemplateExpression, candidatesOutArray: Signature[]): Signature { let tagType = checkExpression(node.tag); let apparentType = getApparentType(tagType); if (apparentType === unknownType) { // Another error has already been reported return resolveErrorCall(node); } let callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); if (isTypeAny(tagType) || (!callSignatures.length && !(tagType.flags & TypeFlags.Union) && isTypeAssignableTo(tagType, globalFunctionType))) { return resolveUntypedCall(node); } if (!callSignatures.length) { error(node, Diagnostics.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature); return resolveErrorCall(node); } return resolveCall(node, callSignatures, candidatesOutArray); } /** * Gets the localized diagnostic head message to use for errors when resolving a decorator as a call expression. */ function getDiagnosticHeadMessageForDecoratorResolution(node: Decorator) { switch (node.parent.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: return Diagnostics.Unable_to_resolve_signature_of_class_decorator_when_called_as_an_expression; case SyntaxKind.Parameter: return Diagnostics.Unable_to_resolve_signature_of_parameter_decorator_when_called_as_an_expression; case SyntaxKind.PropertyDeclaration: return Diagnostics.Unable_to_resolve_signature_of_property_decorator_when_called_as_an_expression; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: return Diagnostics.Unable_to_resolve_signature_of_method_decorator_when_called_as_an_expression; } } /** * Resolves a decorator as if it were a call expression. */ function resolveDecorator(node: Decorator, candidatesOutArray: Signature[]): Signature { let funcType = checkExpression(node.expression); let apparentType = getApparentType(funcType); if (apparentType === unknownType) { return resolveErrorCall(node); } let callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); if (funcType === anyType || (!callSignatures.length && !(funcType.flags & TypeFlags.Union) && isTypeAssignableTo(funcType, globalFunctionType))) { return resolveUntypedCall(node); } let headMessage = getDiagnosticHeadMessageForDecoratorResolution(node); if (!callSignatures.length) { let errorInfo: DiagnosticMessageChain; errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature); errorInfo = chainDiagnosticMessages(errorInfo, headMessage); diagnostics.add(createDiagnosticForNodeFromMessageChain(node, errorInfo)); return resolveErrorCall(node); } return resolveCall(node, callSignatures, candidatesOutArray, headMessage); } // candidatesOutArray is passed by signature help in the language service, and collectCandidates // must fill it up with the appropriate candidate signatures function getResolvedSignature(node: CallLikeExpression, candidatesOutArray?: Signature[]): Signature { let links = getNodeLinks(node); // If getResolvedSignature has already been called, we will have cached the resolvedSignature. // However, it is possible that either candidatesOutArray was not passed in the first time, // or that a different candidatesOutArray was passed in. Therefore, we need to redo the work // to correctly fill the candidatesOutArray. if (!links.resolvedSignature || candidatesOutArray) { links.resolvedSignature = anySignature; if (node.kind === SyntaxKind.CallExpression) { links.resolvedSignature = resolveCallExpression(node, candidatesOutArray); } else if (node.kind === SyntaxKind.NewExpression) { links.resolvedSignature = resolveNewExpression(node, candidatesOutArray); } else if (node.kind === SyntaxKind.TaggedTemplateExpression) { links.resolvedSignature = resolveTaggedTemplateExpression(node, candidatesOutArray); } else if (node.kind === SyntaxKind.Decorator) { links.resolvedSignature = resolveDecorator(node, candidatesOutArray); } else { Debug.fail("Branch in 'getResolvedSignature' should be unreachable."); } } return links.resolvedSignature; } /** * Syntactically and semantically checks a call or new expression. * @param node The call/new expression to be checked. * @returns On success, the expression's signature's return type. On failure, anyType. */ function checkCallExpression(node: CallExpression): Type { // Grammar checking; stop grammar-checking if checkGrammarTypeArguments return true checkGrammarTypeArguments(node, node.typeArguments) || checkGrammarArguments(node, node.arguments); let signature = getResolvedSignature(node); if (node.expression.kind === SyntaxKind.SuperKeyword) { return voidType; } if (node.kind === SyntaxKind.NewExpression) { let declaration = signature.declaration; if (declaration && declaration.kind !== SyntaxKind.Constructor && declaration.kind !== SyntaxKind.ConstructSignature && declaration.kind !== SyntaxKind.ConstructorType) { // When resolved signature is a call signature (and not a construct signature) the result type is any if (compilerOptions.noImplicitAny) { error(node, Diagnostics.new_expression_whose_target_lacks_a_construct_signature_implicitly_has_an_any_type); } return anyType; } } return getReturnTypeOfSignature(signature); } function checkTaggedTemplateExpression(node: TaggedTemplateExpression): Type { return getReturnTypeOfSignature(getResolvedSignature(node)); } function checkAssertion(node: AssertionExpression) { let exprType = checkExpression(node.expression); let targetType = getTypeFromTypeNode(node.type); if (produceDiagnostics && targetType !== unknownType) { let widenedType = getWidenedType(exprType); if (!(isTypeAssignableTo(targetType, widenedType))) { checkTypeAssignableTo(exprType, targetType, node, Diagnostics.Neither_type_0_nor_type_1_is_assignable_to_the_other); } } return targetType; } function getTypeAtPosition(signature: Signature, pos: number): Type { return signature.hasRestParameter ? pos < signature.parameters.length - 1 ? getTypeOfSymbol(signature.parameters[pos]) : getRestTypeOfSignature(signature) : pos < signature.parameters.length ? getTypeOfSymbol(signature.parameters[pos]) : anyType; } function assignContextualParameterTypes(signature: Signature, context: Signature, mapper: TypeMapper) { let len = signature.parameters.length - (signature.hasRestParameter ? 1 : 0); for (let i = 0; i < len; i++) { let parameter = signature.parameters[i]; let links = getSymbolLinks(parameter); links.type = instantiateType(getTypeAtPosition(context, i), mapper); } if (signature.hasRestParameter && context.hasRestParameter && signature.parameters.length >= context.parameters.length) { let parameter = lastOrUndefined(signature.parameters); let links = getSymbolLinks(parameter); links.type = instantiateType(getTypeOfSymbol(lastOrUndefined(context.parameters)), mapper); } } function createPromiseType(promisedType: Type): Type { // creates a `Promise` type where `T` is the promisedType argument let globalPromiseType = getGlobalPromiseType(); if (globalPromiseType !== emptyObjectType) { // if the promised type is itself a promise, get the underlying type; otherwise, fallback to the promised type promisedType = getAwaitedType(promisedType); return createTypeReference(globalPromiseType, [promisedType]); } return emptyObjectType; } function getReturnTypeFromBody(func: FunctionLikeDeclaration, contextualMapper?: TypeMapper): Type { let contextualSignature = getContextualSignatureForFunctionLikeDeclaration(func); if (!func.body) { return unknownType; } let isAsync = isAsyncFunctionLike(func); let type: Type; if (func.body.kind !== SyntaxKind.Block) { type = checkExpressionCached(func.body, contextualMapper); if (isAsync) { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so the // return type of the body should be unwrapped to its awaited type, which we will wrap in // the native Promise type later in this function. type = checkAwaitedType(type, func, Diagnostics.Return_expression_in_async_function_does_not_have_a_valid_callable_then_member); } } else { let types: Type[]; let funcIsGenerator = !!func.asteriskToken; if (funcIsGenerator) { types = checkAndAggregateYieldOperandTypes(func.body, contextualMapper); if (types.length === 0) { let iterableIteratorAny = createIterableIteratorType(anyType); if (compilerOptions.noImplicitAny) { error(func.asteriskToken, Diagnostics.Generator_implicitly_has_type_0_because_it_does_not_yield_any_values_Consider_supplying_a_return_type, typeToString(iterableIteratorAny)); } return iterableIteratorAny; } } else { types = checkAndAggregateReturnExpressionTypes(func.body, contextualMapper, isAsync); if (types.length === 0) { if (isAsync) { // For an async function, the return type will not be void, but rather a Promise for void. let promiseType = createPromiseType(voidType); if (promiseType === emptyObjectType) { error(func, Diagnostics.An_async_function_or_method_must_have_a_valid_awaitable_return_type); return unknownType; } return promiseType; } else { return voidType; } } } // When yield/return statements are contextually typed we allow the return type to be a union type. // Otherwise we require the yield/return expressions to have a best common supertype. type = contextualSignature ? getUnionType(types) : getCommonSupertype(types); if (!type) { if (funcIsGenerator) { error(func, Diagnostics.No_best_common_type_exists_among_yield_expressions); return createIterableIteratorType(unknownType); } else { error(func, Diagnostics.No_best_common_type_exists_among_return_expressions); return unknownType; } } if (funcIsGenerator) { type = createIterableIteratorType(type); } } if (!contextualSignature) { reportErrorsFromWidening(func, type); } let widenedType = getWidenedType(type); if (isAsync) { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so the // return type of the body is awaited type of the body, wrapped in a native Promise type. let promiseType = createPromiseType(widenedType); if (promiseType === emptyObjectType) { error(func, Diagnostics.An_async_function_or_method_must_have_a_valid_awaitable_return_type); return unknownType; } return promiseType; } else { return widenedType; } } function checkAndAggregateYieldOperandTypes(body: Block, contextualMapper?: TypeMapper): Type[] { let aggregatedTypes: Type[] = []; forEachYieldExpression(body, yieldExpression => { let expr = yieldExpression.expression; if (expr) { let type = checkExpressionCached(expr, contextualMapper); if (yieldExpression.asteriskToken) { // A yield* expression effectively yields everything that its operand yields type = checkElementTypeOfIterable(type, yieldExpression.expression); } if (!contains(aggregatedTypes, type)) { aggregatedTypes.push(type); } } }); return aggregatedTypes; } function checkAndAggregateReturnExpressionTypes(body: Block, contextualMapper?: TypeMapper, isAsync?: boolean): Type[] { let aggregatedTypes: Type[] = []; forEachReturnStatement(body, returnStatement => { let expr = returnStatement.expression; if (expr) { let type = checkExpressionCached(expr, contextualMapper); if (isAsync) { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so the // return type of the body should be unwrapped to its awaited type, which should be wrapped in // the native Promise type by the caller. type = checkAwaitedType(type, body.parent, Diagnostics.Return_expression_in_async_function_does_not_have_a_valid_callable_then_member); } if (!contains(aggregatedTypes, type)) { aggregatedTypes.push(type); } } }); return aggregatedTypes; } function bodyContainsAReturnStatement(funcBody: Block) { return forEachReturnStatement(funcBody, returnStatement => { return true; }); } function bodyContainsSingleThrowStatement(body: Block) { return (body.statements.length === 1) && (body.statements[0].kind === SyntaxKind.ThrowStatement); } // TypeScript Specification 1.0 (6.3) - July 2014 // An explicitly typed function whose return type isn't the Void or the Any type // must have at least one return statement somewhere in its body. // An exception to this rule is if the function implementation consists of a single 'throw' statement. function checkIfNonVoidFunctionHasReturnExpressionsOrSingleThrowStatment(func: FunctionLikeDeclaration, returnType: Type): void { if (!produceDiagnostics) { return; } // Functions that return 'void' or 'any' don't need any return expressions. if (returnType === voidType || isTypeAny(returnType)) { return; } // If all we have is a function signature, or an arrow function with an expression body, then there is nothing to check. if (nodeIsMissing(func.body) || func.body.kind !== SyntaxKind.Block) { return; } let bodyBlock = func.body; // Ensure the body has at least one return expression. if (bodyContainsAReturnStatement(bodyBlock)) { return; } // If there are no return expressions, then we need to check if // the function body consists solely of a throw statement; // this is to make an exception for unimplemented functions. if (bodyContainsSingleThrowStatement(bodyBlock)) { return; } // This function does not conform to the specification. error(func.type, Diagnostics.A_function_whose_declared_type_is_neither_void_nor_any_must_return_a_value_or_consist_of_a_single_throw_statement); } function checkFunctionExpressionOrObjectLiteralMethod(node: FunctionExpression | MethodDeclaration, contextualMapper?: TypeMapper): Type { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); // Grammar checking let hasGrammarError = checkGrammarFunctionLikeDeclaration(node); if (!hasGrammarError && node.kind === SyntaxKind.FunctionExpression) { checkGrammarForGenerator(node); } // The identityMapper object is used to indicate that function expressions are wildcards if (contextualMapper === identityMapper && isContextSensitive(node)) { return anyFunctionType; } let isAsync = isAsyncFunctionLike(node); if (isAsync) { emitAwaiter = true; } let links = getNodeLinks(node); let type = getTypeOfSymbol(node.symbol); // Check if function expression is contextually typed and assign parameter types if so if (!(links.flags & NodeCheckFlags.ContextChecked)) { let contextualSignature = getContextualSignature(node); // If a type check is started at a function expression that is an argument of a function call, obtaining the // contextual type may recursively get back to here during overload resolution of the call. If so, we will have // already assigned contextual types. if (!(links.flags & NodeCheckFlags.ContextChecked)) { links.flags |= NodeCheckFlags.ContextChecked; if (contextualSignature) { let signature = getSignaturesOfType(type, SignatureKind.Call)[0]; if (isContextSensitive(node)) { assignContextualParameterTypes(signature, contextualSignature, contextualMapper || identityMapper); } if (!node.type && !signature.resolvedReturnType) { let returnType = getReturnTypeFromBody(node, contextualMapper); if (!signature.resolvedReturnType) { signature.resolvedReturnType = returnType; } } } checkSignatureDeclaration(node); } } if (produceDiagnostics && node.kind !== SyntaxKind.MethodDeclaration && node.kind !== SyntaxKind.MethodSignature) { checkCollisionWithCapturedSuperVariable(node, (node).name); checkCollisionWithCapturedThisVariable(node, (node).name); } return type; } function checkFunctionExpressionOrObjectLiteralMethodBody(node: FunctionExpression | MethodDeclaration) { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); let isAsync = isAsyncFunctionLike(node); if (isAsync) { emitAwaiter = true; } let returnType = node.type && getTypeFromTypeNode(node.type); let promisedType: Type; if (returnType && isAsync) { promisedType = checkAsyncFunctionReturnType(node); } if (returnType && !node.asteriskToken) { checkIfNonVoidFunctionHasReturnExpressionsOrSingleThrowStatment(node, isAsync ? promisedType : returnType); } if (node.body) { if (!node.type) { // There are some checks that are only performed in getReturnTypeFromBody, that may produce errors // we need. An example is the noImplicitAny errors resulting from widening the return expression // of a function. Because checking of function expression bodies is deferred, there was never an // appropriate time to do this during the main walk of the file (see the comment at the top of // checkFunctionExpressionBodies). So it must be done now. getReturnTypeOfSignature(getSignatureFromDeclaration(node)); } if (node.body.kind === SyntaxKind.Block) { checkSourceElement(node.body); } else { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so we // should not be checking assignability of a promise to the return type. Instead, we need to // check assignability of the awaited type of the expression body against the promised type of // its return type annotation. let exprType = checkExpression(node.body); if (returnType) { if (isAsync) { let awaitedType = checkAwaitedType(exprType, node.body, Diagnostics.Expression_body_for_async_arrow_function_does_not_have_a_valid_callable_then_member); checkTypeAssignableTo(awaitedType, promisedType, node.body); } else { checkTypeAssignableTo(exprType, returnType, node.body); } } checkFunctionAndClassExpressionBodies(node.body); } } } function checkArithmeticOperandType(operand: Node, type: Type, diagnostic: DiagnosticMessage): boolean { if (!isTypeAnyOrAllConstituentTypesHaveKind(type, TypeFlags.NumberLike)) { error(operand, diagnostic); return false; } return true; } function checkReferenceExpression(n: Node, invalidReferenceMessage: DiagnosticMessage, constantVariableMessage: DiagnosticMessage): boolean { function findSymbol(n: Node): Symbol { let symbol = getNodeLinks(n).resolvedSymbol; // Because we got the symbol from the resolvedSymbol property, it might be of kind // SymbolFlags.ExportValue. In this case it is necessary to get the actual export // symbol, which will have the correct flags set on it. return symbol && getExportSymbolOfValueSymbolIfExported(symbol); } function isReferenceOrErrorExpression(n: Node): boolean { // TypeScript 1.0 spec (April 2014): // Expressions are classified as values or references. // References are the subset of expressions that are permitted as the target of an assignment. // Specifically, references are combinations of identifiers(section 4.3), parentheses(section 4.7), // and property accesses(section 4.10). // All other expression constructs described in this chapter are classified as values. switch (n.kind) { case SyntaxKind.Identifier: { let symbol = findSymbol(n); // TypeScript 1.0 spec (April 2014): 4.3 // An identifier expression that references a variable or parameter is classified as a reference. // An identifier expression that references any other kind of entity is classified as a value(and therefore cannot be the target of an assignment). return !symbol || symbol === unknownSymbol || symbol === argumentsSymbol || (symbol.flags & SymbolFlags.Variable) !== 0; } case SyntaxKind.PropertyAccessExpression: { let symbol = findSymbol(n); // TypeScript 1.0 spec (April 2014): 4.10 // A property access expression is always classified as a reference. // NOTE (not in spec): assignment to enum members should not be allowed return !symbol || symbol === unknownSymbol || (symbol.flags & ~SymbolFlags.EnumMember) !== 0; } case SyntaxKind.ElementAccessExpression: // old compiler doesn't check indexed assess return true; case SyntaxKind.ParenthesizedExpression: return isReferenceOrErrorExpression((n).expression); default: return false; } } function isConstVariableReference(n: Node): boolean { switch (n.kind) { case SyntaxKind.Identifier: case SyntaxKind.PropertyAccessExpression: { let symbol = findSymbol(n); return symbol && (symbol.flags & SymbolFlags.Variable) !== 0 && (getDeclarationFlagsFromSymbol(symbol) & NodeFlags.Const) !== 0; } case SyntaxKind.ElementAccessExpression: { let index = (n).argumentExpression; let symbol = findSymbol((n).expression); if (symbol && index && index.kind === SyntaxKind.StringLiteral) { let name = (index).text; let prop = getPropertyOfType(getTypeOfSymbol(symbol), name); return prop && (prop.flags & SymbolFlags.Variable) !== 0 && (getDeclarationFlagsFromSymbol(prop) & NodeFlags.Const) !== 0; } return false; } case SyntaxKind.ParenthesizedExpression: return isConstVariableReference((n).expression); default: return false; } } if (!isReferenceOrErrorExpression(n)) { error(n, invalidReferenceMessage); return false; } if (isConstVariableReference(n)) { error(n, constantVariableMessage); return false; } return true; } function checkDeleteExpression(node: DeleteExpression): Type { checkExpression(node.expression); return booleanType; } function checkTypeOfExpression(node: TypeOfExpression): Type { checkExpression(node.expression); return stringType; } function checkVoidExpression(node: VoidExpression): Type { checkExpression(node.expression); return undefinedType; } function checkAwaitExpression(node: AwaitExpression): Type { // Grammar checking if (produceDiagnostics) { if (!(node.parserContextFlags & ParserContextFlags.Await)) { grammarErrorOnFirstToken(node, Diagnostics.await_expression_is_only_allowed_within_an_async_function); } if (isInParameterInitializerBeforeContainingFunction(node)) { error(node, Diagnostics.await_expressions_cannot_be_used_in_a_parameter_initializer); } } let operandType = checkExpression(node.expression); return checkAwaitedType(operandType, node); } function checkPrefixUnaryExpression(node: PrefixUnaryExpression): Type { let operandType = checkExpression(node.operand); switch (node.operator) { case SyntaxKind.PlusToken: case SyntaxKind.MinusToken: case SyntaxKind.TildeToken: if (someConstituentTypeHasKind(operandType, TypeFlags.ESSymbol)) { error(node.operand, Diagnostics.The_0_operator_cannot_be_applied_to_type_symbol, tokenToString(node.operator)); } return numberType; case SyntaxKind.ExclamationToken: return booleanType; case SyntaxKind.PlusPlusToken: case SyntaxKind.MinusMinusToken: let ok = checkArithmeticOperandType(node.operand, operandType, Diagnostics.An_arithmetic_operand_must_be_of_type_any_number_or_an_enum_type); if (ok) { // run check only if former checks succeeded to avoid reporting cascading errors checkReferenceExpression(node.operand, Diagnostics.The_operand_of_an_increment_or_decrement_operator_must_be_a_variable_property_or_indexer, Diagnostics.The_operand_of_an_increment_or_decrement_operator_cannot_be_a_constant); } return numberType; } return unknownType; } function checkPostfixUnaryExpression(node: PostfixUnaryExpression): Type { let operandType = checkExpression(node.operand); let ok = checkArithmeticOperandType(node.operand, operandType, Diagnostics.An_arithmetic_operand_must_be_of_type_any_number_or_an_enum_type); if (ok) { // run check only if former checks succeeded to avoid reporting cascading errors checkReferenceExpression(node.operand, Diagnostics.The_operand_of_an_increment_or_decrement_operator_must_be_a_variable_property_or_indexer, Diagnostics.The_operand_of_an_increment_or_decrement_operator_cannot_be_a_constant); } return numberType; } // Just like isTypeOfKind below, except that it returns true if *any* constituent // has this kind. function someConstituentTypeHasKind(type: Type, kind: TypeFlags): boolean { if (type.flags & kind) { return true; } if (type.flags & TypeFlags.UnionOrIntersection) { let types = (type).types; for (let current of types) { if (current.flags & kind) { return true; } } return false; } return false; } // Return true if type has the given flags, or is a union or intersection type composed of types that all have those flags. function allConstituentTypesHaveKind(type: Type, kind: TypeFlags): boolean { if (type.flags & kind) { return true; } if (type.flags & TypeFlags.UnionOrIntersection) { let types = (type).types; for (let current of types) { if (!(current.flags & kind)) { return false; } } return true; } return false; } function isConstEnumObjectType(type: Type): boolean { return type.flags & (TypeFlags.ObjectType | TypeFlags.Anonymous) && type.symbol && isConstEnumSymbol(type.symbol); } function isConstEnumSymbol(symbol: Symbol): boolean { return (symbol.flags & SymbolFlags.ConstEnum) !== 0; } function checkInstanceOfExpression(node: BinaryExpression, leftType: Type, rightType: Type): Type { // TypeScript 1.0 spec (April 2014): 4.15.4 // The instanceof operator requires the left operand to be of type Any, an object type, or a type parameter type, // and the right operand to be of type Any or a subtype of the 'Function' interface type. // The result is always of the Boolean primitive type. // NOTE: do not raise error if leftType is unknown as related error was already reported if (allConstituentTypesHaveKind(leftType, TypeFlags.Primitive)) { error(node.left, Diagnostics.The_left_hand_side_of_an_instanceof_expression_must_be_of_type_any_an_object_type_or_a_type_parameter); } // NOTE: do not raise error if right is unknown as related error was already reported if (!(isTypeAny(rightType) || isTypeSubtypeOf(rightType, globalFunctionType))) { error(node.right, Diagnostics.The_right_hand_side_of_an_instanceof_expression_must_be_of_type_any_or_of_a_type_assignable_to_the_Function_interface_type); } return booleanType; } function checkInExpression(node: BinaryExpression, leftType: Type, rightType: Type): Type { // TypeScript 1.0 spec (April 2014): 4.15.5 // The in operator requires the left operand to be of type Any, the String primitive type, or the Number primitive type, // and the right operand to be of type Any, an object type, or a type parameter type. // The result is always of the Boolean primitive type. if (!isTypeAnyOrAllConstituentTypesHaveKind(leftType, TypeFlags.StringLike | TypeFlags.NumberLike | TypeFlags.ESSymbol)) { error(node.left, Diagnostics.The_left_hand_side_of_an_in_expression_must_be_of_type_any_string_number_or_symbol); } if (!isTypeAnyOrAllConstituentTypesHaveKind(rightType, TypeFlags.ObjectType | TypeFlags.TypeParameter)) { error(node.right, Diagnostics.The_right_hand_side_of_an_in_expression_must_be_of_type_any_an_object_type_or_a_type_parameter); } return booleanType; } function checkObjectLiteralAssignment(node: ObjectLiteralExpression, sourceType: Type, contextualMapper?: TypeMapper): Type { let properties = node.properties; for (let p of properties) { if (p.kind === SyntaxKind.PropertyAssignment || p.kind === SyntaxKind.ShorthandPropertyAssignment) { // TODO(andersh): Computed property support let name = (p).name; let type = isTypeAny(sourceType) ? sourceType : getTypeOfPropertyOfType(sourceType, name.text) || isNumericLiteralName(name.text) && getIndexTypeOfType(sourceType, IndexKind.Number) || getIndexTypeOfType(sourceType, IndexKind.String); if (type) { checkDestructuringAssignment((p).initializer || name, type); } else { error(name, Diagnostics.Type_0_has_no_property_1_and_no_string_index_signature, typeToString(sourceType), declarationNameToString(name)); } } else { error(p, Diagnostics.Property_assignment_expected); } } return sourceType; } function checkArrayLiteralAssignment(node: ArrayLiteralExpression, sourceType: Type, contextualMapper?: TypeMapper): Type { // This elementType will be used if the specific property corresponding to this index is not // present (aka the tuple element property). This call also checks that the parentType is in // fact an iterable or array (depending on target language). let elementType = checkIteratedTypeOrElementType(sourceType, node, /*allowStringInput*/ false) || unknownType; let elements = node.elements; for (let i = 0; i < elements.length; i++) { let e = elements[i]; if (e.kind !== SyntaxKind.OmittedExpression) { if (e.kind !== SyntaxKind.SpreadElementExpression) { let propName = "" + i; let type = isTypeAny(sourceType) ? sourceType : isTupleLikeType(sourceType) ? getTypeOfPropertyOfType(sourceType, propName) : elementType; if (type) { checkDestructuringAssignment(e, type, contextualMapper); } else { if (isTupleType(sourceType)) { error(e, Diagnostics.Tuple_type_0_with_length_1_cannot_be_assigned_to_tuple_with_length_2, typeToString(sourceType), (sourceType).elementTypes.length, elements.length); } else { error(e, Diagnostics.Type_0_has_no_property_1, typeToString(sourceType), propName); } } } else { if (i < elements.length - 1) { error(e, Diagnostics.A_rest_element_must_be_last_in_an_array_destructuring_pattern); } else { let restExpression = (e).expression; if (restExpression.kind === SyntaxKind.BinaryExpression && (restExpression).operatorToken.kind === SyntaxKind.EqualsToken) { error((restExpression).operatorToken, Diagnostics.A_rest_element_cannot_have_an_initializer); } else { checkDestructuringAssignment(restExpression, createArrayType(elementType), contextualMapper); } } } } } return sourceType; } function checkDestructuringAssignment(target: Expression, sourceType: Type, contextualMapper?: TypeMapper): Type { if (target.kind === SyntaxKind.BinaryExpression && (target).operatorToken.kind === SyntaxKind.EqualsToken) { checkBinaryExpression(target, contextualMapper); target = (target).left; } if (target.kind === SyntaxKind.ObjectLiteralExpression) { return checkObjectLiteralAssignment(target, sourceType, contextualMapper); } if (target.kind === SyntaxKind.ArrayLiteralExpression) { return checkArrayLiteralAssignment(target, sourceType, contextualMapper); } return checkReferenceAssignment(target, sourceType, contextualMapper); } function checkReferenceAssignment(target: Expression, sourceType: Type, contextualMapper?: TypeMapper): Type { let targetType = checkExpression(target, contextualMapper); if (checkReferenceExpression(target, Diagnostics.Invalid_left_hand_side_of_assignment_expression, Diagnostics.Left_hand_side_of_assignment_expression_cannot_be_a_constant)) { checkTypeAssignableTo(sourceType, targetType, target, /*headMessage*/ undefined); } return sourceType; } function checkBinaryExpression(node: BinaryExpression, contextualMapper?: TypeMapper) { let operator = node.operatorToken.kind; if (operator === SyntaxKind.EqualsToken && (node.left.kind === SyntaxKind.ObjectLiteralExpression || node.left.kind === SyntaxKind.ArrayLiteralExpression)) { return checkDestructuringAssignment(node.left, checkExpression(node.right, contextualMapper), contextualMapper); } let leftType = checkExpression(node.left, contextualMapper); let rightType = checkExpression(node.right, contextualMapper); switch (operator) { case SyntaxKind.AsteriskToken: case SyntaxKind.AsteriskEqualsToken: case SyntaxKind.SlashToken: case SyntaxKind.SlashEqualsToken: case SyntaxKind.PercentToken: case SyntaxKind.PercentEqualsToken: case SyntaxKind.MinusToken: case SyntaxKind.MinusEqualsToken: case SyntaxKind.LessThanLessThanToken: case SyntaxKind.LessThanLessThanEqualsToken: case SyntaxKind.GreaterThanGreaterThanToken: case SyntaxKind.GreaterThanGreaterThanEqualsToken: case SyntaxKind.GreaterThanGreaterThanGreaterThanToken: case SyntaxKind.GreaterThanGreaterThanGreaterThanEqualsToken: case SyntaxKind.BarToken: case SyntaxKind.BarEqualsToken: case SyntaxKind.CaretToken: case SyntaxKind.CaretEqualsToken: case SyntaxKind.AmpersandToken: case SyntaxKind.AmpersandEqualsToken: // TypeScript 1.0 spec (April 2014): 4.15.1 // These operators require their operands to be of type Any, the Number primitive type, // or an enum type. Operands of an enum type are treated // as having the primitive type Number. If one operand is the null or undefined value, // it is treated as having the type of the other operand. // The result is always of the Number primitive type. if (leftType.flags & (TypeFlags.Undefined | TypeFlags.Null)) leftType = rightType; if (rightType.flags & (TypeFlags.Undefined | TypeFlags.Null)) rightType = leftType; let suggestedOperator: SyntaxKind; // if a user tries to apply a bitwise operator to 2 boolean operands // try and return them a helpful suggestion if ((leftType.flags & TypeFlags.Boolean) && (rightType.flags & TypeFlags.Boolean) && (suggestedOperator = getSuggestedBooleanOperator(node.operatorToken.kind)) !== undefined) { error(node, Diagnostics.The_0_operator_is_not_allowed_for_boolean_types_Consider_using_1_instead, tokenToString(node.operatorToken.kind), tokenToString(suggestedOperator)); } else { // otherwise just check each operand separately and report errors as normal let leftOk = checkArithmeticOperandType(node.left, leftType, Diagnostics.The_left_hand_side_of_an_arithmetic_operation_must_be_of_type_any_number_or_an_enum_type); let rightOk = checkArithmeticOperandType(node.right, rightType, Diagnostics.The_right_hand_side_of_an_arithmetic_operation_must_be_of_type_any_number_or_an_enum_type); if (leftOk && rightOk) { checkAssignmentOperator(numberType); } } return numberType; case SyntaxKind.PlusToken: case SyntaxKind.PlusEqualsToken: // TypeScript 1.0 spec (April 2014): 4.15.2 // The binary + operator requires both operands to be of the Number primitive type or an enum type, // or at least one of the operands to be of type Any or the String primitive type. // If one operand is the null or undefined value, it is treated as having the type of the other operand. if (leftType.flags & (TypeFlags.Undefined | TypeFlags.Null)) leftType = rightType; if (rightType.flags & (TypeFlags.Undefined | TypeFlags.Null)) rightType = leftType; let resultType: Type; if (allConstituentTypesHaveKind(leftType, TypeFlags.NumberLike) && allConstituentTypesHaveKind(rightType, TypeFlags.NumberLike)) { // Operands of an enum type are treated as having the primitive type Number. // If both operands are of the Number primitive type, the result is of the Number primitive type. resultType = numberType; } else { if (allConstituentTypesHaveKind(leftType, TypeFlags.StringLike) || allConstituentTypesHaveKind(rightType, TypeFlags.StringLike)) { // If one or both operands are of the String primitive type, the result is of the String primitive type. resultType = stringType; } else if (isTypeAny(leftType) || isTypeAny(rightType)) { // Otherwise, the result is of type Any. // NOTE: unknown type here denotes error type. Old compiler treated this case as any type so do we. resultType = leftType === unknownType || rightType === unknownType ? unknownType : anyType; } // Symbols are not allowed at all in arithmetic expressions if (resultType && !checkForDisallowedESSymbolOperand(operator)) { return resultType; } } if (!resultType) { reportOperatorError(); return anyType; } if (operator === SyntaxKind.PlusEqualsToken) { checkAssignmentOperator(resultType); } return resultType; case SyntaxKind.LessThanToken: case SyntaxKind.GreaterThanToken: case SyntaxKind.LessThanEqualsToken: case SyntaxKind.GreaterThanEqualsToken: if (!checkForDisallowedESSymbolOperand(operator)) { return booleanType; } // Fall through case SyntaxKind.EqualsEqualsToken: case SyntaxKind.ExclamationEqualsToken: case SyntaxKind.EqualsEqualsEqualsToken: case SyntaxKind.ExclamationEqualsEqualsToken: if (!isTypeAssignableTo(leftType, rightType) && !isTypeAssignableTo(rightType, leftType)) { reportOperatorError(); } return booleanType; case SyntaxKind.InstanceOfKeyword: return checkInstanceOfExpression(node, leftType, rightType); case SyntaxKind.InKeyword: return checkInExpression(node, leftType, rightType); case SyntaxKind.AmpersandAmpersandToken: return rightType; case SyntaxKind.BarBarToken: return getUnionType([leftType, rightType]); case SyntaxKind.EqualsToken: checkAssignmentOperator(rightType); return rightType; case SyntaxKind.CommaToken: return rightType; } // Return true if there was no error, false if there was an error. function checkForDisallowedESSymbolOperand(operator: SyntaxKind): boolean { let offendingSymbolOperand = someConstituentTypeHasKind(leftType, TypeFlags.ESSymbol) ? node.left : someConstituentTypeHasKind(rightType, TypeFlags.ESSymbol) ? node.right : undefined; if (offendingSymbolOperand) { error(offendingSymbolOperand, Diagnostics.The_0_operator_cannot_be_applied_to_type_symbol, tokenToString(operator)); return false; } return true; } function getSuggestedBooleanOperator(operator: SyntaxKind): SyntaxKind { switch (operator) { case SyntaxKind.BarToken: case SyntaxKind.BarEqualsToken: return SyntaxKind.BarBarToken; case SyntaxKind.CaretToken: case SyntaxKind.CaretEqualsToken: return SyntaxKind.ExclamationEqualsEqualsToken; case SyntaxKind.AmpersandToken: case SyntaxKind.AmpersandEqualsToken: return SyntaxKind.AmpersandAmpersandToken; default: return undefined; } } function checkAssignmentOperator(valueType: Type): void { if (produceDiagnostics && operator >= SyntaxKind.FirstAssignment && operator <= SyntaxKind.LastAssignment) { // TypeScript 1.0 spec (April 2014): 4.17 // An assignment of the form // VarExpr = ValueExpr // requires VarExpr to be classified as a reference // A compound assignment furthermore requires VarExpr to be classified as a reference (section 4.1) // and the type of the non - compound operation to be assignable to the type of VarExpr. let ok = checkReferenceExpression(node.left, Diagnostics.Invalid_left_hand_side_of_assignment_expression, Diagnostics.Left_hand_side_of_assignment_expression_cannot_be_a_constant); // Use default messages if (ok) { // to avoid cascading errors check assignability only if 'isReference' check succeeded and no errors were reported checkTypeAssignableTo(valueType, leftType, node.left, /*headMessage*/ undefined); } } } function reportOperatorError() { error(node, Diagnostics.Operator_0_cannot_be_applied_to_types_1_and_2, tokenToString(node.operatorToken.kind), typeToString(leftType), typeToString(rightType)); } } function isYieldExpressionInClass(node: YieldExpression): boolean { let current: Node = node; let parent = node.parent; while (parent) { if (isFunctionLike(parent) && current === (parent).body) { return false; } else if (isClassLike(current)) { return true; } current = parent; parent = parent.parent; } return false; } function checkYieldExpression(node: YieldExpression): Type { // Grammar checking if (produceDiagnostics) { if (!(node.parserContextFlags & ParserContextFlags.Yield) || isYieldExpressionInClass(node)) { grammarErrorOnFirstToken(node, Diagnostics.A_yield_expression_is_only_allowed_in_a_generator_body); } if (isInParameterInitializerBeforeContainingFunction(node)) { error(node, Diagnostics.yield_expressions_cannot_be_used_in_a_parameter_initializer); } } if (node.expression) { let func = getContainingFunction(node); // If the user's code is syntactically correct, the func should always have a star. After all, // we are in a yield context. if (func && func.asteriskToken) { let expressionType = checkExpressionCached(node.expression, /*contextualMapper*/ undefined); let expressionElementType: Type; let nodeIsYieldStar = !!node.asteriskToken; if (nodeIsYieldStar) { expressionElementType = checkElementTypeOfIterable(expressionType, node.expression); } // There is no point in doing an assignability check if the function // has no explicit return type because the return type is directly computed // from the yield expressions. if (func.type) { let signatureElementType = getElementTypeOfIterableIterator(getTypeFromTypeNode(func.type)) || anyType; if (nodeIsYieldStar) { checkTypeAssignableTo(expressionElementType, signatureElementType, node.expression, /*headMessage*/ undefined); } else { checkTypeAssignableTo(expressionType, signatureElementType, node.expression, /*headMessage*/ undefined); } } } } // Both yield and yield* expressions have type 'any' return anyType; } function checkConditionalExpression(node: ConditionalExpression, contextualMapper?: TypeMapper): Type { checkExpression(node.condition); let type1 = checkExpression(node.whenTrue, contextualMapper); let type2 = checkExpression(node.whenFalse, contextualMapper); return getUnionType([type1, type2]); } function checkTemplateExpression(node: TemplateExpression): Type { // We just want to check each expressions, but we are unconcerned with // the type of each expression, as any value may be coerced into a string. // It is worth asking whether this is what we really want though. // A place where we actually *are* concerned with the expressions' types are // in tagged templates. forEach((node).templateSpans, templateSpan => { checkExpression(templateSpan.expression); }); return stringType; } function checkExpressionWithContextualType(node: Expression, contextualType: Type, contextualMapper?: TypeMapper): Type { let saveContextualType = node.contextualType; node.contextualType = contextualType; let result = checkExpression(node, contextualMapper); node.contextualType = saveContextualType; return result; } function checkExpressionCached(node: Expression, contextualMapper?: TypeMapper): Type { let links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = checkExpression(node, contextualMapper); } return links.resolvedType; } function checkPropertyAssignment(node: PropertyAssignment, contextualMapper?: TypeMapper): Type { // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); } return checkExpression((node).initializer, contextualMapper); } function checkObjectLiteralMethod(node: MethodDeclaration, contextualMapper?: TypeMapper): Type { // Grammar checking checkGrammarMethod(node); // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); } let uninstantiatedType = checkFunctionExpressionOrObjectLiteralMethod(node, contextualMapper); return instantiateTypeWithSingleGenericCallSignature(node, uninstantiatedType, contextualMapper); } function instantiateTypeWithSingleGenericCallSignature(node: Expression | MethodDeclaration, type: Type, contextualMapper?: TypeMapper) { if (contextualMapper && contextualMapper !== identityMapper) { let signature = getSingleCallSignature(type); if (signature && signature.typeParameters) { let contextualType = getContextualType(node); if (contextualType) { let contextualSignature = getSingleCallSignature(contextualType); if (contextualSignature && !contextualSignature.typeParameters) { return getOrCreateTypeFromSignature(instantiateSignatureInContextOf(signature, contextualSignature, contextualMapper)); } } } } return type; } // Checks an expression and returns its type. The contextualMapper parameter serves two purposes: When // contextualMapper is not undefined and not equal to the identityMapper function object it indicates that the // expression is being inferentially typed (section 4.12.2 in spec) and provides the type mapper to use in // conjunction with the generic contextual type. When contextualMapper is equal to the identityMapper function // object, it serves as an indicator that all contained function and arrow expressions should be considered to // have the wildcard function type; this form of type check is used during overload resolution to exclude // contextually typed function and arrow expressions in the initial phase. function checkExpression(node: Expression | QualifiedName, contextualMapper?: TypeMapper): Type { let type: Type; if (node.kind === SyntaxKind.QualifiedName) { type = checkQualifiedName(node); } else { let uninstantiatedType = checkExpressionWorker(node, contextualMapper); type = instantiateTypeWithSingleGenericCallSignature(node, uninstantiatedType, contextualMapper); } if (isConstEnumObjectType(type)) { // enum object type for const enums are only permitted in: // - 'left' in property access // - 'object' in indexed access // - target in rhs of import statement let ok = (node.parent.kind === SyntaxKind.PropertyAccessExpression && (node.parent).expression === node) || (node.parent.kind === SyntaxKind.ElementAccessExpression && (node.parent).expression === node) || ((node.kind === SyntaxKind.Identifier || node.kind === SyntaxKind.QualifiedName) && isInRightSideOfImportOrExportAssignment(node)); if (!ok) { error(node, Diagnostics.const_enums_can_only_be_used_in_property_or_index_access_expressions_or_the_right_hand_side_of_an_import_declaration_or_export_assignment); } } return type; } function checkNumericLiteral(node: LiteralExpression): Type { // Grammar checking checkGrammarNumericLiteral(node); return numberType; } function checkExpressionWorker(node: Expression, contextualMapper: TypeMapper): Type { switch (node.kind) { case SyntaxKind.Identifier: return checkIdentifier(node); case SyntaxKind.ThisKeyword: return checkThisExpression(node); case SyntaxKind.SuperKeyword: return checkSuperExpression(node); case SyntaxKind.NullKeyword: return nullType; case SyntaxKind.TrueKeyword: case SyntaxKind.FalseKeyword: return booleanType; case SyntaxKind.NumericLiteral: return checkNumericLiteral(node); case SyntaxKind.TemplateExpression: return checkTemplateExpression(node); case SyntaxKind.StringLiteral: case SyntaxKind.NoSubstitutionTemplateLiteral: return stringType; case SyntaxKind.RegularExpressionLiteral: return globalRegExpType; case SyntaxKind.ArrayLiteralExpression: return checkArrayLiteral(node, contextualMapper); case SyntaxKind.ObjectLiteralExpression: return checkObjectLiteral(node, contextualMapper); case SyntaxKind.PropertyAccessExpression: return checkPropertyAccessExpression(node); case SyntaxKind.ElementAccessExpression: return checkIndexedAccess(node); case SyntaxKind.CallExpression: case SyntaxKind.NewExpression: return checkCallExpression(node); case SyntaxKind.TaggedTemplateExpression: return checkTaggedTemplateExpression(node); case SyntaxKind.ParenthesizedExpression: return checkExpression((node).expression, contextualMapper); case SyntaxKind.ClassExpression: return checkClassExpression(node); case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return checkFunctionExpressionOrObjectLiteralMethod(node, contextualMapper); case SyntaxKind.TypeOfExpression: return checkTypeOfExpression(node); case SyntaxKind.TypeAssertionExpression: case SyntaxKind.AsExpression: return checkAssertion(node); case SyntaxKind.DeleteExpression: return checkDeleteExpression(node); case SyntaxKind.VoidExpression: return checkVoidExpression(node); case SyntaxKind.AwaitExpression: return checkAwaitExpression(node); case SyntaxKind.PrefixUnaryExpression: return checkPrefixUnaryExpression(node); case SyntaxKind.PostfixUnaryExpression: return checkPostfixUnaryExpression(node); case SyntaxKind.BinaryExpression: return checkBinaryExpression(node, contextualMapper); case SyntaxKind.ConditionalExpression: return checkConditionalExpression(node, contextualMapper); case SyntaxKind.SpreadElementExpression: return checkSpreadElementExpression(node, contextualMapper); case SyntaxKind.OmittedExpression: return undefinedType; case SyntaxKind.YieldExpression: return checkYieldExpression(node); case SyntaxKind.JsxExpression: return checkJsxExpression(node); case SyntaxKind.JsxElement: return checkJsxElement(node); case SyntaxKind.JsxSelfClosingElement: return checkJsxSelfClosingElement(node); case SyntaxKind.JsxOpeningElement: Debug.fail("Shouldn't ever directly check a JsxOpeningElement"); } return unknownType; } // DECLARATION AND STATEMENT TYPE CHECKING function checkTypeParameter(node: TypeParameterDeclaration) { // Grammar Checking if (node.expression) { grammarErrorOnFirstToken(node.expression, Diagnostics.Type_expected); } checkSourceElement(node.constraint); if (produceDiagnostics) { checkTypeParameterHasIllegalReferencesInConstraint(node); checkTypeNameIsReserved(node.name, Diagnostics.Type_parameter_name_cannot_be_0); } // TODO: Check multiple declarations are identical } function checkParameter(node: ParameterDeclaration) { // Grammar checking // It is a SyntaxError if the Identifier "eval" or the Identifier "arguments" occurs as the // Identifier in a PropertySetParameterList of a PropertyAssignment that is contained in strict code // or if its FunctionBody is strict code(11.1.5). // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node); checkVariableLikeDeclaration(node); let func = getContainingFunction(node); if (node.flags & NodeFlags.AccessibilityModifier) { func = getContainingFunction(node); if (!(func.kind === SyntaxKind.Constructor && nodeIsPresent(func.body))) { error(node, Diagnostics.A_parameter_property_is_only_allowed_in_a_constructor_implementation); } } if (node.questionToken && isBindingPattern(node.name) && func.body) { error(node, Diagnostics.A_binding_pattern_parameter_cannot_be_optional_in_an_implementation_signature); } // Only check rest parameter type if it's not a binding pattern. Since binding patterns are // not allowed in a rest parameter, we already have an error from checkGrammarParameterList. if (node.dotDotDotToken && !isBindingPattern(node.name) && !isArrayType(getTypeOfSymbol(node.symbol))) { error(node, Diagnostics.A_rest_parameter_must_be_of_an_array_type); } } function isSyntacticallyValidGenerator(node: SignatureDeclaration): boolean { if (!(node).asteriskToken || !(node).body) { return false; } return node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.FunctionExpression; } function getTypePredicateParameterIndex(parameterList: NodeArray, parameter: Identifier): number { if (parameterList) { for (let i = 0; i < parameterList.length; i++) { let param = parameterList[i]; if (param.name.kind === SyntaxKind.Identifier && (param.name).text === parameter.text) { return i; } } } return -1; } function isInLegalTypePredicatePosition(node: Node): boolean { switch (node.parent.kind) { case SyntaxKind.ArrowFunction: case SyntaxKind.CallSignature: case SyntaxKind.FunctionDeclaration: case SyntaxKind.FunctionExpression: case SyntaxKind.FunctionType: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: return node === (node.parent).type; } return false; } function checkSignatureDeclaration(node: SignatureDeclaration) { // Grammar checking if (node.kind === SyntaxKind.IndexSignature) { checkGrammarIndexSignature(node); } // TODO (yuisu): Remove this check in else-if when SyntaxKind.Construct is moved and ambient context is handled else if (node.kind === SyntaxKind.FunctionType || node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.ConstructorType || node.kind === SyntaxKind.CallSignature || node.kind === SyntaxKind.Constructor || node.kind === SyntaxKind.ConstructSignature) { checkGrammarFunctionLikeDeclaration(node); } checkTypeParameters(node.typeParameters); forEach(node.parameters, checkParameter); if (node.type) { if (node.type.kind === SyntaxKind.TypePredicate) { let typePredicate = getSignatureFromDeclaration(node).typePredicate; let typePredicateNode = node.type; if (isInLegalTypePredicatePosition(typePredicateNode)) { if (typePredicate.parameterIndex >= 0) { if (node.parameters[typePredicate.parameterIndex].dotDotDotToken) { error(typePredicateNode.parameterName, Diagnostics.A_type_predicate_cannot_reference_a_rest_parameter); } else { checkTypeAssignableTo(typePredicate.type, getTypeAtLocation(node.parameters[typePredicate.parameterIndex]), typePredicateNode.type); } } else if (typePredicateNode.parameterName) { let hasReportedError = false; for (var param of node.parameters) { if (hasReportedError) { break; } if (param.name.kind === SyntaxKind.ObjectBindingPattern || param.name.kind === SyntaxKind.ArrayBindingPattern) { (function checkBindingPattern(pattern: BindingPattern) { for (let element of pattern.elements) { if (element.name.kind === SyntaxKind.Identifier && (element.name).text === typePredicate.parameterName) { error(typePredicateNode.parameterName, Diagnostics.A_type_predicate_cannot_reference_element_0_in_a_binding_pattern, typePredicate.parameterName); hasReportedError = true; break; } else if (element.name.kind === SyntaxKind.ArrayBindingPattern || element.name.kind === SyntaxKind.ObjectBindingPattern) { checkBindingPattern(element.name); } } })(param.name); } } if (!hasReportedError) { error(typePredicateNode.parameterName, Diagnostics.Cannot_find_parameter_0, typePredicate.parameterName); } } } else { error(typePredicateNode, Diagnostics.A_type_predicate_is_only_allowed_in_return_type_position_for_functions_and_methods); } } else { checkSourceElement(node.type); } } if (produceDiagnostics) { checkCollisionWithArgumentsInGeneratedCode(node); if (compilerOptions.noImplicitAny && !node.type) { switch (node.kind) { case SyntaxKind.ConstructSignature: error(node, Diagnostics.Construct_signature_which_lacks_return_type_annotation_implicitly_has_an_any_return_type); break; case SyntaxKind.CallSignature: error(node, Diagnostics.Call_signature_which_lacks_return_type_annotation_implicitly_has_an_any_return_type); break; } } if (node.type) { if (languageVersion >= ScriptTarget.ES6 && isSyntacticallyValidGenerator(node)) { let returnType = getTypeFromTypeNode(node.type); if (returnType === voidType) { error(node.type, Diagnostics.A_generator_cannot_have_a_void_type_annotation); } else { let generatorElementType = getElementTypeOfIterableIterator(returnType) || anyType; let iterableIteratorInstantiation = createIterableIteratorType(generatorElementType); // Naively, one could check that IterableIterator is assignable to the return type annotation. // However, that would not catch the error in the following case. // // interface BadGenerator extends Iterable, Iterator { } // function* g(): BadGenerator { } // Iterable and Iterator have different types! // checkTypeAssignableTo(iterableIteratorInstantiation, returnType, node.type); } } } } checkSpecializedSignatureDeclaration(node); } function checkTypeForDuplicateIndexSignatures(node: Node) { if (node.kind === SyntaxKind.InterfaceDeclaration) { let nodeSymbol = getSymbolOfNode(node); // in case of merging interface declaration it is possible that we'll enter this check procedure several times for every declaration // to prevent this run check only for the first declaration of a given kind if (nodeSymbol.declarations.length > 0 && nodeSymbol.declarations[0] !== node) { return; } } // TypeScript 1.0 spec (April 2014) // 3.7.4: An object type can contain at most one string index signature and one numeric index signature. // 8.5: A class declaration can have at most one string index member declaration and one numeric index member declaration let indexSymbol = getIndexSymbol(getSymbolOfNode(node)); if (indexSymbol) { let seenNumericIndexer = false; let seenStringIndexer = false; for (let decl of indexSymbol.declarations) { let declaration = decl; if (declaration.parameters.length === 1 && declaration.parameters[0].type) { switch (declaration.parameters[0].type.kind) { case SyntaxKind.StringKeyword: if (!seenStringIndexer) { seenStringIndexer = true; } else { error(declaration, Diagnostics.Duplicate_string_index_signature); } break; case SyntaxKind.NumberKeyword: if (!seenNumericIndexer) { seenNumericIndexer = true; } else { error(declaration, Diagnostics.Duplicate_number_index_signature); } break; } } } } } function checkPropertyDeclaration(node: PropertyDeclaration) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarProperty(node) || checkGrammarComputedPropertyName(node.name); checkVariableLikeDeclaration(node); } function checkMethodDeclaration(node: MethodDeclaration) { // Grammar checking checkGrammarMethod(node) || checkGrammarComputedPropertyName(node.name); // Grammar checking for modifiers is done inside the function checkGrammarFunctionLikeDeclaration checkFunctionLikeDeclaration(node); // Abstract methods cannot have an implementation. // Extra checks are to avoid reporting multiple errors relating to the "abstractness" of the node. if (node.flags & NodeFlags.Abstract && node.body) { error(node, Diagnostics.Method_0_cannot_have_an_implementation_because_it_is_marked_abstract, declarationNameToString(node.name)); } } function checkConstructorDeclaration(node: ConstructorDeclaration) { // Grammar check on signature of constructor and modifier of the constructor is done in checkSignatureDeclaration function. checkSignatureDeclaration(node); // Grammar check for checking only related to constructoDeclaration checkGrammarConstructorTypeParameters(node) || checkGrammarConstructorTypeAnnotation(node); checkSourceElement(node.body); let symbol = getSymbolOfNode(node); let firstDeclaration = getDeclarationOfKind(symbol, node.kind); // Only type check the symbol once if (node === firstDeclaration) { checkFunctionOrConstructorSymbol(symbol); } // exit early in the case of signature - super checks are not relevant to them if (nodeIsMissing(node.body)) { return; } if (!produceDiagnostics) { return; } function isSuperCallExpression(n: Node): boolean { return n.kind === SyntaxKind.CallExpression && (n).expression.kind === SyntaxKind.SuperKeyword; } function containsSuperCall(n: Node): boolean { if (isSuperCallExpression(n)) { return true; } switch (n.kind) { case SyntaxKind.FunctionExpression: case SyntaxKind.FunctionDeclaration: case SyntaxKind.ArrowFunction: case SyntaxKind.ObjectLiteralExpression: return false; default: return forEachChild(n, containsSuperCall); } } function markThisReferencesAsErrors(n: Node): void { if (n.kind === SyntaxKind.ThisKeyword) { error(n, Diagnostics.this_cannot_be_referenced_in_current_location); } else if (n.kind !== SyntaxKind.FunctionExpression && n.kind !== SyntaxKind.FunctionDeclaration) { forEachChild(n, markThisReferencesAsErrors); } } function isInstancePropertyWithInitializer(n: Node): boolean { return n.kind === SyntaxKind.PropertyDeclaration && !(n.flags & NodeFlags.Static) && !!(n).initializer; } // TS 1.0 spec (April 2014): 8.3.2 // Constructors of classes with no extends clause may not contain super calls, whereas // constructors of derived classes must contain at least one super call somewhere in their function body. if (getClassExtendsHeritageClauseElement(node.parent)) { if (containsSuperCall(node.body)) { // The first statement in the body of a constructor must be a super call if both of the following are true: // - The containing class is a derived class. // - The constructor declares parameter properties // or the containing class declares instance member variables with initializers. let superCallShouldBeFirst = forEach((node.parent).members, isInstancePropertyWithInitializer) || forEach(node.parameters, p => p.flags & (NodeFlags.Public | NodeFlags.Private | NodeFlags.Protected)); if (superCallShouldBeFirst) { let statements = (node.body).statements; if (!statements.length || statements[0].kind !== SyntaxKind.ExpressionStatement || !isSuperCallExpression((statements[0]).expression)) { error(node, Diagnostics.A_super_call_must_be_the_first_statement_in_the_constructor_when_a_class_contains_initialized_properties_or_has_parameter_properties); } else { // In such a required super call, it is a compile-time error for argument expressions to reference this. markThisReferencesAsErrors((statements[0]).expression); } } } else { error(node, Diagnostics.Constructors_for_derived_classes_must_contain_a_super_call); } } } function checkAccessorDeclaration(node: AccessorDeclaration) { if (produceDiagnostics) { // Grammar checking accessors checkGrammarFunctionLikeDeclaration(node) || checkGrammarAccessor(node) || checkGrammarComputedPropertyName(node.name); if (node.kind === SyntaxKind.GetAccessor) { if (!isInAmbientContext(node) && nodeIsPresent(node.body) && !(bodyContainsAReturnStatement(node.body) || bodyContainsSingleThrowStatement(node.body))) { error(node.name, Diagnostics.A_get_accessor_must_return_a_value_or_consist_of_a_single_throw_statement); } } if (!hasDynamicName(node)) { // TypeScript 1.0 spec (April 2014): 8.4.3 // Accessors for the same member name must specify the same accessibility. let otherKind = node.kind === SyntaxKind.GetAccessor ? SyntaxKind.SetAccessor : SyntaxKind.GetAccessor; let otherAccessor = getDeclarationOfKind(node.symbol, otherKind); if (otherAccessor) { if (((node.flags & NodeFlags.AccessibilityModifier) !== (otherAccessor.flags & NodeFlags.AccessibilityModifier))) { error(node.name, Diagnostics.Getter_and_setter_accessors_do_not_agree_in_visibility); } let currentAccessorType = getAnnotatedAccessorType(node); let otherAccessorType = getAnnotatedAccessorType(otherAccessor); // TypeScript 1.0 spec (April 2014): 4.5 // If both accessors include type annotations, the specified types must be identical. if (currentAccessorType && otherAccessorType) { if (!isTypeIdenticalTo(currentAccessorType, otherAccessorType)) { error(node, Diagnostics.get_and_set_accessor_must_have_the_same_type); } } } } getTypeOfAccessors(getSymbolOfNode(node)); } checkFunctionLikeDeclaration(node); } function checkMissingDeclaration(node: Node) { checkDecorators(node); } function checkTypeArgumentConstraints(typeParameters: TypeParameter[], typeArguments: TypeNode[]): boolean { let result = true; for (let i = 0; i < typeParameters.length; i++) { let constraint = getConstraintOfTypeParameter(typeParameters[i]); if (constraint) { let typeArgument = typeArguments[i]; result = result && checkTypeAssignableTo(getTypeFromTypeNode(typeArgument), constraint, typeArgument, Diagnostics.Type_0_does_not_satisfy_the_constraint_1); } } return result; } function checkTypeReferenceNode(node: TypeReferenceNode | ExpressionWithTypeArguments) { checkGrammarTypeArguments(node, node.typeArguments); let type = getTypeFromTypeReference(node); if (type !== unknownType && node.typeArguments) { // Do type argument local checks only if referenced type is successfully resolved forEach(node.typeArguments, checkSourceElement); if (produceDiagnostics) { let symbol = getNodeLinks(node).resolvedSymbol; let typeParameters = symbol.flags & SymbolFlags.TypeAlias ? getSymbolLinks(symbol).typeParameters : (type).target.localTypeParameters; checkTypeArgumentConstraints(typeParameters, node.typeArguments); } } } function checkTypeQuery(node: TypeQueryNode) { getTypeFromTypeQueryNode(node); } function checkTypeLiteral(node: TypeLiteralNode) { forEach(node.members, checkSourceElement); if (produceDiagnostics) { let type = getTypeFromTypeLiteralOrFunctionOrConstructorTypeNode(node); checkIndexConstraints(type); checkTypeForDuplicateIndexSignatures(node); } } function checkArrayType(node: ArrayTypeNode) { checkSourceElement(node.elementType); } function checkTupleType(node: TupleTypeNode) { // Grammar checking let hasErrorFromDisallowedTrailingComma = checkGrammarForDisallowedTrailingComma(node.elementTypes); if (!hasErrorFromDisallowedTrailingComma && node.elementTypes.length === 0) { grammarErrorOnNode(node, Diagnostics.A_tuple_type_element_list_cannot_be_empty); } forEach(node.elementTypes, checkSourceElement); } function checkUnionOrIntersectionType(node: UnionOrIntersectionTypeNode) { forEach(node.types, checkSourceElement); } function isPrivateWithinAmbient(node: Node): boolean { return (node.flags & NodeFlags.Private) && isInAmbientContext(node); } function checkSpecializedSignatureDeclaration(signatureDeclarationNode: SignatureDeclaration): void { if (!produceDiagnostics) { return; } let signature = getSignatureFromDeclaration(signatureDeclarationNode); if (!signature.hasStringLiterals) { return; } // TypeScript 1.0 spec (April 2014): 3.7.2.2 // Specialized signatures are not permitted in conjunction with a function body if (nodeIsPresent((signatureDeclarationNode).body)) { error(signatureDeclarationNode, Diagnostics.A_signature_with_an_implementation_cannot_use_a_string_literal_type); return; } // TypeScript 1.0 spec (April 2014): 3.7.2.4 // Every specialized call or construct signature in an object type must be assignable // to at least one non-specialized call or construct signature in the same object type let signaturesToCheck: Signature[]; // Unnamed (call\construct) signatures in interfaces are inherited and not shadowed so examining just node symbol won't give complete answer. // Use declaring type to obtain full list of signatures. if (!signatureDeclarationNode.name && signatureDeclarationNode.parent && signatureDeclarationNode.parent.kind === SyntaxKind.InterfaceDeclaration) { Debug.assert(signatureDeclarationNode.kind === SyntaxKind.CallSignature || signatureDeclarationNode.kind === SyntaxKind.ConstructSignature); let signatureKind = signatureDeclarationNode.kind === SyntaxKind.CallSignature ? SignatureKind.Call : SignatureKind.Construct; let containingSymbol = getSymbolOfNode(signatureDeclarationNode.parent); let containingType = getDeclaredTypeOfSymbol(containingSymbol); signaturesToCheck = getSignaturesOfType(containingType, signatureKind); } else { signaturesToCheck = getSignaturesOfSymbol(getSymbolOfNode(signatureDeclarationNode)); } for (let otherSignature of signaturesToCheck) { if (!otherSignature.hasStringLiterals && isSignatureAssignableTo(signature, otherSignature)) { return; } } error(signatureDeclarationNode, Diagnostics.Specialized_overload_signature_is_not_assignable_to_any_non_specialized_signature); } function getEffectiveDeclarationFlags(n: Node, flagsToCheck: NodeFlags): NodeFlags { let flags = getCombinedNodeFlags(n); if (n.parent.kind !== SyntaxKind.InterfaceDeclaration && isInAmbientContext(n)) { if (!(flags & NodeFlags.Ambient)) { // It is nested in an ambient context, which means it is automatically exported flags |= NodeFlags.Export; } flags |= NodeFlags.Ambient; } return flags & flagsToCheck; } function checkFunctionOrConstructorSymbol(symbol: Symbol): void { if (!produceDiagnostics) { return; } function getCanonicalOverload(overloads: Declaration[], implementation: FunctionLikeDeclaration) { // Consider the canonical set of flags to be the flags of the bodyDeclaration or the first declaration // Error on all deviations from this canonical set of flags // The caveat is that if some overloads are defined in lib.d.ts, we don't want to // report the errors on those. To achieve this, we will say that the implementation is // the canonical signature only if it is in the same container as the first overload let implementationSharesContainerWithFirstOverload = implementation !== undefined && implementation.parent === overloads[0].parent; return implementationSharesContainerWithFirstOverload ? implementation : overloads[0]; } function checkFlagAgreementBetweenOverloads(overloads: Declaration[], implementation: FunctionLikeDeclaration, flagsToCheck: NodeFlags, someOverloadFlags: NodeFlags, allOverloadFlags: NodeFlags): void { // Error if some overloads have a flag that is not shared by all overloads. To find the // deviations, we XOR someOverloadFlags with allOverloadFlags let someButNotAllOverloadFlags = someOverloadFlags ^ allOverloadFlags; if (someButNotAllOverloadFlags !== 0) { let canonicalFlags = getEffectiveDeclarationFlags(getCanonicalOverload(overloads, implementation), flagsToCheck); forEach(overloads, o => { let deviation = getEffectiveDeclarationFlags(o, flagsToCheck) ^ canonicalFlags; if (deviation & NodeFlags.Export) { error(o.name, Diagnostics.Overload_signatures_must_all_be_exported_or_not_exported); } else if (deviation & NodeFlags.Ambient) { error(o.name, Diagnostics.Overload_signatures_must_all_be_ambient_or_non_ambient); } else if (deviation & (NodeFlags.Private | NodeFlags.Protected)) { error(o.name, Diagnostics.Overload_signatures_must_all_be_public_private_or_protected); } else if (deviation & NodeFlags.Abstract) { error(o.name, Diagnostics.Overload_signatures_must_all_be_abstract_or_not_abstract); } }); } } function checkQuestionTokenAgreementBetweenOverloads(overloads: Declaration[], implementation: FunctionLikeDeclaration, someHaveQuestionToken: boolean, allHaveQuestionToken: boolean): void { if (someHaveQuestionToken !== allHaveQuestionToken) { let canonicalHasQuestionToken = hasQuestionToken(getCanonicalOverload(overloads, implementation)); forEach(overloads, o => { let deviation = hasQuestionToken(o) !== canonicalHasQuestionToken; if (deviation) { error(o.name, Diagnostics.Overload_signatures_must_all_be_optional_or_required); } }); } } let flagsToCheck: NodeFlags = NodeFlags.Export | NodeFlags.Ambient | NodeFlags.Private | NodeFlags.Protected | NodeFlags.Abstract; let someNodeFlags: NodeFlags = 0; let allNodeFlags = flagsToCheck; let someHaveQuestionToken = false; let allHaveQuestionToken = true; let hasOverloads = false; let bodyDeclaration: FunctionLikeDeclaration; let lastSeenNonAmbientDeclaration: FunctionLikeDeclaration; let previousDeclaration: FunctionLikeDeclaration; let declarations = symbol.declarations; let isConstructor = (symbol.flags & SymbolFlags.Constructor) !== 0; function reportImplementationExpectedError(node: FunctionLikeDeclaration): void { if (node.name && nodeIsMissing(node.name)) { return; } let seen = false; let subsequentNode = forEachChild(node.parent, c => { if (seen) { return c; } else { seen = c === node; } }); if (subsequentNode) { if (subsequentNode.kind === node.kind) { let errorNode: Node = (subsequentNode).name || subsequentNode; // TODO(jfreeman): These are methods, so handle computed name case if (node.name && (subsequentNode).name && (node.name).text === ((subsequentNode).name).text) { // the only situation when this is possible (same kind\same name but different symbol) - mixed static and instance class members Debug.assert(node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.MethodSignature); Debug.assert((node.flags & NodeFlags.Static) !== (subsequentNode.flags & NodeFlags.Static)); let diagnostic = node.flags & NodeFlags.Static ? Diagnostics.Function_overload_must_be_static : Diagnostics.Function_overload_must_not_be_static; error(errorNode, diagnostic); return; } else if (nodeIsPresent((subsequentNode).body)) { error(errorNode, Diagnostics.Function_implementation_name_must_be_0, declarationNameToString(node.name)); return; } } } let errorNode: Node = node.name || node; if (isConstructor) { error(errorNode, Diagnostics.Constructor_implementation_is_missing); } else { // Report different errors regarding non-consecutive blocks of declarations depending on whether // the node in question is abstract. if (node.flags & NodeFlags.Abstract) { error(errorNode, Diagnostics.All_declarations_of_an_abstract_method_must_be_consecutive); } else { error(errorNode, Diagnostics.Function_implementation_is_missing_or_not_immediately_following_the_declaration); } } } // when checking exported function declarations across modules check only duplicate implementations // names and consistency of modifiers are verified when we check local symbol let isExportSymbolInsideModule = symbol.parent && symbol.parent.flags & SymbolFlags.Module; let duplicateFunctionDeclaration = false; let multipleConstructorImplementation = false; for (let current of declarations) { let node = current; let inAmbientContext = isInAmbientContext(node); let inAmbientContextOrInterface = node.parent.kind === SyntaxKind.InterfaceDeclaration || node.parent.kind === SyntaxKind.TypeLiteral || inAmbientContext; if (inAmbientContextOrInterface) { // check if declarations are consecutive only if they are non-ambient // 1. ambient declarations can be interleaved // i.e. this is legal // declare function foo(); // declare function bar(); // declare function foo(); // 2. mixing ambient and non-ambient declarations is a separate error that will be reported - do not want to report an extra one previousDeclaration = undefined; } if (node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.MethodSignature || node.kind === SyntaxKind.Constructor) { let currentNodeFlags = getEffectiveDeclarationFlags(node, flagsToCheck); someNodeFlags |= currentNodeFlags; allNodeFlags &= currentNodeFlags; someHaveQuestionToken = someHaveQuestionToken || hasQuestionToken(node); allHaveQuestionToken = allHaveQuestionToken && hasQuestionToken(node); if (nodeIsPresent(node.body) && bodyDeclaration) { if (isConstructor) { multipleConstructorImplementation = true; } else { duplicateFunctionDeclaration = true; } } else if (!isExportSymbolInsideModule && previousDeclaration && previousDeclaration.parent === node.parent && previousDeclaration.end !== node.pos) { reportImplementationExpectedError(previousDeclaration); } if (nodeIsPresent(node.body)) { if (!bodyDeclaration) { bodyDeclaration = node; } } else { hasOverloads = true; } previousDeclaration = node; if (!inAmbientContextOrInterface) { lastSeenNonAmbientDeclaration = node; } } } if (multipleConstructorImplementation) { forEach(declarations, declaration => { error(declaration, Diagnostics.Multiple_constructor_implementations_are_not_allowed); }); } if (duplicateFunctionDeclaration) { forEach(declarations, declaration => { error(declaration.name, Diagnostics.Duplicate_function_implementation); }); } // Abstract methods can't have an implementation -- in particular, they don't need one. if (!isExportSymbolInsideModule && lastSeenNonAmbientDeclaration && !lastSeenNonAmbientDeclaration.body && !(lastSeenNonAmbientDeclaration.flags & NodeFlags.Abstract) ) { reportImplementationExpectedError(lastSeenNonAmbientDeclaration); } if (hasOverloads) { checkFlagAgreementBetweenOverloads(declarations, bodyDeclaration, flagsToCheck, someNodeFlags, allNodeFlags); checkQuestionTokenAgreementBetweenOverloads(declarations, bodyDeclaration, someHaveQuestionToken, allHaveQuestionToken); if (bodyDeclaration) { let signatures = getSignaturesOfSymbol(symbol); let bodySignature = getSignatureFromDeclaration(bodyDeclaration); // If the implementation signature has string literals, we will have reported an error in // checkSpecializedSignatureDeclaration if (!bodySignature.hasStringLiterals) { // TypeScript 1.0 spec (April 2014): 6.1 // If a function declaration includes overloads, the overloads determine the call // signatures of the type given to the function object // and the function implementation signature must be assignable to that type // // TypeScript 1.0 spec (April 2014): 3.8.4 // Note that specialized call and construct signatures (section 3.7.2.4) are not significant when determining assignment compatibility // Consider checking against specialized signatures too. Not doing so creates a type hole: // // function g(x: "hi", y: boolean); // function g(x: string, y: {}); // function g(x: string, y: string) { } // // The implementation is completely unrelated to the specialized signature, yet we do not check this. for (let signature of signatures) { if (!signature.hasStringLiterals && !isSignatureAssignableTo(bodySignature, signature)) { error(signature.declaration, Diagnostics.Overload_signature_is_not_compatible_with_function_implementation); break; } } } } } } function checkExportsOnMergedDeclarations(node: Node): void { if (!produceDiagnostics) { return; } // Exports should be checked only if enclosing module contains both exported and non exported declarations. // In case if all declarations are non-exported check is unnecessary. // if localSymbol is defined on node then node itself is exported - check is required let symbol = node.localSymbol; if (!symbol) { // local symbol is undefined => this declaration is non-exported. // however symbol might contain other declarations that are exported symbol = getSymbolOfNode(node); if (!(symbol.flags & SymbolFlags.Export)) { // this is a pure local symbol (all declarations are non-exported) - no need to check anything return; } } // run the check only for the first declaration in the list if (getDeclarationOfKind(symbol, node.kind) !== node) { return; } // we use SymbolFlags.ExportValue, SymbolFlags.ExportType and SymbolFlags.ExportNamespace // to denote disjoint declarationSpaces (without making new enum type). let exportedDeclarationSpaces: SymbolFlags = 0; let nonExportedDeclarationSpaces: SymbolFlags = 0; forEach(symbol.declarations, d => { let declarationSpaces = getDeclarationSpaces(d); if (getEffectiveDeclarationFlags(d, NodeFlags.Export)) { exportedDeclarationSpaces |= declarationSpaces; } else { nonExportedDeclarationSpaces |= declarationSpaces; } }); let commonDeclarationSpace = exportedDeclarationSpaces & nonExportedDeclarationSpaces; if (commonDeclarationSpace) { // declaration spaces for exported and non-exported declarations intersect forEach(symbol.declarations, d => { if (getDeclarationSpaces(d) & commonDeclarationSpace) { error(d.name, Diagnostics.Individual_declarations_in_merged_declaration_0_must_be_all_exported_or_all_local, declarationNameToString(d.name)); } }); } function getDeclarationSpaces(d: Declaration): SymbolFlags { switch (d.kind) { case SyntaxKind.InterfaceDeclaration: return SymbolFlags.ExportType; case SyntaxKind.ModuleDeclaration: return (d).name.kind === SyntaxKind.StringLiteral || getModuleInstanceState(d) !== ModuleInstanceState.NonInstantiated ? SymbolFlags.ExportNamespace | SymbolFlags.ExportValue : SymbolFlags.ExportNamespace; case SyntaxKind.ClassDeclaration: case SyntaxKind.EnumDeclaration: return SymbolFlags.ExportType | SymbolFlags.ExportValue; case SyntaxKind.ImportEqualsDeclaration: let result: SymbolFlags = 0; let target = resolveAlias(getSymbolOfNode(d)); forEach(target.declarations, d => { result |= getDeclarationSpaces(d); }); return result; default: return SymbolFlags.ExportValue; } } } function checkNonThenableType(type: Type, location?: Node, message?: DiagnosticMessage) { if (!(type.flags & TypeFlags.Any) && isTypeAssignableTo(type, getGlobalThenableType())) { if (location) { if (!message) { message = Diagnostics.Operand_for_await_does_not_have_a_valid_callable_then_member; } error(location, message); } return unknownType; } return type; } /** * Gets the "promised type" of a promise. * @param type The type of the promise. * @remarks The "promised type" of a type is the type of the "value" parameter of the "onfulfilled" callback. */ function getPromisedType(promise: Type): Type { // // { // promise // then( // thenFunction // onfulfilled: ( // onfulfilledParameterType // value: T // valueParameterType // ) => any // ): any; // } // if (promise.flags & TypeFlags.Any) { return undefined; } if ((promise.flags & TypeFlags.Reference) && (promise).target === tryGetGlobalPromiseType()) { return (promise).typeArguments[0]; } let globalPromiseLikeType = getInstantiatedGlobalPromiseLikeType(); if (globalPromiseLikeType === emptyObjectType || !isTypeAssignableTo(promise, globalPromiseLikeType)) { return undefined; } let thenFunction = getTypeOfPropertyOfType(promise, "then"); if (thenFunction && (thenFunction.flags & TypeFlags.Any)) { return undefined; } let thenSignatures = thenFunction ? getSignaturesOfType(thenFunction, SignatureKind.Call) : emptyArray; if (thenSignatures.length === 0) { return undefined; } let onfulfilledParameterType = getUnionType(map(thenSignatures, getTypeOfFirstParameterOfSignature)); if (onfulfilledParameterType.flags & TypeFlags.Any) { return undefined; } let onfulfilledParameterSignatures = getSignaturesOfType(onfulfilledParameterType, SignatureKind.Call); if (onfulfilledParameterSignatures.length === 0) { return undefined; } let valueParameterType = getUnionType(map(onfulfilledParameterSignatures, getTypeOfFirstParameterOfSignature)); return valueParameterType; } function getTypeOfFirstParameterOfSignature(signature: Signature) { return getTypeAtPosition(signature, 0); } /** * Gets the "awaited type" of a type. * @param type The type to await. * @remarks The "awaited type" of an expression is its "promised type" if the expression is a * Promise-like type; otherwise, it is the type of the expression. This is used to reflect * The runtime behavior of the `await` keyword. */ function getAwaitedType(type: Type) { return checkAwaitedType(type, /*location*/ undefined, /*message*/ undefined); } function checkAwaitedType(type: Type, location?: Node, message?: DiagnosticMessage) { return checkAwaitedTypeWorker(type); function checkAwaitedTypeWorker(type: Type): Type { if (type.flags & TypeFlags.Union) { let types: Type[] = []; for (let constituentType of (type).types) { types.push(checkAwaitedTypeWorker(constituentType)); } return getUnionType(types); } else { let promisedType = getPromisedType(type); if (promisedType === undefined) { // The type was not a PromiseLike, so it could not be unwrapped any further. // As long as the type does not have a callable "then" property, it is // safe to return the type; otherwise, an error will have been reported in // the call to checkNonThenableType and we will return unknownType. // // An example of a non-promise "thenable" might be: // // await { then(): void {} } // // The "thenable" does not match the minimal definition for a PromiseLike. When // a Promise/A+-compatible or ES6 promise tries to adopt this value, the promise // will never settle. We treat this as an error to help flag an early indicator // of a runtime problem. If the user wants to return this value from an async // function, they would need to wrap it in some other value. If they want it to // be treated as a promise, they can cast to . return checkNonThenableType(type, location, message); } else { if (type.id === promisedType.id || awaitedTypeStack.indexOf(promisedType.id) >= 0) { // We have a bad actor in the form of a promise whose promised type is // the same promise type, or a mutually recursive promise. Return the // unknown type as we cannot guess the shape. If this were the actual // case in the JavaScript, this Promise would never resolve. // // An example of a bad actor with a singly-recursive promise type might // be: // // interface BadPromise { // then( // onfulfilled: (value: BadPromise) => any, // onrejected: (error: any) => any): BadPromise; // } // // The above interface will pass the PromiseLike check, and return a // promised type of `BadPromise`. Since this is a self reference, we // don't want to keep recursing ad infinitum. // // An example of a bad actor in the form of a mutually-recursive // promise type might be: // // interface BadPromiseA { // then( // onfulfilled: (value: BadPromiseB) => any, // onrejected: (error: any) => any): BadPromiseB; // } // // interface BadPromiseB { // then( // onfulfilled: (value: BadPromiseA) => any, // onrejected: (error: any) => any): BadPromiseA; // } // if (location) { error( location, Diagnostics._0_is_referenced_directly_or_indirectly_in_the_fulfillment_callback_of_its_own_then_method, symbolToString(type.symbol)); } return unknownType; } // Keep track of the type we're about to unwrap to avoid bad recursive promise types. // See the comments above for more information. awaitedTypeStack.push(type.id); let awaitedType = checkAwaitedTypeWorker(promisedType); awaitedTypeStack.pop(); return awaitedType; } } } } /** * Checks the return type of an async function to ensure it is a compatible * Promise implementation. * @param node The signature to check * @param returnType The return type for the function * @remarks * This checks that an async function has a valid Promise-compatible return type, * and returns the *awaited type* of the promise. An async function has a valid * Promise-compatible return type if the resolved value of the return type has a * construct signature that takes in an `initializer` function that in turn supplies * a `resolve` function as one of its arguments and results in an object with a * callable `then` signature. */ function checkAsyncFunctionReturnType(node: FunctionLikeDeclaration): Type { let globalPromiseConstructorLikeType = getGlobalPromiseConstructorLikeType(); if (globalPromiseConstructorLikeType === emptyObjectType) { // If we couldn't resolve the global PromiseConstructorLike type we cannot verify // compatibility with __awaiter. return unknownType; } // As part of our emit for an async function, we will need to emit the entity name of // the return type annotation as an expression. To meet the necessary runtime semantics // for __awaiter, we must also check that the type of the declaration (e.g. the static // side or "constructor" of the promise type) is compatible `PromiseConstructorLike`. // // An example might be (from lib.es6.d.ts): // // interface Promise { ... } // interface PromiseConstructor { // new (...): Promise; // } // declare var Promise: PromiseConstructor; // // When an async function declares a return type annotation of `Promise`, we // need to get the type of the `Promise` variable declaration above, which would // be `PromiseConstructor`. // // The same case applies to a class: // // declare class Promise { // constructor(...); // then(...): Promise; // } // // When we get the type of the `Promise` symbol here, we get the type of the static // side of the `Promise` class, which would be `{ new (...): Promise }`. let promiseType = getTypeFromTypeNode(node.type); if (promiseType === unknownType && compilerOptions.isolatedModules) { // If we are compiling with isolatedModules, we may not be able to resolve the // type as a value. As such, we will just return unknownType; return unknownType; } let promiseConstructor = getMergedSymbol(promiseType.symbol); if (!promiseConstructor || !symbolIsValue(promiseConstructor)) { error(node, Diagnostics.Type_0_is_not_a_valid_async_function_return_type, typeToString(promiseType)); return unknownType; } // Validate the promise constructor type. let promiseConstructorType = getTypeOfSymbol(promiseConstructor); if (!checkTypeAssignableTo(promiseConstructorType, globalPromiseConstructorLikeType, node, Diagnostics.Type_0_is_not_a_valid_async_function_return_type)) { return unknownType; } // Verify there is no local declaration that could collide with the promise constructor. let promiseName = getEntityNameFromTypeNode(node.type); let root = getFirstIdentifier(promiseName); let rootSymbol = getSymbol(node.locals, root.text, SymbolFlags.Value); if (rootSymbol) { error(rootSymbol.valueDeclaration, Diagnostics.Duplicate_identifier_0_Compiler_uses_declaration_1_to_support_async_functions, root.text, getFullyQualifiedName(promiseConstructor)); return unknownType; } // Get and return the awaited type of the return type. return checkAwaitedType(promiseType, node, Diagnostics.An_async_function_or_method_must_have_a_valid_awaitable_return_type); } /** Check a decorator */ function checkDecorator(node: Decorator): void { let signature = getResolvedSignature(node); let returnType = getReturnTypeOfSignature(signature); if (returnType.flags & TypeFlags.Any) { return; } let expectedReturnType: Type; let headMessage = getDiagnosticHeadMessageForDecoratorResolution(node); let errorInfo: DiagnosticMessageChain; switch (node.parent.kind) { case SyntaxKind.ClassDeclaration: let classSymbol = getSymbolOfNode(node.parent); let classConstructorType = getTypeOfSymbol(classSymbol); expectedReturnType = getUnionType([classConstructorType, voidType]); break; case SyntaxKind.Parameter: expectedReturnType = voidType; errorInfo = chainDiagnosticMessages( errorInfo, Diagnostics.The_return_type_of_a_parameter_decorator_function_must_be_either_void_or_any); break; case SyntaxKind.PropertyDeclaration: expectedReturnType = voidType; errorInfo = chainDiagnosticMessages( errorInfo, Diagnostics.The_return_type_of_a_property_decorator_function_must_be_either_void_or_any); break; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: let methodType = getTypeOfNode(node.parent); let descriptorType = createTypedPropertyDescriptorType(methodType); expectedReturnType = getUnionType([descriptorType, voidType]); break; } checkTypeAssignableTo( returnType, expectedReturnType, node, headMessage, errorInfo); } /** Checks a type reference node as an expression. */ function checkTypeNodeAsExpression(node: TypeNode) { // When we are emitting type metadata for decorators, we need to try to check the type // as if it were an expression so that we can emit the type in a value position when we // serialize the type metadata. if (node && node.kind === SyntaxKind.TypeReference) { let type = getTypeFromTypeNode(node); let shouldCheckIfUnknownType = type === unknownType && compilerOptions.isolatedModules; if (!type || (!shouldCheckIfUnknownType && type.flags & (TypeFlags.Intrinsic | TypeFlags.NumberLike | TypeFlags.StringLike))) { return; } if (shouldCheckIfUnknownType || type.symbol.valueDeclaration) { checkExpression((node).typeName); } } } /** * Checks the type annotation of an accessor declaration or property declaration as * an expression if it is a type reference to a type with a value declaration. */ function checkTypeAnnotationAsExpression(node: AccessorDeclaration | PropertyDeclaration | ParameterDeclaration | MethodDeclaration) { switch (node.kind) { case SyntaxKind.PropertyDeclaration: checkTypeNodeAsExpression((node).type); break; case SyntaxKind.Parameter: checkTypeNodeAsExpression((node).type); break; case SyntaxKind.MethodDeclaration: checkTypeNodeAsExpression((node).type); break; case SyntaxKind.GetAccessor: checkTypeNodeAsExpression((node).type); break; case SyntaxKind.SetAccessor: checkTypeNodeAsExpression(getSetAccessorTypeAnnotationNode(node)); break; } } /** Checks the type annotation of the parameters of a function/method or the constructor of a class as expressions */ function checkParameterTypeAnnotationsAsExpressions(node: FunctionLikeDeclaration) { // ensure all type annotations with a value declaration are checked as an expression for (let parameter of node.parameters) { checkTypeAnnotationAsExpression(parameter); } } /** Check the decorators of a node */ function checkDecorators(node: Node): void { if (!node.decorators) { return; } // skip this check for nodes that cannot have decorators. These should have already had an error reported by // checkGrammarDecorators. if (!nodeCanBeDecorated(node)) { return; } if (!compilerOptions.experimentalDecorators) { error(node, Diagnostics.Experimental_support_for_decorators_is_a_feature_that_is_subject_to_change_in_a_future_release_Specify_experimentalDecorators_to_remove_this_warning); } if (compilerOptions.emitDecoratorMetadata) { // we only need to perform these checks if we are emitting serialized type metadata for the target of a decorator. switch (node.kind) { case SyntaxKind.ClassDeclaration: let constructor = getFirstConstructorWithBody(node); if (constructor) { checkParameterTypeAnnotationsAsExpressions(constructor); } break; case SyntaxKind.MethodDeclaration: checkParameterTypeAnnotationsAsExpressions(node); // fall-through case SyntaxKind.SetAccessor: case SyntaxKind.GetAccessor: case SyntaxKind.PropertyDeclaration: case SyntaxKind.Parameter: checkTypeAnnotationAsExpression(node); break; } } emitDecorate = true; if (node.kind === SyntaxKind.Parameter) { emitParam = true; } forEach(node.decorators, checkDecorator); } function checkFunctionDeclaration(node: FunctionDeclaration): void { if (produceDiagnostics) { checkFunctionLikeDeclaration(node) || checkGrammarForGenerator(node); checkCollisionWithCapturedSuperVariable(node, node.name); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); } } function checkFunctionLikeDeclaration(node: FunctionLikeDeclaration): void { checkDecorators(node); checkSignatureDeclaration(node); let isAsync = isAsyncFunctionLike(node); if (isAsync) { if (!compilerOptions.experimentalAsyncFunctions) { error(node, Diagnostics.Experimental_support_for_async_functions_is_a_feature_that_is_subject_to_change_in_a_future_release_Specify_experimentalAsyncFunctions_to_remove_this_warning); } emitAwaiter = true; } // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name && node.name.kind === SyntaxKind.ComputedPropertyName) { // This check will account for methods in class/interface declarations, // as well as accessors in classes/object literals checkComputedPropertyName(node.name); } if (!hasDynamicName(node)) { // first we want to check the local symbol that contain this declaration // - if node.localSymbol !== undefined - this is current declaration is exported and localSymbol points to the local symbol // - if node.localSymbol === undefined - this node is non-exported so we can just pick the result of getSymbolOfNode let symbol = getSymbolOfNode(node); let localSymbol = node.localSymbol || symbol; let firstDeclaration = getDeclarationOfKind(localSymbol, node.kind); // Only type check the symbol once if (node === firstDeclaration) { checkFunctionOrConstructorSymbol(localSymbol); } if (symbol.parent) { // run check once for the first declaration if (getDeclarationOfKind(symbol, node.kind) === node) { // run check on export symbol to check that modifiers agree across all exported declarations checkFunctionOrConstructorSymbol(symbol); } } } checkSourceElement(node.body); if (node.type && !isAccessor(node.kind) && !node.asteriskToken) { let returnType = getTypeFromTypeNode(node.type); let promisedType: Type; if (isAsync) { promisedType = checkAsyncFunctionReturnType(node); } checkIfNonVoidFunctionHasReturnExpressionsOrSingleThrowStatment(node, isAsync ? promisedType : returnType); } if (produceDiagnostics && !node.type) { // Report an implicit any error if there is no body, no explicit return type, and node is not a private method // in an ambient context if (compilerOptions.noImplicitAny && nodeIsMissing(node.body) && !isPrivateWithinAmbient(node)) { reportImplicitAnyError(node, anyType); } if (node.asteriskToken && nodeIsPresent(node.body)) { // A generator with a body and no type annotation can still cause errors. It can error if the // yielded values have no common supertype, or it can give an implicit any error if it has no // yielded values. The only way to trigger these errors is to try checking its return type. getReturnTypeOfSignature(getSignatureFromDeclaration(node)); } } } function checkBlock(node: Block) { // Grammar checking for SyntaxKind.Block if (node.kind === SyntaxKind.Block) { checkGrammarStatementInAmbientContext(node); } forEach(node.statements, checkSourceElement); if (isFunctionBlock(node) || node.kind === SyntaxKind.ModuleBlock) { checkFunctionAndClassExpressionBodies(node); } } function checkCollisionWithArgumentsInGeneratedCode(node: SignatureDeclaration) { // no rest parameters \ declaration context \ overload - no codegen impact if (!hasRestParameter(node) || isInAmbientContext(node) || nodeIsMissing((node).body)) { return; } forEach(node.parameters, p => { if (p.name && !isBindingPattern(p.name) && (p.name).text === argumentsSymbol.name) { error(p, Diagnostics.Duplicate_identifier_arguments_Compiler_uses_arguments_to_initialize_rest_parameters); } }); } function needCollisionCheckForIdentifier(node: Node, identifier: Identifier, name: string): boolean { if (!(identifier && identifier.text === name)) { return false; } if (node.kind === SyntaxKind.PropertyDeclaration || node.kind === SyntaxKind.PropertySignature || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.MethodSignature || node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { // it is ok to have member named '_super' or '_this' - member access is always qualified return false; } if (isInAmbientContext(node)) { // ambient context - no codegen impact return false; } let root = getRootDeclaration(node); if (root.kind === SyntaxKind.Parameter && nodeIsMissing((root.parent).body)) { // just an overload - no codegen impact return false; } return true; } function checkCollisionWithCapturedThisVariable(node: Node, name: Identifier): void { if (needCollisionCheckForIdentifier(node, name, "_this")) { potentialThisCollisions.push(node); } } // this function will run after checking the source file so 'CaptureThis' is correct for all nodes function checkIfThisIsCapturedInEnclosingScope(node: Node): void { let current = node; while (current) { if (getNodeCheckFlags(current) & NodeCheckFlags.CaptureThis) { let isDeclaration = node.kind !== SyntaxKind.Identifier; if (isDeclaration) { error((node).name, Diagnostics.Duplicate_identifier_this_Compiler_uses_variable_declaration_this_to_capture_this_reference); } else { error(node, Diagnostics.Expression_resolves_to_variable_declaration_this_that_compiler_uses_to_capture_this_reference); } return; } current = current.parent; } } function checkCollisionWithCapturedSuperVariable(node: Node, name: Identifier) { if (!needCollisionCheckForIdentifier(node, name, "_super")) { return; } // bubble up and find containing type let enclosingClass = getContainingClass(node); // if containing type was not found or it is ambient - exit (no codegen) if (!enclosingClass || isInAmbientContext(enclosingClass)) { return; } if (getClassExtendsHeritageClauseElement(enclosingClass)) { let isDeclaration = node.kind !== SyntaxKind.Identifier; if (isDeclaration) { error(node, Diagnostics.Duplicate_identifier_super_Compiler_uses_super_to_capture_base_class_reference); } else { error(node, Diagnostics.Expression_resolves_to_super_that_compiler_uses_to_capture_base_class_reference); } } } function checkCollisionWithRequireExportsInGeneratedCode(node: Node, name: Identifier) { if (!needCollisionCheckForIdentifier(node, name, "require") && !needCollisionCheckForIdentifier(node, name, "exports")) { return; } // Uninstantiated modules shouldnt do this check if (node.kind === SyntaxKind.ModuleDeclaration && getModuleInstanceState(node) !== ModuleInstanceState.Instantiated) { return; } // In case of variable declaration, node.parent is variable statement so look at the variable statement's parent let parent = getDeclarationContainer(node); if (parent.kind === SyntaxKind.SourceFile && isExternalModule(parent)) { // If the declaration happens to be in external module, report error that require and exports are reserved keywords error(name, Diagnostics.Duplicate_identifier_0_Compiler_reserves_name_1_in_top_level_scope_of_a_module, declarationNameToString(name), declarationNameToString(name)); } } function checkVarDeclaredNamesNotShadowed(node: VariableDeclaration | BindingElement) { // - ScriptBody : StatementList // It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList // also occurs in the VarDeclaredNames of StatementList. // - Block : { StatementList } // It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList // also occurs in the VarDeclaredNames of StatementList. // Variable declarations are hoisted to the top of their function scope. They can shadow // block scoped declarations, which bind tighter. this will not be flagged as duplicate definition // by the binder as the declaration scope is different. // A non-initialized declaration is a no-op as the block declaration will resolve before the var // declaration. the problem is if the declaration has an initializer. this will act as a write to the // block declared value. this is fine for let, but not const. // Only consider declarations with initializers, uninitialized let declarations will not // step on a let/const variable. // Do not consider let and const declarations, as duplicate block-scoped declarations // are handled by the binder. // We are only looking for let declarations that step on let\const declarations from a // different scope. e.g.: // { // const x = 0; // localDeclarationSymbol obtained after name resolution will correspond to this declaration // let x = 0; // symbol for this declaration will be 'symbol' // } // skip block-scoped variables and parameters if ((getCombinedNodeFlags(node) & NodeFlags.BlockScoped) !== 0 || isParameterDeclaration(node)) { return; } // skip variable declarations that don't have initializers // NOTE: in ES6 spec initializer is required in variable declarations where name is binding pattern // so we'll always treat binding elements as initialized if (node.kind === SyntaxKind.VariableDeclaration && !node.initializer) { return; } let symbol = getSymbolOfNode(node); if (symbol.flags & SymbolFlags.FunctionScopedVariable) { let localDeclarationSymbol = resolveName(node, (node.name).text, SymbolFlags.Variable, /*nodeNotFoundErrorMessage*/ undefined, /*nameArg*/ undefined); if (localDeclarationSymbol && localDeclarationSymbol !== symbol && localDeclarationSymbol.flags & SymbolFlags.BlockScopedVariable) { if (getDeclarationFlagsFromSymbol(localDeclarationSymbol) & NodeFlags.BlockScoped) { let varDeclList = getAncestor(localDeclarationSymbol.valueDeclaration, SyntaxKind.VariableDeclarationList); let container = varDeclList.parent.kind === SyntaxKind.VariableStatement && varDeclList.parent.parent ? varDeclList.parent.parent : undefined; // names of block-scoped and function scoped variables can collide only // if block scoped variable is defined in the function\module\source file scope (because of variable hoisting) let namesShareScope = container && (container.kind === SyntaxKind.Block && isFunctionLike(container.parent) || container.kind === SyntaxKind.ModuleBlock || container.kind === SyntaxKind.ModuleDeclaration || container.kind === SyntaxKind.SourceFile); // here we know that function scoped variable is shadowed by block scoped one // if they are defined in the same scope - binder has already reported redeclaration error // otherwise if variable has an initializer - show error that initialization will fail // since LHS will be block scoped name instead of function scoped if (!namesShareScope) { let name = symbolToString(localDeclarationSymbol); error(node, Diagnostics.Cannot_initialize_outer_scoped_variable_0_in_the_same_scope_as_block_scoped_declaration_1, name, name); } } } } } // Check that a parameter initializer contains no references to parameters declared to the right of itself function checkParameterInitializer(node: VariableLikeDeclaration): void { if (getRootDeclaration(node).kind !== SyntaxKind.Parameter) { return; } let func = getContainingFunction(node); visit(node.initializer); function visit(n: Node) { if (n.kind === SyntaxKind.Identifier) { let referencedSymbol = getNodeLinks(n).resolvedSymbol; // check FunctionLikeDeclaration.locals (stores parameters\function local variable) // if it contains entry with a specified name and if this entry matches the resolved symbol if (referencedSymbol && referencedSymbol !== unknownSymbol && getSymbol(func.locals, referencedSymbol.name, SymbolFlags.Value) === referencedSymbol) { if (referencedSymbol.valueDeclaration.kind === SyntaxKind.Parameter) { if (referencedSymbol.valueDeclaration === node) { error(n, Diagnostics.Parameter_0_cannot_be_referenced_in_its_initializer, declarationNameToString(node.name)); return; } if (referencedSymbol.valueDeclaration.pos < node.pos) { // legal case - parameter initializer references some parameter strictly on left of current parameter declaration return; } // fall through to error reporting } error(n, Diagnostics.Initializer_of_parameter_0_cannot_reference_identifier_1_declared_after_it, declarationNameToString(node.name), declarationNameToString(n)); } } else { forEachChild(n, visit); } } } // Check variable, parameter, or property declaration function checkVariableLikeDeclaration(node: VariableLikeDeclaration) { checkDecorators(node); checkSourceElement(node.type); // For a computed property, just check the initializer and exit // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); if (node.initializer) { checkExpressionCached(node.initializer); } } // For a binding pattern, check contained binding elements if (isBindingPattern(node.name)) { forEach((node.name).elements, checkSourceElement); } // For a parameter declaration with an initializer, error and exit if the containing function doesn't have a body if (node.initializer && getRootDeclaration(node).kind === SyntaxKind.Parameter && nodeIsMissing(getContainingFunction(node).body)) { error(node, Diagnostics.A_parameter_initializer_is_only_allowed_in_a_function_or_constructor_implementation); return; } // For a binding pattern, validate the initializer and exit if (isBindingPattern(node.name)) { if (node.initializer) { checkTypeAssignableTo(checkExpressionCached(node.initializer), getWidenedTypeForVariableLikeDeclaration(node), node, /*headMessage*/ undefined); checkParameterInitializer(node); } return; } let symbol = getSymbolOfNode(node); let type = getTypeOfVariableOrParameterOrProperty(symbol); if (node === symbol.valueDeclaration) { // Node is the primary declaration of the symbol, just validate the initializer if (node.initializer) { checkTypeAssignableTo(checkExpressionCached(node.initializer), type, node, /*headMessage*/ undefined); checkParameterInitializer(node); } } else { // Node is a secondary declaration, check that type is identical to primary declaration and check that // initializer is consistent with type associated with the node let declarationType = getWidenedTypeForVariableLikeDeclaration(node); if (type !== unknownType && declarationType !== unknownType && !isTypeIdenticalTo(type, declarationType)) { error(node.name, Diagnostics.Subsequent_variable_declarations_must_have_the_same_type_Variable_0_must_be_of_type_1_but_here_has_type_2, declarationNameToString(node.name), typeToString(type), typeToString(declarationType)); } if (node.initializer) { checkTypeAssignableTo(checkExpressionCached(node.initializer), declarationType, node, /*headMessage*/ undefined); } } if (node.kind !== SyntaxKind.PropertyDeclaration && node.kind !== SyntaxKind.PropertySignature) { // We know we don't have a binding pattern or computed name here checkExportsOnMergedDeclarations(node); if (node.kind === SyntaxKind.VariableDeclaration || node.kind === SyntaxKind.BindingElement) { checkVarDeclaredNamesNotShadowed(node); } checkCollisionWithCapturedSuperVariable(node, node.name); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); } } function checkVariableDeclaration(node: VariableDeclaration) { checkGrammarVariableDeclaration(node); return checkVariableLikeDeclaration(node); } function checkBindingElement(node: BindingElement) { checkGrammarBindingElement(node); return checkVariableLikeDeclaration(node); } function checkVariableStatement(node: VariableStatement) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarVariableDeclarationList(node.declarationList) || checkGrammarForDisallowedLetOrConstStatement(node); forEach(node.declarationList.declarations, checkSourceElement); } function checkGrammarDisallowedModifiersInBlockOrObjectLiteralExpression(node: Node) { if (node.modifiers) { if (inBlockOrObjectLiteralExpression(node)) { if (isAsyncFunctionLike(node)) { if (node.modifiers.length > 1) { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } } else { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } } } } function inBlockOrObjectLiteralExpression(node: Node) { while (node) { if (node.kind === SyntaxKind.Block || node.kind === SyntaxKind.ObjectLiteralExpression) { return true; } node = node.parent; } return false; } function checkExpressionStatement(node: ExpressionStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkExpression(node.expression); } function checkIfStatement(node: IfStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkExpression(node.expression); checkSourceElement(node.thenStatement); checkSourceElement(node.elseStatement); } function checkDoStatement(node: DoStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkSourceElement(node.statement); checkExpression(node.expression); } function checkWhileStatement(node: WhileStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkExpression(node.expression); checkSourceElement(node.statement); } function checkForStatement(node: ForStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { if (node.initializer && node.initializer.kind === SyntaxKind.VariableDeclarationList) { checkGrammarVariableDeclarationList(node.initializer); } } if (node.initializer) { if (node.initializer.kind === SyntaxKind.VariableDeclarationList) { forEach((node.initializer).declarations, checkVariableDeclaration); } else { checkExpression(node.initializer); } } if (node.condition) checkExpression(node.condition); if (node.incrementor) checkExpression(node.incrementor); checkSourceElement(node.statement); } function checkForOfStatement(node: ForOfStatement): void { checkGrammarForInOrForOfStatement(node); // Check the LHS and RHS // If the LHS is a declaration, just check it as a variable declaration, which will in turn check the RHS // via checkRightHandSideOfForOf. // If the LHS is an expression, check the LHS, as a destructuring assignment or as a reference. // Then check that the RHS is assignable to it. if (node.initializer.kind === SyntaxKind.VariableDeclarationList) { checkForInOrForOfVariableDeclaration(node); } else { let varExpr = node.initializer; let iteratedType = checkRightHandSideOfForOf(node.expression); // There may be a destructuring assignment on the left side if (varExpr.kind === SyntaxKind.ArrayLiteralExpression || varExpr.kind === SyntaxKind.ObjectLiteralExpression) { // iteratedType may be undefined. In this case, we still want to check the structure of // varExpr, in particular making sure it's a valid LeftHandSideExpression. But we'd like // to short circuit the type relation checking as much as possible, so we pass the unknownType. checkDestructuringAssignment(varExpr, iteratedType || unknownType); } else { let leftType = checkExpression(varExpr); checkReferenceExpression(varExpr, /*invalidReferenceMessage*/ Diagnostics.Invalid_left_hand_side_in_for_of_statement, /*constantVariableMessage*/ Diagnostics.The_left_hand_side_of_a_for_of_statement_cannot_be_a_previously_defined_constant); // iteratedType will be undefined if the rightType was missing properties/signatures // required to get its iteratedType (like [Symbol.iterator] or next). This may be // because we accessed properties from anyType, or it may have led to an error inside // getElementTypeOfIterable. if (iteratedType) { checkTypeAssignableTo(iteratedType, leftType, varExpr, /*headMessage*/ undefined); } } } checkSourceElement(node.statement); } function checkForInStatement(node: ForInStatement) { // Grammar checking checkGrammarForInOrForOfStatement(node); // TypeScript 1.0 spec (April 2014): 5.4 // In a 'for-in' statement of the form // for (let VarDecl in Expr) Statement // VarDecl must be a variable declaration without a type annotation that declares a variable of type Any, // and Expr must be an expression of type Any, an object type, or a type parameter type. if (node.initializer.kind === SyntaxKind.VariableDeclarationList) { let variable = (node.initializer).declarations[0]; if (variable && isBindingPattern(variable.name)) { error(variable.name, Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_be_a_destructuring_pattern); } checkForInOrForOfVariableDeclaration(node); } else { // In a 'for-in' statement of the form // for (Var in Expr) Statement // Var must be an expression classified as a reference of type Any or the String primitive type, // and Expr must be an expression of type Any, an object type, or a type parameter type. let varExpr = node.initializer; let leftType = checkExpression(varExpr); if (varExpr.kind === SyntaxKind.ArrayLiteralExpression || varExpr.kind === SyntaxKind.ObjectLiteralExpression) { error(varExpr, Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_be_a_destructuring_pattern); } else if (!isTypeAnyOrAllConstituentTypesHaveKind(leftType, TypeFlags.StringLike)) { error(varExpr, Diagnostics.The_left_hand_side_of_a_for_in_statement_must_be_of_type_string_or_any); } else { // run check only former check succeeded to avoid cascading errors checkReferenceExpression(varExpr, Diagnostics.Invalid_left_hand_side_in_for_in_statement, Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_be_a_previously_defined_constant); } } let rightType = checkExpression(node.expression); // unknownType is returned i.e. if node.expression is identifier whose name cannot be resolved // in this case error about missing name is already reported - do not report extra one if (!isTypeAnyOrAllConstituentTypesHaveKind(rightType, TypeFlags.ObjectType | TypeFlags.TypeParameter)) { error(node.expression, Diagnostics.The_right_hand_side_of_a_for_in_statement_must_be_of_type_any_an_object_type_or_a_type_parameter); } checkSourceElement(node.statement); } function checkForInOrForOfVariableDeclaration(iterationStatement: ForInStatement | ForOfStatement): void { let variableDeclarationList = iterationStatement.initializer; // checkGrammarForInOrForOfStatement will check that there is exactly one declaration. if (variableDeclarationList.declarations.length >= 1) { let decl = variableDeclarationList.declarations[0]; checkVariableDeclaration(decl); } } function checkRightHandSideOfForOf(rhsExpression: Expression): Type { let expressionType = getTypeOfExpression(rhsExpression); return checkIteratedTypeOrElementType(expressionType, rhsExpression, /*allowStringInput*/ true); } function checkIteratedTypeOrElementType(inputType: Type, errorNode: Node, allowStringInput: boolean): Type { if (isTypeAny(inputType)) { return inputType; } if (languageVersion >= ScriptTarget.ES6) { return checkElementTypeOfIterable(inputType, errorNode); } if (allowStringInput) { return checkElementTypeOfArrayOrString(inputType, errorNode); } if (isArrayLikeType(inputType)) { let indexType = getIndexTypeOfType(inputType, IndexKind.Number); if (indexType) { return indexType; } } error(errorNode, Diagnostics.Type_0_is_not_an_array_type, typeToString(inputType)); return unknownType; } /** * When errorNode is undefined, it means we should not report any errors. */ function checkElementTypeOfIterable(iterable: Type, errorNode: Node): Type { let elementType = getElementTypeOfIterable(iterable, errorNode); // Now even though we have extracted the iteratedType, we will have to validate that the type // passed in is actually an Iterable. if (errorNode && elementType) { checkTypeAssignableTo(iterable, createIterableType(elementType), errorNode); } return elementType || anyType; } /** * We want to treat type as an iterable, and get the type it is an iterable of. The iterable * must have the following structure (annotated with the names of the variables below): * * { // iterable * [Symbol.iterator]: { // iteratorFunction * (): Iterator * } * } * * T is the type we are after. At every level that involves analyzing return types * of signatures, we union the return types of all the signatures. * * Another thing to note is that at any step of this process, we could run into a dead end, * meaning either the property is missing, or we run into the anyType. If either of these things * happens, we return undefined to signal that we could not find the iterated type. If a property * is missing, and the previous step did not result in 'any', then we also give an error if the * caller requested it. Then the caller can decide what to do in the case where there is no iterated * type. This is different from returning anyType, because that would signify that we have matched the * whole pattern and that T (above) is 'any'. */ function getElementTypeOfIterable(type: Type, errorNode: Node): Type { if (isTypeAny(type)) { return undefined; } let typeAsIterable = type; if (!typeAsIterable.iterableElementType) { // As an optimization, if the type is instantiated directly using the globalIterableType (Iterable), // then just grab its type argument. if ((type.flags & TypeFlags.Reference) && (type).target === globalIterableType) { typeAsIterable.iterableElementType = (type).typeArguments[0]; } else { let iteratorFunction = getTypeOfPropertyOfType(type, getPropertyNameForKnownSymbolName("iterator")); if (isTypeAny(iteratorFunction)) { return undefined; } let iteratorFunctionSignatures = iteratorFunction ? getSignaturesOfType(iteratorFunction, SignatureKind.Call) : emptyArray; if (iteratorFunctionSignatures.length === 0) { if (errorNode) { error(errorNode, Diagnostics.Type_must_have_a_Symbol_iterator_method_that_returns_an_iterator); } return undefined; } typeAsIterable.iterableElementType = getElementTypeOfIterator(getUnionType(map(iteratorFunctionSignatures, getReturnTypeOfSignature)), errorNode); } } return typeAsIterable.iterableElementType; } /** * This function has very similar logic as getElementTypeOfIterable, except that it operates on * Iterators instead of Iterables. Here is the structure: * * { // iterator * next: { // iteratorNextFunction * (): { // iteratorNextResult * value: T // iteratorNextValue * } * } * } * */ function getElementTypeOfIterator(type: Type, errorNode: Node): Type { if (isTypeAny(type)) { return undefined; } let typeAsIterator = type; if (!typeAsIterator.iteratorElementType) { // As an optimization, if the type is instantiated directly using the globalIteratorType (Iterator), // then just grab its type argument. if ((type.flags & TypeFlags.Reference) && (type).target === globalIteratorType) { typeAsIterator.iteratorElementType = (type).typeArguments[0]; } else { let iteratorNextFunction = getTypeOfPropertyOfType(type, "next"); if (isTypeAny(iteratorNextFunction)) { return undefined; } let iteratorNextFunctionSignatures = iteratorNextFunction ? getSignaturesOfType(iteratorNextFunction, SignatureKind.Call) : emptyArray; if (iteratorNextFunctionSignatures.length === 0) { if (errorNode) { error(errorNode, Diagnostics.An_iterator_must_have_a_next_method); } return undefined; } let iteratorNextResult = getUnionType(map(iteratorNextFunctionSignatures, getReturnTypeOfSignature)); if (isTypeAny(iteratorNextResult)) { return undefined; } let iteratorNextValue = getTypeOfPropertyOfType(iteratorNextResult, "value"); if (!iteratorNextValue) { if (errorNode) { error(errorNode, Diagnostics.The_type_returned_by_the_next_method_of_an_iterator_must_have_a_value_property); } return undefined; } typeAsIterator.iteratorElementType = iteratorNextValue; } } return typeAsIterator.iteratorElementType; } function getElementTypeOfIterableIterator(type: Type): Type { if (isTypeAny(type)) { return undefined; } // As an optimization, if the type is instantiated directly using the globalIterableIteratorType (IterableIterator), // then just grab its type argument. if ((type.flags & TypeFlags.Reference) && (type).target === globalIterableIteratorType) { return (type).typeArguments[0]; } return getElementTypeOfIterable(type, /*errorNode*/ undefined) || getElementTypeOfIterator(type, /*errorNode*/ undefined); } /** * This function does the following steps: * 1. Break up arrayOrStringType (possibly a union) into its string constituents and array constituents. * 2. Take the element types of the array constituents. * 3. Return the union of the element types, and string if there was a string constitutent. * * For example: * string -> string * number[] -> number * string[] | number[] -> string | number * string | number[] -> string | number * string | string[] | number[] -> string | number * * It also errors if: * 1. Some constituent is neither a string nor an array. * 2. Some constituent is a string and target is less than ES5 (because in ES3 string is not indexable). */ function checkElementTypeOfArrayOrString(arrayOrStringType: Type, errorNode: Node): Type { Debug.assert(languageVersion < ScriptTarget.ES6); // After we remove all types that are StringLike, we will know if there was a string constituent // based on whether the remaining type is the same as the initial type. let arrayType = removeTypesFromUnionType(arrayOrStringType, TypeFlags.StringLike, /*isTypeOfKind*/ true, /*allowEmptyUnionResult*/ true); let hasStringConstituent = arrayOrStringType !== arrayType; let reportedError = false; if (hasStringConstituent) { if (languageVersion < ScriptTarget.ES5) { error(errorNode, Diagnostics.Using_a_string_in_a_for_of_statement_is_only_supported_in_ECMAScript_5_and_higher); reportedError = true; } // Now that we've removed all the StringLike types, if no constituents remain, then the entire // arrayOrStringType was a string. if (arrayType === emptyObjectType) { return stringType; } } if (!isArrayLikeType(arrayType)) { if (!reportedError) { // Which error we report depends on whether there was a string constituent. For example, // if the input type is number | string, we want to say that number is not an array type. // But if the input was just number, we want to say that number is not an array type // or a string type. let diagnostic = hasStringConstituent ? Diagnostics.Type_0_is_not_an_array_type : Diagnostics.Type_0_is_not_an_array_type_or_a_string_type; error(errorNode, diagnostic, typeToString(arrayType)); } return hasStringConstituent ? stringType : unknownType; } let arrayElementType = getIndexTypeOfType(arrayType, IndexKind.Number) || unknownType; if (hasStringConstituent) { // This is just an optimization for the case where arrayOrStringType is string | string[] if (arrayElementType.flags & TypeFlags.StringLike) { return stringType; } return getUnionType([arrayElementType, stringType]); } return arrayElementType; } function checkBreakOrContinueStatement(node: BreakOrContinueStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node) || checkGrammarBreakOrContinueStatement(node); // TODO: Check that target label is valid } function isGetAccessorWithAnnotatatedSetAccessor(node: FunctionLikeDeclaration) { return !!(node.kind === SyntaxKind.GetAccessor && getSetAccessorTypeAnnotationNode(getDeclarationOfKind(node.symbol, SyntaxKind.SetAccessor))); } function checkReturnStatement(node: ReturnStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { let functionBlock = getContainingFunction(node); if (!functionBlock) { grammarErrorOnFirstToken(node, Diagnostics.A_return_statement_can_only_be_used_within_a_function_body); } } if (node.expression) { let func = getContainingFunction(node); if (func) { let signature = getSignatureFromDeclaration(func); let returnType = getReturnTypeOfSignature(signature); let exprType = checkExpressionCached(node.expression); if (func.asteriskToken) { // A generator does not need its return expressions checked against its return type. // Instead, the yield expressions are checked against the element type. // TODO: Check return expressions of generators when return type tracking is added // for generators. return; } if (func.kind === SyntaxKind.SetAccessor) { error(node.expression, Diagnostics.Setters_cannot_return_a_value); } else if (func.kind === SyntaxKind.Constructor) { if (!isTypeAssignableTo(exprType, returnType)) { error(node.expression, Diagnostics.Return_type_of_constructor_signature_must_be_assignable_to_the_instance_type_of_the_class); } } else if (func.type || isGetAccessorWithAnnotatatedSetAccessor(func) || signature.typePredicate) { if (isAsyncFunctionLike(func)) { let promisedType = getPromisedType(returnType); let awaitedType = checkAwaitedType(exprType, node.expression, Diagnostics.Return_expression_in_async_function_does_not_have_a_valid_callable_then_member); checkTypeAssignableTo(awaitedType, promisedType, node.expression); } else { checkTypeAssignableTo(exprType, returnType, node.expression); } } } } } function checkWithStatement(node: WithStatement) { // Grammar checking for withStatement if (!checkGrammarStatementInAmbientContext(node)) { if (node.parserContextFlags & ParserContextFlags.Await) { grammarErrorOnFirstToken(node, Diagnostics.with_statements_are_not_allowed_in_an_async_function_block); } } checkExpression(node.expression); error(node.expression, Diagnostics.All_symbols_within_a_with_block_will_be_resolved_to_any); } function checkSwitchStatement(node: SwitchStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); let firstDefaultClause: CaseOrDefaultClause; let hasDuplicateDefaultClause = false; let expressionType = checkExpression(node.expression); forEach(node.caseBlock.clauses, clause => { // Grammar check for duplicate default clauses, skip if we already report duplicate default clause if (clause.kind === SyntaxKind.DefaultClause && !hasDuplicateDefaultClause) { if (firstDefaultClause === undefined) { firstDefaultClause = clause; } else { let sourceFile = getSourceFileOfNode(node); let start = skipTrivia(sourceFile.text, clause.pos); let end = clause.statements.length > 0 ? clause.statements[0].pos : clause.end; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.A_default_clause_cannot_appear_more_than_once_in_a_switch_statement); hasDuplicateDefaultClause = true; } } if (produceDiagnostics && clause.kind === SyntaxKind.CaseClause) { let caseClause = clause; // TypeScript 1.0 spec (April 2014):5.9 // In a 'switch' statement, each 'case' expression must be of a type that is assignable to or from the type of the 'switch' expression. let caseType = checkExpression(caseClause.expression); if (!isTypeAssignableTo(expressionType, caseType)) { // check 'expressionType isAssignableTo caseType' failed, try the reversed check and report errors if it fails checkTypeAssignableTo(caseType, expressionType, caseClause.expression, /*headMessage*/ undefined); } } forEach(clause.statements, checkSourceElement); }); } function checkLabeledStatement(node: LabeledStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { let current = node.parent; while (current) { if (isFunctionLike(current)) { break; } if (current.kind === SyntaxKind.LabeledStatement && (current).label.text === node.label.text) { let sourceFile = getSourceFileOfNode(node); grammarErrorOnNode(node.label, Diagnostics.Duplicate_label_0, getTextOfNodeFromSourceText(sourceFile.text, node.label)); break; } current = current.parent; } } // ensure that label is unique checkSourceElement(node.statement); } function checkThrowStatement(node: ThrowStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { if (node.expression === undefined) { grammarErrorAfterFirstToken(node, Diagnostics.Line_break_not_permitted_here); } } if (node.expression) { checkExpression(node.expression); } } function checkTryStatement(node: TryStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkBlock(node.tryBlock); let catchClause = node.catchClause; if (catchClause) { // Grammar checking if (catchClause.variableDeclaration) { if (catchClause.variableDeclaration.name.kind !== SyntaxKind.Identifier) { grammarErrorOnFirstToken(catchClause.variableDeclaration.name, Diagnostics.Catch_clause_variable_name_must_be_an_identifier); } else if (catchClause.variableDeclaration.type) { grammarErrorOnFirstToken(catchClause.variableDeclaration.type, Diagnostics.Catch_clause_variable_cannot_have_a_type_annotation); } else if (catchClause.variableDeclaration.initializer) { grammarErrorOnFirstToken(catchClause.variableDeclaration.initializer, Diagnostics.Catch_clause_variable_cannot_have_an_initializer); } else { let identifierName = (catchClause.variableDeclaration.name).text; let locals = catchClause.block.locals; if (locals && hasProperty(locals, identifierName)) { let localSymbol = locals[identifierName]; if (localSymbol && (localSymbol.flags & SymbolFlags.BlockScopedVariable) !== 0) { grammarErrorOnNode(localSymbol.valueDeclaration, Diagnostics.Cannot_redeclare_identifier_0_in_catch_clause, identifierName); } } } } checkBlock(catchClause.block); } if (node.finallyBlock) { checkBlock(node.finallyBlock); } } function checkIndexConstraints(type: Type) { let declaredNumberIndexer = getIndexDeclarationOfSymbol(type.symbol, IndexKind.Number); let declaredStringIndexer = getIndexDeclarationOfSymbol(type.symbol, IndexKind.String); let stringIndexType = getIndexTypeOfType(type, IndexKind.String); let numberIndexType = getIndexTypeOfType(type, IndexKind.Number); if (stringIndexType || numberIndexType) { forEach(getPropertiesOfObjectType(type), prop => { let propType = getTypeOfSymbol(prop); checkIndexConstraintForProperty(prop, propType, type, declaredStringIndexer, stringIndexType, IndexKind.String); checkIndexConstraintForProperty(prop, propType, type, declaredNumberIndexer, numberIndexType, IndexKind.Number); }); if (type.flags & TypeFlags.Class && isClassLike(type.symbol.valueDeclaration)) { let classDeclaration = type.symbol.valueDeclaration; for (let member of classDeclaration.members) { // Only process instance properties with computed names here. // Static properties cannot be in conflict with indexers, // and properties with literal names were already checked. if (!(member.flags & NodeFlags.Static) && hasDynamicName(member)) { let propType = getTypeOfSymbol(member.symbol); checkIndexConstraintForProperty(member.symbol, propType, type, declaredStringIndexer, stringIndexType, IndexKind.String); checkIndexConstraintForProperty(member.symbol, propType, type, declaredNumberIndexer, numberIndexType, IndexKind.Number); } } } } let errorNode: Node; if (stringIndexType && numberIndexType) { errorNode = declaredNumberIndexer || declaredStringIndexer; // condition 'errorNode === undefined' may appear if types does not declare nor string neither number indexer if (!errorNode && (type.flags & TypeFlags.Interface)) { let someBaseTypeHasBothIndexers = forEach(getBaseTypes(type), base => getIndexTypeOfType(base, IndexKind.String) && getIndexTypeOfType(base, IndexKind.Number)); errorNode = someBaseTypeHasBothIndexers ? undefined : type.symbol.declarations[0]; } } if (errorNode && !isTypeAssignableTo(numberIndexType, stringIndexType)) { error(errorNode, Diagnostics.Numeric_index_type_0_is_not_assignable_to_string_index_type_1, typeToString(numberIndexType), typeToString(stringIndexType)); } function checkIndexConstraintForProperty( prop: Symbol, propertyType: Type, containingType: Type, indexDeclaration: Declaration, indexType: Type, indexKind: IndexKind): void { if (!indexType) { return; } // index is numeric and property name is not valid numeric literal if (indexKind === IndexKind.Number && !isNumericName(prop.valueDeclaration.name)) { return; } // perform property check if property or indexer is declared in 'type' // this allows to rule out cases when both property and indexer are inherited from the base class let errorNode: Node; if (prop.valueDeclaration.name.kind === SyntaxKind.ComputedPropertyName || prop.parent === containingType.symbol) { errorNode = prop.valueDeclaration; } else if (indexDeclaration) { errorNode = indexDeclaration; } else if (containingType.flags & TypeFlags.Interface) { // for interfaces property and indexer might be inherited from different bases // check if any base class already has both property and indexer. // check should be performed only if 'type' is the first type that brings property\indexer together let someBaseClassHasBothPropertyAndIndexer = forEach(getBaseTypes(containingType), base => getPropertyOfObjectType(base, prop.name) && getIndexTypeOfType(base, indexKind)); errorNode = someBaseClassHasBothPropertyAndIndexer ? undefined : containingType.symbol.declarations[0]; } if (errorNode && !isTypeAssignableTo(propertyType, indexType)) { let errorMessage = indexKind === IndexKind.String ? Diagnostics.Property_0_of_type_1_is_not_assignable_to_string_index_type_2 : Diagnostics.Property_0_of_type_1_is_not_assignable_to_numeric_index_type_2; error(errorNode, errorMessage, symbolToString(prop), typeToString(propertyType), typeToString(indexType)); } } } function checkTypeNameIsReserved(name: DeclarationName, message: DiagnosticMessage): void { // TS 1.0 spec (April 2014): 3.6.1 // The predefined type keywords are reserved and cannot be used as names of user defined types. switch ((name).text) { case "any": case "number": case "boolean": case "string": case "symbol": case "void": error(name, message, (name).text); } } // Check each type parameter and check that list has no duplicate type parameter declarations function checkTypeParameters(typeParameterDeclarations: TypeParameterDeclaration[]) { if (typeParameterDeclarations) { for (let i = 0, n = typeParameterDeclarations.length; i < n; i++) { let node = typeParameterDeclarations[i]; checkTypeParameter(node); if (produceDiagnostics) { for (let j = 0; j < i; j++) { if (typeParameterDeclarations[j].symbol === node.symbol) { error(node.name, Diagnostics.Duplicate_identifier_0, declarationNameToString(node.name)); } } } } } } function checkClassExpression(node: ClassExpression): Type { checkClassLikeDeclaration(node); return getTypeOfSymbol(getSymbolOfNode(node)); } function checkClassDeclaration(node: ClassDeclaration) { if (!node.name && !(node.flags & NodeFlags.Default)) { grammarErrorOnFirstToken(node, Diagnostics.A_class_declaration_without_the_default_modifier_must_have_a_name); } checkClassLikeDeclaration(node); // Interfaces cannot be merged with non-ambient classes. if (getSymbolOfNode(node).flags & SymbolFlags.Interface && !isInAmbientContext(node)) { error(node, Diagnostics.Only_an_ambient_class_can_be_merged_with_an_interface); } forEach(node.members, checkSourceElement); } function checkClassLikeDeclaration(node: ClassLikeDeclaration) { checkGrammarClassDeclarationHeritageClauses(node); checkDecorators(node); if (node.name) { checkTypeNameIsReserved(node.name, Diagnostics.Class_name_cannot_be_0); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); } checkTypeParameters(node.typeParameters); checkExportsOnMergedDeclarations(node); let symbol = getSymbolOfNode(node); let type = getDeclaredTypeOfSymbol(symbol); let staticType = getTypeOfSymbol(symbol); let baseTypeNode = getClassExtendsHeritageClauseElement(node); if (baseTypeNode) { emitExtends = emitExtends || !isInAmbientContext(node); let baseTypes = getBaseTypes(type); if (baseTypes.length && produceDiagnostics) { let baseType = baseTypes[0]; let staticBaseType = getBaseConstructorTypeOfClass(type); if (baseTypeNode.typeArguments) { forEach(baseTypeNode.typeArguments, checkSourceElement); for (let constructor of getConstructorsForTypeArguments(staticBaseType, baseTypeNode.typeArguments)) { if (!checkTypeArgumentConstraints(constructor.typeParameters, baseTypeNode.typeArguments)) { break; } } } checkTypeAssignableTo(type, baseType, node.name || node, Diagnostics.Class_0_incorrectly_extends_base_class_1); checkTypeAssignableTo(staticType, getTypeWithoutSignatures(staticBaseType), node.name || node, Diagnostics.Class_static_side_0_incorrectly_extends_base_class_static_side_1); if (!(staticBaseType.symbol && staticBaseType.symbol.flags & SymbolFlags.Class)) { // When the static base type is a "class-like" constructor function (but not actually a class), we verify // that all instantiated base constructor signatures return the same type. We can simply compare the type // references (as opposed to checking the structure of the types) because elsewhere we have already checked // that the base type is a class or interface type (and not, for example, an anonymous object type). let constructors = getInstantiatedConstructorsForTypeArguments(staticBaseType, baseTypeNode.typeArguments); if (forEach(constructors, sig => getReturnTypeOfSignature(sig) !== baseType)) { error(baseTypeNode.expression, Diagnostics.Base_constructors_must_all_have_the_same_return_type); } } checkKindsOfPropertyMemberOverrides(type, baseType); } } let implementedTypeNodes = getClassImplementsHeritageClauseElements(node); if (implementedTypeNodes) { forEach(implementedTypeNodes, typeRefNode => { if (!isSupportedExpressionWithTypeArguments(typeRefNode)) { error(typeRefNode.expression, Diagnostics.A_class_can_only_implement_an_identifier_Slashqualified_name_with_optional_type_arguments); } checkTypeReferenceNode(typeRefNode); if (produceDiagnostics) { let t = getTypeFromTypeNode(typeRefNode); if (t !== unknownType) { let declaredType = (t.flags & TypeFlags.Reference) ? (t).target : t; if (declaredType.flags & (TypeFlags.Class | TypeFlags.Interface)) { checkTypeAssignableTo(type, t, node.name || node, Diagnostics.Class_0_incorrectly_implements_interface_1); } else { error(typeRefNode, Diagnostics.A_class_may_only_implement_another_class_or_interface); } } } }); } if (produceDiagnostics) { checkIndexConstraints(type); checkTypeForDuplicateIndexSignatures(node); } } function getTargetSymbol(s: Symbol) { // if symbol is instantiated its flags are not copied from the 'target' // so we'll need to get back original 'target' symbol to work with correct set of flags return s.flags & SymbolFlags.Instantiated ? getSymbolLinks(s).target : s; } function checkKindsOfPropertyMemberOverrides(type: InterfaceType, baseType: ObjectType): void { // TypeScript 1.0 spec (April 2014): 8.2.3 // A derived class inherits all members from its base class it doesn't override. // Inheritance means that a derived class implicitly contains all non - overridden members of the base class. // Both public and private property members are inherited, but only public property members can be overridden. // A property member in a derived class is said to override a property member in a base class // when the derived class property member has the same name and kind(instance or static) // as the base class property member. // The type of an overriding property member must be assignable(section 3.8.4) // to the type of the overridden property member, or otherwise a compile - time error occurs. // Base class instance member functions can be overridden by derived class instance member functions, // but not by other kinds of members. // Base class instance member variables and accessors can be overridden by // derived class instance member variables and accessors, but not by other kinds of members. // NOTE: assignability is checked in checkClassDeclaration let baseProperties = getPropertiesOfObjectType(baseType); for (let baseProperty of baseProperties) { let base = getTargetSymbol(baseProperty); if (base.flags & SymbolFlags.Prototype) { continue; } let derived = getTargetSymbol(getPropertyOfObjectType(type, base.name)); let baseDeclarationFlags = getDeclarationFlagsFromSymbol(base); Debug.assert(!!derived, "derived should point to something, even if it is the base class' declaration."); if (derived) { // In order to resolve whether the inherited method was overriden in the base class or not, // we compare the Symbols obtained. Since getTargetSymbol returns the symbol on the *uninstantiated* // type declaration, derived and base resolve to the same symbol even in the case of generic classes. if (derived === base) { // derived class inherits base without override/redeclaration let derivedClassDecl = getDeclarationOfKind(type.symbol, SyntaxKind.ClassDeclaration); // It is an error to inherit an abstract member without implementing it or being declared abstract. // If there is no declaration for the derived class (as in the case of class expressions), // then the class cannot be declared abstract. if ( baseDeclarationFlags & NodeFlags.Abstract && (!derivedClassDecl || !(derivedClassDecl.flags & NodeFlags.Abstract))) { error(derivedClassDecl, Diagnostics.Non_abstract_class_0_does_not_implement_inherited_abstract_member_1_from_class_2, typeToString(type), symbolToString(baseProperty), typeToString(baseType)); } } else { // derived overrides base. let derivedDeclarationFlags = getDeclarationFlagsFromSymbol(derived); if ((baseDeclarationFlags & NodeFlags.Private) || (derivedDeclarationFlags & NodeFlags.Private)) { // either base or derived property is private - not override, skip it continue; } if ((baseDeclarationFlags & NodeFlags.Static) !== (derivedDeclarationFlags & NodeFlags.Static)) { // value of 'static' is not the same for properties - not override, skip it continue; } if ((base.flags & derived.flags & SymbolFlags.Method) || ((base.flags & SymbolFlags.PropertyOrAccessor) && (derived.flags & SymbolFlags.PropertyOrAccessor))) { // method is overridden with method or property/accessor is overridden with property/accessor - correct case continue; } let errorMessage: DiagnosticMessage; if (base.flags & SymbolFlags.Method) { if (derived.flags & SymbolFlags.Accessor) { errorMessage = Diagnostics.Class_0_defines_instance_member_function_1_but_extended_class_2_defines_it_as_instance_member_accessor; } else { Debug.assert((derived.flags & SymbolFlags.Property) !== 0); errorMessage = Diagnostics.Class_0_defines_instance_member_function_1_but_extended_class_2_defines_it_as_instance_member_property; } } else if (base.flags & SymbolFlags.Property) { Debug.assert((derived.flags & SymbolFlags.Method) !== 0); errorMessage = Diagnostics.Class_0_defines_instance_member_property_1_but_extended_class_2_defines_it_as_instance_member_function; } else { Debug.assert((base.flags & SymbolFlags.Accessor) !== 0); Debug.assert((derived.flags & SymbolFlags.Method) !== 0); errorMessage = Diagnostics.Class_0_defines_instance_member_accessor_1_but_extended_class_2_defines_it_as_instance_member_function; } error(derived.valueDeclaration.name, errorMessage, typeToString(baseType), symbolToString(base), typeToString(type)); } } } } function isAccessor(kind: SyntaxKind): boolean { return kind === SyntaxKind.GetAccessor || kind === SyntaxKind.SetAccessor; } function areTypeParametersIdentical(list1: TypeParameterDeclaration[], list2: TypeParameterDeclaration[]) { if (!list1 && !list2) { return true; } if (!list1 || !list2 || list1.length !== list2.length) { return false; } // TypeScript 1.0 spec (April 2014): // When a generic interface has multiple declarations, all declarations must have identical type parameter // lists, i.e. identical type parameter names with identical constraints in identical order. for (let i = 0, len = list1.length; i < len; i++) { let tp1 = list1[i]; let tp2 = list2[i]; if (tp1.name.text !== tp2.name.text) { return false; } if (!tp1.constraint && !tp2.constraint) { continue; } if (!tp1.constraint || !tp2.constraint) { return false; } if (!isTypeIdenticalTo(getTypeFromTypeNode(tp1.constraint), getTypeFromTypeNode(tp2.constraint))) { return false; } } return true; } function checkInheritedPropertiesAreIdentical(type: InterfaceType, typeNode: Node): boolean { let baseTypes = getBaseTypes(type); if (baseTypes.length < 2) { return true; } let seen: Map<{ prop: Symbol; containingType: Type }> = {}; forEach(resolveDeclaredMembers(type).declaredProperties, p => { seen[p.name] = { prop: p, containingType: type }; }); let ok = true; for (let base of baseTypes) { let properties = getPropertiesOfObjectType(base); for (let prop of properties) { if (!hasProperty(seen, prop.name)) { seen[prop.name] = { prop: prop, containingType: base }; } else { let existing = seen[prop.name]; let isInheritedProperty = existing.containingType !== type; if (isInheritedProperty && !isPropertyIdenticalTo(existing.prop, prop)) { ok = false; let typeName1 = typeToString(existing.containingType); let typeName2 = typeToString(base); let errorInfo = chainDiagnosticMessages(undefined, Diagnostics.Named_property_0_of_types_1_and_2_are_not_identical, symbolToString(prop), typeName1, typeName2); errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Interface_0_cannot_simultaneously_extend_types_1_and_2, typeToString(type), typeName1, typeName2); diagnostics.add(createDiagnosticForNodeFromMessageChain(typeNode, errorInfo)); } } } } return ok; } function checkInterfaceDeclaration(node: InterfaceDeclaration) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarInterfaceDeclaration(node); checkTypeParameters(node.typeParameters); if (produceDiagnostics) { checkTypeNameIsReserved(node.name, Diagnostics.Interface_name_cannot_be_0); checkExportsOnMergedDeclarations(node); let symbol = getSymbolOfNode(node); let firstInterfaceDecl = getDeclarationOfKind(symbol, SyntaxKind.InterfaceDeclaration); if (symbol.declarations.length > 1) { if (node !== firstInterfaceDecl && !areTypeParametersIdentical(firstInterfaceDecl.typeParameters, node.typeParameters)) { error(node.name, Diagnostics.All_declarations_of_an_interface_must_have_identical_type_parameters); } } // Only check this symbol once if (node === firstInterfaceDecl) { let type = getDeclaredTypeOfSymbol(symbol); // run subsequent checks only if first set succeeded if (checkInheritedPropertiesAreIdentical(type, node.name)) { forEach(getBaseTypes(type), baseType => { checkTypeAssignableTo(type, baseType, node.name, Diagnostics.Interface_0_incorrectly_extends_interface_1); }); checkIndexConstraints(type); } } // Interfaces cannot merge with non-ambient classes. if (symbol && symbol.declarations) { for (let declaration of symbol.declarations) { if (declaration.kind === SyntaxKind.ClassDeclaration && !isInAmbientContext(declaration)) { error(node, Diagnostics.Only_an_ambient_class_can_be_merged_with_an_interface); break; } } } } forEach(getInterfaceBaseTypeNodes(node), heritageElement => { if (!isSupportedExpressionWithTypeArguments(heritageElement)) { error(heritageElement.expression, Diagnostics.An_interface_can_only_extend_an_identifier_Slashqualified_name_with_optional_type_arguments); } checkTypeReferenceNode(heritageElement); }); forEach(node.members, checkSourceElement); if (produceDiagnostics) { checkTypeForDuplicateIndexSignatures(node); } } function checkTypeAliasDeclaration(node: TypeAliasDeclaration) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node); checkTypeNameIsReserved(node.name, Diagnostics.Type_alias_name_cannot_be_0); checkSourceElement(node.type); } function computeEnumMemberValues(node: EnumDeclaration) { let nodeLinks = getNodeLinks(node); if (!(nodeLinks.flags & NodeCheckFlags.EnumValuesComputed)) { let enumSymbol = getSymbolOfNode(node); let enumType = getDeclaredTypeOfSymbol(enumSymbol); let autoValue = 0; let ambient = isInAmbientContext(node); let enumIsConst = isConst(node); forEach(node.members, member => { if (member.name.kind !== SyntaxKind.ComputedPropertyName && isNumericLiteralName((member.name).text)) { error(member.name, Diagnostics.An_enum_member_cannot_have_a_numeric_name); } let initializer = member.initializer; if (initializer) { autoValue = getConstantValueForEnumMemberInitializer(initializer); if (autoValue === undefined) { if (enumIsConst) { error(initializer, Diagnostics.In_const_enum_declarations_member_initializer_must_be_constant_expression); } else if (!ambient) { // Only here do we need to check that the initializer is assignable to the enum type. // If it is a constant value (not undefined), it is syntactically constrained to be a number. // Also, we do not need to check this for ambients because there is already // a syntax error if it is not a constant. checkTypeAssignableTo(checkExpression(initializer), enumType, initializer, /*headMessage*/ undefined); } } else if (enumIsConst) { if (isNaN(autoValue)) { error(initializer, Diagnostics.const_enum_member_initializer_was_evaluated_to_disallowed_value_NaN); } else if (!isFinite(autoValue)) { error(initializer, Diagnostics.const_enum_member_initializer_was_evaluated_to_a_non_finite_value); } } } else if (ambient && !enumIsConst) { autoValue = undefined; } if (autoValue !== undefined) { getNodeLinks(member).enumMemberValue = autoValue++; } }); nodeLinks.flags |= NodeCheckFlags.EnumValuesComputed; } function getConstantValueForEnumMemberInitializer(initializer: Expression): number { return evalConstant(initializer); function evalConstant(e: Node): number { switch (e.kind) { case SyntaxKind.PrefixUnaryExpression: let value = evalConstant((e).operand); if (value === undefined) { return undefined; } switch ((e).operator) { case SyntaxKind.PlusToken: return value; case SyntaxKind.MinusToken: return -value; case SyntaxKind.TildeToken: return ~value; } return undefined; case SyntaxKind.BinaryExpression: let left = evalConstant((e).left); if (left === undefined) { return undefined; } let right = evalConstant((e).right); if (right === undefined) { return undefined; } switch ((e).operatorToken.kind) { case SyntaxKind.BarToken: return left | right; case SyntaxKind.AmpersandToken: return left & right; case SyntaxKind.GreaterThanGreaterThanToken: return left >> right; case SyntaxKind.GreaterThanGreaterThanGreaterThanToken: return left >>> right; case SyntaxKind.LessThanLessThanToken: return left << right; case SyntaxKind.CaretToken: return left ^ right; case SyntaxKind.AsteriskToken: return left * right; case SyntaxKind.SlashToken: return left / right; case SyntaxKind.PlusToken: return left + right; case SyntaxKind.MinusToken: return left - right; case SyntaxKind.PercentToken: return left % right; } return undefined; case SyntaxKind.NumericLiteral: return +(e).text; case SyntaxKind.ParenthesizedExpression: return evalConstant((e).expression); case SyntaxKind.Identifier: case SyntaxKind.ElementAccessExpression: case SyntaxKind.PropertyAccessExpression: let member = initializer.parent; let currentType = getTypeOfSymbol(getSymbolOfNode(member.parent)); let enumType: Type; let propertyName: string; if (e.kind === SyntaxKind.Identifier) { // unqualified names can refer to member that reside in different declaration of the enum so just doing name resolution won't work. // instead pick current enum type and later try to fetch member from the type enumType = currentType; propertyName = (e).text; } else { let expression: Expression; if (e.kind === SyntaxKind.ElementAccessExpression) { if ((e).argumentExpression === undefined || (e).argumentExpression.kind !== SyntaxKind.StringLiteral) { return undefined; } expression = (e).expression; propertyName = ((e).argumentExpression).text; } else { expression = (e).expression; propertyName = (e).name.text; } // expression part in ElementAccess\PropertyAccess should be either identifier or dottedName let current = expression; while (current) { if (current.kind === SyntaxKind.Identifier) { break; } else if (current.kind === SyntaxKind.PropertyAccessExpression) { current = (current).expression; } else { return undefined; } } enumType = checkExpression(expression); // allow references to constant members of other enums if (!(enumType.symbol && (enumType.symbol.flags & SymbolFlags.Enum))) { return undefined; } } if (propertyName === undefined) { return undefined; } let property = getPropertyOfObjectType(enumType, propertyName); if (!property || !(property.flags & SymbolFlags.EnumMember)) { return undefined; } let propertyDecl = property.valueDeclaration; // self references are illegal if (member === propertyDecl) { return undefined; } // illegal case: forward reference if (!isDefinedBefore(propertyDecl, member)) { return undefined; } return getNodeLinks(propertyDecl).enumMemberValue; } } } } function checkEnumDeclaration(node: EnumDeclaration) { if (!produceDiagnostics) { return; } // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarEnumDeclaration(node); checkTypeNameIsReserved(node.name, Diagnostics.Enum_name_cannot_be_0); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkExportsOnMergedDeclarations(node); computeEnumMemberValues(node); let enumIsConst = isConst(node); if (compilerOptions.isolatedModules && enumIsConst && isInAmbientContext(node)) { error(node.name, Diagnostics.Ambient_const_enums_are_not_allowed_when_the_isolatedModules_flag_is_provided); } // Spec 2014 - Section 9.3: // It isn't possible for one enum declaration to continue the automatic numbering sequence of another, // and when an enum type has multiple declarations, only one declaration is permitted to omit a value // for the first member. // // Only perform this check once per symbol let enumSymbol = getSymbolOfNode(node); let firstDeclaration = getDeclarationOfKind(enumSymbol, node.kind); if (node === firstDeclaration) { if (enumSymbol.declarations.length > 1) { // check that const is placed\omitted on all enum declarations forEach(enumSymbol.declarations, decl => { if (isConstEnumDeclaration(decl) !== enumIsConst) { error(decl.name, Diagnostics.Enum_declarations_must_all_be_const_or_non_const); } }); } let seenEnumMissingInitialInitializer = false; forEach(enumSymbol.declarations, declaration => { // return true if we hit a violation of the rule, false otherwise if (declaration.kind !== SyntaxKind.EnumDeclaration) { return false; } let enumDeclaration = declaration; if (!enumDeclaration.members.length) { return false; } let firstEnumMember = enumDeclaration.members[0]; if (!firstEnumMember.initializer) { if (seenEnumMissingInitialInitializer) { error(firstEnumMember.name, Diagnostics.In_an_enum_with_multiple_declarations_only_one_declaration_can_omit_an_initializer_for_its_first_enum_element); } else { seenEnumMissingInitialInitializer = true; } } }); } } function getFirstNonAmbientClassOrFunctionDeclaration(symbol: Symbol): Declaration { let declarations = symbol.declarations; for (let declaration of declarations) { if ((declaration.kind === SyntaxKind.ClassDeclaration || (declaration.kind === SyntaxKind.FunctionDeclaration && nodeIsPresent((declaration).body))) && !isInAmbientContext(declaration)) { return declaration; } } return undefined; } function inSameLexicalScope(node1: Node, node2: Node) { let container1 = getEnclosingBlockScopeContainer(node1); let container2 = getEnclosingBlockScopeContainer(node2); if (isGlobalSourceFile(container1)) { return isGlobalSourceFile(container2); } else if (isGlobalSourceFile(container2)) { return false; } else { return container1 === container2; } } function checkModuleDeclaration(node: ModuleDeclaration) { if (produceDiagnostics) { // Grammar checking let isAmbientExternalModule = node.name.kind === SyntaxKind.StringLiteral; let contextErrorMessage = isAmbientExternalModule ? Diagnostics.An_ambient_module_declaration_is_only_allowed_at_the_top_level_in_a_file : Diagnostics.A_namespace_declaration_is_only_allowed_in_a_namespace_or_module; if (checkGrammarModuleElementContext(node, contextErrorMessage)) { // If we hit a module declaration in an illegal context, just bail out to avoid cascading errors. return; } if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node)) { if (!isInAmbientContext(node) && node.name.kind === SyntaxKind.StringLiteral) { grammarErrorOnNode(node.name, Diagnostics.Only_ambient_modules_can_use_quoted_names); } } checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkExportsOnMergedDeclarations(node); let symbol = getSymbolOfNode(node); // The following checks only apply on a non-ambient instantiated module declaration. if (symbol.flags & SymbolFlags.ValueModule && symbol.declarations.length > 1 && !isInAmbientContext(node) && isInstantiatedModule(node, compilerOptions.preserveConstEnums || compilerOptions.isolatedModules)) { let firstNonAmbientClassOrFunc = getFirstNonAmbientClassOrFunctionDeclaration(symbol); if (firstNonAmbientClassOrFunc) { if (getSourceFileOfNode(node) !== getSourceFileOfNode(firstNonAmbientClassOrFunc)) { error(node.name, Diagnostics.A_namespace_declaration_cannot_be_in_a_different_file_from_a_class_or_function_with_which_it_is_merged); } else if (node.pos < firstNonAmbientClassOrFunc.pos) { error(node.name, Diagnostics.A_namespace_declaration_cannot_be_located_prior_to_a_class_or_function_with_which_it_is_merged); } } // if the module merges with a class declaration in the same lexical scope, // we need to track this to ensure the correct emit. let mergedClass = getDeclarationOfKind(symbol, SyntaxKind.ClassDeclaration); if (mergedClass && inSameLexicalScope(node, mergedClass)) { getNodeLinks(node).flags |= NodeCheckFlags.LexicalModuleMergesWithClass; } } // Checks for ambient external modules. if (isAmbientExternalModule) { if (!isGlobalSourceFile(node.parent)) { error(node.name, Diagnostics.Ambient_modules_cannot_be_nested_in_other_modules); } if (isExternalModuleNameRelative(node.name.text)) { error(node.name, Diagnostics.Ambient_module_declaration_cannot_specify_relative_module_name); } } } checkSourceElement(node.body); } function getFirstIdentifier(node: EntityName | Expression): Identifier { while (true) { if (node.kind === SyntaxKind.QualifiedName) { node = (node).left; } else if (node.kind === SyntaxKind.PropertyAccessExpression) { node = (node).expression; } else { break; } } Debug.assert(node.kind === SyntaxKind.Identifier); return node; } function checkExternalImportOrExportDeclaration(node: ImportDeclaration | ImportEqualsDeclaration | ExportDeclaration): boolean { let moduleName = getExternalModuleName(node); if (!nodeIsMissing(moduleName) && moduleName.kind !== SyntaxKind.StringLiteral) { error(moduleName, Diagnostics.String_literal_expected); return false; } let inAmbientExternalModule = node.parent.kind === SyntaxKind.ModuleBlock && (node.parent.parent).name.kind === SyntaxKind.StringLiteral; if (node.parent.kind !== SyntaxKind.SourceFile && !inAmbientExternalModule) { error(moduleName, node.kind === SyntaxKind.ExportDeclaration ? Diagnostics.Export_declarations_are_not_permitted_in_a_namespace : Diagnostics.Import_declarations_in_a_namespace_cannot_reference_a_module); return false; } if (inAmbientExternalModule && isExternalModuleNameRelative((moduleName).text)) { // TypeScript 1.0 spec (April 2013): 12.1.6 // An ExternalImportDeclaration in an AmbientExternalModuleDeclaration may reference // other external modules only through top - level external module names. // Relative external module names are not permitted. error(node, Diagnostics.Import_or_export_declaration_in_an_ambient_module_declaration_cannot_reference_module_through_relative_module_name); return false; } return true; } function checkAliasSymbol(node: ImportEqualsDeclaration | ImportClause | NamespaceImport | ImportSpecifier | ExportSpecifier) { let symbol = getSymbolOfNode(node); let target = resolveAlias(symbol); if (target !== unknownSymbol) { let excludedMeanings = (symbol.flags & SymbolFlags.Value ? SymbolFlags.Value : 0) | (symbol.flags & SymbolFlags.Type ? SymbolFlags.Type : 0) | (symbol.flags & SymbolFlags.Namespace ? SymbolFlags.Namespace : 0); if (target.flags & excludedMeanings) { let message = node.kind === SyntaxKind.ExportSpecifier ? Diagnostics.Export_declaration_conflicts_with_exported_declaration_of_0 : Diagnostics.Import_declaration_conflicts_with_local_declaration_of_0; error(node, message, symbolToString(symbol)); } } } function checkImportBinding(node: ImportEqualsDeclaration | ImportClause | NamespaceImport | ImportSpecifier) { checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkAliasSymbol(node); } function checkImportDeclaration(node: ImportDeclaration) { if (checkGrammarModuleElementContext(node, Diagnostics.An_import_declaration_can_only_be_used_in_a_namespace_or_module)) { // If we hit an import declaration in an illegal context, just bail out to avoid cascading errors. return; } if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && (node.flags & NodeFlags.Modifier)) { grammarErrorOnFirstToken(node, Diagnostics.An_import_declaration_cannot_have_modifiers); } if (checkExternalImportOrExportDeclaration(node)) { let importClause = node.importClause; if (importClause) { if (importClause.name) { checkImportBinding(importClause); } if (importClause.namedBindings) { if (importClause.namedBindings.kind === SyntaxKind.NamespaceImport) { checkImportBinding(importClause.namedBindings); } else { forEach((importClause.namedBindings).elements, checkImportBinding); } } } } } function checkImportEqualsDeclaration(node: ImportEqualsDeclaration) { if (checkGrammarModuleElementContext(node, Diagnostics.An_import_declaration_can_only_be_used_in_a_namespace_or_module)) { // If we hit an import declaration in an illegal context, just bail out to avoid cascading errors. return; } checkGrammarDecorators(node) || checkGrammarModifiers(node); if (isInternalModuleImportEqualsDeclaration(node) || checkExternalImportOrExportDeclaration(node)) { checkImportBinding(node); if (node.flags & NodeFlags.Export) { markExportAsReferenced(node); } if (isInternalModuleImportEqualsDeclaration(node)) { let target = resolveAlias(getSymbolOfNode(node)); if (target !== unknownSymbol) { if (target.flags & SymbolFlags.Value) { // Target is a value symbol, check that it is not hidden by a local declaration with the same name let moduleName = getFirstIdentifier(node.moduleReference); if (!(resolveEntityName(moduleName, SymbolFlags.Value | SymbolFlags.Namespace).flags & SymbolFlags.Namespace)) { error(moduleName, Diagnostics.Module_0_is_hidden_by_a_local_declaration_with_the_same_name, declarationNameToString(moduleName)); } } if (target.flags & SymbolFlags.Type) { checkTypeNameIsReserved(node.name, Diagnostics.Import_name_cannot_be_0); } } } else { if (languageVersion >= ScriptTarget.ES6) { // Import equals declaration is deprecated in es6 or above grammarErrorOnNode(node, Diagnostics.Import_assignment_cannot_be_used_when_targeting_ECMAScript_6_or_higher_Consider_using_import_Asterisk_as_ns_from_mod_import_a_from_mod_or_import_d_from_mod_instead); } } } } function checkExportDeclaration(node: ExportDeclaration) { if (checkGrammarModuleElementContext(node, Diagnostics.An_export_declaration_can_only_be_used_in_a_module)) { // If we hit an export in an illegal context, just bail out to avoid cascading errors. return; } if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && (node.flags & NodeFlags.Modifier)) { grammarErrorOnFirstToken(node, Diagnostics.An_export_declaration_cannot_have_modifiers); } if (!node.moduleSpecifier || checkExternalImportOrExportDeclaration(node)) { if (node.exportClause) { // export { x, y } // export { x, y } from "foo" forEach(node.exportClause.elements, checkExportSpecifier); let inAmbientExternalModule = node.parent.kind === SyntaxKind.ModuleBlock && (node.parent.parent).name.kind === SyntaxKind.StringLiteral; if (node.parent.kind !== SyntaxKind.SourceFile && !inAmbientExternalModule) { error(node, Diagnostics.Export_declarations_are_not_permitted_in_a_namespace); } } else { // export * from "foo" let moduleSymbol = resolveExternalModuleName(node, node.moduleSpecifier); if (moduleSymbol && moduleSymbol.exports["export="]) { error(node.moduleSpecifier, Diagnostics.Module_0_uses_export_and_cannot_be_used_with_export_Asterisk, symbolToString(moduleSymbol)); } } } } function checkGrammarModuleElementContext(node: Statement, errorMessage: DiagnosticMessage): boolean { if (node.parent.kind !== SyntaxKind.SourceFile && node.parent.kind !== SyntaxKind.ModuleBlock && node.parent.kind !== SyntaxKind.ModuleDeclaration) { return grammarErrorOnFirstToken(node, errorMessage); } } function checkExportSpecifier(node: ExportSpecifier) { checkAliasSymbol(node); if (!(node.parent.parent).moduleSpecifier) { markExportAsReferenced(node); } } function checkExportAssignment(node: ExportAssignment) { if (checkGrammarModuleElementContext(node, Diagnostics.An_export_assignment_can_only_be_used_in_a_module)) { // If we hit an export assignment in an illegal context, just bail out to avoid cascading errors. return; } let container = node.parent.kind === SyntaxKind.SourceFile ? node.parent : node.parent.parent; if (container.kind === SyntaxKind.ModuleDeclaration && (container).name.kind === SyntaxKind.Identifier) { error(node, Diagnostics.An_export_assignment_cannot_be_used_in_a_namespace); return; } // Grammar checking if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && (node.flags & NodeFlags.Modifier)) { grammarErrorOnFirstToken(node, Diagnostics.An_export_assignment_cannot_have_modifiers); } if (node.expression.kind === SyntaxKind.Identifier) { markExportAsReferenced(node); } else { checkExpressionCached(node.expression); } checkExternalModuleExports(container); if (node.isExportEquals && !isInAmbientContext(node)) { if (languageVersion >= ScriptTarget.ES6) { // export assignment is deprecated in es6 or above grammarErrorOnNode(node, Diagnostics.Export_assignment_cannot_be_used_when_targeting_ECMAScript_6_or_higher_Consider_using_export_default_instead); } else if (compilerOptions.module === ModuleKind.System) { // system modules does not support export assignment grammarErrorOnNode(node, Diagnostics.Export_assignment_is_not_supported_when_module_flag_is_system); } } } function getModuleStatements(node: Declaration): Statement[] { if (node.kind === SyntaxKind.SourceFile) { return (node).statements; } if (node.kind === SyntaxKind.ModuleDeclaration && (node).body.kind === SyntaxKind.ModuleBlock) { return ((node).body).statements; } return emptyArray; } function hasExportedMembers(moduleSymbol: Symbol) { for (var id in moduleSymbol.exports) { if (id !== "export=") { return true; } } return false; } function checkExternalModuleExports(node: SourceFile | ModuleDeclaration) { let moduleSymbol = getSymbolOfNode(node); let links = getSymbolLinks(moduleSymbol); if (!links.exportsChecked) { let exportEqualsSymbol = moduleSymbol.exports["export="]; if (exportEqualsSymbol && hasExportedMembers(moduleSymbol)) { let declaration = getDeclarationOfAliasSymbol(exportEqualsSymbol) || exportEqualsSymbol.valueDeclaration; error(declaration, Diagnostics.An_export_assignment_cannot_be_used_in_a_module_with_other_exported_elements); } links.exportsChecked = true; } } function checkTypePredicate(node: TypePredicateNode) { if (!isInLegalTypePredicatePosition(node)) { error(node, Diagnostics.A_type_predicate_is_only_allowed_in_return_type_position_for_functions_and_methods); } } function checkSourceElement(node: Node): void { if (!node) { return; } let kind = node.kind; if (cancellationToken) { // Only bother checking on a few construct kinds. We don't want to be excessivly // hitting the cancellation token on every node we check. switch (kind) { case SyntaxKind.ModuleDeclaration: case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.FunctionDeclaration: cancellationToken.throwIfCancellationRequested(); } } switch (kind) { case SyntaxKind.TypeParameter: return checkTypeParameter(node); case SyntaxKind.Parameter: return checkParameter(node); case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: return checkPropertyDeclaration(node); case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.CallSignature: case SyntaxKind.ConstructSignature: return checkSignatureDeclaration(node); case SyntaxKind.IndexSignature: return checkSignatureDeclaration(node); case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: return checkMethodDeclaration(node); case SyntaxKind.Constructor: return checkConstructorDeclaration(node); case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: return checkAccessorDeclaration(node); case SyntaxKind.TypeReference: return checkTypeReferenceNode(node); case SyntaxKind.TypePredicate: return checkTypePredicate(node); case SyntaxKind.TypeQuery: return checkTypeQuery(node); case SyntaxKind.TypeLiteral: return checkTypeLiteral(node); case SyntaxKind.ArrayType: return checkArrayType(node); case SyntaxKind.TupleType: return checkTupleType(node); case SyntaxKind.UnionType: case SyntaxKind.IntersectionType: return checkUnionOrIntersectionType(node); case SyntaxKind.ParenthesizedType: return checkSourceElement((node).type); case SyntaxKind.FunctionDeclaration: return checkFunctionDeclaration(node); case SyntaxKind.Block: case SyntaxKind.ModuleBlock: return checkBlock(node); case SyntaxKind.VariableStatement: return checkVariableStatement(node); case SyntaxKind.ExpressionStatement: return checkExpressionStatement(node); case SyntaxKind.IfStatement: return checkIfStatement(node); case SyntaxKind.DoStatement: return checkDoStatement(node); case SyntaxKind.WhileStatement: return checkWhileStatement(node); case SyntaxKind.ForStatement: return checkForStatement(node); case SyntaxKind.ForInStatement: return checkForInStatement(node); case SyntaxKind.ForOfStatement: return checkForOfStatement(node); case SyntaxKind.ContinueStatement: case SyntaxKind.BreakStatement: return checkBreakOrContinueStatement(node); case SyntaxKind.ReturnStatement: return checkReturnStatement(node); case SyntaxKind.WithStatement: return checkWithStatement(node); case SyntaxKind.SwitchStatement: return checkSwitchStatement(node); case SyntaxKind.LabeledStatement: return checkLabeledStatement(node); case SyntaxKind.ThrowStatement: return checkThrowStatement(node); case SyntaxKind.TryStatement: return checkTryStatement(node); case SyntaxKind.VariableDeclaration: return checkVariableDeclaration(node); case SyntaxKind.BindingElement: return checkBindingElement(node); case SyntaxKind.ClassDeclaration: return checkClassDeclaration(node); case SyntaxKind.InterfaceDeclaration: return checkInterfaceDeclaration(node); case SyntaxKind.TypeAliasDeclaration: return checkTypeAliasDeclaration(node); case SyntaxKind.EnumDeclaration: return checkEnumDeclaration(node); case SyntaxKind.ModuleDeclaration: return checkModuleDeclaration(node); case SyntaxKind.ImportDeclaration: return checkImportDeclaration(node); case SyntaxKind.ImportEqualsDeclaration: return checkImportEqualsDeclaration(node); case SyntaxKind.ExportDeclaration: return checkExportDeclaration(node); case SyntaxKind.ExportAssignment: return checkExportAssignment(node); case SyntaxKind.EmptyStatement: checkGrammarStatementInAmbientContext(node); return; case SyntaxKind.DebuggerStatement: checkGrammarStatementInAmbientContext(node); return; case SyntaxKind.MissingDeclaration: return checkMissingDeclaration(node); } } // Function and class expression bodies are checked after all statements in the enclosing body. This is // to ensure constructs like the following are permitted: // let foo = function () { // let s = foo(); // return "hello"; // } // Here, performing a full type check of the body of the function expression whilst in the process of // determining the type of foo would cause foo to be given type any because of the recursive reference. // Delaying the type check of the body ensures foo has been assigned a type. function checkFunctionAndClassExpressionBodies(node: Node): void { switch (node.kind) { case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: forEach((node).parameters, checkFunctionAndClassExpressionBodies); checkFunctionExpressionOrObjectLiteralMethodBody(node); break; case SyntaxKind.ClassExpression: forEach((node).members, checkSourceElement); break; case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: forEach(node.decorators, checkFunctionAndClassExpressionBodies); forEach((node).parameters, checkFunctionAndClassExpressionBodies); if (isObjectLiteralMethod(node)) { checkFunctionExpressionOrObjectLiteralMethodBody(node); } break; case SyntaxKind.Constructor: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionDeclaration: forEach((node).parameters, checkFunctionAndClassExpressionBodies); break; case SyntaxKind.WithStatement: checkFunctionAndClassExpressionBodies((node).expression); break; case SyntaxKind.Decorator: case SyntaxKind.Parameter: case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.ObjectBindingPattern: case SyntaxKind.ArrayBindingPattern: case SyntaxKind.BindingElement: case SyntaxKind.ArrayLiteralExpression: case SyntaxKind.ObjectLiteralExpression: case SyntaxKind.PropertyAssignment: case SyntaxKind.PropertyAccessExpression: case SyntaxKind.ElementAccessExpression: case SyntaxKind.CallExpression: case SyntaxKind.NewExpression: case SyntaxKind.TaggedTemplateExpression: case SyntaxKind.TemplateExpression: case SyntaxKind.TemplateSpan: case SyntaxKind.TypeAssertionExpression: case SyntaxKind.AsExpression: case SyntaxKind.ParenthesizedExpression: case SyntaxKind.TypeOfExpression: case SyntaxKind.VoidExpression: case SyntaxKind.AwaitExpression: case SyntaxKind.DeleteExpression: case SyntaxKind.PrefixUnaryExpression: case SyntaxKind.PostfixUnaryExpression: case SyntaxKind.BinaryExpression: case SyntaxKind.ConditionalExpression: case SyntaxKind.SpreadElementExpression: case SyntaxKind.YieldExpression: case SyntaxKind.Block: case SyntaxKind.ModuleBlock: case SyntaxKind.VariableStatement: case SyntaxKind.ExpressionStatement: case SyntaxKind.IfStatement: case SyntaxKind.DoStatement: case SyntaxKind.WhileStatement: case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: case SyntaxKind.ContinueStatement: case SyntaxKind.BreakStatement: case SyntaxKind.ReturnStatement: case SyntaxKind.SwitchStatement: case SyntaxKind.CaseBlock: case SyntaxKind.CaseClause: case SyntaxKind.DefaultClause: case SyntaxKind.LabeledStatement: case SyntaxKind.ThrowStatement: case SyntaxKind.TryStatement: case SyntaxKind.CatchClause: case SyntaxKind.VariableDeclaration: case SyntaxKind.VariableDeclarationList: case SyntaxKind.ClassDeclaration: case SyntaxKind.EnumDeclaration: case SyntaxKind.EnumMember: case SyntaxKind.ExportAssignment: case SyntaxKind.SourceFile: case SyntaxKind.JsxExpression: case SyntaxKind.JsxElement: case SyntaxKind.JsxSelfClosingElement: case SyntaxKind.JsxAttribute: case SyntaxKind.JsxSpreadAttribute: case SyntaxKind.JsxOpeningElement: forEachChild(node, checkFunctionAndClassExpressionBodies); break; } } function checkSourceFile(node: SourceFile) { let start = new Date().getTime(); checkSourceFileWorker(node); checkTime += new Date().getTime() - start; } // Fully type check a source file and collect the relevant diagnostics. function checkSourceFileWorker(node: SourceFile) { let links = getNodeLinks(node); if (!(links.flags & NodeCheckFlags.TypeChecked)) { // Check whether the file has declared it is the default lib, // and whether the user has specifically chosen to avoid checking it. if (node.isDefaultLib && compilerOptions.skipDefaultLibCheck) { return; } // Grammar checking checkGrammarSourceFile(node); emitExtends = false; emitDecorate = false; emitParam = false; potentialThisCollisions.length = 0; forEach(node.statements, checkSourceElement); checkFunctionAndClassExpressionBodies(node); if (isExternalModule(node)) { checkExternalModuleExports(node); } if (potentialThisCollisions.length) { forEach(potentialThisCollisions, checkIfThisIsCapturedInEnclosingScope); potentialThisCollisions.length = 0; } if (emitExtends) { links.flags |= NodeCheckFlags.EmitExtends; } if (emitDecorate) { links.flags |= NodeCheckFlags.EmitDecorate; } if (emitParam) { links.flags |= NodeCheckFlags.EmitParam; } if (emitAwaiter) { links.flags |= NodeCheckFlags.EmitAwaiter; } if (emitGenerator || (emitAwaiter && languageVersion < ScriptTarget.ES6)) { links.flags |= NodeCheckFlags.EmitGenerator; } links.flags |= NodeCheckFlags.TypeChecked; } } function getDiagnostics(sourceFile: SourceFile, ct: CancellationToken): Diagnostic[] { try { // Record the cancellation token so it can be checked later on during checkSourceElement. // Do this in a finally block so we can ensure that it gets reset back to nothing after // this call is done. cancellationToken = ct; return getDiagnosticsWorker(sourceFile); } finally { cancellationToken = undefined; } } function getDiagnosticsWorker(sourceFile: SourceFile): Diagnostic[] { throwIfNonDiagnosticsProducing(); if (sourceFile) { checkSourceFile(sourceFile); return diagnostics.getDiagnostics(sourceFile.fileName); } forEach(host.getSourceFiles(), checkSourceFile); return diagnostics.getDiagnostics(); } function getGlobalDiagnostics(): Diagnostic[] { throwIfNonDiagnosticsProducing(); return diagnostics.getGlobalDiagnostics(); } function throwIfNonDiagnosticsProducing() { if (!produceDiagnostics) { throw new Error("Trying to get diagnostics from a type checker that does not produce them."); } } // Language service support function isInsideWithStatementBody(node: Node): boolean { if (node) { while (node.parent) { if (node.parent.kind === SyntaxKind.WithStatement && (node.parent).statement === node) { return true; } node = node.parent; } } return false; } function getSymbolsInScope(location: Node, meaning: SymbolFlags): Symbol[] { let symbols: SymbolTable = {}; let memberFlags: NodeFlags = 0; if (isInsideWithStatementBody(location)) { // We cannot answer semantic questions within a with block, do not proceed any further return []; } populateSymbols(); return symbolsToArray(symbols); function populateSymbols() { while (location) { if (location.locals && !isGlobalSourceFile(location)) { copySymbols(location.locals, meaning); } switch (location.kind) { case SyntaxKind.SourceFile: if (!isExternalModule(location)) { break; } case SyntaxKind.ModuleDeclaration: copySymbols(getSymbolOfNode(location).exports, meaning & SymbolFlags.ModuleMember); break; case SyntaxKind.EnumDeclaration: copySymbols(getSymbolOfNode(location).exports, meaning & SymbolFlags.EnumMember); break; case SyntaxKind.ClassExpression: if ((location).name) { copySymbol(location.symbol, meaning); } // Fall through case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: if (!(memberFlags & NodeFlags.Static)) { copySymbols(getSymbolOfNode(location).members, meaning & SymbolFlags.Type); } break; case SyntaxKind.FunctionExpression: if ((location).name) { copySymbol(location.symbol, meaning); } break; } memberFlags = location.flags; location = location.parent; } copySymbols(globals, meaning); } // Returns 'true' if we should stop processing symbols. function copySymbol(symbol: Symbol, meaning: SymbolFlags): void { if (symbol.flags & meaning) { let id = symbol.name; if (!isReservedMemberName(id) && !hasProperty(symbols, id)) { symbols[id] = symbol; } } } function copySymbols(source: SymbolTable, meaning: SymbolFlags): void { if (meaning) { for (let id in source) { if (hasProperty(source, id)) { copySymbol(source[id], meaning); } } } } } function isTypeDeclarationName(name: Node): boolean { return name.kind === SyntaxKind.Identifier && isTypeDeclaration(name.parent) && (name.parent).name === name; } function isTypeDeclaration(node: Node): boolean { switch (node.kind) { case SyntaxKind.TypeParameter: case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.TypeAliasDeclaration: case SyntaxKind.EnumDeclaration: return true; } } // True if the given identifier is part of a type reference function isTypeReferenceIdentifier(entityName: EntityName): boolean { let node: Node = entityName; while (node.parent && node.parent.kind === SyntaxKind.QualifiedName) { node = node.parent; } return node.parent && node.parent.kind === SyntaxKind.TypeReference; } function isHeritageClauseElementIdentifier(entityName: Node): boolean { let node = entityName; while (node.parent && node.parent.kind === SyntaxKind.PropertyAccessExpression) { node = node.parent; } return node.parent && node.parent.kind === SyntaxKind.ExpressionWithTypeArguments; } function getLeftSideOfImportEqualsOrExportAssignment(nodeOnRightSide: EntityName): ImportEqualsDeclaration | ExportAssignment { while (nodeOnRightSide.parent.kind === SyntaxKind.QualifiedName) { nodeOnRightSide = nodeOnRightSide.parent; } if (nodeOnRightSide.parent.kind === SyntaxKind.ImportEqualsDeclaration) { return (nodeOnRightSide.parent).moduleReference === nodeOnRightSide && nodeOnRightSide.parent; } if (nodeOnRightSide.parent.kind === SyntaxKind.ExportAssignment) { return (nodeOnRightSide.parent).expression === nodeOnRightSide && nodeOnRightSide.parent; } return undefined; } function isInRightSideOfImportOrExportAssignment(node: EntityName) { return getLeftSideOfImportEqualsOrExportAssignment(node) !== undefined; } function getSymbolOfEntityNameOrPropertyAccessExpression(entityName: EntityName | PropertyAccessExpression): Symbol { if (isDeclarationName(entityName)) { return getSymbolOfNode(entityName.parent); } if (entityName.parent.kind === SyntaxKind.ExportAssignment) { return resolveEntityName(entityName, /*all meanings*/ SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace | SymbolFlags.Alias); } if (entityName.kind !== SyntaxKind.PropertyAccessExpression) { if (isInRightSideOfImportOrExportAssignment(entityName)) { // Since we already checked for ExportAssignment, this really could only be an Import return getSymbolOfPartOfRightHandSideOfImportEquals(entityName); } } if (isRightSideOfQualifiedNameOrPropertyAccess(entityName)) { entityName = entityName.parent; } if (isHeritageClauseElementIdentifier(entityName)) { let meaning = entityName.parent.kind === SyntaxKind.ExpressionWithTypeArguments ? SymbolFlags.Type : SymbolFlags.Namespace; meaning |= SymbolFlags.Alias; return resolveEntityName(entityName, meaning); } else if ((entityName.parent.kind === SyntaxKind.JsxOpeningElement) || (entityName.parent.kind === SyntaxKind.JsxSelfClosingElement)) { return getJsxElementTagSymbol(entityName.parent); } else if (isExpression(entityName)) { if (nodeIsMissing(entityName)) { // Missing entity name. return undefined; } if (entityName.kind === SyntaxKind.Identifier) { // Include aliases in the meaning, this ensures that we do not follow aliases to where they point and instead // return the alias symbol. let meaning: SymbolFlags = SymbolFlags.Value | SymbolFlags.Alias; return resolveEntityName(entityName, meaning); } else if (entityName.kind === SyntaxKind.PropertyAccessExpression) { let symbol = getNodeLinks(entityName).resolvedSymbol; if (!symbol) { checkPropertyAccessExpression(entityName); } return getNodeLinks(entityName).resolvedSymbol; } else if (entityName.kind === SyntaxKind.QualifiedName) { let symbol = getNodeLinks(entityName).resolvedSymbol; if (!symbol) { checkQualifiedName(entityName); } return getNodeLinks(entityName).resolvedSymbol; } } else if (isTypeReferenceIdentifier(entityName)) { let meaning = entityName.parent.kind === SyntaxKind.TypeReference ? SymbolFlags.Type : SymbolFlags.Namespace; // Include aliases in the meaning, this ensures that we do not follow aliases to where they point and instead // return the alias symbol. meaning |= SymbolFlags.Alias; return resolveEntityName(entityName, meaning); } else if (entityName.parent.kind === SyntaxKind.JsxAttribute) { return getJsxAttributePropertySymbol(entityName.parent); } if (entityName.parent.kind === SyntaxKind.TypePredicate) { return resolveEntityName(entityName, /*meaning*/ SymbolFlags.FunctionScopedVariable); } // Do we want to return undefined here? return undefined; } function getSymbolInfo(node: Node) { if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return undefined; } if (isDeclarationName(node)) { // This is a declaration, call getSymbolOfNode return getSymbolOfNode(node.parent); } if (node.kind === SyntaxKind.Identifier && isInRightSideOfImportOrExportAssignment(node)) { return node.parent.kind === SyntaxKind.ExportAssignment ? getSymbolOfEntityNameOrPropertyAccessExpression(node) : getSymbolOfPartOfRightHandSideOfImportEquals(node); } switch (node.kind) { case SyntaxKind.Identifier: case SyntaxKind.PropertyAccessExpression: case SyntaxKind.QualifiedName: return getSymbolOfEntityNameOrPropertyAccessExpression(node); case SyntaxKind.ThisKeyword: case SyntaxKind.SuperKeyword: let type = checkExpression(node); return type.symbol; case SyntaxKind.ConstructorKeyword: // constructor keyword for an overload, should take us to the definition if it exist let constructorDeclaration = node.parent; if (constructorDeclaration && constructorDeclaration.kind === SyntaxKind.Constructor) { return (constructorDeclaration.parent).symbol; } return undefined; case SyntaxKind.StringLiteral: // External module name in an import declaration if ((isExternalModuleImportEqualsDeclaration(node.parent.parent) && getExternalModuleImportEqualsDeclarationExpression(node.parent.parent) === node) || ((node.parent.kind === SyntaxKind.ImportDeclaration || node.parent.kind === SyntaxKind.ExportDeclaration) && (node.parent).moduleSpecifier === node)) { return resolveExternalModuleName(node, node); } // Fall through case SyntaxKind.NumericLiteral: // index access if (node.parent.kind === SyntaxKind.ElementAccessExpression && (node.parent).argumentExpression === node) { let objectType = checkExpression((node.parent).expression); if (objectType === unknownType) return undefined; let apparentType = getApparentType(objectType); if (apparentType === unknownType) return undefined; return getPropertyOfType(apparentType, (node).text); } break; } return undefined; } function getShorthandAssignmentValueSymbol(location: Node): Symbol { // The function returns a value symbol of an identifier in the short-hand property assignment. // This is necessary as an identifier in short-hand property assignment can contains two meaning: // property name and property value. if (location && location.kind === SyntaxKind.ShorthandPropertyAssignment) { return resolveEntityName((location).name, SymbolFlags.Value); } return undefined; } function getTypeOfNode(node: Node): Type { if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return unknownType; } if (isTypeNode(node)) { return getTypeFromTypeNode(node); } if (isExpression(node)) { return getTypeOfExpression(node); } if (isExpressionWithTypeArgumentsInClassExtendsClause(node)) { // A SyntaxKind.ExpressionWithTypeArguments is considered a type node, except when it occurs in the // extends clause of a class. We handle that case here. return getBaseTypes(getDeclaredTypeOfSymbol(getSymbolOfNode(node.parent.parent)))[0]; } if (isTypeDeclaration(node)) { // In this case, we call getSymbolOfNode instead of getSymbolInfo because it is a declaration let symbol = getSymbolOfNode(node); return getDeclaredTypeOfSymbol(symbol); } if (isTypeDeclarationName(node)) { let symbol = getSymbolInfo(node); return symbol && getDeclaredTypeOfSymbol(symbol); } if (isDeclaration(node)) { // In this case, we call getSymbolOfNode instead of getSymbolInfo because it is a declaration let symbol = getSymbolOfNode(node); return getTypeOfSymbol(symbol); } if (isDeclarationName(node)) { let symbol = getSymbolInfo(node); return symbol && getTypeOfSymbol(symbol); } if (isBindingPattern(node)) { return getTypeForVariableLikeDeclaration(node.parent); } if (isInRightSideOfImportOrExportAssignment(node)) { let symbol = getSymbolInfo(node); let declaredType = symbol && getDeclaredTypeOfSymbol(symbol); return declaredType !== unknownType ? declaredType : getTypeOfSymbol(symbol); } return unknownType; } function getTypeOfExpression(expr: Expression): Type { if (isRightSideOfQualifiedNameOrPropertyAccess(expr)) { expr = expr.parent; } return checkExpression(expr); } /** * Gets either the static or instance type of a class element, based on * whether the element is declared as "static". */ function getParentTypeOfClassElement(node: ClassElement) { let classSymbol = getSymbolOfNode(node.parent); return node.flags & NodeFlags.Static ? getTypeOfSymbol(classSymbol) : getDeclaredTypeOfSymbol(classSymbol); } // Return the list of properties of the given type, augmented with properties from Function // if the type has call or construct signatures function getAugmentedPropertiesOfType(type: Type): Symbol[] { type = getApparentType(type); let propsByName = createSymbolTable(getPropertiesOfType(type)); if (getSignaturesOfType(type, SignatureKind.Call).length || getSignaturesOfType(type, SignatureKind.Construct).length) { forEach(getPropertiesOfType(globalFunctionType), p => { if (!hasProperty(propsByName, p.name)) { propsByName[p.name] = p; } }); } return getNamedMembers(propsByName); } function getRootSymbols(symbol: Symbol): Symbol[] { if (symbol.flags & SymbolFlags.SyntheticProperty) { let symbols: Symbol[] = []; let name = symbol.name; forEach(getSymbolLinks(symbol).containingType.types, t => { symbols.push(getPropertyOfType(t, name)); }); return symbols; } else if (symbol.flags & SymbolFlags.Transient) { let target = getSymbolLinks(symbol).target; if (target) { return [target]; } } return [symbol]; } // Emitter support // When resolved as an expression identifier, if the given node references an exported entity, return the declaration // node of the exported entity's container. Otherwise, return undefined. function getReferencedExportContainer(node: Identifier): SourceFile | ModuleDeclaration | EnumDeclaration { let symbol = getReferencedValueSymbol(node); if (symbol) { if (symbol.flags & SymbolFlags.ExportValue) { // If we reference an exported entity within the same module declaration, then whether // we prefix depends on the kind of entity. SymbolFlags.ExportHasLocal encompasses all the // kinds that we do NOT prefix. let exportSymbol = getMergedSymbol(symbol.exportSymbol); if (exportSymbol.flags & SymbolFlags.ExportHasLocal) { return undefined; } symbol = exportSymbol; } let parentSymbol = getParentOfSymbol(symbol); if (parentSymbol) { if (parentSymbol.flags & SymbolFlags.ValueModule && parentSymbol.valueDeclaration.kind === SyntaxKind.SourceFile) { return parentSymbol.valueDeclaration; } for (let n = node.parent; n; n = n.parent) { if ((n.kind === SyntaxKind.ModuleDeclaration || n.kind === SyntaxKind.EnumDeclaration) && getSymbolOfNode(n) === parentSymbol) { return n; } } } } } // When resolved as an expression identifier, if the given node references an import, return the declaration of // that import. Otherwise, return undefined. function getReferencedImportDeclaration(node: Identifier): Declaration { let symbol = getReferencedValueSymbol(node); return symbol && symbol.flags & SymbolFlags.Alias ? getDeclarationOfAliasSymbol(symbol) : undefined; } function isStatementWithLocals(node: Node) { switch (node.kind) { case SyntaxKind.Block: case SyntaxKind.CaseBlock: case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: return true; } return false; } function isNestedRedeclarationSymbol(symbol: Symbol): boolean { if (symbol.flags & SymbolFlags.BlockScoped) { let links = getSymbolLinks(symbol); if (links.isNestedRedeclaration === undefined) { let container = getEnclosingBlockScopeContainer(symbol.valueDeclaration); links.isNestedRedeclaration = isStatementWithLocals(container) && !!resolveName(container.parent, symbol.name, SymbolFlags.Value, /*nameNotFoundMessage*/ undefined, /*nameArg*/ undefined); } return links.isNestedRedeclaration; } return false; } // When resolved as an expression identifier, if the given node references a nested block scoped entity with // a name that hides an existing name, return the declaration of that entity. Otherwise, return undefined. function getReferencedNestedRedeclaration(node: Identifier): Declaration { let symbol = getReferencedValueSymbol(node); return symbol && isNestedRedeclarationSymbol(symbol) ? symbol.valueDeclaration : undefined; } // Return true if the given node is a declaration of a nested block scoped entity with a name that hides an // existing name. function isNestedRedeclaration(node: Declaration): boolean { return isNestedRedeclarationSymbol(getSymbolOfNode(node)); } function isValueAliasDeclaration(node: Node): boolean { switch (node.kind) { case SyntaxKind.ImportEqualsDeclaration: case SyntaxKind.ImportClause: case SyntaxKind.NamespaceImport: case SyntaxKind.ImportSpecifier: case SyntaxKind.ExportSpecifier: return isAliasResolvedToValue(getSymbolOfNode(node)); case SyntaxKind.ExportDeclaration: let exportClause = (node).exportClause; return exportClause && forEach(exportClause.elements, isValueAliasDeclaration); case SyntaxKind.ExportAssignment: return (node).expression && (node).expression.kind === SyntaxKind.Identifier ? isAliasResolvedToValue(getSymbolOfNode(node)) : true; } return false; } function isTopLevelValueImportEqualsWithEntityName(node: ImportEqualsDeclaration): boolean { if (node.parent.kind !== SyntaxKind.SourceFile || !isInternalModuleImportEqualsDeclaration(node)) { // parent is not source file or it is not reference to internal module return false; } let isValue = isAliasResolvedToValue(getSymbolOfNode(node)); return isValue && node.moduleReference && !nodeIsMissing(node.moduleReference); } function isAliasResolvedToValue(symbol: Symbol): boolean { let target = resolveAlias(symbol); if (target === unknownSymbol && compilerOptions.isolatedModules) { return true; } // const enums and modules that contain only const enums are not considered values from the emit perespective return target !== unknownSymbol && target && target.flags & SymbolFlags.Value && !isConstEnumOrConstEnumOnlyModule(target); } function isConstEnumOrConstEnumOnlyModule(s: Symbol): boolean { return isConstEnumSymbol(s) || s.constEnumOnlyModule; } function isReferencedAliasDeclaration(node: Node, checkChildren?: boolean): boolean { if (isAliasSymbolDeclaration(node)) { let symbol = getSymbolOfNode(node); if (getSymbolLinks(symbol).referenced) { return true; } } if (checkChildren) { return forEachChild(node, node => isReferencedAliasDeclaration(node, checkChildren)); } return false; } function isImplementationOfOverload(node: FunctionLikeDeclaration) { if (nodeIsPresent(node.body)) { let symbol = getSymbolOfNode(node); let signaturesOfSymbol = getSignaturesOfSymbol(symbol); // If this function body corresponds to function with multiple signature, it is implementation of overload // e.g.: function foo(a: string): string; // function foo(a: number): number; // function foo(a: any) { // This is implementation of the overloads // return a; // } return signaturesOfSymbol.length > 1 || // If there is single signature for the symbol, it is overload if that signature isn't coming from the node // e.g.: function foo(a: string): string; // function foo(a: any) { // This is implementation of the overloads // return a; // } (signaturesOfSymbol.length === 1 && signaturesOfSymbol[0].declaration !== node); } return false; } function getNodeCheckFlags(node: Node): NodeCheckFlags { return getNodeLinks(node).flags; } function getEnumMemberValue(node: EnumMember): number { computeEnumMemberValues(node.parent); return getNodeLinks(node).enumMemberValue; } function getConstantValue(node: EnumMember | PropertyAccessExpression | ElementAccessExpression): number { if (node.kind === SyntaxKind.EnumMember) { return getEnumMemberValue(node); } let symbol = getNodeLinks(node).resolvedSymbol; if (symbol && (symbol.flags & SymbolFlags.EnumMember)) { // inline property\index accesses only for const enums if (isConstEnumDeclaration(symbol.valueDeclaration.parent)) { return getEnumMemberValue(symbol.valueDeclaration); } } return undefined; } /** Serializes an EntityName (with substitutions) to an appropriate JS constructor value. Used by the __metadata decorator. */ function serializeEntityName(node: EntityName, fallbackPath?: string[]): string { if (node.kind === SyntaxKind.Identifier) { // TODO(ron.buckton): The getExpressionNameSubstitution function has been removed, but calling it // here has no effect anyway as an identifier in a type name is not an expression. // var substitution = getExpressionNameSubstitution(node, getGeneratedNameForNode); // var text = substitution || (node).text; let text = (node).text; if (fallbackPath) { fallbackPath.push(text); } else { return text; } } else { let left = serializeEntityName((node).left, fallbackPath); let right = serializeEntityName((node).right, fallbackPath); if (!fallbackPath) { return left + "." + right; } } } /** Serializes a TypeReferenceNode to an appropriate JS constructor value. Used by the __metadata decorator. */ function serializeTypeReferenceNode(node: TypeReferenceNode): string | string[] { // serialization of a TypeReferenceNode uses the following rules: // // * The serialized type of a TypeReference that is `void` is "void 0". // * The serialized type of a TypeReference that is a `boolean` is "Boolean". // * The serialized type of a TypeReference that is an enum or `number` is "Number". // * The serialized type of a TypeReference that is a string literal or `string` is "String". // * The serialized type of a TypeReference that is a tuple is "Array". // * The serialized type of a TypeReference that is a `symbol` is "Symbol". // * The serialized type of a TypeReference with a value declaration is its entity name. // * The serialized type of a TypeReference with a call or construct signature is "Function". // * The serialized type of any other type is "Object". let type = getTypeFromTypeNode(node); if (type.flags & TypeFlags.Void) { return "void 0"; } else if (type.flags & TypeFlags.Boolean) { return "Boolean"; } else if (type.flags & TypeFlags.NumberLike) { return "Number"; } else if (type.flags & TypeFlags.StringLike) { return "String"; } else if (type.flags & TypeFlags.Tuple) { return "Array"; } else if (type.flags & TypeFlags.ESSymbol) { return "Symbol"; } else if (type === unknownType) { let fallbackPath: string[] = []; serializeEntityName(node.typeName, fallbackPath); return fallbackPath; } else if (type.symbol && type.symbol.valueDeclaration) { return serializeEntityName(node.typeName); } else if (typeHasCallOrConstructSignatures(type)) { return "Function"; } return "Object"; } /** Serializes a TypeNode to an appropriate JS constructor value. Used by the __metadata decorator. */ function serializeTypeNode(node: TypeNode | LiteralExpression): string | string[] { // serialization of a TypeNode uses the following rules: // // * The serialized type of `void` is "void 0" (undefined). // * The serialized type of a parenthesized type is the serialized type of its nested type. // * The serialized type of a Function or Constructor type is "Function". // * The serialized type of an Array or Tuple type is "Array". // * The serialized type of `boolean` is "Boolean". // * The serialized type of `string` or a string-literal type is "String". // * The serialized type of a type reference is handled by `serializeTypeReferenceNode`. // * The serialized type of any other type node is "Object". if (node) { switch (node.kind) { case SyntaxKind.VoidKeyword: return "void 0"; case SyntaxKind.ParenthesizedType: return serializeTypeNode((node).type); case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: return "Function"; case SyntaxKind.ArrayType: case SyntaxKind.TupleType: return "Array"; case SyntaxKind.BooleanKeyword: return "Boolean"; case SyntaxKind.StringKeyword: case SyntaxKind.StringLiteral: return "String"; case SyntaxKind.NumberKeyword: return "Number"; case SyntaxKind.TypeReference: return serializeTypeReferenceNode(node); case SyntaxKind.TypeQuery: case SyntaxKind.TypeLiteral: case SyntaxKind.UnionType: case SyntaxKind.IntersectionType: case SyntaxKind.AnyKeyword: break; default: Debug.fail("Cannot serialize unexpected type node."); break; } } return "Object"; } /** Serializes the type of a declaration to an appropriate JS constructor value. Used by the __metadata decorator for a class member. */ function serializeTypeOfNode(node: Node): string | string[] { // serialization of the type of a declaration uses the following rules: // // * The serialized type of a ClassDeclaration is "Function" // * The serialized type of a ParameterDeclaration is the serialized type of its type annotation. // * The serialized type of a PropertyDeclaration is the serialized type of its type annotation. // * The serialized type of an AccessorDeclaration is the serialized type of the return type annotation of its getter or parameter type annotation of its setter. // * The serialized type of any other FunctionLikeDeclaration is "Function". // * The serialized type of any other node is "void 0". // // For rules on serializing type annotations, see `serializeTypeNode`. switch (node.kind) { case SyntaxKind.ClassDeclaration: return "Function"; case SyntaxKind.PropertyDeclaration: return serializeTypeNode((node).type); case SyntaxKind.Parameter: return serializeTypeNode((node).type); case SyntaxKind.GetAccessor: return serializeTypeNode((node).type); case SyntaxKind.SetAccessor: return serializeTypeNode(getSetAccessorTypeAnnotationNode(node)); } if (isFunctionLike(node)) { return "Function"; } return "void 0"; } /** Serializes the parameter types of a function or the constructor of a class. Used by the __metadata decorator for a method or set accessor. */ function serializeParameterTypesOfNode(node: Node): (string | string[])[] { // serialization of parameter types uses the following rules: // // * If the declaration is a class, the parameters of the first constructor with a body are used. // * If the declaration is function-like and has a body, the parameters of the function are used. // // For the rules on serializing the type of each parameter declaration, see `serializeTypeOfDeclaration`. if (node) { let valueDeclaration: FunctionLikeDeclaration; if (node.kind === SyntaxKind.ClassDeclaration) { valueDeclaration = getFirstConstructorWithBody(node); } else if (isFunctionLike(node) && nodeIsPresent((node).body)) { valueDeclaration = node; } if (valueDeclaration) { let result: (string | string[])[]; let parameters = valueDeclaration.parameters; let parameterCount = parameters.length; if (parameterCount > 0) { result = new Array(parameterCount); for (let i = 0; i < parameterCount; i++) { if (parameters[i].dotDotDotToken) { let parameterType = parameters[i].type; if (parameterType.kind === SyntaxKind.ArrayType) { parameterType = (parameterType).elementType; } else if (parameterType.kind === SyntaxKind.TypeReference && (parameterType).typeArguments && (parameterType).typeArguments.length === 1) { parameterType = (parameterType).typeArguments[0]; } else { parameterType = undefined; } result[i] = serializeTypeNode(parameterType); } else { result[i] = serializeTypeOfNode(parameters[i]); } } return result; } } } return emptyArray; } /** Serializes the return type of function. Used by the __metadata decorator for a method. */ function serializeReturnTypeOfNode(node: Node): string | string[] { if (node && isFunctionLike(node)) { return serializeTypeNode((node).type); } return "void 0"; } function writeTypeOfDeclaration(declaration: AccessorDeclaration | VariableLikeDeclaration, enclosingDeclaration: Node, flags: TypeFormatFlags, writer: SymbolWriter) { // Get type of the symbol if this is the valid symbol otherwise get type at location let symbol = getSymbolOfNode(declaration); let type = symbol && !(symbol.flags & (SymbolFlags.TypeLiteral | SymbolFlags.Signature)) ? getTypeOfSymbol(symbol) : unknownType; getSymbolDisplayBuilder().buildTypeDisplay(type, writer, enclosingDeclaration, flags); } function writeReturnTypeOfSignatureDeclaration(signatureDeclaration: SignatureDeclaration, enclosingDeclaration: Node, flags: TypeFormatFlags, writer: SymbolWriter) { let signature = getSignatureFromDeclaration(signatureDeclaration); getSymbolDisplayBuilder().buildTypeDisplay(getReturnTypeOfSignature(signature), writer, enclosingDeclaration, flags); } function writeTypeOfExpression(expr: Expression, enclosingDeclaration: Node, flags: TypeFormatFlags, writer: SymbolWriter) { let type = getTypeOfExpression(expr); getSymbolDisplayBuilder().buildTypeDisplay(type, writer, enclosingDeclaration, flags); } function hasGlobalName(name: string): boolean { return hasProperty(globals, name); } function getReferencedValueSymbol(reference: Identifier): Symbol { return getNodeLinks(reference).resolvedSymbol || resolveName(reference, reference.text, SymbolFlags.Value | SymbolFlags.ExportValue | SymbolFlags.Alias, /*nodeNotFoundMessage*/ undefined, /*nameArg*/ undefined); } function getReferencedValueDeclaration(reference: Identifier): Declaration { Debug.assert(!nodeIsSynthesized(reference)); let symbol = getReferencedValueSymbol(reference); return symbol && getExportSymbolOfValueSymbolIfExported(symbol).valueDeclaration; } function getBlockScopedVariableId(n: Identifier): number { Debug.assert(!nodeIsSynthesized(n)); let isVariableDeclarationOrBindingElement = n.parent.kind === SyntaxKind.BindingElement || (n.parent.kind === SyntaxKind.VariableDeclaration && (n.parent).name === n); let symbol = (isVariableDeclarationOrBindingElement ? getSymbolOfNode(n.parent) : undefined) || getNodeLinks(n).resolvedSymbol || resolveName(n, n.text, SymbolFlags.Value | SymbolFlags.Alias, /*nodeNotFoundMessage*/ undefined, /*nameArg*/ undefined); let isLetOrConst = symbol && (symbol.flags & SymbolFlags.BlockScopedVariable) && symbol.valueDeclaration.parent.kind !== SyntaxKind.CatchClause; if (isLetOrConst) { // side-effect of calling this method: // assign id to symbol if it was not yet set getSymbolLinks(symbol); return symbol.id; } return undefined; } function instantiateSingleCallFunctionType(functionType: Type, typeArguments: Type[]): Type { if (functionType === unknownType) { return unknownType; } let signature = getSingleCallSignature(functionType); if (!signature) { return unknownType; } let instantiatedSignature = getSignatureInstantiation(signature, typeArguments); return getOrCreateTypeFromSignature(instantiatedSignature); } function createResolver(): EmitResolver { return { getReferencedExportContainer, getReferencedImportDeclaration, getReferencedNestedRedeclaration, isNestedRedeclaration, isValueAliasDeclaration, hasGlobalName, isReferencedAliasDeclaration, getNodeCheckFlags, isTopLevelValueImportEqualsWithEntityName, isDeclarationVisible, isImplementationOfOverload, writeTypeOfDeclaration, writeReturnTypeOfSignatureDeclaration, writeTypeOfExpression, isSymbolAccessible, isEntityNameVisible, getConstantValue, collectLinkedAliases, getBlockScopedVariableId, getReferencedValueDeclaration, serializeTypeOfNode, serializeParameterTypesOfNode, serializeReturnTypeOfNode, }; } function initializeTypeChecker() { // Bind all source files and propagate errors forEach(host.getSourceFiles(), file => { bindSourceFile(file); }); // Initialize global symbol table forEach(host.getSourceFiles(), file => { if (!isExternalModule(file)) { mergeSymbolTable(globals, file.locals); } }); // Initialize special symbols getSymbolLinks(undefinedSymbol).type = undefinedType; getSymbolLinks(argumentsSymbol).type = getGlobalType("IArguments"); getSymbolLinks(unknownSymbol).type = unknownType; globals[undefinedSymbol.name] = undefinedSymbol; // Initialize special types globalArrayType = getGlobalType("Array", /*arity*/ 1); globalObjectType = getGlobalType("Object"); globalFunctionType = getGlobalType("Function"); globalStringType = getGlobalType("String"); globalNumberType = getGlobalType("Number"); globalBooleanType = getGlobalType("Boolean"); globalRegExpType = getGlobalType("RegExp"); jsxElementType = getExportedTypeFromNamespace("JSX", JsxNames.Element); getGlobalClassDecoratorType = memoize(() => getGlobalType("ClassDecorator")); getGlobalPropertyDecoratorType = memoize(() => getGlobalType("PropertyDecorator")); getGlobalMethodDecoratorType = memoize(() => getGlobalType("MethodDecorator")); getGlobalParameterDecoratorType = memoize(() => getGlobalType("ParameterDecorator")); getGlobalTypedPropertyDescriptorType = memoize(() => getGlobalType("TypedPropertyDescriptor", /*arity*/ 1)); getGlobalPromiseType = memoize(() => getGlobalType("Promise", /*arity*/ 1)); tryGetGlobalPromiseType = memoize(() => getGlobalSymbol("Promise", SymbolFlags.Type, /*diagnostic*/ undefined) && getGlobalPromiseType()); getGlobalPromiseLikeType = memoize(() => getGlobalType("PromiseLike", /*arity*/ 1)); getInstantiatedGlobalPromiseLikeType = memoize(createInstantiatedPromiseLikeType); getGlobalPromiseConstructorSymbol = memoize(() => getGlobalValueSymbol("Promise")); getGlobalPromiseConstructorLikeType = memoize(() => getGlobalType("PromiseConstructorLike")); getGlobalThenableType = memoize(createThenableType); // If we're in ES6 mode, load the TemplateStringsArray. // Otherwise, default to 'unknown' for the purposes of type checking in LS scenarios. if (languageVersion >= ScriptTarget.ES6) { globalTemplateStringsArrayType = getGlobalType("TemplateStringsArray"); globalESSymbolType = getGlobalType("Symbol"); globalESSymbolConstructorSymbol = getGlobalValueSymbol("Symbol"); globalIterableType = getGlobalType("Iterable", /*arity*/ 1); globalIteratorType = getGlobalType("Iterator", /*arity*/ 1); globalIterableIteratorType = getGlobalType("IterableIterator", /*arity*/ 1); } else { globalTemplateStringsArrayType = unknownType; // Consider putting Symbol interface in lib.d.ts. On the plus side, putting it in lib.d.ts would make it // extensible for Polyfilling Symbols. But putting it into lib.d.ts could also break users that have // a global Symbol already, particularly if it is a class. globalESSymbolType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); globalESSymbolConstructorSymbol = undefined; globalIterableType = emptyGenericType; globalIteratorType = emptyGenericType; globalIterableIteratorType = emptyGenericType; } anyArrayType = createArrayType(anyType); } function createInstantiatedPromiseLikeType(): ObjectType { let promiseLikeType = getGlobalPromiseLikeType(); if (promiseLikeType !== emptyObjectType) { return createTypeReference(promiseLikeType, [anyType]); } return emptyObjectType; } function createThenableType() { // build the thenable type that is used to verify against a non-promise "thenable" operand to `await`. let thenPropertySymbol = createSymbol(SymbolFlags.Transient | SymbolFlags.Property, "then"); getSymbolLinks(thenPropertySymbol).type = globalFunctionType; let thenableType = createObjectType(TypeFlags.Anonymous); thenableType.properties = [thenPropertySymbol]; thenableType.members = createSymbolTable(thenableType.properties); thenableType.callSignatures = []; thenableType.constructSignatures = []; return thenableType; } // GRAMMAR CHECKING function checkGrammarDecorators(node: Node): boolean { if (!node.decorators) { return false; } if (!nodeCanBeDecorated(node)) { return grammarErrorOnFirstToken(node, Diagnostics.Decorators_are_not_valid_here); } else if (languageVersion < ScriptTarget.ES5) { return grammarErrorOnFirstToken(node, Diagnostics.Decorators_are_only_available_when_targeting_ECMAScript_5_and_higher); } else if (node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { let accessors = getAllAccessorDeclarations((node.parent).members, node); if (accessors.firstAccessor.decorators && node === accessors.secondAccessor) { return grammarErrorOnFirstToken(node, Diagnostics.Decorators_cannot_be_applied_to_multiple_get_Slashset_accessors_of_the_same_name); } } return false; } function checkGrammarModifiers(node: Node): boolean { switch (node.kind) { case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.Constructor: case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.IndexSignature: case SyntaxKind.ModuleDeclaration: case SyntaxKind.ImportDeclaration: case SyntaxKind.ImportEqualsDeclaration: case SyntaxKind.ExportDeclaration: case SyntaxKind.ExportAssignment: case SyntaxKind.Parameter: break; case SyntaxKind.FunctionDeclaration: if (node.modifiers && (node.modifiers.length > 1 || node.modifiers[0].kind !== SyntaxKind.AsyncKeyword) && node.parent.kind !== SyntaxKind.ModuleBlock && node.parent.kind !== SyntaxKind.SourceFile) { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } break; case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.VariableStatement: case SyntaxKind.TypeAliasDeclaration: if (node.modifiers && node.parent.kind !== SyntaxKind.ModuleBlock && node.parent.kind !== SyntaxKind.SourceFile) { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } break; case SyntaxKind.EnumDeclaration: if (node.modifiers && (node.modifiers.length > 1 || node.modifiers[0].kind !== SyntaxKind.ConstKeyword) && node.parent.kind !== SyntaxKind.ModuleBlock && node.parent.kind !== SyntaxKind.SourceFile) { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } break; default: return false; } if (!node.modifiers) { return; } let lastStatic: Node, lastPrivate: Node, lastProtected: Node, lastDeclare: Node, lastAsync: Node; let flags = 0; for (let modifier of node.modifiers) { switch (modifier.kind) { case SyntaxKind.PublicKeyword: case SyntaxKind.ProtectedKeyword: case SyntaxKind.PrivateKeyword: let text: string; if (modifier.kind === SyntaxKind.PublicKeyword) { text = "public"; } else if (modifier.kind === SyntaxKind.ProtectedKeyword) { text = "protected"; lastProtected = modifier; } else { text = "private"; lastPrivate = modifier; } if (flags & NodeFlags.AccessibilityModifier) { return grammarErrorOnNode(modifier, Diagnostics.Accessibility_modifier_already_seen); } else if (flags & NodeFlags.Static) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "static"); } else if (flags & NodeFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "async"); } else if (node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_module_element, text); } else if (flags & NodeFlags.Abstract) { if (modifier.kind === SyntaxKind.PrivateKeyword) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, text, "abstract"); } else { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "abstract"); } } flags |= modifierToFlag(modifier.kind); break; case SyntaxKind.StaticKeyword: if (flags & NodeFlags.Static) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "static"); } else if (flags & NodeFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "static", "async"); } else if (node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_module_element, "static"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "static"); } else if (flags & NodeFlags.Abstract) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, "static", "abstract"); } flags |= NodeFlags.Static; lastStatic = modifier; break; case SyntaxKind.ExportKeyword: if (flags & NodeFlags.Export) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "export"); } else if (flags & NodeFlags.Ambient) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "export", "declare"); } else if (flags & NodeFlags.Abstract) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "export", "abstract"); } else if (flags & NodeFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "export", "async"); } else if (node.parent.kind === SyntaxKind.ClassDeclaration) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_class_element, "export"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "export"); } flags |= NodeFlags.Export; break; case SyntaxKind.DeclareKeyword: if (flags & NodeFlags.Ambient) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "declare"); } else if (flags & NodeFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_in_an_ambient_context, "async"); } else if (node.parent.kind === SyntaxKind.ClassDeclaration) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_class_element, "declare"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "declare"); } else if (isInAmbientContext(node.parent) && node.parent.kind === SyntaxKind.ModuleBlock) { return grammarErrorOnNode(modifier, Diagnostics.A_declare_modifier_cannot_be_used_in_an_already_ambient_context); } flags |= NodeFlags.Ambient; lastDeclare = modifier; break; case SyntaxKind.AbstractKeyword: if (flags & NodeFlags.Abstract) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "abstract"); } if (node.kind !== SyntaxKind.ClassDeclaration) { if (node.kind !== SyntaxKind.MethodDeclaration) { return grammarErrorOnNode(modifier, Diagnostics.abstract_modifier_can_only_appear_on_a_class_or_method_declaration); } if (!(node.parent.kind === SyntaxKind.ClassDeclaration && node.parent.flags & NodeFlags.Abstract)) { return grammarErrorOnNode(modifier, Diagnostics.Abstract_methods_can_only_appear_within_an_abstract_class); } if (flags & NodeFlags.Static) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, "static", "abstract"); } if (flags & NodeFlags.Private) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, "private", "abstract"); } } flags |= NodeFlags.Abstract; break; case SyntaxKind.AsyncKeyword: if (flags & NodeFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "async"); } else if (flags & NodeFlags.Ambient || isInAmbientContext(node.parent)) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_in_an_ambient_context, "async"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "async"); } flags |= NodeFlags.Async; lastAsync = modifier; break; } } if (node.kind === SyntaxKind.Constructor) { if (flags & NodeFlags.Static) { return grammarErrorOnNode(lastStatic, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "static"); } if (flags & NodeFlags.Abstract) { return grammarErrorOnNode(lastStatic, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "abstract"); } else if (flags & NodeFlags.Protected) { return grammarErrorOnNode(lastProtected, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "protected"); } else if (flags & NodeFlags.Private) { return grammarErrorOnNode(lastPrivate, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "private"); } else if (flags & NodeFlags.Async) { return grammarErrorOnNode(lastAsync, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "async"); } return; } else if ((node.kind === SyntaxKind.ImportDeclaration || node.kind === SyntaxKind.ImportEqualsDeclaration) && flags & NodeFlags.Ambient) { return grammarErrorOnNode(lastDeclare, Diagnostics.A_0_modifier_cannot_be_used_with_an_import_declaration, "declare"); } else if (node.kind === SyntaxKind.Parameter && (flags & NodeFlags.AccessibilityModifier) && isBindingPattern((node).name)) { return grammarErrorOnNode(node, Diagnostics.A_parameter_property_may_not_be_a_binding_pattern); } if (flags & NodeFlags.Async) { return checkGrammarAsyncModifier(node, lastAsync); } } function checkGrammarAsyncModifier(node: Node, asyncModifier: Node): boolean { if (languageVersion < ScriptTarget.ES6) { return grammarErrorOnNode(asyncModifier, Diagnostics.Async_functions_are_only_available_when_targeting_ECMAScript_6_and_higher); } switch (node.kind) { case SyntaxKind.MethodDeclaration: case SyntaxKind.FunctionDeclaration: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: if (!(node).asteriskToken) { return false; } break; } return grammarErrorOnNode(asyncModifier, Diagnostics._0_modifier_cannot_be_used_here, "async"); } function checkGrammarForDisallowedTrailingComma(list: NodeArray): boolean { if (list && list.hasTrailingComma) { let start = list.end - ",".length; let end = list.end; let sourceFile = getSourceFileOfNode(list[0]); return grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.Trailing_comma_not_allowed); } } function checkGrammarTypeParameterList(node: FunctionLikeDeclaration, typeParameters: NodeArray, file: SourceFile): boolean { if (checkGrammarForDisallowedTrailingComma(typeParameters)) { return true; } if (typeParameters && typeParameters.length === 0) { let start = typeParameters.pos - "<".length; let end = skipTrivia(file.text, typeParameters.end) + ">".length; return grammarErrorAtPos(file, start, end - start, Diagnostics.Type_parameter_list_cannot_be_empty); } } function checkGrammarParameterList(parameters: NodeArray) { if (checkGrammarForDisallowedTrailingComma(parameters)) { return true; } let seenOptionalParameter = false; let parameterCount = parameters.length; for (let i = 0; i < parameterCount; i++) { let parameter = parameters[i]; if (parameter.dotDotDotToken) { if (i !== (parameterCount - 1)) { return grammarErrorOnNode(parameter.dotDotDotToken, Diagnostics.A_rest_parameter_must_be_last_in_a_parameter_list); } if (isBindingPattern(parameter.name)) { return grammarErrorOnNode(parameter.name, Diagnostics.A_rest_element_cannot_contain_a_binding_pattern); } if (parameter.questionToken) { return grammarErrorOnNode(parameter.questionToken, Diagnostics.A_rest_parameter_cannot_be_optional); } if (parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.A_rest_parameter_cannot_have_an_initializer); } } else if (parameter.questionToken || parameter.initializer) { seenOptionalParameter = true; if (parameter.questionToken && parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.Parameter_cannot_have_question_mark_and_initializer); } } else { if (seenOptionalParameter) { return grammarErrorOnNode(parameter.name, Diagnostics.A_required_parameter_cannot_follow_an_optional_parameter); } } } } function checkGrammarFunctionLikeDeclaration(node: FunctionLikeDeclaration): boolean { // Prevent cascading error by short-circuit let file = getSourceFileOfNode(node); return checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarTypeParameterList(node, node.typeParameters, file) || checkGrammarParameterList(node.parameters) || checkGrammarArrowFunction(node, file); } function checkGrammarArrowFunction(node: FunctionLikeDeclaration, file: SourceFile): boolean { if (node.kind === SyntaxKind.ArrowFunction) { let arrowFunction = node; let startLine = getLineAndCharacterOfPosition(file, arrowFunction.equalsGreaterThanToken.pos).line; let endLine = getLineAndCharacterOfPosition(file, arrowFunction.equalsGreaterThanToken.end).line; if (startLine !== endLine) { return grammarErrorOnNode(arrowFunction.equalsGreaterThanToken, Diagnostics.Line_terminator_not_permitted_before_arrow); } } return false; } function checkGrammarIndexSignatureParameters(node: SignatureDeclaration): boolean { let parameter = node.parameters[0]; if (node.parameters.length !== 1) { if (parameter) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_must_have_exactly_one_parameter); } else { return grammarErrorOnNode(node, Diagnostics.An_index_signature_must_have_exactly_one_parameter); } } if (parameter.dotDotDotToken) { return grammarErrorOnNode(parameter.dotDotDotToken, Diagnostics.An_index_signature_cannot_have_a_rest_parameter); } if (parameter.flags & NodeFlags.Modifier) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_cannot_have_an_accessibility_modifier); } if (parameter.questionToken) { return grammarErrorOnNode(parameter.questionToken, Diagnostics.An_index_signature_parameter_cannot_have_a_question_mark); } if (parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_cannot_have_an_initializer); } if (!parameter.type) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_must_have_a_type_annotation); } if (parameter.type.kind !== SyntaxKind.StringKeyword && parameter.type.kind !== SyntaxKind.NumberKeyword) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_type_must_be_string_or_number); } if (!node.type) { return grammarErrorOnNode(node, Diagnostics.An_index_signature_must_have_a_type_annotation); } } function checkGrammarForIndexSignatureModifier(node: SignatureDeclaration): void { if (node.flags & NodeFlags.Modifier) { grammarErrorOnFirstToken(node, Diagnostics.Modifiers_not_permitted_on_index_signature_members); } } function checkGrammarIndexSignature(node: SignatureDeclaration) { // Prevent cascading error by short-circuit return checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarIndexSignatureParameters(node) || checkGrammarForIndexSignatureModifier(node); } function checkGrammarForAtLeastOneTypeArgument(node: Node, typeArguments: NodeArray): boolean { if (typeArguments && typeArguments.length === 0) { let sourceFile = getSourceFileOfNode(node); let start = typeArguments.pos - "<".length; let end = skipTrivia(sourceFile.text, typeArguments.end) + ">".length; return grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.Type_argument_list_cannot_be_empty); } } function checkGrammarTypeArguments(node: Node, typeArguments: NodeArray): boolean { return checkGrammarForDisallowedTrailingComma(typeArguments) || checkGrammarForAtLeastOneTypeArgument(node, typeArguments); } function checkGrammarForOmittedArgument(node: CallExpression, arguments: NodeArray): boolean { if (arguments) { let sourceFile = getSourceFileOfNode(node); for (let arg of arguments) { if (arg.kind === SyntaxKind.OmittedExpression) { return grammarErrorAtPos(sourceFile, arg.pos, 0, Diagnostics.Argument_expression_expected); } } } } function checkGrammarArguments(node: CallExpression, arguments: NodeArray): boolean { return checkGrammarForDisallowedTrailingComma(arguments) || checkGrammarForOmittedArgument(node, arguments); } function checkGrammarHeritageClause(node: HeritageClause): boolean { let types = node.types; if (checkGrammarForDisallowedTrailingComma(types)) { return true; } if (types && types.length === 0) { let listType = tokenToString(node.token); let sourceFile = getSourceFileOfNode(node); return grammarErrorAtPos(sourceFile, types.pos, 0, Diagnostics._0_list_cannot_be_empty, listType); } } function checkGrammarClassDeclarationHeritageClauses(node: ClassLikeDeclaration) { let seenExtendsClause = false; let seenImplementsClause = false; if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && node.heritageClauses) { for (let heritageClause of node.heritageClauses) { if (heritageClause.token === SyntaxKind.ExtendsKeyword) { if (seenExtendsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.extends_clause_already_seen); } if (seenImplementsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.extends_clause_must_precede_implements_clause); } if (heritageClause.types.length > 1) { return grammarErrorOnFirstToken(heritageClause.types[1], Diagnostics.Classes_can_only_extend_a_single_class); } seenExtendsClause = true; } else { Debug.assert(heritageClause.token === SyntaxKind.ImplementsKeyword); if (seenImplementsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.implements_clause_already_seen); } seenImplementsClause = true; } // Grammar checking heritageClause inside class declaration checkGrammarHeritageClause(heritageClause); } } } function checkGrammarInterfaceDeclaration(node: InterfaceDeclaration) { let seenExtendsClause = false; if (node.heritageClauses) { for (let heritageClause of node.heritageClauses) { if (heritageClause.token === SyntaxKind.ExtendsKeyword) { if (seenExtendsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.extends_clause_already_seen); } seenExtendsClause = true; } else { Debug.assert(heritageClause.token === SyntaxKind.ImplementsKeyword); return grammarErrorOnFirstToken(heritageClause, Diagnostics.Interface_declaration_cannot_have_implements_clause); } // Grammar checking heritageClause inside class declaration checkGrammarHeritageClause(heritageClause); } } return false; } function checkGrammarComputedPropertyName(node: Node): boolean { // If node is not a computedPropertyName, just skip the grammar checking if (node.kind !== SyntaxKind.ComputedPropertyName) { return false; } let computedPropertyName = node; if (computedPropertyName.expression.kind === SyntaxKind.BinaryExpression && (computedPropertyName.expression).operatorToken.kind === SyntaxKind.CommaToken) { return grammarErrorOnNode(computedPropertyName.expression, Diagnostics.A_comma_expression_is_not_allowed_in_a_computed_property_name); } } function checkGrammarForGenerator(node: FunctionLikeDeclaration) { if (node.asteriskToken) { Debug.assert( node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.FunctionExpression || node.kind === SyntaxKind.MethodDeclaration); if (isInAmbientContext(node)) { return grammarErrorOnNode(node.asteriskToken, Diagnostics.Generators_are_not_allowed_in_an_ambient_context); } if (!node.body) { return grammarErrorOnNode(node.asteriskToken, Diagnostics.An_overload_signature_cannot_be_declared_as_a_generator); } if (languageVersion < ScriptTarget.ES6) { return grammarErrorOnNode(node.asteriskToken, Diagnostics.Generators_are_only_available_when_targeting_ECMAScript_6_or_higher); } } } function checkGrammarForInvalidQuestionMark(node: Declaration, questionToken: Node, message: DiagnosticMessage): boolean { if (questionToken) { return grammarErrorOnNode(questionToken, message); } } function checkGrammarObjectLiteralExpression(node: ObjectLiteralExpression) { let seen: Map = {}; let Property = 1; let GetAccessor = 2; let SetAccesor = 4; let GetOrSetAccessor = GetAccessor | SetAccesor; for (let prop of node.properties) { let name = prop.name; if (prop.kind === SyntaxKind.OmittedExpression || name.kind === SyntaxKind.ComputedPropertyName) { // If the name is not a ComputedPropertyName, the grammar checking will skip it checkGrammarComputedPropertyName(name); continue; } // ECMA-262 11.1.5 Object Initialiser // If previous is not undefined then throw a SyntaxError exception if any of the following conditions are true // a.This production is contained in strict code and IsDataDescriptor(previous) is true and // IsDataDescriptor(propId.descriptor) is true. // b.IsDataDescriptor(previous) is true and IsAccessorDescriptor(propId.descriptor) is true. // c.IsAccessorDescriptor(previous) is true and IsDataDescriptor(propId.descriptor) is true. // d.IsAccessorDescriptor(previous) is true and IsAccessorDescriptor(propId.descriptor) is true // and either both previous and propId.descriptor have[[Get]] fields or both previous and propId.descriptor have[[Set]] fields let currentKind: number; if (prop.kind === SyntaxKind.PropertyAssignment || prop.kind === SyntaxKind.ShorthandPropertyAssignment) { // Grammar checking for computedPropertName and shorthandPropertyAssignment checkGrammarForInvalidQuestionMark(prop, (prop).questionToken, Diagnostics.An_object_member_cannot_be_declared_optional); if (name.kind === SyntaxKind.NumericLiteral) { checkGrammarNumericLiteral(name); } currentKind = Property; } else if (prop.kind === SyntaxKind.MethodDeclaration) { currentKind = Property; } else if (prop.kind === SyntaxKind.GetAccessor) { currentKind = GetAccessor; } else if (prop.kind === SyntaxKind.SetAccessor) { currentKind = SetAccesor; } else { Debug.fail("Unexpected syntax kind:" + prop.kind); } if (!hasProperty(seen, (name).text)) { seen[(name).text] = currentKind; } else { let existingKind = seen[(name).text]; if (currentKind === Property && existingKind === Property) { continue; } else if ((currentKind & GetOrSetAccessor) && (existingKind & GetOrSetAccessor)) { if (existingKind !== GetOrSetAccessor && currentKind !== existingKind) { seen[(name).text] = currentKind | existingKind; } else { return grammarErrorOnNode(name, Diagnostics.An_object_literal_cannot_have_multiple_get_Slashset_accessors_with_the_same_name); } } else { return grammarErrorOnNode(name, Diagnostics.An_object_literal_cannot_have_property_and_accessor_with_the_same_name); } } } } function checkGrammarJsxElement(node: JsxOpeningElement|JsxSelfClosingElement) { const seen: Map = {}; for (let attr of node.attributes) { if (attr.kind === SyntaxKind.JsxSpreadAttribute) { continue; } let jsxAttr = (attr); let name = jsxAttr.name; if (!hasProperty(seen, name.text)) { seen[name.text] = true; } else { return grammarErrorOnNode(name, Diagnostics.JSX_elements_cannot_have_multiple_attributes_with_the_same_name); } let initializer = jsxAttr.initializer; if (initializer && initializer.kind === SyntaxKind.JsxExpression && !(initializer).expression) { return grammarErrorOnNode(jsxAttr.initializer, Diagnostics.JSX_attributes_must_only_be_assigned_a_non_empty_expression); } } } function checkGrammarForInOrForOfStatement(forInOrOfStatement: ForInStatement | ForOfStatement): boolean { if (checkGrammarStatementInAmbientContext(forInOrOfStatement)) { return true; } if (forInOrOfStatement.initializer.kind === SyntaxKind.VariableDeclarationList) { let variableList = forInOrOfStatement.initializer; if (!checkGrammarVariableDeclarationList(variableList)) { if (variableList.declarations.length > 1) { let diagnostic = forInOrOfStatement.kind === SyntaxKind.ForInStatement ? Diagnostics.Only_a_single_variable_declaration_is_allowed_in_a_for_in_statement : Diagnostics.Only_a_single_variable_declaration_is_allowed_in_a_for_of_statement; return grammarErrorOnFirstToken(variableList.declarations[1], diagnostic); } let firstDeclaration = variableList.declarations[0]; if (firstDeclaration.initializer) { let diagnostic = forInOrOfStatement.kind === SyntaxKind.ForInStatement ? Diagnostics.The_variable_declaration_of_a_for_in_statement_cannot_have_an_initializer : Diagnostics.The_variable_declaration_of_a_for_of_statement_cannot_have_an_initializer; return grammarErrorOnNode(firstDeclaration.name, diagnostic); } if (firstDeclaration.type) { let diagnostic = forInOrOfStatement.kind === SyntaxKind.ForInStatement ? Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_use_a_type_annotation : Diagnostics.The_left_hand_side_of_a_for_of_statement_cannot_use_a_type_annotation; return grammarErrorOnNode(firstDeclaration, diagnostic); } } } return false; } function checkGrammarAccessor(accessor: MethodDeclaration): boolean { let kind = accessor.kind; if (languageVersion < ScriptTarget.ES5) { return grammarErrorOnNode(accessor.name, Diagnostics.Accessors_are_only_available_when_targeting_ECMAScript_5_and_higher); } else if (isInAmbientContext(accessor)) { return grammarErrorOnNode(accessor.name, Diagnostics.An_accessor_cannot_be_declared_in_an_ambient_context); } else if (accessor.body === undefined) { return grammarErrorAtPos(getSourceFileOfNode(accessor), accessor.end - 1, ";".length, Diagnostics._0_expected, "{"); } else if (accessor.typeParameters) { return grammarErrorOnNode(accessor.name, Diagnostics.An_accessor_cannot_have_type_parameters); } else if (kind === SyntaxKind.GetAccessor && accessor.parameters.length) { return grammarErrorOnNode(accessor.name, Diagnostics.A_get_accessor_cannot_have_parameters); } else if (kind === SyntaxKind.SetAccessor) { if (accessor.type) { return grammarErrorOnNode(accessor.name, Diagnostics.A_set_accessor_cannot_have_a_return_type_annotation); } else if (accessor.parameters.length !== 1) { return grammarErrorOnNode(accessor.name, Diagnostics.A_set_accessor_must_have_exactly_one_parameter); } else { let parameter = accessor.parameters[0]; if (parameter.dotDotDotToken) { return grammarErrorOnNode(parameter.dotDotDotToken, Diagnostics.A_set_accessor_cannot_have_rest_parameter); } else if (parameter.flags & NodeFlags.Modifier) { return grammarErrorOnNode(accessor.name, Diagnostics.A_parameter_property_is_only_allowed_in_a_constructor_implementation); } else if (parameter.questionToken) { return grammarErrorOnNode(parameter.questionToken, Diagnostics.A_set_accessor_cannot_have_an_optional_parameter); } else if (parameter.initializer) { return grammarErrorOnNode(accessor.name, Diagnostics.A_set_accessor_parameter_cannot_have_an_initializer); } } } } function checkGrammarForNonSymbolComputedProperty(node: DeclarationName, message: DiagnosticMessage) { if (node.kind === SyntaxKind.ComputedPropertyName && !isWellKnownSymbolSyntactically((node).expression)) { return grammarErrorOnNode(node, message); } } function checkGrammarMethod(node: MethodDeclaration) { if (checkGrammarDisallowedModifiersInBlockOrObjectLiteralExpression(node) || checkGrammarFunctionLikeDeclaration(node) || checkGrammarForGenerator(node)) { return true; } if (node.parent.kind === SyntaxKind.ObjectLiteralExpression) { if (checkGrammarForInvalidQuestionMark(node, node.questionToken, Diagnostics.A_class_member_cannot_be_declared_optional)) { return true; } else if (node.body === undefined) { return grammarErrorAtPos(getSourceFile(node), node.end - 1, ";".length, Diagnostics._0_expected, "{"); } } if (isClassLike(node.parent)) { if (checkGrammarForInvalidQuestionMark(node, node.questionToken, Diagnostics.A_class_member_cannot_be_declared_optional)) { return true; } // Technically, computed properties in ambient contexts is disallowed // for property declarations and accessors too, not just methods. // However, property declarations disallow computed names in general, // and accessors are not allowed in ambient contexts in general, // so this error only really matters for methods. if (isInAmbientContext(node)) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_an_ambient_context_must_directly_refer_to_a_built_in_symbol); } else if (!node.body) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_method_overload_must_directly_refer_to_a_built_in_symbol); } } else if (node.parent.kind === SyntaxKind.InterfaceDeclaration) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_an_interface_must_directly_refer_to_a_built_in_symbol); } else if (node.parent.kind === SyntaxKind.TypeLiteral) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_type_literal_must_directly_refer_to_a_built_in_symbol); } } function isIterationStatement(node: Node, lookInLabeledStatements: boolean): boolean { switch (node.kind) { case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: case SyntaxKind.DoStatement: case SyntaxKind.WhileStatement: return true; case SyntaxKind.LabeledStatement: return lookInLabeledStatements && isIterationStatement((node).statement, lookInLabeledStatements); } return false; } function checkGrammarBreakOrContinueStatement(node: BreakOrContinueStatement): boolean { let current: Node = node; while (current) { if (isFunctionLike(current)) { return grammarErrorOnNode(node, Diagnostics.Jump_target_cannot_cross_function_boundary); } switch (current.kind) { case SyntaxKind.LabeledStatement: if (node.label && (current).label.text === node.label.text) { // found matching label - verify that label usage is correct // continue can only target labels that are on iteration statements let isMisplacedContinueLabel = node.kind === SyntaxKind.ContinueStatement && !isIterationStatement((current).statement, /*lookInLabeledStatement*/ true); if (isMisplacedContinueLabel) { return grammarErrorOnNode(node, Diagnostics.A_continue_statement_can_only_jump_to_a_label_of_an_enclosing_iteration_statement); } return false; } break; case SyntaxKind.SwitchStatement: if (node.kind === SyntaxKind.BreakStatement && !node.label) { // unlabeled break within switch statement - ok return false; } break; default: if (isIterationStatement(current, /*lookInLabeledStatement*/ false) && !node.label) { // unlabeled break or continue within iteration statement - ok return false; } break; } current = current.parent; } if (node.label) { let message = node.kind === SyntaxKind.BreakStatement ? Diagnostics.A_break_statement_can_only_jump_to_a_label_of_an_enclosing_statement : Diagnostics.A_continue_statement_can_only_jump_to_a_label_of_an_enclosing_iteration_statement; return grammarErrorOnNode(node, message); } else { let message = node.kind === SyntaxKind.BreakStatement ? Diagnostics.A_break_statement_can_only_be_used_within_an_enclosing_iteration_or_switch_statement : Diagnostics.A_continue_statement_can_only_be_used_within_an_enclosing_iteration_statement; return grammarErrorOnNode(node, message); } } function checkGrammarBindingElement(node: BindingElement) { if (node.dotDotDotToken) { let elements = (node.parent).elements; if (node !== lastOrUndefined(elements)) { return grammarErrorOnNode(node, Diagnostics.A_rest_element_must_be_last_in_an_array_destructuring_pattern); } if (node.name.kind === SyntaxKind.ArrayBindingPattern || node.name.kind === SyntaxKind.ObjectBindingPattern) { return grammarErrorOnNode(node.name, Diagnostics.A_rest_element_cannot_contain_a_binding_pattern); } if (node.initializer) { // Error on equals token which immediate precedes the initializer return grammarErrorAtPos(getSourceFileOfNode(node), node.initializer.pos - 1, 1, Diagnostics.A_rest_element_cannot_have_an_initializer); } } } function checkGrammarVariableDeclaration(node: VariableDeclaration) { if (node.parent.parent.kind !== SyntaxKind.ForInStatement && node.parent.parent.kind !== SyntaxKind.ForOfStatement) { if (isInAmbientContext(node)) { if (node.initializer) { // Error on equals token which immediate precedes the initializer let equalsTokenLength = "=".length; return grammarErrorAtPos(getSourceFileOfNode(node), node.initializer.pos - equalsTokenLength, equalsTokenLength, Diagnostics.Initializers_are_not_allowed_in_ambient_contexts); } } else if (!node.initializer) { if (isBindingPattern(node.name) && !isBindingPattern(node.parent)) { return grammarErrorOnNode(node, Diagnostics.A_destructuring_declaration_must_have_an_initializer); } if (isConst(node)) { return grammarErrorOnNode(node, Diagnostics.const_declarations_must_be_initialized); } } } let checkLetConstNames = languageVersion >= ScriptTarget.ES6 && (isLet(node) || isConst(node)); // 1. LexicalDeclaration : LetOrConst BindingList ; // It is a Syntax Error if the BoundNames of BindingList contains "let". // 2. ForDeclaration: ForDeclaration : LetOrConst ForBinding // It is a Syntax Error if the BoundNames of ForDeclaration contains "let". // It is a SyntaxError if a VariableDeclaration or VariableDeclarationNoIn occurs within strict code // and its Identifier is eval or arguments return checkLetConstNames && checkGrammarNameInLetOrConstDeclarations(node.name); } function checkGrammarNameInLetOrConstDeclarations(name: Identifier | BindingPattern): boolean { if (name.kind === SyntaxKind.Identifier) { if ((name).text === "let") { return grammarErrorOnNode(name, Diagnostics.let_is_not_allowed_to_be_used_as_a_name_in_let_or_const_declarations); } } else { let elements = (name).elements; for (let element of elements) { if (element.kind !== SyntaxKind.OmittedExpression) { checkGrammarNameInLetOrConstDeclarations(element.name); } } } } function checkGrammarVariableDeclarationList(declarationList: VariableDeclarationList): boolean { let declarations = declarationList.declarations; if (checkGrammarForDisallowedTrailingComma(declarationList.declarations)) { return true; } if (!declarationList.declarations.length) { return grammarErrorAtPos(getSourceFileOfNode(declarationList), declarations.pos, declarations.end - declarations.pos, Diagnostics.Variable_declaration_list_cannot_be_empty); } } function allowLetAndConstDeclarations(parent: Node): boolean { switch (parent.kind) { case SyntaxKind.IfStatement: case SyntaxKind.DoStatement: case SyntaxKind.WhileStatement: case SyntaxKind.WithStatement: case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: return false; case SyntaxKind.LabeledStatement: return allowLetAndConstDeclarations(parent.parent); } return true; } function checkGrammarForDisallowedLetOrConstStatement(node: VariableStatement) { if (!allowLetAndConstDeclarations(node.parent)) { if (isLet(node.declarationList)) { return grammarErrorOnNode(node, Diagnostics.let_declarations_can_only_be_declared_inside_a_block); } else if (isConst(node.declarationList)) { return grammarErrorOnNode(node, Diagnostics.const_declarations_can_only_be_declared_inside_a_block); } } } function isIntegerLiteral(expression: Expression): boolean { if (expression.kind === SyntaxKind.PrefixUnaryExpression) { let unaryExpression = expression; if (unaryExpression.operator === SyntaxKind.PlusToken || unaryExpression.operator === SyntaxKind.MinusToken) { expression = unaryExpression.operand; } } if (expression.kind === SyntaxKind.NumericLiteral) { // Allows for scientific notation since literalExpression.text was formed by // coercing a number to a string. Sometimes this coercion can yield a string // in scientific notation. // We also don't need special logic for hex because a hex integer is converted // to decimal when it is coerced. return /^[0-9]+([eE]\+?[0-9]+)?$/.test((expression).text); } return false; } function checkGrammarEnumDeclaration(enumDecl: EnumDeclaration): boolean { let enumIsConst = (enumDecl.flags & NodeFlags.Const) !== 0; let hasError = false; // skip checks below for const enums - they allow arbitrary initializers as long as they can be evaluated to constant expressions. // since all values are known in compile time - it is not necessary to check that constant enum section precedes computed enum members. if (!enumIsConst) { let inConstantEnumMemberSection = true; let inAmbientContext = isInAmbientContext(enumDecl); for (let node of enumDecl.members) { // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { hasError = grammarErrorOnNode(node.name, Diagnostics.Computed_property_names_are_not_allowed_in_enums); } else if (inAmbientContext) { if (node.initializer && !isIntegerLiteral(node.initializer)) { hasError = grammarErrorOnNode(node.name, Diagnostics.Ambient_enum_elements_can_only_have_integer_literal_initializers) || hasError; } } else if (node.initializer) { inConstantEnumMemberSection = isIntegerLiteral(node.initializer); } else if (!inConstantEnumMemberSection) { hasError = grammarErrorOnNode(node.name, Diagnostics.Enum_member_must_have_initializer) || hasError; } } } return hasError; } function hasParseDiagnostics(sourceFile: SourceFile): boolean { return sourceFile.parseDiagnostics.length > 0; } function grammarErrorOnFirstToken(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { let sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { let span = getSpanOfTokenAtPosition(sourceFile, node.pos); diagnostics.add(createFileDiagnostic(sourceFile, span.start, span.length, message, arg0, arg1, arg2)); return true; } } function grammarErrorAtPos(sourceFile: SourceFile, start: number, length: number, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { if (!hasParseDiagnostics(sourceFile)) { diagnostics.add(createFileDiagnostic(sourceFile, start, length, message, arg0, arg1, arg2)); return true; } } function grammarErrorOnNode(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { let sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { diagnostics.add(createDiagnosticForNode(node, message, arg0, arg1, arg2)); return true; } } function isEvalOrArgumentsIdentifier(node: Node): boolean { return node.kind === SyntaxKind.Identifier && ((node).text === "eval" || (node).text === "arguments"); } function checkGrammarConstructorTypeParameters(node: ConstructorDeclaration) { if (node.typeParameters) { return grammarErrorAtPos(getSourceFileOfNode(node), node.typeParameters.pos, node.typeParameters.end - node.typeParameters.pos, Diagnostics.Type_parameters_cannot_appear_on_a_constructor_declaration); } } function checkGrammarConstructorTypeAnnotation(node: ConstructorDeclaration) { if (node.type) { return grammarErrorOnNode(node.type, Diagnostics.Type_annotation_cannot_appear_on_a_constructor_declaration); } } function checkGrammarProperty(node: PropertyDeclaration) { if (isClassLike(node.parent)) { if (checkGrammarForInvalidQuestionMark(node, node.questionToken, Diagnostics.A_class_member_cannot_be_declared_optional) || checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_class_property_declaration_must_directly_refer_to_a_built_in_symbol)) { return true; } } else if (node.parent.kind === SyntaxKind.InterfaceDeclaration) { if (checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_an_interface_must_directly_refer_to_a_built_in_symbol)) { return true; } } else if (node.parent.kind === SyntaxKind.TypeLiteral) { if (checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_type_literal_must_directly_refer_to_a_built_in_symbol)) { return true; } } if (isInAmbientContext(node) && node.initializer) { return grammarErrorOnFirstToken(node.initializer, Diagnostics.Initializers_are_not_allowed_in_ambient_contexts); } } function checkGrammarTopLevelElementForRequiredDeclareModifier(node: Node): boolean { // A declare modifier is required for any top level .d.ts declaration except export=, export default, // interfaces and imports categories: // // DeclarationElement: // ExportAssignment // export_opt InterfaceDeclaration // export_opt ImportDeclaration // export_opt ExternalImportDeclaration // export_opt AmbientDeclaration // if (node.kind === SyntaxKind.InterfaceDeclaration || node.kind === SyntaxKind.ImportDeclaration || node.kind === SyntaxKind.ImportEqualsDeclaration || node.kind === SyntaxKind.ExportDeclaration || node.kind === SyntaxKind.ExportAssignment || (node.flags & NodeFlags.Ambient) || (node.flags & (NodeFlags.Export | NodeFlags.Default))) { return false; } return grammarErrorOnFirstToken(node, Diagnostics.A_declare_modifier_is_required_for_a_top_level_declaration_in_a_d_ts_file); } function checkGrammarTopLevelElementsForRequiredDeclareModifier(file: SourceFile): boolean { for (let decl of file.statements) { if (isDeclaration(decl) || decl.kind === SyntaxKind.VariableStatement) { if (checkGrammarTopLevelElementForRequiredDeclareModifier(decl)) { return true; } } } } function checkGrammarSourceFile(node: SourceFile): boolean { return isInAmbientContext(node) && checkGrammarTopLevelElementsForRequiredDeclareModifier(node); } function checkGrammarStatementInAmbientContext(node: Node): boolean { if (isInAmbientContext(node)) { // An accessors is already reported about the ambient context if (isAccessor(node.parent.kind)) { return getNodeLinks(node).hasReportedStatementInAmbientContext = true; } // Find containing block which is either Block, ModuleBlock, SourceFile let links = getNodeLinks(node); if (!links.hasReportedStatementInAmbientContext && isFunctionLike(node.parent)) { return getNodeLinks(node).hasReportedStatementInAmbientContext = grammarErrorOnFirstToken(node, Diagnostics.An_implementation_cannot_be_declared_in_ambient_contexts); } // We are either parented by another statement, or some sort of block. // If we're in a block, we only want to really report an error once // to prevent noisyness. So use a bit on the block to indicate if // this has already been reported, and don't report if it has. // if (node.parent.kind === SyntaxKind.Block || node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { let links = getNodeLinks(node.parent); // Check if the containing block ever report this error if (!links.hasReportedStatementInAmbientContext) { return links.hasReportedStatementInAmbientContext = grammarErrorOnFirstToken(node, Diagnostics.Statements_are_not_allowed_in_ambient_contexts); } } else { // We must be parented by a statement. If so, there's no need // to report the error as our parent will have already done it. // Debug.assert(isStatement(node.parent)); } } } function checkGrammarNumericLiteral(node: Identifier): boolean { // Grammar checking if (node.flags & NodeFlags.OctalLiteral && languageVersion >= ScriptTarget.ES5) { return grammarErrorOnNode(node, Diagnostics.Octal_literals_are_not_available_when_targeting_ECMAScript_5_and_higher); } } function grammarErrorAfterFirstToken(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { let sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { let span = getSpanOfTokenAtPosition(sourceFile, node.pos); diagnostics.add(createFileDiagnostic(sourceFile, textSpanEnd(span), /*length*/ 0, message, arg0, arg1, arg2)); return true; } } } }