/// /// /* @internal */ namespace ts { const ambientModuleSymbolRegex = /^".+"$/; let nextSymbolId = 1; let nextNodeId = 1; let nextMergeId = 1; let nextFlowId = 1; export function getNodeId(node: Node): number { if (!node.id) { node.id = nextNodeId; nextNodeId++; } return node.id; } export function getSymbolId(symbol: Symbol): number { if (!symbol.id) { symbol.id = nextSymbolId; nextSymbolId++; } return symbol.id; } export function createTypeChecker(host: TypeCheckerHost, produceDiagnostics: boolean): TypeChecker { // Cancellation that controls whether or not we can cancel in the middle of type checking. // In general cancelling is *not* safe for the type checker. We might be in the middle of // computing something, and we will leave our internals in an inconsistent state. Callers // who set the cancellation token should catch if a cancellation exception occurs, and // should throw away and create a new TypeChecker. // // Currently we only support setting the cancellation token when getting diagnostics. This // is because diagnostics can be quite expensive, and we want to allow hosts to bail out if // they no longer need the information (for example, if the user started editing again). let cancellationToken: CancellationToken; let requestedExternalEmitHelpers: ExternalEmitHelpers; let externalHelpersModule: Symbol; const Symbol = objectAllocator.getSymbolConstructor(); const Type = objectAllocator.getTypeConstructor(); const Signature = objectAllocator.getSignatureConstructor(); let typeCount = 0; let symbolCount = 0; let symbolInstantiationDepth = 0; const emptyArray: any[] = []; const emptySymbols = createMap(); const compilerOptions = host.getCompilerOptions(); const languageVersion = getEmitScriptTarget(compilerOptions); const modulekind = getEmitModuleKind(compilerOptions); const noUnusedIdentifiers = !!compilerOptions.noUnusedLocals || !!compilerOptions.noUnusedParameters; const allowSyntheticDefaultImports = typeof compilerOptions.allowSyntheticDefaultImports !== "undefined" ? compilerOptions.allowSyntheticDefaultImports : modulekind === ModuleKind.System; const strictNullChecks = compilerOptions.strictNullChecks === undefined ? compilerOptions.strict : compilerOptions.strictNullChecks; const noImplicitAny = compilerOptions.noImplicitAny === undefined ? compilerOptions.strict : compilerOptions.noImplicitAny; const noImplicitThis = compilerOptions.noImplicitThis === undefined ? compilerOptions.strict : compilerOptions.noImplicitThis; const emitResolver = createResolver(); const nodeBuilder = createNodeBuilder(); const undefinedSymbol = createSymbol(SymbolFlags.Property, "undefined"); undefinedSymbol.declarations = []; const argumentsSymbol = createSymbol(SymbolFlags.Property, "arguments"); // for public members that accept a Node or one of its subtypes, we must guard against // synthetic nodes created during transformations by calling `getParseTreeNode`. // for most of these, we perform the guard only on `checker` to avoid any possible // extra cost of calling `getParseTreeNode` when calling these functions from inside the // checker. const checker: TypeChecker = { getNodeCount: () => sum(host.getSourceFiles(), "nodeCount"), getIdentifierCount: () => sum(host.getSourceFiles(), "identifierCount"), getSymbolCount: () => sum(host.getSourceFiles(), "symbolCount") + symbolCount, getTypeCount: () => typeCount, isUndefinedSymbol: symbol => symbol === undefinedSymbol, isArgumentsSymbol: symbol => symbol === argumentsSymbol, isUnknownSymbol: symbol => symbol === unknownSymbol, getMergedSymbol, getDiagnostics, getGlobalDiagnostics, getTypeOfSymbolAtLocation: (symbol, location) => { location = getParseTreeNode(location); return location ? getTypeOfSymbolAtLocation(symbol, location) : unknownType; }, getSymbolsOfParameterPropertyDeclaration: (parameter, parameterName) => { parameter = getParseTreeNode(parameter, isParameter); Debug.assert(parameter !== undefined, "Cannot get symbols of a synthetic parameter that cannot be resolved to a parse-tree node."); return getSymbolsOfParameterPropertyDeclaration(parameter, parameterName); }, getDeclaredTypeOfSymbol, getPropertiesOfType, getPropertyOfType, getIndexInfoOfType, getSignaturesOfType, getIndexTypeOfType, getBaseTypes, getBaseTypeOfLiteralType, getWidenedType, getTypeFromTypeNode: node => { node = getParseTreeNode(node, isTypeNode); return node ? getTypeFromTypeNode(node) : unknownType; }, getParameterType: getTypeAtPosition, getReturnTypeOfSignature, getNonNullableType, typeToTypeNode: nodeBuilder.typeToTypeNode, indexInfoToIndexSignatureDeclaration: nodeBuilder.indexInfoToIndexSignatureDeclaration, signatureToSignatureDeclaration: nodeBuilder.signatureToSignatureDeclaration, getSymbolsInScope: (location, meaning) => { location = getParseTreeNode(location); return location ? getSymbolsInScope(location, meaning) : []; }, getSymbolAtLocation: node => { node = getParseTreeNode(node); return node ? getSymbolAtLocation(node) : undefined; }, getShorthandAssignmentValueSymbol: node => { node = getParseTreeNode(node); return node ? getShorthandAssignmentValueSymbol(node) : undefined; }, getExportSpecifierLocalTargetSymbol: node => { node = getParseTreeNode(node, isExportSpecifier); return node ? getExportSpecifierLocalTargetSymbol(node) : undefined; }, getTypeAtLocation: node => { node = getParseTreeNode(node); return node ? getTypeOfNode(node) : unknownType; }, getPropertySymbolOfDestructuringAssignment: location => { location = getParseTreeNode(location, isIdentifier); return location ? getPropertySymbolOfDestructuringAssignment(location) : undefined; }, signatureToString: (signature, enclosingDeclaration?, flags?, kind?) => { return signatureToString(signature, getParseTreeNode(enclosingDeclaration), flags, kind); }, typeToString: (type, enclosingDeclaration?, flags?) => { return typeToString(type, getParseTreeNode(enclosingDeclaration), flags); }, getSymbolDisplayBuilder, symbolToString: (symbol, enclosingDeclaration?, meaning?) => { return symbolToString(symbol, getParseTreeNode(enclosingDeclaration), meaning); }, getAugmentedPropertiesOfType, getRootSymbols, getContextualType: node => { node = getParseTreeNode(node, isExpression); return node ? getContextualType(node) : undefined; }, getFullyQualifiedName, getResolvedSignature: (node, candidatesOutArray?) => { node = getParseTreeNode(node, isCallLikeExpression); return node ? getResolvedSignature(node, candidatesOutArray) : undefined; }, getConstantValue: node => { node = getParseTreeNode(node, canHaveConstantValue); return node ? getConstantValue(node) : undefined; }, isValidPropertyAccess: (node, propertyName) => { node = getParseTreeNode(node, isPropertyAccessOrQualifiedName); return node ? isValidPropertyAccess(node, propertyName) : false; }, getSignatureFromDeclaration: declaration => { declaration = getParseTreeNode(declaration, isFunctionLike); return declaration ? getSignatureFromDeclaration(declaration) : undefined; }, isImplementationOfOverload: node => { node = getParseTreeNode(node, isFunctionLike); return node ? isImplementationOfOverload(node) : undefined; }, getImmediateAliasedSymbol: symbol => { Debug.assert((symbol.flags & SymbolFlags.Alias) !== 0, "Should only get Alias here."); const links = getSymbolLinks(symbol); if (!links.immediateTarget) { const node = getDeclarationOfAliasSymbol(symbol); Debug.assert(!!node); links.immediateTarget = getTargetOfAliasDeclaration(node, /*dontRecursivelyResolve*/ true); } return links.immediateTarget; }, getAliasedSymbol: resolveAlias, getEmitResolver, getExportsOfModule: getExportsOfModuleAsArray, getExportsAndPropertiesOfModule, getAmbientModules, getAllAttributesTypeFromJsxOpeningLikeElement: node => { node = getParseTreeNode(node, isJsxOpeningLikeElement); return node ? getAllAttributesTypeFromJsxOpeningLikeElement(node) : undefined; }, getJsxIntrinsicTagNames, isOptionalParameter: node => { node = getParseTreeNode(node, isParameter); return node ? isOptionalParameter(node) : false; }, tryGetMemberInModuleExports, tryFindAmbientModuleWithoutAugmentations: moduleName => { // we deliberately exclude augmentations // since we are only interested in declarations of the module itself return tryFindAmbientModule(moduleName, /*withAugmentations*/ false); }, getApparentType, getAllPossiblePropertiesOfType, getSuggestionForNonexistentProperty, getSuggestionForNonexistentSymbol, getBaseConstraintOfType, }; const tupleTypes: GenericType[] = []; const unionTypes = createMap(); const intersectionTypes = createMap(); const stringLiteralTypes = createMap(); const numericLiteralTypes = createMap(); const indexedAccessTypes = createMap(); const evolvingArrayTypes: EvolvingArrayType[] = []; const unknownSymbol = createSymbol(SymbolFlags.Property, "unknown"); const resolvingSymbol = createSymbol(0, "__resolving__"); const anyType = createIntrinsicType(TypeFlags.Any, "any"); const autoType = createIntrinsicType(TypeFlags.Any, "any"); const unknownType = createIntrinsicType(TypeFlags.Any, "unknown"); const undefinedType = createIntrinsicType(TypeFlags.Undefined, "undefined"); const undefinedWideningType = strictNullChecks ? undefinedType : createIntrinsicType(TypeFlags.Undefined | TypeFlags.ContainsWideningType, "undefined"); const nullType = createIntrinsicType(TypeFlags.Null, "null"); const nullWideningType = strictNullChecks ? nullType : createIntrinsicType(TypeFlags.Null | TypeFlags.ContainsWideningType, "null"); const stringType = createIntrinsicType(TypeFlags.String, "string"); const numberType = createIntrinsicType(TypeFlags.Number, "number"); const trueType = createIntrinsicType(TypeFlags.BooleanLiteral, "true"); const falseType = createIntrinsicType(TypeFlags.BooleanLiteral, "false"); const booleanType = createBooleanType([trueType, falseType]); const esSymbolType = createIntrinsicType(TypeFlags.ESSymbol, "symbol"); const voidType = createIntrinsicType(TypeFlags.Void, "void"); const neverType = createIntrinsicType(TypeFlags.Never, "never"); const silentNeverType = createIntrinsicType(TypeFlags.Never, "never"); const nonPrimitiveType = createIntrinsicType(TypeFlags.NonPrimitive, "object"); const emptyObjectType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); const emptyTypeLiteralSymbol = createSymbol(SymbolFlags.TypeLiteral, "__type"); emptyTypeLiteralSymbol.members = createMap(); const emptyTypeLiteralType = createAnonymousType(emptyTypeLiteralSymbol, emptySymbols, emptyArray, emptyArray, undefined, undefined); const emptyGenericType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); emptyGenericType.instantiations = createMap(); const anyFunctionType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); // The anyFunctionType contains the anyFunctionType by definition. The flag is further propagated // in getPropagatingFlagsOfTypes, and it is checked in inferFromTypes. anyFunctionType.flags |= TypeFlags.ContainsAnyFunctionType; const noConstraintType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); const circularConstraintType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined); const anySignature = createSignature(undefined, undefined, undefined, emptyArray, anyType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false); const unknownSignature = createSignature(undefined, undefined, undefined, emptyArray, unknownType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false); const resolvingSignature = createSignature(undefined, undefined, undefined, emptyArray, anyType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false); const silentNeverSignature = createSignature(undefined, undefined, undefined, emptyArray, silentNeverType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false); const enumNumberIndexInfo = createIndexInfo(stringType, /*isReadonly*/ true); const jsObjectLiteralIndexInfo = createIndexInfo(anyType, /*isReadonly*/ false); const globals = createMap(); /** * List of every ambient module with a "*" wildcard. * Unlike other ambient modules, these can't be stored in `globals` because symbol tables only deal with exact matches. * This is only used if there is no exact match. */ let patternAmbientModules: PatternAmbientModule[]; let globalObjectType: ObjectType; let globalFunctionType: ObjectType; let globalArrayType: GenericType; let globalReadonlyArrayType: GenericType; let globalStringType: ObjectType; let globalNumberType: ObjectType; let globalBooleanType: ObjectType; let globalRegExpType: ObjectType; let globalThisType: GenericType; let anyArrayType: Type; let autoArrayType: Type; let anyReadonlyArrayType: Type; // The library files are only loaded when the feature is used. // This allows users to just specify library files they want to used through --lib // and they will not get an error from not having unrelated library files let deferredGlobalESSymbolConstructorSymbol: Symbol; let deferredGlobalESSymbolType: ObjectType; let deferredGlobalTypedPropertyDescriptorType: GenericType; let deferredGlobalPromiseType: GenericType; let deferredGlobalPromiseConstructorSymbol: Symbol; let deferredGlobalPromiseConstructorLikeType: ObjectType; let deferredGlobalIterableType: GenericType; let deferredGlobalIteratorType: GenericType; let deferredGlobalIterableIteratorType: GenericType; let deferredGlobalAsyncIterableType: GenericType; let deferredGlobalAsyncIteratorType: GenericType; let deferredGlobalAsyncIterableIteratorType: GenericType; let deferredGlobalTemplateStringsArrayType: ObjectType; let deferredJsxElementClassType: Type; let deferredJsxElementType: Type; let deferredJsxStatelessElementType: Type; let deferredNodes: Node[]; let deferredUnusedIdentifierNodes: Node[]; let flowLoopStart = 0; let flowLoopCount = 0; let visitedFlowCount = 0; const emptyStringType = getLiteralTypeForText(TypeFlags.StringLiteral, ""); const zeroType = getLiteralTypeForText(TypeFlags.NumberLiteral, "0"); const resolutionTargets: TypeSystemEntity[] = []; const resolutionResults: boolean[] = []; const resolutionPropertyNames: TypeSystemPropertyName[] = []; let suggestionCount = 0; const maximumSuggestionCount = 10; const mergedSymbols: Symbol[] = []; const symbolLinks: SymbolLinks[] = []; const nodeLinks: NodeLinks[] = []; const flowLoopCaches: Map[] = []; const flowLoopNodes: FlowNode[] = []; const flowLoopKeys: string[] = []; const flowLoopTypes: Type[][] = []; const visitedFlowNodes: FlowNode[] = []; const visitedFlowTypes: FlowType[] = []; const potentialThisCollisions: Node[] = []; const potentialNewTargetCollisions: Node[] = []; const awaitedTypeStack: number[] = []; const diagnostics = createDiagnosticCollection(); const enum TypeFacts { None = 0, TypeofEQString = 1 << 0, // typeof x === "string" TypeofEQNumber = 1 << 1, // typeof x === "number" TypeofEQBoolean = 1 << 2, // typeof x === "boolean" TypeofEQSymbol = 1 << 3, // typeof x === "symbol" TypeofEQObject = 1 << 4, // typeof x === "object" TypeofEQFunction = 1 << 5, // typeof x === "function" TypeofEQHostObject = 1 << 6, // typeof x === "xxx" TypeofNEString = 1 << 7, // typeof x !== "string" TypeofNENumber = 1 << 8, // typeof x !== "number" TypeofNEBoolean = 1 << 9, // typeof x !== "boolean" TypeofNESymbol = 1 << 10, // typeof x !== "symbol" TypeofNEObject = 1 << 11, // typeof x !== "object" TypeofNEFunction = 1 << 12, // typeof x !== "function" TypeofNEHostObject = 1 << 13, // typeof x !== "xxx" EQUndefined = 1 << 14, // x === undefined EQNull = 1 << 15, // x === null EQUndefinedOrNull = 1 << 16, // x === undefined / x === null NEUndefined = 1 << 17, // x !== undefined NENull = 1 << 18, // x !== null NEUndefinedOrNull = 1 << 19, // x != undefined / x != null Truthy = 1 << 20, // x Falsy = 1 << 21, // !x Discriminatable = 1 << 22, // May have discriminant property All = (1 << 23) - 1, // The following members encode facts about particular kinds of types for use in the getTypeFacts function. // The presence of a particular fact means that the given test is true for some (and possibly all) values // of that kind of type. BaseStringStrictFacts = TypeofEQString | TypeofNENumber | TypeofNEBoolean | TypeofNESymbol | TypeofNEObject | TypeofNEFunction | TypeofNEHostObject | NEUndefined | NENull | NEUndefinedOrNull, BaseStringFacts = BaseStringStrictFacts | EQUndefined | EQNull | EQUndefinedOrNull | Falsy, StringStrictFacts = BaseStringStrictFacts | Truthy | Falsy, StringFacts = BaseStringFacts | Truthy, EmptyStringStrictFacts = BaseStringStrictFacts | Falsy, EmptyStringFacts = BaseStringFacts, NonEmptyStringStrictFacts = BaseStringStrictFacts | Truthy, NonEmptyStringFacts = BaseStringFacts | Truthy, BaseNumberStrictFacts = TypeofEQNumber | TypeofNEString | TypeofNEBoolean | TypeofNESymbol | TypeofNEObject | TypeofNEFunction | TypeofNEHostObject | NEUndefined | NENull | NEUndefinedOrNull, BaseNumberFacts = BaseNumberStrictFacts | EQUndefined | EQNull | EQUndefinedOrNull | Falsy, NumberStrictFacts = BaseNumberStrictFacts | Truthy | Falsy, NumberFacts = BaseNumberFacts | Truthy, ZeroStrictFacts = BaseNumberStrictFacts | Falsy, ZeroFacts = BaseNumberFacts, NonZeroStrictFacts = BaseNumberStrictFacts | Truthy, NonZeroFacts = BaseNumberFacts | Truthy, BaseBooleanStrictFacts = TypeofEQBoolean | TypeofNEString | TypeofNENumber | TypeofNESymbol | TypeofNEObject | TypeofNEFunction | TypeofNEHostObject | NEUndefined | NENull | NEUndefinedOrNull, BaseBooleanFacts = BaseBooleanStrictFacts | EQUndefined | EQNull | EQUndefinedOrNull | Falsy, BooleanStrictFacts = BaseBooleanStrictFacts | Truthy | Falsy, BooleanFacts = BaseBooleanFacts | Truthy, FalseStrictFacts = BaseBooleanStrictFacts | Falsy, FalseFacts = BaseBooleanFacts, TrueStrictFacts = BaseBooleanStrictFacts | Truthy, TrueFacts = BaseBooleanFacts | Truthy, SymbolStrictFacts = TypeofEQSymbol | TypeofNEString | TypeofNENumber | TypeofNEBoolean | TypeofNEObject | TypeofNEFunction | TypeofNEHostObject | NEUndefined | NENull | NEUndefinedOrNull | Truthy, SymbolFacts = SymbolStrictFacts | EQUndefined | EQNull | EQUndefinedOrNull | Falsy, ObjectStrictFacts = TypeofEQObject | TypeofEQHostObject | TypeofNEString | TypeofNENumber | TypeofNEBoolean | TypeofNESymbol | TypeofNEFunction | NEUndefined | NENull | NEUndefinedOrNull | Truthy | Discriminatable, ObjectFacts = ObjectStrictFacts | EQUndefined | EQNull | EQUndefinedOrNull | Falsy, FunctionStrictFacts = TypeofEQFunction | TypeofEQHostObject | TypeofNEString | TypeofNENumber | TypeofNEBoolean | TypeofNESymbol | TypeofNEObject | NEUndefined | NENull | NEUndefinedOrNull | Truthy | Discriminatable, FunctionFacts = FunctionStrictFacts | EQUndefined | EQNull | EQUndefinedOrNull | Falsy, UndefinedFacts = TypeofNEString | TypeofNENumber | TypeofNEBoolean | TypeofNESymbol | TypeofNEObject | TypeofNEFunction | TypeofNEHostObject | EQUndefined | EQUndefinedOrNull | NENull | Falsy, NullFacts = TypeofEQObject | TypeofNEString | TypeofNENumber | TypeofNEBoolean | TypeofNESymbol | TypeofNEFunction | TypeofNEHostObject | EQNull | EQUndefinedOrNull | NEUndefined | Falsy, } const typeofEQFacts = createMapFromTemplate({ "string": TypeFacts.TypeofEQString, "number": TypeFacts.TypeofEQNumber, "boolean": TypeFacts.TypeofEQBoolean, "symbol": TypeFacts.TypeofEQSymbol, "undefined": TypeFacts.EQUndefined, "object": TypeFacts.TypeofEQObject, "function": TypeFacts.TypeofEQFunction }); const typeofNEFacts = createMapFromTemplate({ "string": TypeFacts.TypeofNEString, "number": TypeFacts.TypeofNENumber, "boolean": TypeFacts.TypeofNEBoolean, "symbol": TypeFacts.TypeofNESymbol, "undefined": TypeFacts.NEUndefined, "object": TypeFacts.TypeofNEObject, "function": TypeFacts.TypeofNEFunction }); const typeofTypesByName = createMapFromTemplate({ "string": stringType, "number": numberType, "boolean": booleanType, "symbol": esSymbolType, "undefined": undefinedType }); const typeofType = createTypeofType(); let _jsxNamespace: string; let _jsxFactoryEntity: EntityName; let _jsxElementPropertiesName: string; let _hasComputedJsxElementPropertiesName = false; let _jsxElementChildrenPropertyName: string; let _hasComputedJsxElementChildrenPropertyName = false; /** Things we lazy load from the JSX namespace */ const jsxTypes = createMap(); const JsxNames = { JSX: "JSX", IntrinsicElements: "IntrinsicElements", ElementClass: "ElementClass", ElementAttributesPropertyNameContainer: "ElementAttributesProperty", ElementChildrenAttributeNameContainer: "ElementChildrenAttribute", Element: "Element", IntrinsicAttributes: "IntrinsicAttributes", IntrinsicClassAttributes: "IntrinsicClassAttributes" }; const subtypeRelation = createMap(); const assignableRelation = createMap(); const comparableRelation = createMap(); const identityRelation = createMap(); const enumRelation = createMap(); // This is for caching the result of getSymbolDisplayBuilder. Do not access directly. let _displayBuilder: SymbolDisplayBuilder; type TypeSystemEntity = Symbol | Type | Signature; const enum TypeSystemPropertyName { Type, ResolvedBaseConstructorType, DeclaredType, ResolvedReturnType } const enum CheckMode { Normal = 0, // Normal type checking SkipContextSensitive = 1, // Skip context sensitive function expressions Inferential = 2, // Inferential typing } const builtinGlobals = createMap(); builtinGlobals.set(undefinedSymbol.name, undefinedSymbol); initializeTypeChecker(); return checker; function getJsxNamespace(): string { if (!_jsxNamespace) { _jsxNamespace = "React"; if (compilerOptions.jsxFactory) { _jsxFactoryEntity = parseIsolatedEntityName(compilerOptions.jsxFactory, languageVersion); if (_jsxFactoryEntity) { _jsxNamespace = getFirstIdentifier(_jsxFactoryEntity).text; } } else if (compilerOptions.reactNamespace) { _jsxNamespace = compilerOptions.reactNamespace; } } return _jsxNamespace; } function getEmitResolver(sourceFile: SourceFile, cancellationToken: CancellationToken) { // Ensure we have all the type information in place for this file so that all the // emitter questions of this resolver will return the right information. getDiagnostics(sourceFile, cancellationToken); return emitResolver; } function error(location: Node, message: DiagnosticMessage, arg0?: string | number, arg1?: string | number, arg2?: string | number): void { const diagnostic = location ? createDiagnosticForNode(location, message, arg0, arg1, arg2) : createCompilerDiagnostic(message, arg0, arg1, arg2); diagnostics.add(diagnostic); } function createSymbol(flags: SymbolFlags, name: string) { symbolCount++; const symbol = (new Symbol(flags | SymbolFlags.Transient, name)); symbol.checkFlags = 0; return symbol; } function isTransientSymbol(symbol: Symbol): symbol is TransientSymbol { return (symbol.flags & SymbolFlags.Transient) !== 0; } function getExcludedSymbolFlags(flags: SymbolFlags): SymbolFlags { let result: SymbolFlags = 0; if (flags & SymbolFlags.BlockScopedVariable) result |= SymbolFlags.BlockScopedVariableExcludes; if (flags & SymbolFlags.FunctionScopedVariable) result |= SymbolFlags.FunctionScopedVariableExcludes; if (flags & SymbolFlags.Property) result |= SymbolFlags.PropertyExcludes; if (flags & SymbolFlags.EnumMember) result |= SymbolFlags.EnumMemberExcludes; if (flags & SymbolFlags.Function) result |= SymbolFlags.FunctionExcludes; if (flags & SymbolFlags.Class) result |= SymbolFlags.ClassExcludes; if (flags & SymbolFlags.Interface) result |= SymbolFlags.InterfaceExcludes; if (flags & SymbolFlags.RegularEnum) result |= SymbolFlags.RegularEnumExcludes; if (flags & SymbolFlags.ConstEnum) result |= SymbolFlags.ConstEnumExcludes; if (flags & SymbolFlags.ValueModule) result |= SymbolFlags.ValueModuleExcludes; if (flags & SymbolFlags.Method) result |= SymbolFlags.MethodExcludes; if (flags & SymbolFlags.GetAccessor) result |= SymbolFlags.GetAccessorExcludes; if (flags & SymbolFlags.SetAccessor) result |= SymbolFlags.SetAccessorExcludes; if (flags & SymbolFlags.TypeParameter) result |= SymbolFlags.TypeParameterExcludes; if (flags & SymbolFlags.TypeAlias) result |= SymbolFlags.TypeAliasExcludes; if (flags & SymbolFlags.Alias) result |= SymbolFlags.AliasExcludes; return result; } function recordMergedSymbol(target: Symbol, source: Symbol) { if (!source.mergeId) { source.mergeId = nextMergeId; nextMergeId++; } mergedSymbols[source.mergeId] = target; } function cloneSymbol(symbol: Symbol): Symbol { const result = createSymbol(symbol.flags, symbol.name); result.declarations = symbol.declarations.slice(0); result.parent = symbol.parent; if (symbol.valueDeclaration) result.valueDeclaration = symbol.valueDeclaration; if (symbol.constEnumOnlyModule) result.constEnumOnlyModule = true; if (symbol.members) result.members = cloneMap(symbol.members); if (symbol.exports) result.exports = cloneMap(symbol.exports); recordMergedSymbol(result, symbol); return result; } function mergeSymbol(target: Symbol, source: Symbol) { if (!(target.flags & getExcludedSymbolFlags(source.flags))) { if (source.flags & SymbolFlags.ValueModule && target.flags & SymbolFlags.ValueModule && target.constEnumOnlyModule && !source.constEnumOnlyModule) { // reset flag when merging instantiated module into value module that has only const enums target.constEnumOnlyModule = false; } target.flags |= source.flags; if (source.valueDeclaration && (!target.valueDeclaration || (target.valueDeclaration.kind === SyntaxKind.ModuleDeclaration && source.valueDeclaration.kind !== SyntaxKind.ModuleDeclaration))) { // other kinds of value declarations take precedence over modules target.valueDeclaration = source.valueDeclaration; } addRange(target.declarations, source.declarations); if (source.members) { if (!target.members) target.members = createMap(); mergeSymbolTable(target.members, source.members); } if (source.exports) { if (!target.exports) target.exports = createMap(); mergeSymbolTable(target.exports, source.exports); } recordMergedSymbol(target, source); } else if (target.flags & SymbolFlags.NamespaceModule) { error(getNameOfDeclaration(source.declarations[0]), Diagnostics.Cannot_augment_module_0_with_value_exports_because_it_resolves_to_a_non_module_entity, symbolToString(target)); } else { const message = target.flags & SymbolFlags.BlockScopedVariable || source.flags & SymbolFlags.BlockScopedVariable ? Diagnostics.Cannot_redeclare_block_scoped_variable_0 : Diagnostics.Duplicate_identifier_0; forEach(source.declarations, node => { error(getNameOfDeclaration(node) || node, message, symbolToString(source)); }); forEach(target.declarations, node => { error(getNameOfDeclaration(node) || node, message, symbolToString(source)); }); } } function mergeSymbolTable(target: SymbolTable, source: SymbolTable) { source.forEach((sourceSymbol, id) => { let targetSymbol = target.get(id); if (!targetSymbol) { target.set(id, sourceSymbol); } else { if (!(targetSymbol.flags & SymbolFlags.Transient)) { targetSymbol = cloneSymbol(targetSymbol); target.set(id, targetSymbol); } mergeSymbol(targetSymbol, sourceSymbol); } }); } function mergeModuleAugmentation(moduleName: LiteralExpression): void { const moduleAugmentation = moduleName.parent; if (moduleAugmentation.symbol.declarations[0] !== moduleAugmentation) { // this is a combined symbol for multiple augmentations within the same file. // its symbol already has accumulated information for all declarations // so we need to add it just once - do the work only for first declaration Debug.assert(moduleAugmentation.symbol.declarations.length > 1); return; } if (isGlobalScopeAugmentation(moduleAugmentation)) { mergeSymbolTable(globals, moduleAugmentation.symbol.exports); } else { // find a module that about to be augmented // do not validate names of augmentations that are defined in ambient context const moduleNotFoundError = !isInAmbientContext(moduleName.parent.parent) ? Diagnostics.Invalid_module_name_in_augmentation_module_0_cannot_be_found : undefined; let mainModule = resolveExternalModuleNameWorker(moduleName, moduleName, moduleNotFoundError, /*isForAugmentation*/ true); if (!mainModule) { return; } // obtain item referenced by 'export=' mainModule = resolveExternalModuleSymbol(mainModule); if (mainModule.flags & SymbolFlags.Namespace) { // if module symbol has already been merged - it is safe to use it. // otherwise clone it mainModule = mainModule.flags & SymbolFlags.Transient ? mainModule : cloneSymbol(mainModule); mergeSymbol(mainModule, moduleAugmentation.symbol); } else { error(moduleName, Diagnostics.Cannot_augment_module_0_because_it_resolves_to_a_non_module_entity, moduleName.text); } } } function addToSymbolTable(target: SymbolTable, source: SymbolTable, message: DiagnosticMessage) { source.forEach((sourceSymbol, id) => { const targetSymbol = target.get(id); if (targetSymbol) { // Error on redeclarations forEach(targetSymbol.declarations, addDeclarationDiagnostic(id, message)); } else { target.set(id, sourceSymbol); } }); function addDeclarationDiagnostic(id: string, message: DiagnosticMessage) { return (declaration: Declaration) => diagnostics.add(createDiagnosticForNode(declaration, message, id)); } } function getSymbolLinks(symbol: Symbol): SymbolLinks { if (symbol.flags & SymbolFlags.Transient) return symbol; const id = getSymbolId(symbol); return symbolLinks[id] || (symbolLinks[id] = {}); } function getNodeLinks(node: Node): NodeLinks { const nodeId = getNodeId(node); return nodeLinks[nodeId] || (nodeLinks[nodeId] = { flags: 0 }); } function getObjectFlags(type: Type): ObjectFlags { return type.flags & TypeFlags.Object ? (type).objectFlags : 0; } function isGlobalSourceFile(node: Node) { return node.kind === SyntaxKind.SourceFile && !isExternalOrCommonJsModule(node); } function getSymbol(symbols: SymbolTable, name: string, meaning: SymbolFlags): Symbol { if (meaning) { const symbol = symbols.get(name); if (symbol) { Debug.assert((getCheckFlags(symbol) & CheckFlags.Instantiated) === 0, "Should never get an instantiated symbol here."); if (symbol.flags & meaning) { return symbol; } if (symbol.flags & SymbolFlags.Alias) { const target = resolveAlias(symbol); // Unknown symbol means an error occurred in alias resolution, treat it as positive answer to avoid cascading errors if (target === unknownSymbol || target.flags & meaning) { return symbol; } } } } // return undefined if we can't find a symbol. } /** * Get symbols that represent parameter-property-declaration as parameter and as property declaration * @param parameter a parameterDeclaration node * @param parameterName a name of the parameter to get the symbols for. * @return a tuple of two symbols */ function getSymbolsOfParameterPropertyDeclaration(parameter: ParameterDeclaration, parameterName: string): [Symbol, Symbol] { const constructorDeclaration = parameter.parent; const classDeclaration = parameter.parent.parent; const parameterSymbol = getSymbol(constructorDeclaration.locals, parameterName, SymbolFlags.Value); const propertySymbol = getSymbol(classDeclaration.symbol.members, parameterName, SymbolFlags.Value); if (parameterSymbol && propertySymbol) { return [parameterSymbol, propertySymbol]; } Debug.fail("There should exist two symbols, one as property declaration and one as parameter declaration"); } function isBlockScopedNameDeclaredBeforeUse(declaration: Declaration, usage: Node): boolean { const declarationFile = getSourceFileOfNode(declaration); const useFile = getSourceFileOfNode(usage); if (declarationFile !== useFile) { if ((modulekind && (declarationFile.externalModuleIndicator || useFile.externalModuleIndicator)) || (!compilerOptions.outFile && !compilerOptions.out) || isInAmbientContext(declaration)) { // nodes are in different files and order cannot be determined return true; } // declaration is after usage // can be legal if usage is deferred (i.e. inside function or in initializer of instance property) if (isUsedInFunctionOrInstanceProperty(usage, declaration)) { return true; } const sourceFiles = host.getSourceFiles(); return indexOf(sourceFiles, declarationFile) <= indexOf(sourceFiles, useFile); } if (declaration.pos <= usage.pos) { // declaration is before usage if (declaration.kind === SyntaxKind.BindingElement) { // still might be illegal if declaration and usage are both binding elements (eg var [a = b, b = b] = [1, 2]) const errorBindingElement = getAncestor(usage, SyntaxKind.BindingElement) as BindingElement; if (errorBindingElement) { return findAncestor(errorBindingElement, isBindingElement) !== findAncestor(declaration, isBindingElement) || declaration.pos < errorBindingElement.pos; } // or it might be illegal if usage happens before parent variable is declared (eg var [a] = a) return isBlockScopedNameDeclaredBeforeUse(getAncestor(declaration, SyntaxKind.VariableDeclaration) as Declaration, usage); } else if (declaration.kind === SyntaxKind.VariableDeclaration) { // still might be illegal if usage is in the initializer of the variable declaration (eg var a = a) return !isImmediatelyUsedInInitializerOfBlockScopedVariable(declaration as VariableDeclaration, usage); } return true; } // declaration is after usage, but it can still be legal if usage is deferred: // 1. inside an export specifier // 2. inside a function // 3. inside an instance property initializer, a reference to a non-instance property // 4. inside a static property initializer, a reference to a static method in the same class // or if usage is in a type context: // 1. inside a type query (typeof in type position) if (usage.parent.kind === SyntaxKind.ExportSpecifier) { // export specifiers do not use the variable, they only make it available for use return true; } const container = getEnclosingBlockScopeContainer(declaration); return isInTypeQuery(usage) || isUsedInFunctionOrInstanceProperty(usage, declaration, container); function isImmediatelyUsedInInitializerOfBlockScopedVariable(declaration: VariableDeclaration, usage: Node): boolean { const container = getEnclosingBlockScopeContainer(declaration); switch (declaration.parent.parent.kind) { case SyntaxKind.VariableStatement: case SyntaxKind.ForStatement: case SyntaxKind.ForOfStatement: // variable statement/for/for-of statement case, // use site should not be inside variable declaration (initializer of declaration or binding element) if (isSameScopeDescendentOf(usage, declaration, container)) { return true; } break; } switch (declaration.parent.parent.kind) { case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: // ForIn/ForOf case - use site should not be used in expression part if (isSameScopeDescendentOf(usage, (declaration.parent.parent).expression, container)) { return true; } } return false; } function isUsedInFunctionOrInstanceProperty(usage: Node, declaration: Node, container?: Node): boolean { return !!findAncestor(usage, current => { if (current === container) { return "quit"; } if (isFunctionLike(current)) { return true; } const initializerOfProperty = current.parent && current.parent.kind === SyntaxKind.PropertyDeclaration && (current.parent).initializer === current; if (initializerOfProperty) { if (getModifierFlags(current.parent) & ModifierFlags.Static) { if (declaration.kind === SyntaxKind.MethodDeclaration) { return true; } } else { const isDeclarationInstanceProperty = declaration.kind === SyntaxKind.PropertyDeclaration && !(getModifierFlags(declaration) & ModifierFlags.Static); if (!isDeclarationInstanceProperty || getContainingClass(usage) !== getContainingClass(declaration)) { return true; } } } }); } } // Resolve a given name for a given meaning at a given location. An error is reported if the name was not found and // the nameNotFoundMessage argument is not undefined. Returns the resolved symbol, or undefined if no symbol with // the given name can be found. function resolveName( location: Node | undefined, name: string, meaning: SymbolFlags, nameNotFoundMessage: DiagnosticMessage, nameArg: string | Identifier, suggestedNameNotFoundMessage?: DiagnosticMessage): Symbol { return resolveNameHelper(location, name, meaning, nameNotFoundMessage, nameArg, getSymbol, suggestedNameNotFoundMessage); } function resolveNameHelper( location: Node | undefined, name: string, meaning: SymbolFlags, nameNotFoundMessage: DiagnosticMessage, nameArg: string | Identifier, lookup: (symbols: SymbolTable, name: string, meaning: SymbolFlags) => Symbol, suggestedNameNotFoundMessage?: DiagnosticMessage): Symbol { const originalLocation = location; // needed for did-you-mean error reporting, which gathers candidates starting from the original location let result: Symbol; let lastLocation: Node; let propertyWithInvalidInitializer: Node; const errorLocation = location; let grandparent: Node; let isInExternalModule = false; loop: while (location) { // Locals of a source file are not in scope (because they get merged into the global symbol table) if (location.locals && !isGlobalSourceFile(location)) { if (result = lookup(location.locals, name, meaning)) { let useResult = true; if (isFunctionLike(location) && lastLocation && lastLocation !== (location).body) { // symbol lookup restrictions for function-like declarations // - Type parameters of a function are in scope in the entire function declaration, including the parameter // list and return type. However, local types are only in scope in the function body. // - parameters are only in the scope of function body // This restriction does not apply to JSDoc comment types because they are parented // at a higher level than type parameters would normally be if (meaning & result.flags & SymbolFlags.Type && lastLocation.kind !== SyntaxKind.JSDocComment) { useResult = result.flags & SymbolFlags.TypeParameter // type parameters are visible in parameter list, return type and type parameter list ? lastLocation === (location).type || lastLocation.kind === SyntaxKind.Parameter || lastLocation.kind === SyntaxKind.TypeParameter // local types not visible outside the function body : false; } if (meaning & SymbolFlags.Value && result.flags & SymbolFlags.FunctionScopedVariable) { // parameters are visible only inside function body, parameter list and return type // technically for parameter list case here we might mix parameters and variables declared in function, // however it is detected separately when checking initializers of parameters // to make sure that they reference no variables declared after them. useResult = lastLocation.kind === SyntaxKind.Parameter || ( lastLocation === (location).type && result.valueDeclaration.kind === SyntaxKind.Parameter ); } } if (useResult) { break loop; } else { result = undefined; } } } switch (location.kind) { case SyntaxKind.SourceFile: if (!isExternalOrCommonJsModule(location)) break; isInExternalModule = true; // falls through case SyntaxKind.ModuleDeclaration: const moduleExports = getSymbolOfNode(location).exports; if (location.kind === SyntaxKind.SourceFile || isAmbientModule(location)) { // It's an external module. First see if the module has an export default and if the local // name of that export default matches. if (result = moduleExports.get("default")) { const localSymbol = getLocalSymbolForExportDefault(result); if (localSymbol && (result.flags & meaning) && localSymbol.name === name) { break loop; } result = undefined; } // Because of module/namespace merging, a module's exports are in scope, // yet we never want to treat an export specifier as putting a member in scope. // Therefore, if the name we find is purely an export specifier, it is not actually considered in scope. // Two things to note about this: // 1. We have to check this without calling getSymbol. The problem with calling getSymbol // on an export specifier is that it might find the export specifier itself, and try to // resolve it as an alias. This will cause the checker to consider the export specifier // a circular alias reference when it might not be. // 2. We check === SymbolFlags.Alias in order to check that the symbol is *purely* // an alias. If we used &, we'd be throwing out symbols that have non alias aspects, // which is not the desired behavior. const moduleExport = moduleExports.get(name); if (moduleExport && moduleExport.flags === SymbolFlags.Alias && getDeclarationOfKind(moduleExport, SyntaxKind.ExportSpecifier)) { break; } } if (result = lookup(moduleExports, name, meaning & SymbolFlags.ModuleMember)) { break loop; } break; case SyntaxKind.EnumDeclaration: if (result = lookup(getSymbolOfNode(location).exports, name, meaning & SymbolFlags.EnumMember)) { break loop; } break; case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: // TypeScript 1.0 spec (April 2014): 8.4.1 // Initializer expressions for instance member variables are evaluated in the scope // of the class constructor body but are not permitted to reference parameters or // local variables of the constructor. This effectively means that entities from outer scopes // by the same name as a constructor parameter or local variable are inaccessible // in initializer expressions for instance member variables. if (isClassLike(location.parent) && !(getModifierFlags(location) & ModifierFlags.Static)) { const ctor = findConstructorDeclaration(location.parent); if (ctor && ctor.locals) { if (lookup(ctor.locals, name, meaning & SymbolFlags.Value)) { // Remember the property node, it will be used later to report appropriate error propertyWithInvalidInitializer = location; } } } break; case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: case SyntaxKind.InterfaceDeclaration: if (result = lookup(getSymbolOfNode(location).members, name, meaning & SymbolFlags.Type)) { if (!isTypeParameterSymbolDeclaredInContainer(result, location)) { // ignore type parameters not declared in this container result = undefined; break; } if (lastLocation && getModifierFlags(lastLocation) & ModifierFlags.Static) { // TypeScript 1.0 spec (April 2014): 3.4.1 // The scope of a type parameter extends over the entire declaration with which the type // parameter list is associated, with the exception of static member declarations in classes. error(errorLocation, Diagnostics.Static_members_cannot_reference_class_type_parameters); return undefined; } break loop; } if (location.kind === SyntaxKind.ClassExpression && meaning & SymbolFlags.Class) { const className = (location).name; if (className && name === className.text) { result = location.symbol; break loop; } } break; // It is not legal to reference a class's own type parameters from a computed property name that // belongs to the class. For example: // // function foo() { return '' } // class C { // <-- Class's own type parameter T // [foo()]() { } // <-- Reference to T from class's own computed property // } // case SyntaxKind.ComputedPropertyName: grandparent = location.parent.parent; if (isClassLike(grandparent) || grandparent.kind === SyntaxKind.InterfaceDeclaration) { // A reference to this grandparent's type parameters would be an error if (result = lookup(getSymbolOfNode(grandparent).members, name, meaning & SymbolFlags.Type)) { error(errorLocation, Diagnostics.A_computed_property_name_cannot_reference_a_type_parameter_from_its_containing_type); return undefined; } } break; case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.Constructor: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionDeclaration: case SyntaxKind.ArrowFunction: if (meaning & SymbolFlags.Variable && name === "arguments") { result = argumentsSymbol; break loop; } break; case SyntaxKind.FunctionExpression: if (meaning & SymbolFlags.Variable && name === "arguments") { result = argumentsSymbol; break loop; } if (meaning & SymbolFlags.Function) { const functionName = (location).name; if (functionName && name === functionName.text) { result = location.symbol; break loop; } } break; case SyntaxKind.Decorator: // Decorators are resolved at the class declaration. Resolving at the parameter // or member would result in looking up locals in the method. // // function y() {} // class C { // method(@y x, y) {} // <-- decorator y should be resolved at the class declaration, not the parameter. // } // if (location.parent && location.parent.kind === SyntaxKind.Parameter) { location = location.parent; } // // function y() {} // class C { // @y method(x, y) {} // <-- decorator y should be resolved at the class declaration, not the method. // } // if (location.parent && isClassElement(location.parent)) { location = location.parent; } break; } lastLocation = location; location = location.parent; } if (result && nameNotFoundMessage && noUnusedIdentifiers) { result.isReferenced = true; } if (!result) { result = lookup(globals, name, meaning); } if (!result) { if (nameNotFoundMessage) { if (!errorLocation || !checkAndReportErrorForMissingPrefix(errorLocation, name, nameArg) && !checkAndReportErrorForExtendingInterface(errorLocation) && !checkAndReportErrorForUsingTypeAsNamespace(errorLocation, name, meaning) && !checkAndReportErrorForUsingTypeAsValue(errorLocation, name, meaning) && !checkAndReportErrorForUsingNamespaceModuleAsValue(errorLocation, name, meaning)) { let suggestion: string | undefined; if (suggestedNameNotFoundMessage && suggestionCount < maximumSuggestionCount) { suggestion = getSuggestionForNonexistentSymbol(originalLocation, name, meaning); if (suggestion) { suggestionCount++; error(errorLocation, suggestedNameNotFoundMessage, typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg), suggestion); } } if (!suggestion) { error(errorLocation, nameNotFoundMessage, typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg)); } } } return undefined; } // Perform extra checks only if error reporting was requested if (nameNotFoundMessage) { if (propertyWithInvalidInitializer) { // We have a match, but the reference occurred within a property initializer and the identifier also binds // to a local variable in the constructor where the code will be emitted. const propertyName = (propertyWithInvalidInitializer).name; error(errorLocation, Diagnostics.Initializer_of_instance_member_variable_0_cannot_reference_identifier_1_declared_in_the_constructor, declarationNameToString(propertyName), typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg)); return undefined; } // Only check for block-scoped variable if we are looking for the // name with variable meaning // For example, // declare module foo { // interface bar {} // } // const foo/*1*/: foo/*2*/.bar; // The foo at /*1*/ and /*2*/ will share same symbol with two meanings: // block-scoped variable and namespace module. However, only when we // try to resolve name in /*1*/ which is used in variable position, // we want to check for block-scoped if (meaning & SymbolFlags.BlockScopedVariable || ((meaning & SymbolFlags.Class || meaning & SymbolFlags.Enum) && (meaning & SymbolFlags.Value) === SymbolFlags.Value)) { const exportOrLocalSymbol = getExportSymbolOfValueSymbolIfExported(result); if (exportOrLocalSymbol.flags & SymbolFlags.BlockScopedVariable || exportOrLocalSymbol.flags & SymbolFlags.Class || exportOrLocalSymbol.flags & SymbolFlags.Enum) { checkResolvedBlockScopedVariable(exportOrLocalSymbol, errorLocation); } } // If we're in an external module, we can't reference value symbols created from UMD export declarations if (result && isInExternalModule && (meaning & SymbolFlags.Value) === SymbolFlags.Value) { const decls = result.declarations; if (decls && decls.length === 1 && decls[0].kind === SyntaxKind.NamespaceExportDeclaration) { error(errorLocation, Diagnostics._0_refers_to_a_UMD_global_but_the_current_file_is_a_module_Consider_adding_an_import_instead, name); } } } return result; } function isTypeParameterSymbolDeclaredInContainer(symbol: Symbol, container: Node) { for (const decl of symbol.declarations) { if (decl.kind === SyntaxKind.TypeParameter && decl.parent === container) { return true; } } return false; } function checkAndReportErrorForMissingPrefix(errorLocation: Node, name: string, nameArg: string | Identifier): boolean { if ((errorLocation.kind === SyntaxKind.Identifier && (isTypeReferenceIdentifier(errorLocation)) || isInTypeQuery(errorLocation))) { return false; } const container = getThisContainer(errorLocation, /*includeArrowFunctions*/ true); let location = container; while (location) { if (isClassLike(location.parent)) { const classSymbol = getSymbolOfNode(location.parent); if (!classSymbol) { break; } // Check to see if a static member exists. const constructorType = getTypeOfSymbol(classSymbol); if (getPropertyOfType(constructorType, name)) { error(errorLocation, Diagnostics.Cannot_find_name_0_Did_you_mean_the_static_member_1_0, typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg), symbolToString(classSymbol)); return true; } // No static member is present. // Check if we're in an instance method and look for a relevant instance member. if (location === container && !(getModifierFlags(location) & ModifierFlags.Static)) { const instanceType = (getDeclaredTypeOfSymbol(classSymbol)).thisType; if (getPropertyOfType(instanceType, name)) { error(errorLocation, Diagnostics.Cannot_find_name_0_Did_you_mean_the_instance_member_this_0, typeof nameArg === "string" ? nameArg : declarationNameToString(nameArg)); return true; } } } location = location.parent; } return false; } function checkAndReportErrorForExtendingInterface(errorLocation: Node): boolean { const expression = getEntityNameForExtendingInterface(errorLocation); const isError = !!(expression && resolveEntityName(expression, SymbolFlags.Interface, /*ignoreErrors*/ true)); if (isError) { error(errorLocation, Diagnostics.Cannot_extend_an_interface_0_Did_you_mean_implements, getTextOfNode(expression)); } return isError; } /** * Climbs up parents to an ExpressionWithTypeArguments, and returns its expression, * but returns undefined if that expression is not an EntityNameExpression. */ function getEntityNameForExtendingInterface(node: Node): EntityNameExpression | undefined { switch (node.kind) { case SyntaxKind.Identifier: case SyntaxKind.PropertyAccessExpression: return node.parent ? getEntityNameForExtendingInterface(node.parent) : undefined; case SyntaxKind.ExpressionWithTypeArguments: Debug.assert(isEntityNameExpression((node).expression)); return (node).expression; default: return undefined; } } function checkAndReportErrorForUsingTypeAsNamespace(errorLocation: Node, name: string, meaning: SymbolFlags): boolean { if (meaning === SymbolFlags.Namespace) { const symbol = resolveSymbol(resolveName(errorLocation, name, SymbolFlags.Type & ~SymbolFlags.Value, /*nameNotFoundMessage*/undefined, /*nameArg*/ undefined)); if (symbol) { error(errorLocation, Diagnostics._0_only_refers_to_a_type_but_is_being_used_as_a_namespace_here, name); return true; } } return false; } function checkAndReportErrorForUsingTypeAsValue(errorLocation: Node, name: string, meaning: SymbolFlags): boolean { if (meaning & (SymbolFlags.Value & ~SymbolFlags.NamespaceModule)) { if (name === "any" || name === "string" || name === "number" || name === "boolean" || name === "never") { error(errorLocation, Diagnostics._0_only_refers_to_a_type_but_is_being_used_as_a_value_here, name); return true; } const symbol = resolveSymbol(resolveName(errorLocation, name, SymbolFlags.Type & ~SymbolFlags.Value, /*nameNotFoundMessage*/undefined, /*nameArg*/ undefined)); if (symbol && !(symbol.flags & SymbolFlags.NamespaceModule)) { error(errorLocation, Diagnostics._0_only_refers_to_a_type_but_is_being_used_as_a_value_here, name); return true; } } return false; } function checkAndReportErrorForUsingNamespaceModuleAsValue(errorLocation: Node, name: string, meaning: SymbolFlags): boolean { if (meaning & (SymbolFlags.Value & ~SymbolFlags.NamespaceModule & ~SymbolFlags.Type)) { const symbol = resolveSymbol(resolveName(errorLocation, name, SymbolFlags.NamespaceModule & ~SymbolFlags.Value, /*nameNotFoundMessage*/undefined, /*nameArg*/ undefined)); if (symbol) { error(errorLocation, Diagnostics.Cannot_use_namespace_0_as_a_value, name); return true; } } else if (meaning & (SymbolFlags.Type & ~SymbolFlags.NamespaceModule & ~SymbolFlags.Value)) { const symbol = resolveSymbol(resolveName(errorLocation, name, SymbolFlags.NamespaceModule & ~SymbolFlags.Type, /*nameNotFoundMessage*/undefined, /*nameArg*/ undefined)); if (symbol) { error(errorLocation, Diagnostics.Cannot_use_namespace_0_as_a_type, name); return true; } } return false; } function checkResolvedBlockScopedVariable(result: Symbol, errorLocation: Node): void { Debug.assert(!!(result.flags & SymbolFlags.BlockScopedVariable || result.flags & SymbolFlags.Class || result.flags & SymbolFlags.Enum)); // Block-scoped variables cannot be used before their definition const declaration = forEach(result.declarations, d => isBlockOrCatchScoped(d) || isClassLike(d) || (d.kind === SyntaxKind.EnumDeclaration) ? d : undefined); Debug.assert(declaration !== undefined, "Declaration to checkResolvedBlockScopedVariable is undefined"); if (!isInAmbientContext(declaration) && !isBlockScopedNameDeclaredBeforeUse(declaration, errorLocation)) { if (result.flags & SymbolFlags.BlockScopedVariable) { error(errorLocation, Diagnostics.Block_scoped_variable_0_used_before_its_declaration, declarationNameToString(getNameOfDeclaration(declaration))); } else if (result.flags & SymbolFlags.Class) { error(errorLocation, Diagnostics.Class_0_used_before_its_declaration, declarationNameToString(getNameOfDeclaration(declaration))); } else if (result.flags & SymbolFlags.RegularEnum) { error(errorLocation, Diagnostics.Enum_0_used_before_its_declaration, declarationNameToString(getNameOfDeclaration(declaration))); } } } /* Starting from 'initial' node walk up the parent chain until 'stopAt' node is reached. * If at any point current node is equal to 'parent' node - return true. * Return false if 'stopAt' node is reached or isFunctionLike(current) === true. */ function isSameScopeDescendentOf(initial: Node, parent: Node, stopAt: Node): boolean { return parent && !!findAncestor(initial, n => n === stopAt || isFunctionLike(n) ? "quit" : n === parent); } function getAnyImportSyntax(node: Node): AnyImportSyntax { if (isAliasSymbolDeclaration(node)) { if (node.kind === SyntaxKind.ImportEqualsDeclaration) { return node; } return findAncestor(node, n => n.kind === SyntaxKind.ImportDeclaration) as ImportDeclaration; } } function getDeclarationOfAliasSymbol(symbol: Symbol): Declaration | undefined { return find(symbol.declarations, isAliasSymbolDeclaration); } function getTargetOfImportEqualsDeclaration(node: ImportEqualsDeclaration, dontResolveAlias: boolean): Symbol { if (node.moduleReference.kind === SyntaxKind.ExternalModuleReference) { return resolveExternalModuleSymbol(resolveExternalModuleName(node, getExternalModuleImportEqualsDeclarationExpression(node))); } return getSymbolOfPartOfRightHandSideOfImportEquals(node.moduleReference, dontResolveAlias); } function getTargetOfImportClause(node: ImportClause, dontResolveAlias: boolean): Symbol { const moduleSymbol = resolveExternalModuleName(node, (node.parent).moduleSpecifier); if (moduleSymbol) { let exportDefaultSymbol: Symbol; if (isShorthandAmbientModuleSymbol(moduleSymbol)) { exportDefaultSymbol = moduleSymbol; } else { const exportValue = moduleSymbol.exports.get("export="); exportDefaultSymbol = exportValue ? getPropertyOfType(getTypeOfSymbol(exportValue), "default") : resolveSymbol(moduleSymbol.exports.get("default"), dontResolveAlias); } if (!exportDefaultSymbol && !allowSyntheticDefaultImports) { error(node.name, Diagnostics.Module_0_has_no_default_export, symbolToString(moduleSymbol)); } else if (!exportDefaultSymbol && allowSyntheticDefaultImports) { return resolveExternalModuleSymbol(moduleSymbol, dontResolveAlias) || resolveSymbol(moduleSymbol, dontResolveAlias); } return exportDefaultSymbol; } } function getTargetOfNamespaceImport(node: NamespaceImport, dontResolveAlias: boolean): Symbol { const moduleSpecifier = (node.parent.parent).moduleSpecifier; return resolveESModuleSymbol(resolveExternalModuleName(node, moduleSpecifier), moduleSpecifier, dontResolveAlias); } // This function creates a synthetic symbol that combines the value side of one symbol with the // type/namespace side of another symbol. Consider this example: // // declare module graphics { // interface Point { // x: number; // y: number; // } // } // declare var graphics: { // Point: new (x: number, y: number) => graphics.Point; // } // declare module "graphics" { // export = graphics; // } // // An 'import { Point } from "graphics"' needs to create a symbol that combines the value side 'Point' // property with the type/namespace side interface 'Point'. function combineValueAndTypeSymbols(valueSymbol: Symbol, typeSymbol: Symbol): Symbol { if (valueSymbol.flags & (SymbolFlags.Type | SymbolFlags.Namespace)) { return valueSymbol; } const result = createSymbol(valueSymbol.flags | typeSymbol.flags, valueSymbol.name); result.declarations = concatenate(valueSymbol.declarations, typeSymbol.declarations); result.parent = valueSymbol.parent || typeSymbol.parent; if (valueSymbol.valueDeclaration) result.valueDeclaration = valueSymbol.valueDeclaration; if (typeSymbol.members) result.members = typeSymbol.members; if (valueSymbol.exports) result.exports = valueSymbol.exports; return result; } function getExportOfModule(symbol: Symbol, name: string, dontResolveAlias: boolean): Symbol { if (symbol.flags & SymbolFlags.Module) { return resolveSymbol(getExportsOfSymbol(symbol).get(name), dontResolveAlias); } } function getPropertyOfVariable(symbol: Symbol, name: string): Symbol { if (symbol.flags & SymbolFlags.Variable) { const typeAnnotation = (symbol.valueDeclaration).type; if (typeAnnotation) { return resolveSymbol(getPropertyOfType(getTypeFromTypeNode(typeAnnotation), name)); } } } function getExternalModuleMember(node: ImportDeclaration | ExportDeclaration, specifier: ImportOrExportSpecifier, dontResolveAlias?: boolean): Symbol { const moduleSymbol = resolveExternalModuleName(node, node.moduleSpecifier); const targetSymbol = resolveESModuleSymbol(moduleSymbol, node.moduleSpecifier, dontResolveAlias); if (targetSymbol) { const name = specifier.propertyName || specifier.name; if (name.text) { if (isShorthandAmbientModuleSymbol(moduleSymbol)) { return moduleSymbol; } let symbolFromVariable: Symbol; // First check if module was specified with "export=". If so, get the member from the resolved type if (moduleSymbol && moduleSymbol.exports && moduleSymbol.exports.get("export=")) { symbolFromVariable = getPropertyOfType(getTypeOfSymbol(targetSymbol), name.text); } else { symbolFromVariable = getPropertyOfVariable(targetSymbol, name.text); } // if symbolFromVariable is export - get its final target symbolFromVariable = resolveSymbol(symbolFromVariable, dontResolveAlias); let symbolFromModule = getExportOfModule(targetSymbol, name.text, dontResolveAlias); // If the export member we're looking for is default, and there is no real default but allowSyntheticDefaultImports is on, return the entire module as the default if (!symbolFromModule && allowSyntheticDefaultImports && name.text === "default") { symbolFromModule = resolveExternalModuleSymbol(moduleSymbol, dontResolveAlias) || resolveSymbol(moduleSymbol, dontResolveAlias); } const symbol = symbolFromModule && symbolFromVariable ? combineValueAndTypeSymbols(symbolFromVariable, symbolFromModule) : symbolFromModule || symbolFromVariable; if (!symbol) { error(name, Diagnostics.Module_0_has_no_exported_member_1, getFullyQualifiedName(moduleSymbol), declarationNameToString(name)); } return symbol; } } } function getTargetOfImportSpecifier(node: ImportSpecifier, dontResolveAlias: boolean): Symbol { return getExternalModuleMember(node.parent.parent.parent, node, dontResolveAlias); } function getTargetOfNamespaceExportDeclaration(node: NamespaceExportDeclaration, dontResolveAlias: boolean): Symbol { return resolveExternalModuleSymbol(node.parent.symbol, dontResolveAlias); } function getTargetOfExportSpecifier(node: ExportSpecifier, meaning: SymbolFlags, dontResolveAlias?: boolean) { return node.parent.parent.moduleSpecifier ? getExternalModuleMember(node.parent.parent, node, dontResolveAlias) : resolveEntityName(node.propertyName || node.name, meaning, /*ignoreErrors*/ false, dontResolveAlias); } function getTargetOfExportAssignment(node: ExportAssignment, dontResolveAlias: boolean): Symbol { return resolveEntityName(node.expression, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace, /*ignoreErrors*/ false, dontResolveAlias); } function getTargetOfAliasDeclaration(node: Declaration, dontRecursivelyResolve?: boolean): Symbol { switch (node.kind) { case SyntaxKind.ImportEqualsDeclaration: return getTargetOfImportEqualsDeclaration(node, dontRecursivelyResolve); case SyntaxKind.ImportClause: return getTargetOfImportClause(node, dontRecursivelyResolve); case SyntaxKind.NamespaceImport: return getTargetOfNamespaceImport(node, dontRecursivelyResolve); case SyntaxKind.ImportSpecifier: return getTargetOfImportSpecifier(node, dontRecursivelyResolve); case SyntaxKind.ExportSpecifier: return getTargetOfExportSpecifier(node, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace, dontRecursivelyResolve); case SyntaxKind.ExportAssignment: return getTargetOfExportAssignment(node, dontRecursivelyResolve); case SyntaxKind.NamespaceExportDeclaration: return getTargetOfNamespaceExportDeclaration(node, dontRecursivelyResolve); } } function resolveSymbol(symbol: Symbol, dontResolveAlias?: boolean): Symbol { const shouldResolve = !dontResolveAlias && symbol && symbol.flags & SymbolFlags.Alias && !(symbol.flags & (SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace)); return shouldResolve ? resolveAlias(symbol) : symbol; } function resolveAlias(symbol: Symbol): Symbol { Debug.assert((symbol.flags & SymbolFlags.Alias) !== 0, "Should only get Alias here."); const links = getSymbolLinks(symbol); if (!links.target) { links.target = resolvingSymbol; const node = getDeclarationOfAliasSymbol(symbol); Debug.assert(!!node); const target = getTargetOfAliasDeclaration(node); if (links.target === resolvingSymbol) { links.target = target || unknownSymbol; } else { error(node, Diagnostics.Circular_definition_of_import_alias_0, symbolToString(symbol)); } } else if (links.target === resolvingSymbol) { links.target = unknownSymbol; } return links.target; } function markExportAsReferenced(node: ImportEqualsDeclaration | ExportAssignment | ExportSpecifier) { const symbol = getSymbolOfNode(node); const target = resolveAlias(symbol); if (target) { const markAlias = target === unknownSymbol || ((target.flags & SymbolFlags.Value) && !isConstEnumOrConstEnumOnlyModule(target)); if (markAlias) { markAliasSymbolAsReferenced(symbol); } } } // When an alias symbol is referenced, we need to mark the entity it references as referenced and in turn repeat that until // we reach a non-alias or an exported entity (which is always considered referenced). We do this by checking the target of // the alias as an expression (which recursively takes us back here if the target references another alias). function markAliasSymbolAsReferenced(symbol: Symbol) { const links = getSymbolLinks(symbol); if (!links.referenced) { links.referenced = true; const node = getDeclarationOfAliasSymbol(symbol); Debug.assert(!!node); if (node.kind === SyntaxKind.ExportAssignment) { // export default checkExpressionCached((node).expression); } else if (node.kind === SyntaxKind.ExportSpecifier) { // export { } or export { as foo } checkExpressionCached((node).propertyName || (node).name); } else if (isInternalModuleImportEqualsDeclaration(node)) { // import foo = checkExpressionCached((node).moduleReference); } } } // This function is only for imports with entity names function getSymbolOfPartOfRightHandSideOfImportEquals(entityName: EntityName, dontResolveAlias?: boolean): Symbol { // There are three things we might try to look for. In the following examples, // the search term is enclosed in |...|: // // import a = |b|; // Namespace // import a = |b.c|; // Value, type, namespace // import a = |b.c|.d; // Namespace if (entityName.kind === SyntaxKind.Identifier && isRightSideOfQualifiedNameOrPropertyAccess(entityName)) { entityName = entityName.parent; } // Check for case 1 and 3 in the above example if (entityName.kind === SyntaxKind.Identifier || entityName.parent.kind === SyntaxKind.QualifiedName) { return resolveEntityName(entityName, SymbolFlags.Namespace, /*ignoreErrors*/ false, dontResolveAlias); } else { // Case 2 in above example // entityName.kind could be a QualifiedName or a Missing identifier Debug.assert(entityName.parent.kind === SyntaxKind.ImportEqualsDeclaration); return resolveEntityName(entityName, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace, /*ignoreErrors*/ false, dontResolveAlias); } } function getFullyQualifiedName(symbol: Symbol): string { return symbol.parent ? getFullyQualifiedName(symbol.parent) + "." + symbolToString(symbol) : symbolToString(symbol); } /** * Resolves a qualified name and any involved aliases. */ function resolveEntityName(name: EntityNameOrEntityNameExpression, meaning: SymbolFlags, ignoreErrors?: boolean, dontResolveAlias?: boolean, location?: Node): Symbol | undefined { if (nodeIsMissing(name)) { return undefined; } let symbol: Symbol; if (name.kind === SyntaxKind.Identifier) { const message = meaning === SymbolFlags.Namespace ? Diagnostics.Cannot_find_namespace_0 : Diagnostics.Cannot_find_name_0; symbol = resolveName(location || name, (name).text, meaning, ignoreErrors ? undefined : message, name); if (!symbol) { return undefined; } } else if (name.kind === SyntaxKind.QualifiedName || name.kind === SyntaxKind.PropertyAccessExpression) { let left: EntityNameOrEntityNameExpression; if (name.kind === SyntaxKind.QualifiedName) { left = (name).left; } else if (name.kind === SyntaxKind.PropertyAccessExpression && (name.expression.kind === SyntaxKind.ParenthesizedExpression || isEntityNameExpression(name.expression))) { left = name.expression; } else { // If the expression in property-access expression is not entity-name or parenthsizedExpression (e.g. it is a call expression), it won't be able to successfully resolve the name. // This is the case when we are trying to do any language service operation in heritage clauses. By return undefined, the getSymbolOfEntityNameOrPropertyAccessExpression // will attempt to checkPropertyAccessExpression to resolve symbol. // i.e class C extends foo()./*do language service operation here*/B {} return undefined; } const right = name.kind === SyntaxKind.QualifiedName ? name.right : name.name; const namespace = resolveEntityName(left, SymbolFlags.Namespace, ignoreErrors, /*dontResolveAlias*/ false, location); if (!namespace || nodeIsMissing(right)) { return undefined; } else if (namespace === unknownSymbol) { return namespace; } symbol = getSymbol(getExportsOfSymbol(namespace), right.text, meaning); if (!symbol) { if (!ignoreErrors) { error(right, Diagnostics.Namespace_0_has_no_exported_member_1, getFullyQualifiedName(namespace), declarationNameToString(right)); } return undefined; } } else if (name.kind === SyntaxKind.ParenthesizedExpression) { // If the expression in parenthesizedExpression is not an entity-name (e.g. it is a call expression), it won't be able to successfully resolve the name. // This is the case when we are trying to do any language service operation in heritage clauses. // By return undefined, the getSymbolOfEntityNameOrPropertyAccessExpression will attempt to checkPropertyAccessExpression to resolve symbol. // i.e class C extends foo()./*do language service operation here*/B {} return isEntityNameExpression(name.expression) ? resolveEntityName(name.expression as EntityNameOrEntityNameExpression, meaning, ignoreErrors, dontResolveAlias, location) : undefined; } else { Debug.fail("Unknown entity name kind."); } Debug.assert((getCheckFlags(symbol) & CheckFlags.Instantiated) === 0, "Should never get an instantiated symbol here."); return (symbol.flags & meaning) || dontResolveAlias ? symbol : resolveAlias(symbol); } function resolveExternalModuleName(location: Node, moduleReferenceExpression: Expression): Symbol { return resolveExternalModuleNameWorker(location, moduleReferenceExpression, Diagnostics.Cannot_find_module_0); } function resolveExternalModuleNameWorker(location: Node, moduleReferenceExpression: Expression, moduleNotFoundError: DiagnosticMessage, isForAugmentation = false): Symbol { if (moduleReferenceExpression.kind !== SyntaxKind.StringLiteral && moduleReferenceExpression.kind !== SyntaxKind.NoSubstitutionTemplateLiteral) { return; } const moduleReferenceLiteral = moduleReferenceExpression; return resolveExternalModule(location, moduleReferenceLiteral.text, moduleNotFoundError, moduleReferenceLiteral, isForAugmentation); } function resolveExternalModule(location: Node, moduleReference: string, moduleNotFoundError: DiagnosticMessage, errorNode: Node, isForAugmentation = false): Symbol { // Module names are escaped in our symbol table. However, string literal values aren't. // Escape the name in the "require(...)" clause to ensure we find the right symbol. const moduleName = escapeIdentifier(moduleReference); if (moduleName === undefined) { return; } const ambientModule = tryFindAmbientModule(moduleName, /*withAugmentations*/ true); if (ambientModule) { return ambientModule; } const isRelative = isExternalModuleNameRelative(moduleName); const resolvedModule = getResolvedModule(getSourceFileOfNode(location), moduleReference); const resolutionDiagnostic = resolvedModule && getResolutionDiagnostic(compilerOptions, resolvedModule); const sourceFile = resolvedModule && !resolutionDiagnostic && host.getSourceFile(resolvedModule.resolvedFileName); if (sourceFile) { if (sourceFile.symbol) { // merged symbol is module declaration symbol combined with all augmentations return getMergedSymbol(sourceFile.symbol); } if (moduleNotFoundError) { // report errors only if it was requested error(errorNode, Diagnostics.File_0_is_not_a_module, sourceFile.fileName); } return undefined; } if (patternAmbientModules) { const pattern = findBestPatternMatch(patternAmbientModules, _ => _.pattern, moduleName); if (pattern) { return getMergedSymbol(pattern.symbol); } } // May be an untyped module. If so, ignore resolutionDiagnostic. if (!isRelative && resolvedModule && !extensionIsTypeScript(resolvedModule.extension)) { if (isForAugmentation) { const diag = Diagnostics.Invalid_module_name_in_augmentation_Module_0_resolves_to_an_untyped_module_at_1_which_cannot_be_augmented; error(errorNode, diag, moduleReference, resolvedModule.resolvedFileName); } else if (noImplicitAny && moduleNotFoundError) { let errorInfo = chainDiagnosticMessages(/*details*/ undefined, Diagnostics.Try_npm_install_types_Slash_0_if_it_exists_or_add_a_new_declaration_d_ts_file_containing_declare_module_0, moduleReference); errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Could_not_find_a_declaration_file_for_module_0_1_implicitly_has_an_any_type, moduleReference, resolvedModule.resolvedFileName); diagnostics.add(createDiagnosticForNodeFromMessageChain(errorNode, errorInfo)); } // Failed imports and untyped modules are both treated in an untyped manner; only difference is whether we give a diagnostic first. return undefined; } if (moduleNotFoundError) { // report errors only if it was requested if (resolutionDiagnostic) { error(errorNode, resolutionDiagnostic, moduleName, resolvedModule.resolvedFileName); } else { const tsExtension = tryExtractTypeScriptExtension(moduleName); if (tsExtension) { const diag = Diagnostics.An_import_path_cannot_end_with_a_0_extension_Consider_importing_1_instead; error(errorNode, diag, tsExtension, removeExtension(moduleName, tsExtension)); } else { error(errorNode, moduleNotFoundError, moduleName); } } } return undefined; } // An external module with an 'export =' declaration resolves to the target of the 'export =' declaration, // and an external module with no 'export =' declaration resolves to the module itself. function resolveExternalModuleSymbol(moduleSymbol: Symbol, dontResolveAlias?: boolean): Symbol { return moduleSymbol && getMergedSymbol(resolveSymbol(moduleSymbol.exports.get("export="), dontResolveAlias)) || moduleSymbol; } // An external module with an 'export =' declaration may be referenced as an ES6 module provided the 'export =' // references a symbol that is at least declared as a module or a variable. The target of the 'export =' may // combine other declarations with the module or variable (e.g. a class/module, function/module, interface/variable). function resolveESModuleSymbol(moduleSymbol: Symbol, moduleReferenceExpression: Expression, dontResolveAlias: boolean): Symbol { const symbol = resolveExternalModuleSymbol(moduleSymbol, dontResolveAlias); if (!dontResolveAlias && symbol && !(symbol.flags & (SymbolFlags.Module | SymbolFlags.Variable))) { error(moduleReferenceExpression, Diagnostics.Module_0_resolves_to_a_non_module_entity_and_cannot_be_imported_using_this_construct, symbolToString(moduleSymbol)); } return symbol; } function hasExportAssignmentSymbol(moduleSymbol: Symbol): boolean { return moduleSymbol.exports.get("export=") !== undefined; } function getExportsOfModuleAsArray(moduleSymbol: Symbol): Symbol[] { return symbolsToArray(getExportsOfModule(moduleSymbol)); } function getExportsAndPropertiesOfModule(moduleSymbol: Symbol): Symbol[] { const exports = getExportsOfModuleAsArray(moduleSymbol); const exportEquals = resolveExternalModuleSymbol(moduleSymbol); if (exportEquals !== moduleSymbol) { addRange(exports, getPropertiesOfType(getTypeOfSymbol(exportEquals))); } return exports; } function tryGetMemberInModuleExports(memberName: string, moduleSymbol: Symbol): Symbol | undefined { const symbolTable = getExportsOfModule(moduleSymbol); if (symbolTable) { return symbolTable.get(memberName); } } function getExportsOfSymbol(symbol: Symbol): SymbolTable { return symbol.flags & SymbolFlags.Module ? getExportsOfModule(symbol) : symbol.exports || emptySymbols; } function getExportsOfModule(moduleSymbol: Symbol): SymbolTable { const links = getSymbolLinks(moduleSymbol); return links.resolvedExports || (links.resolvedExports = getExportsForModule(moduleSymbol)); } interface ExportCollisionTracker { specifierText: string; exportsWithDuplicate: ExportDeclaration[]; } /** * Extends one symbol table with another while collecting information on name collisions for error message generation into the `lookupTable` argument * Not passing `lookupTable` and `exportNode` disables this collection, and just extends the tables */ function extendExportSymbols(target: SymbolTable, source: SymbolTable, lookupTable?: Map, exportNode?: ExportDeclaration) { source && source.forEach((sourceSymbol, id) => { if (id === "default") return; const targetSymbol = target.get(id); if (!targetSymbol) { target.set(id, sourceSymbol); if (lookupTable && exportNode) { lookupTable.set(id, { specifierText: getTextOfNode(exportNode.moduleSpecifier) } as ExportCollisionTracker); } } else if (lookupTable && exportNode && targetSymbol && resolveSymbol(targetSymbol) !== resolveSymbol(sourceSymbol)) { const collisionTracker = lookupTable.get(id); if (!collisionTracker.exportsWithDuplicate) { collisionTracker.exportsWithDuplicate = [exportNode]; } else { collisionTracker.exportsWithDuplicate.push(exportNode); } } }); } function getExportsForModule(moduleSymbol: Symbol): SymbolTable { const visitedSymbols: Symbol[] = []; // A module defined by an 'export=' consists on one export that needs to be resolved moduleSymbol = resolveExternalModuleSymbol(moduleSymbol); return visit(moduleSymbol) || moduleSymbol.exports; // The ES6 spec permits export * declarations in a module to circularly reference the module itself. For example, // module 'a' can 'export * from "b"' and 'b' can 'export * from "a"' without error. function visit(symbol: Symbol): SymbolTable { if (!(symbol && symbol.flags & SymbolFlags.HasExports && !contains(visitedSymbols, symbol))) { return; } visitedSymbols.push(symbol); const symbols = cloneMap(symbol.exports); // All export * declarations are collected in an __export symbol by the binder const exportStars = symbol.exports.get("__export"); if (exportStars) { const nestedSymbols = createMap(); const lookupTable = createMap(); for (const node of exportStars.declarations) { const resolvedModule = resolveExternalModuleName(node, (node as ExportDeclaration).moduleSpecifier); const exportedSymbols = visit(resolvedModule); extendExportSymbols( nestedSymbols, exportedSymbols, lookupTable, node as ExportDeclaration ); } lookupTable.forEach(({ exportsWithDuplicate }, id) => { // It's not an error if the file with multiple `export *`s with duplicate names exports a member with that name itself if (id === "export=" || !(exportsWithDuplicate && exportsWithDuplicate.length) || symbols.has(id)) { return; } for (const node of exportsWithDuplicate) { diagnostics.add(createDiagnosticForNode( node, Diagnostics.Module_0_has_already_exported_a_member_named_1_Consider_explicitly_re_exporting_to_resolve_the_ambiguity, lookupTable.get(id).specifierText, id )); } }); extendExportSymbols(symbols, nestedSymbols); } return symbols; } } function getMergedSymbol(symbol: Symbol): Symbol { let merged: Symbol; return symbol && symbol.mergeId && (merged = mergedSymbols[symbol.mergeId]) ? merged : symbol; } function getSymbolOfNode(node: Node): Symbol { return getMergedSymbol(node.symbol); } function getParentOfSymbol(symbol: Symbol): Symbol { return getMergedSymbol(symbol.parent); } function getExportSymbolOfValueSymbolIfExported(symbol: Symbol): Symbol { return symbol && (symbol.flags & SymbolFlags.ExportValue) !== 0 ? getMergedSymbol(symbol.exportSymbol) : symbol; } function symbolIsValue(symbol: Symbol): boolean { return !!(symbol.flags & SymbolFlags.Value || symbol.flags & SymbolFlags.Alias && resolveAlias(symbol).flags & SymbolFlags.Value); } function findConstructorDeclaration(node: ClassLikeDeclaration): ConstructorDeclaration { const members = node.members; for (const member of members) { if (member.kind === SyntaxKind.Constructor && nodeIsPresent((member).body)) { return member; } } } function createType(flags: TypeFlags): Type { const result = new Type(checker, flags); typeCount++; result.id = typeCount; return result; } function createIntrinsicType(kind: TypeFlags, intrinsicName: string): IntrinsicType { const type = createType(kind); type.intrinsicName = intrinsicName; return type; } function createBooleanType(trueFalseTypes: Type[]): IntrinsicType & UnionType { const type = getUnionType(trueFalseTypes); type.flags |= TypeFlags.Boolean; type.intrinsicName = "boolean"; return type; } function createObjectType(objectFlags: ObjectFlags, symbol?: Symbol): ObjectType { const type = createType(TypeFlags.Object); type.objectFlags = objectFlags; type.symbol = symbol; return type; } function createTypeofType() { return getUnionType(convertToArray(typeofEQFacts.keys(), s => getLiteralTypeForText(TypeFlags.StringLiteral, s))); } // A reserved member name starts with two underscores, but the third character cannot be an underscore // or the @ symbol. A third underscore indicates an escaped form of an identifer that started // with at least two underscores. The @ character indicates that the name is denoted by a well known ES // Symbol instance. function isReservedMemberName(name: string) { return name.charCodeAt(0) === CharacterCodes._ && name.charCodeAt(1) === CharacterCodes._ && name.charCodeAt(2) !== CharacterCodes._ && name.charCodeAt(2) !== CharacterCodes.at; } function getNamedMembers(members: SymbolTable): Symbol[] { let result: Symbol[]; members.forEach((symbol, id) => { if (!isReservedMemberName(id)) { if (!result) result = []; if (symbolIsValue(symbol)) { result.push(symbol); } } }); return result || emptyArray; } function setStructuredTypeMembers(type: StructuredType, members: SymbolTable, callSignatures: Signature[], constructSignatures: Signature[], stringIndexInfo: IndexInfo, numberIndexInfo: IndexInfo): ResolvedType { (type).members = members; (type).properties = getNamedMembers(members); (type).callSignatures = callSignatures; (type).constructSignatures = constructSignatures; if (stringIndexInfo) (type).stringIndexInfo = stringIndexInfo; if (numberIndexInfo) (type).numberIndexInfo = numberIndexInfo; return type; } function createAnonymousType(symbol: Symbol, members: SymbolTable, callSignatures: Signature[], constructSignatures: Signature[], stringIndexInfo: IndexInfo, numberIndexInfo: IndexInfo): ResolvedType { return setStructuredTypeMembers(createObjectType(ObjectFlags.Anonymous, symbol), members, callSignatures, constructSignatures, stringIndexInfo, numberIndexInfo); } function forEachSymbolTableInScope(enclosingDeclaration: Node, callback: (symbolTable: SymbolTable) => T): T { let result: T; for (let location = enclosingDeclaration; location; location = location.parent) { // Locals of a source file are not in scope (because they get merged into the global symbol table) if (location.locals && !isGlobalSourceFile(location)) { if (result = callback(location.locals)) { return result; } } switch (location.kind) { case SyntaxKind.SourceFile: if (!isExternalOrCommonJsModule(location)) { break; } // falls through case SyntaxKind.ModuleDeclaration: if (result = callback(getSymbolOfNode(location).exports)) { return result; } break; } } return callback(globals); } function getQualifiedLeftMeaning(rightMeaning: SymbolFlags) { // If we are looking in value space, the parent meaning is value, other wise it is namespace return rightMeaning === SymbolFlags.Value ? SymbolFlags.Value : SymbolFlags.Namespace; } function getAccessibleSymbolChain(symbol: Symbol, enclosingDeclaration: Node, meaning: SymbolFlags, useOnlyExternalAliasing: boolean): Symbol[] { function getAccessibleSymbolChainFromSymbolTable(symbols: SymbolTable) { return getAccessibleSymbolChainFromSymbolTableWorker(symbols, []); } function getAccessibleSymbolChainFromSymbolTableWorker(symbols: SymbolTable, visitedSymbolTables: SymbolTable[]): Symbol[] { if (contains(visitedSymbolTables, symbols)) { return undefined; } visitedSymbolTables.push(symbols); const result = trySymbolTable(symbols); visitedSymbolTables.pop(); return result; function canQualifySymbol(symbolFromSymbolTable: Symbol, meaning: SymbolFlags) { // If the symbol is equivalent and doesn't need further qualification, this symbol is accessible if (!needsQualification(symbolFromSymbolTable, enclosingDeclaration, meaning)) { return true; } // If symbol needs qualification, make sure that parent is accessible, if it is then this symbol is accessible too const accessibleParent = getAccessibleSymbolChain(symbolFromSymbolTable.parent, enclosingDeclaration, getQualifiedLeftMeaning(meaning), useOnlyExternalAliasing); return !!accessibleParent; } function isAccessible(symbolFromSymbolTable: Symbol, resolvedAliasSymbol?: Symbol) { if (symbol === (resolvedAliasSymbol || symbolFromSymbolTable)) { // if the symbolFromSymbolTable is not external module (it could be if it was determined as ambient external module and would be in globals table) // and if symbolFromSymbolTable or alias resolution matches the symbol, // check the symbol can be qualified, it is only then this symbol is accessible return !forEach(symbolFromSymbolTable.declarations, hasExternalModuleSymbol) && canQualifySymbol(symbolFromSymbolTable, meaning); } } function trySymbolTable(symbols: SymbolTable) { // If symbol is directly available by its name in the symbol table if (isAccessible(symbols.get(symbol.name))) { return [symbol]; } // Check if symbol is any of the alias return forEachEntry(symbols, symbolFromSymbolTable => { if (symbolFromSymbolTable.flags & SymbolFlags.Alias && symbolFromSymbolTable.name !== "export=" && !getDeclarationOfKind(symbolFromSymbolTable, SyntaxKind.ExportSpecifier)) { if (!useOnlyExternalAliasing || // We can use any type of alias to get the name // Is this external alias, then use it to name ts.forEach(symbolFromSymbolTable.declarations, isExternalModuleImportEqualsDeclaration)) { const resolvedImportedSymbol = resolveAlias(symbolFromSymbolTable); if (isAccessible(symbolFromSymbolTable, resolveAlias(symbolFromSymbolTable))) { return [symbolFromSymbolTable]; } // Look in the exported members, if we can find accessibleSymbolChain, symbol is accessible using this chain // but only if the symbolFromSymbolTable can be qualified const accessibleSymbolsFromExports = resolvedImportedSymbol.exports ? getAccessibleSymbolChainFromSymbolTableWorker(resolvedImportedSymbol.exports, visitedSymbolTables) : undefined; if (accessibleSymbolsFromExports && canQualifySymbol(symbolFromSymbolTable, getQualifiedLeftMeaning(meaning))) { return [symbolFromSymbolTable].concat(accessibleSymbolsFromExports); } } } }); } } if (symbol) { if (!(isPropertyOrMethodDeclarationSymbol(symbol))) { return forEachSymbolTableInScope(enclosingDeclaration, getAccessibleSymbolChainFromSymbolTable); } } } function needsQualification(symbol: Symbol, enclosingDeclaration: Node, meaning: SymbolFlags) { let qualify = false; forEachSymbolTableInScope(enclosingDeclaration, symbolTable => { // If symbol of this name is not available in the symbol table we are ok let symbolFromSymbolTable = symbolTable.get(symbol.name); if (!symbolFromSymbolTable) { // Continue to the next symbol table return false; } // If the symbol with this name is present it should refer to the symbol if (symbolFromSymbolTable === symbol) { // No need to qualify return true; } // Qualify if the symbol from symbol table has same meaning as expected symbolFromSymbolTable = (symbolFromSymbolTable.flags & SymbolFlags.Alias && !getDeclarationOfKind(symbolFromSymbolTable, SyntaxKind.ExportSpecifier)) ? resolveAlias(symbolFromSymbolTable) : symbolFromSymbolTable; if (symbolFromSymbolTable.flags & meaning) { qualify = true; return true; } // Continue to the next symbol table return false; }); return qualify; } function isPropertyOrMethodDeclarationSymbol(symbol: Symbol) { if (symbol.declarations && symbol.declarations.length) { for (const declaration of symbol.declarations) { switch (declaration.kind) { case SyntaxKind.PropertyDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: continue; default: return false; } } return true; } return false; } /** * Check if the given symbol in given enclosing declaration is accessible and mark all associated alias to be visible if requested * * @param symbol a Symbol to check if accessible * @param enclosingDeclaration a Node containing reference to the symbol * @param meaning a SymbolFlags to check if such meaning of the symbol is accessible * @param shouldComputeAliasToMakeVisible a boolean value to indicate whether to return aliases to be mark visible in case the symbol is accessible */ function isSymbolAccessible(symbol: Symbol, enclosingDeclaration: Node, meaning: SymbolFlags, shouldComputeAliasesToMakeVisible: boolean): SymbolAccessibilityResult { if (symbol && enclosingDeclaration && !(symbol.flags & SymbolFlags.TypeParameter)) { const initialSymbol = symbol; let meaningToLook = meaning; while (symbol) { // Symbol is accessible if it by itself is accessible const accessibleSymbolChain = getAccessibleSymbolChain(symbol, enclosingDeclaration, meaningToLook, /*useOnlyExternalAliasing*/ false); if (accessibleSymbolChain) { const hasAccessibleDeclarations = hasVisibleDeclarations(accessibleSymbolChain[0], shouldComputeAliasesToMakeVisible); if (!hasAccessibleDeclarations) { return { accessibility: SymbolAccessibility.NotAccessible, errorSymbolName: symbolToString(initialSymbol, enclosingDeclaration, meaning), errorModuleName: symbol !== initialSymbol ? symbolToString(symbol, enclosingDeclaration, SymbolFlags.Namespace) : undefined, }; } return hasAccessibleDeclarations; } // If we haven't got the accessible symbol, it doesn't mean the symbol is actually inaccessible. // It could be a qualified symbol and hence verify the path // e.g.: // module m { // export class c { // } // } // const x: typeof m.c // In the above example when we start with checking if typeof m.c symbol is accessible, // we are going to see if c can be accessed in scope directly. // But it can't, hence the accessible is going to be undefined, but that doesn't mean m.c is inaccessible // It is accessible if the parent m is accessible because then m.c can be accessed through qualification meaningToLook = getQualifiedLeftMeaning(meaning); symbol = getParentOfSymbol(symbol); } // This could be a symbol that is not exported in the external module // or it could be a symbol from different external module that is not aliased and hence cannot be named const symbolExternalModule = forEach(initialSymbol.declarations, getExternalModuleContainer); if (symbolExternalModule) { const enclosingExternalModule = getExternalModuleContainer(enclosingDeclaration); if (symbolExternalModule !== enclosingExternalModule) { // name from different external module that is not visible return { accessibility: SymbolAccessibility.CannotBeNamed, errorSymbolName: symbolToString(initialSymbol, enclosingDeclaration, meaning), errorModuleName: symbolToString(symbolExternalModule) }; } } // Just a local name that is not accessible return { accessibility: SymbolAccessibility.NotAccessible, errorSymbolName: symbolToString(initialSymbol, enclosingDeclaration, meaning), }; } return { accessibility: SymbolAccessibility.Accessible }; function getExternalModuleContainer(declaration: Node) { const node = findAncestor(declaration, hasExternalModuleSymbol); return node && getSymbolOfNode(node); } } function hasExternalModuleSymbol(declaration: Node) { return isAmbientModule(declaration) || (declaration.kind === SyntaxKind.SourceFile && isExternalOrCommonJsModule(declaration)); } function hasVisibleDeclarations(symbol: Symbol, shouldComputeAliasToMakeVisible: boolean): SymbolVisibilityResult { let aliasesToMakeVisible: AnyImportSyntax[]; if (forEach(symbol.declarations, declaration => !getIsDeclarationVisible(declaration))) { return undefined; } return { accessibility: SymbolAccessibility.Accessible, aliasesToMakeVisible }; function getIsDeclarationVisible(declaration: Declaration) { if (!isDeclarationVisible(declaration)) { // Mark the unexported alias as visible if its parent is visible // because these kind of aliases can be used to name types in declaration file const anyImportSyntax = getAnyImportSyntax(declaration); if (anyImportSyntax && !(getModifierFlags(anyImportSyntax) & ModifierFlags.Export) && // import clause without export isDeclarationVisible(anyImportSyntax.parent)) { // In function "buildTypeDisplay" where we decide whether to write type-alias or serialize types, // we want to just check if type- alias is accessible or not but we don't care about emitting those alias at that time // since we will do the emitting later in trackSymbol. if (shouldComputeAliasToMakeVisible) { getNodeLinks(declaration).isVisible = true; if (aliasesToMakeVisible) { if (!contains(aliasesToMakeVisible, anyImportSyntax)) { aliasesToMakeVisible.push(anyImportSyntax); } } else { aliasesToMakeVisible = [anyImportSyntax]; } } return true; } // Declaration is not visible return false; } return true; } } function isEntityNameVisible(entityName: EntityNameOrEntityNameExpression, enclosingDeclaration: Node): SymbolVisibilityResult { // get symbol of the first identifier of the entityName let meaning: SymbolFlags; if (entityName.parent.kind === SyntaxKind.TypeQuery || isExpressionWithTypeArgumentsInClassExtendsClause(entityName.parent)) { // Typeof value meaning = SymbolFlags.Value | SymbolFlags.ExportValue; } else if (entityName.kind === SyntaxKind.QualifiedName || entityName.kind === SyntaxKind.PropertyAccessExpression || entityName.parent.kind === SyntaxKind.ImportEqualsDeclaration) { // Left identifier from type reference or TypeAlias // Entity name of the import declaration meaning = SymbolFlags.Namespace; } else { // Type Reference or TypeAlias entity = Identifier meaning = SymbolFlags.Type; } const firstIdentifier = getFirstIdentifier(entityName); const symbol = resolveName(enclosingDeclaration, (firstIdentifier).text, meaning, /*nodeNotFoundErrorMessage*/ undefined, /*nameArg*/ undefined); // Verify if the symbol is accessible return (symbol && hasVisibleDeclarations(symbol, /*shouldComputeAliasToMakeVisible*/ true)) || { accessibility: SymbolAccessibility.NotAccessible, errorSymbolName: getTextOfNode(firstIdentifier), errorNode: firstIdentifier }; } function writeKeyword(writer: SymbolWriter, kind: SyntaxKind) { writer.writeKeyword(tokenToString(kind)); } function writePunctuation(writer: SymbolWriter, kind: SyntaxKind) { writer.writePunctuation(tokenToString(kind)); } function writeSpace(writer: SymbolWriter) { writer.writeSpace(" "); } function symbolToString(symbol: Symbol, enclosingDeclaration?: Node, meaning?: SymbolFlags): string { const writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildSymbolDisplay(symbol, writer, enclosingDeclaration, meaning); const result = writer.string(); releaseStringWriter(writer); return result; } function signatureToString(signature: Signature, enclosingDeclaration?: Node, flags?: TypeFormatFlags, kind?: SignatureKind): string { const writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildSignatureDisplay(signature, writer, enclosingDeclaration, flags, kind); const result = writer.string(); releaseStringWriter(writer); return result; } function typeToString(type: Type, enclosingDeclaration?: Node, flags?: TypeFormatFlags): string { const writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildTypeDisplay(type, writer, enclosingDeclaration, flags); let result = writer.string(); releaseStringWriter(writer); const maxLength = compilerOptions.noErrorTruncation || flags & TypeFormatFlags.NoTruncation ? undefined : 100; if (maxLength && result.length >= maxLength) { result = result.substr(0, maxLength - "...".length) + "..."; } return result; } function createNodeBuilder() { let context: NodeBuilderContext; return { typeToTypeNode: (type: Type, enclosingDeclaration?: Node, flags?: NodeBuilderFlags) => { context = createNodeBuilderContext(enclosingDeclaration, flags); const resultingNode = typeToTypeNodeHelper(type); const result = context.encounteredError ? undefined : resultingNode; return result; }, indexInfoToIndexSignatureDeclaration: (indexInfo: IndexInfo, kind: IndexKind, enclosingDeclaration?: Node, flags?: NodeBuilderFlags) => { context = createNodeBuilderContext(enclosingDeclaration, flags); const resultingNode = indexInfoToIndexSignatureDeclarationHelper(indexInfo, kind); const result = context.encounteredError ? undefined : resultingNode; return result; }, signatureToSignatureDeclaration: (signature: Signature, kind: SyntaxKind, enclosingDeclaration?: Node, flags?: NodeBuilderFlags) => { context = createNodeBuilderContext(enclosingDeclaration, flags); const resultingNode = signatureToSignatureDeclarationHelper(signature, kind); const result = context.encounteredError ? undefined : resultingNode; return result; } }; interface NodeBuilderContext { readonly enclosingDeclaration: Node | undefined; readonly flags: NodeBuilderFlags | undefined; encounteredError: boolean; inObjectTypeLiteral: boolean; checkAlias: boolean; symbolStack: Symbol[] | undefined; } function createNodeBuilderContext(enclosingDeclaration: Node | undefined, flags: NodeBuilderFlags | undefined): NodeBuilderContext { return { enclosingDeclaration, flags, encounteredError: false, inObjectTypeLiteral: false, checkAlias: true, symbolStack: undefined }; } function typeToTypeNodeHelper(type: Type): TypeNode { if (!type) { context.encounteredError = true; // TODO(aozgaa): should we return implict any (undefined) or explicit any (keywordtypenode)? return undefined; } if (type.flags & TypeFlags.Any) { return createKeywordTypeNode(SyntaxKind.AnyKeyword); } if (type.flags & TypeFlags.String) { return createKeywordTypeNode(SyntaxKind.StringKeyword); } if (type.flags & TypeFlags.Number) { return createKeywordTypeNode(SyntaxKind.NumberKeyword); } if (type.flags & TypeFlags.Boolean) { return createKeywordTypeNode(SyntaxKind.BooleanKeyword); } if (type.flags & TypeFlags.Enum) { const name = symbolToName(type.symbol, /*expectsIdentifier*/ false); return createTypeReferenceNode(name, /*typeArguments*/ undefined); } if (type.flags & (TypeFlags.StringLiteral)) { return createLiteralTypeNode((createLiteral((type).text))); } if (type.flags & (TypeFlags.NumberLiteral)) { return createLiteralTypeNode((createNumericLiteral((type).text))); } if (type.flags & TypeFlags.BooleanLiteral) { return (type).intrinsicName === "true" ? createTrue() : createFalse(); } if (type.flags & TypeFlags.EnumLiteral) { const name = symbolToName(type.symbol, /*expectsIdentifier*/ false); return createTypeReferenceNode(name, /*typeArguments*/ undefined); } if (type.flags & TypeFlags.Void) { return createKeywordTypeNode(SyntaxKind.VoidKeyword); } if (type.flags & TypeFlags.Undefined) { return createKeywordTypeNode(SyntaxKind.UndefinedKeyword); } if (type.flags & TypeFlags.Null) { return createKeywordTypeNode(SyntaxKind.NullKeyword); } if (type.flags & TypeFlags.Never) { return createKeywordTypeNode(SyntaxKind.NeverKeyword); } if (type.flags & TypeFlags.ESSymbol) { return createKeywordTypeNode(SyntaxKind.SymbolKeyword); } if (type.flags & TypeFlags.NonPrimitive) { return createKeywordTypeNode(SyntaxKind.ObjectKeyword); } if (type.flags & TypeFlags.TypeParameter && (type as TypeParameter).isThisType) { if (context.inObjectTypeLiteral) { if (!context.encounteredError && !(context.flags & NodeBuilderFlags.allowThisInObjectLiteral)) { context.encounteredError = true; } } return createThis(); } const objectFlags = getObjectFlags(type); if (objectFlags & ObjectFlags.Reference) { Debug.assert(!!(type.flags & TypeFlags.Object)); return typeReferenceToTypeNode(type); } if (objectFlags & ObjectFlags.ClassOrInterface) { Debug.assert(!!(type.flags & TypeFlags.Object)); const name = symbolToName(type.symbol, /*expectsIdentifier*/ false); // TODO(aozgaa): handle type arguments. return createTypeReferenceNode(name, /*typeArguments*/ undefined); } if (type.flags & TypeFlags.TypeParameter) { const name = symbolToName(type.symbol, /*expectsIdentifier*/ false); // Ignore constraint/default when creating a usage (as opposed to declaration) of a type parameter. return createTypeReferenceNode(name, /*typeArguments*/ undefined); } if (context.checkAlias && type.aliasSymbol) { const name = symbolToName(type.aliasSymbol, /*expectsIdentifier*/ false); const typeArgumentNodes = type.aliasTypeArguments && mapToTypeNodeArray(type.aliasTypeArguments); return createTypeReferenceNode(name, typeArgumentNodes); } context.checkAlias = false; if (type.flags & TypeFlags.Union) { const formattedUnionTypes = formatUnionTypes((type).types); const unionTypeNodes = formattedUnionTypes && mapToTypeNodeArray(formattedUnionTypes); if (unionTypeNodes && unionTypeNodes.length > 0) { return createUnionTypeNode(unionTypeNodes); } else { if (!context.encounteredError && !(context.flags & NodeBuilderFlags.allowEmptyUnionOrIntersection)) { context.encounteredError = true; } return undefined; } } if (type.flags & TypeFlags.Intersection) { return createIntersectionTypeNode(mapToTypeNodeArray((type as IntersectionType).types)); } if (objectFlags & (ObjectFlags.Anonymous | ObjectFlags.Mapped)) { Debug.assert(!!(type.flags & TypeFlags.Object)); // The type is an object literal type. return createAnonymousTypeNode(type); } if (type.flags & TypeFlags.Index) { const indexedType = (type).type; const indexTypeNode = typeToTypeNodeHelper(indexedType); return createTypeOperatorNode(indexTypeNode); } if (type.flags & TypeFlags.IndexedAccess) { const objectTypeNode = typeToTypeNodeHelper((type).objectType); const indexTypeNode = typeToTypeNodeHelper((type).indexType); return createIndexedAccessTypeNode(objectTypeNode, indexTypeNode); } Debug.fail("Should be unreachable."); function mapToTypeNodeArray(types: Type[]): TypeNode[] { const result = []; for (const type of types) { const typeNode = typeToTypeNodeHelper(type); if (typeNode) { result.push(typeNode); } } return result; } function createMappedTypeNodeFromType(type: MappedType) { Debug.assert(!!(type.flags & TypeFlags.Object)); const typeParameter = getTypeParameterFromMappedType(type); const typeParameterNode = typeParameterToDeclaration(typeParameter); const templateType = getTemplateTypeFromMappedType(type); const templateTypeNode = typeToTypeNodeHelper(templateType); const readonlyToken = type.declaration && type.declaration.readonlyToken ? createToken(SyntaxKind.ReadonlyKeyword) : undefined; const questionToken = type.declaration && type.declaration.questionToken ? createToken(SyntaxKind.QuestionToken) : undefined; return createMappedTypeNode(readonlyToken, typeParameterNode, questionToken, templateTypeNode); } function createAnonymousTypeNode(type: ObjectType): TypeNode { const symbol = type.symbol; if (symbol) { // Always use 'typeof T' for type of class, enum, and module objects if (symbol.flags & SymbolFlags.Class && !getBaseTypeVariableOfClass(symbol) || symbol.flags & (SymbolFlags.Enum | SymbolFlags.ValueModule) || shouldWriteTypeOfFunctionSymbol()) { return createTypeQueryNodeFromSymbol(symbol); } else if (contains(context.symbolStack, symbol)) { // If type is an anonymous type literal in a type alias declaration, use type alias name const typeAlias = getTypeAliasForTypeLiteral(type); if (typeAlias) { // The specified symbol flags need to be reinterpreted as type flags const entityName = symbolToName(typeAlias, /*expectsIdentifier*/ false); return createTypeReferenceNode(entityName, /*typeArguments*/ undefined); } else { return createKeywordTypeNode(SyntaxKind.AnyKeyword); } } else { // Since instantiations of the same anonymous type have the same symbol, tracking symbols instead // of types allows us to catch circular references to instantiations of the same anonymous type if (!context.symbolStack) { context.symbolStack = []; } context.symbolStack.push(symbol); const result = createTypeNodeFromObjectType(type); context.symbolStack.pop(); return result; } } else { // Anonymous types without a symbol are never circular. return createTypeNodeFromObjectType(type); } function shouldWriteTypeOfFunctionSymbol() { const isStaticMethodSymbol = !!(symbol.flags & SymbolFlags.Method && // typeof static method forEach(symbol.declarations, declaration => getModifierFlags(declaration) & ModifierFlags.Static)); const isNonLocalFunctionSymbol = !!(symbol.flags & SymbolFlags.Function) && (symbol.parent || // is exported function symbol forEach(symbol.declarations, declaration => declaration.parent.kind === SyntaxKind.SourceFile || declaration.parent.kind === SyntaxKind.ModuleBlock)); if (isStaticMethodSymbol || isNonLocalFunctionSymbol) { // typeof is allowed only for static/non local functions return contains(context.symbolStack, symbol); // it is type of the symbol uses itself recursively } } } function createTypeNodeFromObjectType(type: ObjectType): TypeNode { if (type.objectFlags & ObjectFlags.Mapped) { if (getConstraintTypeFromMappedType(type).flags & (TypeFlags.TypeParameter | TypeFlags.Index)) { return createMappedTypeNodeFromType(type); } } const resolved = resolveStructuredTypeMembers(type); if (!resolved.properties.length && !resolved.stringIndexInfo && !resolved.numberIndexInfo) { if (!resolved.callSignatures.length && !resolved.constructSignatures.length) { return createTypeLiteralNode(/*members*/ undefined); } if (resolved.callSignatures.length === 1 && !resolved.constructSignatures.length) { const signature = resolved.callSignatures[0]; return signatureToSignatureDeclarationHelper(signature, SyntaxKind.FunctionType); } if (resolved.constructSignatures.length === 1 && !resolved.callSignatures.length) { const signature = resolved.constructSignatures[0]; return signatureToSignatureDeclarationHelper(signature, SyntaxKind.ConstructorType); } } const saveInObjectTypeLiteral = context.inObjectTypeLiteral; context.inObjectTypeLiteral = true; const members = createTypeNodesFromResolvedType(resolved); context.inObjectTypeLiteral = saveInObjectTypeLiteral; return createTypeLiteralNode(members); } function createTypeQueryNodeFromSymbol(symbol: Symbol) { const entityName = symbolToName(symbol, /*expectsIdentifier*/ false); return createTypeQueryNode(entityName); } function typeReferenceToTypeNode(type: TypeReference) { const typeArguments: Type[] = type.typeArguments || emptyArray; if (type.target === globalArrayType) { const elementType = typeToTypeNodeHelper(typeArguments[0]); return createArrayTypeNode(elementType); } else if (type.target.objectFlags & ObjectFlags.Tuple) { if (typeArguments.length > 0) { const tupleConstituentNodes = mapToTypeNodeArray(typeArguments.slice(0, getTypeReferenceArity(type))); if (tupleConstituentNodes && tupleConstituentNodes.length > 0) { return createTupleTypeNode(tupleConstituentNodes); } } if (!context.encounteredError && !(context.flags & NodeBuilderFlags.allowEmptyTuple)) { context.encounteredError = true; } return undefined; } else { const outerTypeParameters = type.target.outerTypeParameters; let i = 0; let qualifiedName: QualifiedName | undefined = undefined; if (outerTypeParameters) { const length = outerTypeParameters.length; while (i < length) { // Find group of type arguments for type parameters with the same declaring container. const start = i; const parent = getParentSymbolOfTypeParameter(outerTypeParameters[i]); do { i++; } while (i < length && getParentSymbolOfTypeParameter(outerTypeParameters[i]) === parent); // When type parameters are their own type arguments for the whole group (i.e. we have // the default outer type arguments), we don't show the group. if (!rangeEquals(outerTypeParameters, typeArguments, start, i)) { const qualifiedNamePart = symbolToName(parent, /*expectsIdentifier*/ true); if (!qualifiedName) { qualifiedName = createQualifiedName(qualifiedNamePart, /*right*/ undefined); } else { Debug.assert(!qualifiedName.right); qualifiedName.right = qualifiedNamePart; qualifiedName = createQualifiedName(qualifiedName, /*right*/ undefined); } } } } let entityName: EntityName = undefined; const nameIdentifier = symbolToName(type.symbol, /*expectsIdentifier*/ true); if (qualifiedName) { Debug.assert(!qualifiedName.right); qualifiedName.right = nameIdentifier; entityName = qualifiedName; } else { entityName = nameIdentifier; } const typeParameterCount = (type.target.typeParameters || emptyArray).length; const typeArgumentNodes = some(typeArguments) ? mapToTypeNodeArray(typeArguments.slice(i, typeParameterCount - i)) : undefined; return createTypeReferenceNode(entityName, typeArgumentNodes); } } function createTypeNodesFromResolvedType(resolvedType: ResolvedType): TypeElement[] { const typeElements: TypeElement[] = []; for (const signature of resolvedType.callSignatures) { typeElements.push(signatureToSignatureDeclarationHelper(signature, SyntaxKind.CallSignature)); } for (const signature of resolvedType.constructSignatures) { typeElements.push(signatureToSignatureDeclarationHelper(signature, SyntaxKind.ConstructSignature)); } if (resolvedType.stringIndexInfo) { typeElements.push(indexInfoToIndexSignatureDeclarationHelper(resolvedType.stringIndexInfo, IndexKind.String)); } if (resolvedType.numberIndexInfo) { typeElements.push(indexInfoToIndexSignatureDeclarationHelper(resolvedType.numberIndexInfo, IndexKind.Number)); } const properties = resolvedType.properties; if (!properties) { return typeElements; } for (const propertySymbol of properties) { const propertyType = getTypeOfSymbol(propertySymbol); const oldDeclaration = propertySymbol.declarations && propertySymbol.declarations[0] as TypeElement; if (!oldDeclaration) { return; } const propertyName = oldDeclaration.name; const optionalToken = propertySymbol.flags & SymbolFlags.Optional ? createToken(SyntaxKind.QuestionToken) : undefined; if (propertySymbol.flags & (SymbolFlags.Function | SymbolFlags.Method) && !getPropertiesOfObjectType(propertyType).length) { const signatures = getSignaturesOfType(propertyType, SignatureKind.Call); for (const signature of signatures) { const methodDeclaration = signatureToSignatureDeclarationHelper(signature, SyntaxKind.MethodSignature); methodDeclaration.name = propertyName; methodDeclaration.questionToken = optionalToken; typeElements.push(methodDeclaration); } } else { // TODO(aozgaa): should we create a node with explicit or implict any? const propertyTypeNode = propertyType ? typeToTypeNodeHelper(propertyType) : createKeywordTypeNode(SyntaxKind.AnyKeyword); typeElements.push(createPropertySignature( propertyName, optionalToken, propertyTypeNode, /*initializer*/ undefined)); } } return typeElements.length ? typeElements : undefined; } } function indexInfoToIndexSignatureDeclarationHelper(indexInfo: IndexInfo, kind: IndexKind): IndexSignatureDeclaration { const indexerTypeNode = createKeywordTypeNode(kind === IndexKind.String ? SyntaxKind.StringKeyword : SyntaxKind.NumberKeyword); const name = getNameFromIndexInfo(indexInfo); const indexingParameter = createParameter( /*decorators*/ undefined, /*modifiers*/ undefined, /*dotDotDotToken*/ undefined, name, /*questionToken*/ undefined, indexerTypeNode, /*initializer*/ undefined); const typeNode = typeToTypeNodeHelper(indexInfo.type); return createIndexSignature( /*decorators*/ undefined, indexInfo.isReadonly ? [createToken(SyntaxKind.ReadonlyKeyword)] : undefined, [indexingParameter], typeNode); } function signatureToSignatureDeclarationHelper(signature: Signature, kind: SyntaxKind): SignatureDeclaration { const typeParameters = signature.typeParameters && signature.typeParameters.map(parameter => typeParameterToDeclaration(parameter)); const parameters = signature.parameters.map(parameter => symbolToParameterDeclaration(parameter)); let returnTypeNode: TypeNode | TypePredicate; if (signature.typePredicate) { const typePredicate = signature.typePredicate; const parameterName = typePredicate.kind === TypePredicateKind.Identifier ? createIdentifier((typePredicate).parameterName) : createThisTypeNode(); const typeNode = typeToTypeNodeHelper(typePredicate.type); returnTypeNode = createTypePredicateNode(parameterName, typeNode); } else { const returnType = getReturnTypeOfSignature(signature); returnTypeNode = returnType && typeToTypeNodeHelper(returnType); } const returnTypeNodeExceptAny = returnTypeNode && returnTypeNode.kind !== SyntaxKind.AnyKeyword ? returnTypeNode : undefined; return createSignatureDeclaration(kind, typeParameters, parameters, returnTypeNodeExceptAny); } function typeParameterToDeclaration(type: TypeParameter): TypeParameterDeclaration { const constraint = getConstraintFromTypeParameter(type); const constraintNode = constraint && typeToTypeNodeHelper(constraint); const defaultParameter = getDefaultFromTypeParameter(type); const defaultParameterNode = defaultParameter && typeToTypeNodeHelper(defaultParameter); const name = symbolToName(type.symbol, /*expectsIdentifier*/ true); return createTypeParameterDeclaration(name, constraintNode, defaultParameterNode); } function symbolToParameterDeclaration(parameterSymbol: Symbol): ParameterDeclaration { const parameterDeclaration = getDeclarationOfKind(parameterSymbol, SyntaxKind.Parameter); const parameterType = getTypeOfSymbol(parameterSymbol); const parameterTypeNode = typeToTypeNodeHelper(parameterType); // TODO(aozgaa): In the future, check initializer accessibility. const parameterNode = createParameter( parameterDeclaration.decorators, parameterDeclaration.modifiers, parameterDeclaration.dotDotDotToken && createToken(SyntaxKind.DotDotDotToken), // Clone name to remove trivia. getSynthesizedClone(parameterDeclaration.name), parameterDeclaration.questionToken && createToken(SyntaxKind.QuestionToken), parameterTypeNode, parameterDeclaration.initializer); return parameterNode; } function symbolToName(symbol: Symbol, expectsIdentifier: true): Identifier; function symbolToName(symbol: Symbol, expectsIdentifier: false): EntityName; function symbolToName(symbol: Symbol, expectsIdentifier: boolean): EntityName { // Try to get qualified name if the symbol is not a type parameter and there is an enclosing declaration. let chain: Symbol[]; const isTypeParameter = symbol.flags & SymbolFlags.TypeParameter; if (!isTypeParameter && context.enclosingDeclaration) { chain = getSymbolChain(symbol, SymbolFlags.None, /*endOfChain*/ true); Debug.assert(chain && chain.length > 0); } else { chain = [symbol]; } if (expectsIdentifier && chain.length !== 1 && !context.encounteredError && !(context.flags & NodeBuilderFlags.allowQualifedNameInPlaceOfIdentifier)) { context.encounteredError = true; } return createEntityNameFromSymbolChain(chain, chain.length - 1); function createEntityNameFromSymbolChain(chain: Symbol[], index: number): EntityName { Debug.assert(chain && 0 <= index && index < chain.length); // const parentIndex = index - 1; const symbol = chain[index]; let typeParameterString = ""; if (index > 0) { const parentSymbol = chain[index - 1]; let typeParameters: TypeParameter[]; if (getCheckFlags(symbol) & CheckFlags.Instantiated) { typeParameters = getTypeParametersOfClassOrInterface(parentSymbol); } else { const targetSymbol = getTargetSymbol(parentSymbol); if (targetSymbol.flags & (SymbolFlags.Class | SymbolFlags.Interface | SymbolFlags.TypeAlias)) { typeParameters = getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol); } } if (typeParameters && typeParameters.length > 0) { if (!context.encounteredError && !(context.flags & NodeBuilderFlags.allowTypeParameterInQualifiedName)) { context.encounteredError = true; } const writer = getSingleLineStringWriter(); const displayBuilder = getSymbolDisplayBuilder(); displayBuilder.buildDisplayForTypeParametersAndDelimiters(typeParameters, writer, context.enclosingDeclaration, 0); typeParameterString = writer.string(); releaseStringWriter(writer); } } const symbolName = getNameOfSymbol(symbol); const symbolNameWithTypeParameters = typeParameterString.length > 0 ? `${symbolName}<${typeParameterString}>` : symbolName; const identifier = createIdentifier(symbolNameWithTypeParameters); return index > 0 ? createQualifiedName(createEntityNameFromSymbolChain(chain, index - 1), identifier) : identifier; } /** @param endOfChain Set to false for recursive calls; non-recursive calls should always output something. */ function getSymbolChain(symbol: Symbol, meaning: SymbolFlags, endOfChain: boolean): Symbol[] | undefined { let accessibleSymbolChain = getAccessibleSymbolChain(symbol, context.enclosingDeclaration, meaning, /*useOnlyExternalAliasing*/ false); let parentSymbol: Symbol; if (!accessibleSymbolChain || needsQualification(accessibleSymbolChain[0], context.enclosingDeclaration, accessibleSymbolChain.length === 1 ? meaning : getQualifiedLeftMeaning(meaning))) { // Go up and add our parent. const parent = getParentOfSymbol(accessibleSymbolChain ? accessibleSymbolChain[0] : symbol); if (parent) { const parentChain = getSymbolChain(parent, getQualifiedLeftMeaning(meaning), /*endOfChain*/ false); if (parentChain) { parentSymbol = parent; accessibleSymbolChain = parentChain.concat(accessibleSymbolChain || [symbol]); } } } if (accessibleSymbolChain) { return accessibleSymbolChain; } if ( // If this is the last part of outputting the symbol, always output. The cases apply only to parent symbols. endOfChain || // If a parent symbol is an external module, don't write it. (We prefer just `x` vs `"foo/bar".x`.) !(!parentSymbol && ts.forEach(symbol.declarations, hasExternalModuleSymbol)) && // If a parent symbol is an anonymous type, don't write it. !(symbol.flags & (SymbolFlags.TypeLiteral | SymbolFlags.ObjectLiteral))) { return [symbol]; } } function getNameOfSymbol(symbol: Symbol): string { const declaration = firstOrUndefined(symbol.declarations); if (declaration) { const name = getNameOfDeclaration(declaration); if (name) { return declarationNameToString(name); } if (declaration.parent && declaration.parent.kind === SyntaxKind.VariableDeclaration) { return declarationNameToString((declaration.parent).name); } if (!context.encounteredError && !(context.flags & NodeBuilderFlags.allowAnonymousIdentifier)) { context.encounteredError = true; } switch (declaration.kind) { case SyntaxKind.ClassExpression: return "(Anonymous class)"; case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return "(Anonymous function)"; } } return symbol.name; } } } function typePredicateToString(typePredicate: TypePredicate, enclosingDeclaration?: Declaration, flags?: TypeFormatFlags): string { const writer = getSingleLineStringWriter(); getSymbolDisplayBuilder().buildTypePredicateDisplay(typePredicate, writer, enclosingDeclaration, flags); const result = writer.string(); releaseStringWriter(writer); return result; } function formatUnionTypes(types: Type[]): Type[] { const result: Type[] = []; let flags: TypeFlags = 0; for (let i = 0; i < types.length; i++) { const t = types[i]; flags |= t.flags; if (!(t.flags & TypeFlags.Nullable)) { if (t.flags & (TypeFlags.BooleanLiteral | TypeFlags.EnumLiteral)) { const baseType = t.flags & TypeFlags.BooleanLiteral ? booleanType : (t).baseType; const count = baseType.types.length; if (i + count <= types.length && types[i + count - 1] === baseType.types[count - 1]) { result.push(baseType); i += count - 1; continue; } } result.push(t); } } if (flags & TypeFlags.Null) result.push(nullType); if (flags & TypeFlags.Undefined) result.push(undefinedType); return result || types; } function visibilityToString(flags: ModifierFlags): string | undefined { if (flags === ModifierFlags.Private) { return "private"; } if (flags === ModifierFlags.Protected) { return "protected"; } return "public"; } function getTypeAliasForTypeLiteral(type: Type): Symbol { if (type.symbol && type.symbol.flags & SymbolFlags.TypeLiteral) { const node = findAncestor(type.symbol.declarations[0].parent, n => n.kind !== SyntaxKind.ParenthesizedType); if (node.kind === SyntaxKind.TypeAliasDeclaration) { return getSymbolOfNode(node); } } return undefined; } function isTopLevelInExternalModuleAugmentation(node: Node): boolean { return node && node.parent && node.parent.kind === SyntaxKind.ModuleBlock && isExternalModuleAugmentation(node.parent.parent); } function literalTypeToString(type: LiteralType) { return type.flags & TypeFlags.StringLiteral ? `"${escapeString((type).text)}"` : (type).text; } function getNameOfSymbol(symbol: Symbol): string { if (symbol.declarations && symbol.declarations.length) { const declaration = symbol.declarations[0]; const name = getNameOfDeclaration(declaration); if (name) { return declarationNameToString(name); } if (declaration.parent && declaration.parent.kind === SyntaxKind.VariableDeclaration) { return declarationNameToString((declaration.parent).name); } switch (declaration.kind) { case SyntaxKind.ClassExpression: return "(Anonymous class)"; case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return "(Anonymous function)"; } } return symbol.name; } function getSymbolDisplayBuilder(): SymbolDisplayBuilder { /** * Writes only the name of the symbol out to the writer. Uses the original source text * for the name of the symbol if it is available to match how the user wrote the name. */ function appendSymbolNameOnly(symbol: Symbol, writer: SymbolWriter): void { writer.writeSymbol(getNameOfSymbol(symbol), symbol); } /** * Writes a property access or element access with the name of the symbol out to the writer. * Uses the original source text for the name of the symbol if it is available to match how the user wrote the name, * ensuring that any names written with literals use element accesses. */ function appendPropertyOrElementAccessForSymbol(symbol: Symbol, writer: SymbolWriter): void { const symbolName = getNameOfSymbol(symbol); const firstChar = symbolName.charCodeAt(0); const needsElementAccess = !isIdentifierStart(firstChar, languageVersion); if (needsElementAccess) { writePunctuation(writer, SyntaxKind.OpenBracketToken); if (isSingleOrDoubleQuote(firstChar)) { writer.writeStringLiteral(symbolName); } else { writer.writeSymbol(symbolName, symbol); } writePunctuation(writer, SyntaxKind.CloseBracketToken); } else { writePunctuation(writer, SyntaxKind.DotToken); writer.writeSymbol(symbolName, symbol); } } /** * Enclosing declaration is optional when we don't want to get qualified name in the enclosing declaration scope * Meaning needs to be specified if the enclosing declaration is given */ function buildSymbolDisplay(symbol: Symbol, writer: SymbolWriter, enclosingDeclaration?: Node, meaning?: SymbolFlags, flags?: SymbolFormatFlags, typeFlags?: TypeFormatFlags): void { let parentSymbol: Symbol; function appendParentTypeArgumentsAndSymbolName(symbol: Symbol): void { if (parentSymbol) { // Write type arguments of instantiated class/interface here if (flags & SymbolFormatFlags.WriteTypeParametersOrArguments) { if (getCheckFlags(symbol) & CheckFlags.Instantiated) { buildDisplayForTypeArgumentsAndDelimiters(getTypeParametersOfClassOrInterface(parentSymbol), (symbol).mapper, writer, enclosingDeclaration); } else { buildTypeParameterDisplayFromSymbol(parentSymbol, writer, enclosingDeclaration); } } appendPropertyOrElementAccessForSymbol(symbol, writer); } else { appendSymbolNameOnly(symbol, writer); } parentSymbol = symbol; } // Let the writer know we just wrote out a symbol. The declaration emitter writer uses // this to determine if an import it has previously seen (and not written out) needs // to be written to the file once the walk of the tree is complete. // // NOTE(cyrusn): This approach feels somewhat unfortunate. A simple pass over the tree // up front (for example, during checking) could determine if we need to emit the imports // and we could then access that data during declaration emit. writer.trackSymbol(symbol, enclosingDeclaration, meaning); /** @param endOfChain Set to false for recursive calls; non-recursive calls should always output something. */ function walkSymbol(symbol: Symbol, meaning: SymbolFlags, endOfChain: boolean): void { const accessibleSymbolChain = getAccessibleSymbolChain(symbol, enclosingDeclaration, meaning, !!(flags & SymbolFormatFlags.UseOnlyExternalAliasing)); if (!accessibleSymbolChain || needsQualification(accessibleSymbolChain[0], enclosingDeclaration, accessibleSymbolChain.length === 1 ? meaning : getQualifiedLeftMeaning(meaning))) { // Go up and add our parent. const parent = getParentOfSymbol(accessibleSymbolChain ? accessibleSymbolChain[0] : symbol); if (parent) { walkSymbol(parent, getQualifiedLeftMeaning(meaning), /*endOfChain*/ false); } } if (accessibleSymbolChain) { for (const accessibleSymbol of accessibleSymbolChain) { appendParentTypeArgumentsAndSymbolName(accessibleSymbol); } } else if ( // If this is the last part of outputting the symbol, always output. The cases apply only to parent symbols. endOfChain || // If a parent symbol is an external module, don't write it. (We prefer just `x` vs `"foo/bar".x`.) !(!parentSymbol && ts.forEach(symbol.declarations, hasExternalModuleSymbol)) && // If a parent symbol is an anonymous type, don't write it. !(symbol.flags & (SymbolFlags.TypeLiteral | SymbolFlags.ObjectLiteral))) { appendParentTypeArgumentsAndSymbolName(symbol); } } // Get qualified name if the symbol is not a type parameter // and there is an enclosing declaration or we specifically // asked for it const isTypeParameter = symbol.flags & SymbolFlags.TypeParameter; const typeFormatFlag = TypeFormatFlags.UseFullyQualifiedType & typeFlags; if (!isTypeParameter && (enclosingDeclaration || typeFormatFlag)) { walkSymbol(symbol, meaning, /*endOfChain*/ true); } else { appendParentTypeArgumentsAndSymbolName(symbol); } } function buildTypeDisplay(type: Type, writer: SymbolWriter, enclosingDeclaration?: Node, globalFlags?: TypeFormatFlags, symbolStack?: Symbol[]) { const globalFlagsToPass = globalFlags & TypeFormatFlags.WriteOwnNameForAnyLike; let inObjectTypeLiteral = false; return writeType(type, globalFlags); function writeType(type: Type, flags: TypeFormatFlags) { const nextFlags = flags & ~TypeFormatFlags.InTypeAlias; // Write undefined/null type as any if (type.flags & TypeFlags.Intrinsic) { // Special handling for unknown / resolving types, they should show up as any and not unknown or __resolving writer.writeKeyword(!(globalFlags & TypeFormatFlags.WriteOwnNameForAnyLike) && isTypeAny(type) ? "any" : (type).intrinsicName); } else if (type.flags & TypeFlags.TypeParameter && (type as TypeParameter).isThisType) { if (inObjectTypeLiteral) { writer.reportInaccessibleThisError(); } writer.writeKeyword("this"); } else if (getObjectFlags(type) & ObjectFlags.Reference) { writeTypeReference(type, nextFlags); } else if (type.flags & TypeFlags.EnumLiteral) { buildSymbolDisplay(getParentOfSymbol(type.symbol), writer, enclosingDeclaration, SymbolFlags.Type, SymbolFormatFlags.None, nextFlags); writePunctuation(writer, SyntaxKind.DotToken); appendSymbolNameOnly(type.symbol, writer); } else if (getObjectFlags(type) & ObjectFlags.ClassOrInterface || type.flags & (TypeFlags.Enum | TypeFlags.TypeParameter)) { // The specified symbol flags need to be reinterpreted as type flags buildSymbolDisplay(type.symbol, writer, enclosingDeclaration, SymbolFlags.Type, SymbolFormatFlags.None, nextFlags); } else if (!(flags & TypeFormatFlags.InTypeAlias) && type.aliasSymbol && isSymbolAccessible(type.aliasSymbol, enclosingDeclaration, SymbolFlags.Type, /*shouldComputeAliasesToMakeVisible*/ false).accessibility === SymbolAccessibility.Accessible) { const typeArguments = type.aliasTypeArguments; writeSymbolTypeReference(type.aliasSymbol, typeArguments, 0, length(typeArguments), nextFlags); } else if (type.flags & TypeFlags.UnionOrIntersection) { writeUnionOrIntersectionType(type, nextFlags); } else if (getObjectFlags(type) & (ObjectFlags.Anonymous | ObjectFlags.Mapped)) { writeAnonymousType(type, nextFlags); } else if (type.flags & TypeFlags.StringOrNumberLiteral) { writer.writeStringLiteral(literalTypeToString(type)); } else if (type.flags & TypeFlags.Index) { writer.writeKeyword("keyof"); writeSpace(writer); writeType((type).type, TypeFormatFlags.InElementType); } else if (type.flags & TypeFlags.IndexedAccess) { writeType((type).objectType, TypeFormatFlags.InElementType); writePunctuation(writer, SyntaxKind.OpenBracketToken); writeType((type).indexType, TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.CloseBracketToken); } else { // Should never get here // { ... } writePunctuation(writer, SyntaxKind.OpenBraceToken); writeSpace(writer); writePunctuation(writer, SyntaxKind.DotDotDotToken); writeSpace(writer); writePunctuation(writer, SyntaxKind.CloseBraceToken); } } function writeTypeList(types: Type[], delimiter: SyntaxKind) { for (let i = 0; i < types.length; i++) { if (i > 0) { if (delimiter !== SyntaxKind.CommaToken) { writeSpace(writer); } writePunctuation(writer, delimiter); writeSpace(writer); } writeType(types[i], delimiter === SyntaxKind.CommaToken ? TypeFormatFlags.None : TypeFormatFlags.InElementType); } } function writeSymbolTypeReference(symbol: Symbol, typeArguments: Type[], pos: number, end: number, flags: TypeFormatFlags) { // Unnamed function expressions and arrow functions have reserved names that we don't want to display if (symbol.flags & SymbolFlags.Class || !isReservedMemberName(symbol.name)) { buildSymbolDisplay(symbol, writer, enclosingDeclaration, SymbolFlags.Type, SymbolFormatFlags.None, flags); } if (pos < end) { writePunctuation(writer, SyntaxKind.LessThanToken); writeType(typeArguments[pos], TypeFormatFlags.InFirstTypeArgument); pos++; while (pos < end) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); writeType(typeArguments[pos], TypeFormatFlags.None); pos++; } writePunctuation(writer, SyntaxKind.GreaterThanToken); } } function writeTypeReference(type: TypeReference, flags: TypeFormatFlags) { const typeArguments = type.typeArguments || emptyArray; if (type.target === globalArrayType && !(flags & TypeFormatFlags.WriteArrayAsGenericType)) { writeType(typeArguments[0], TypeFormatFlags.InElementType); writePunctuation(writer, SyntaxKind.OpenBracketToken); writePunctuation(writer, SyntaxKind.CloseBracketToken); } else if (type.target.objectFlags & ObjectFlags.Tuple) { writePunctuation(writer, SyntaxKind.OpenBracketToken); writeTypeList(type.typeArguments.slice(0, getTypeReferenceArity(type)), SyntaxKind.CommaToken); writePunctuation(writer, SyntaxKind.CloseBracketToken); } else { // Write the type reference in the format f.g.C where A and B are type arguments // for outer type parameters, and f and g are the respective declaring containers of those // type parameters. const outerTypeParameters = type.target.outerTypeParameters; let i = 0; if (outerTypeParameters) { const length = outerTypeParameters.length; while (i < length) { // Find group of type arguments for type parameters with the same declaring container. const start = i; const parent = getParentSymbolOfTypeParameter(outerTypeParameters[i]); do { i++; } while (i < length && getParentSymbolOfTypeParameter(outerTypeParameters[i]) === parent); // When type parameters are their own type arguments for the whole group (i.e. we have // the default outer type arguments), we don't show the group. if (!rangeEquals(outerTypeParameters, typeArguments, start, i)) { writeSymbolTypeReference(parent, typeArguments, start, i, flags); writePunctuation(writer, SyntaxKind.DotToken); } } } const typeParameterCount = (type.target.typeParameters || emptyArray).length; writeSymbolTypeReference(type.symbol, typeArguments, i, typeParameterCount, flags); } } function writeUnionOrIntersectionType(type: UnionOrIntersectionType, flags: TypeFormatFlags) { if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.OpenParenToken); } if (type.flags & TypeFlags.Union) { writeTypeList(formatUnionTypes(type.types), SyntaxKind.BarToken); } else { writeTypeList(type.types, SyntaxKind.AmpersandToken); } if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.CloseParenToken); } } function writeAnonymousType(type: ObjectType, flags: TypeFormatFlags) { const symbol = type.symbol; if (symbol) { // Always use 'typeof T' for type of class, enum, and module objects if (symbol.flags & SymbolFlags.Class && !getBaseTypeVariableOfClass(symbol) || symbol.flags & (SymbolFlags.Enum | SymbolFlags.ValueModule)) { writeTypeOfSymbol(type, flags); } else if (shouldWriteTypeOfFunctionSymbol()) { writeTypeOfSymbol(type, flags); } else if (contains(symbolStack, symbol)) { // If type is an anonymous type literal in a type alias declaration, use type alias name const typeAlias = getTypeAliasForTypeLiteral(type); if (typeAlias) { // The specified symbol flags need to be reinterpreted as type flags buildSymbolDisplay(typeAlias, writer, enclosingDeclaration, SymbolFlags.Type, SymbolFormatFlags.None, flags); } else { // Recursive usage, use any writeKeyword(writer, SyntaxKind.AnyKeyword); } } else { // Since instantiations of the same anonymous type have the same symbol, tracking symbols instead // of types allows us to catch circular references to instantiations of the same anonymous type if (!symbolStack) { symbolStack = []; } symbolStack.push(symbol); writeLiteralType(type, flags); symbolStack.pop(); } } else { // Anonymous types with no symbol are never circular writeLiteralType(type, flags); } function shouldWriteTypeOfFunctionSymbol() { const isStaticMethodSymbol = !!(symbol.flags & SymbolFlags.Method && // typeof static method forEach(symbol.declarations, declaration => getModifierFlags(declaration) & ModifierFlags.Static)); const isNonLocalFunctionSymbol = !!(symbol.flags & SymbolFlags.Function) && (symbol.parent || // is exported function symbol forEach(symbol.declarations, declaration => declaration.parent.kind === SyntaxKind.SourceFile || declaration.parent.kind === SyntaxKind.ModuleBlock)); if (isStaticMethodSymbol || isNonLocalFunctionSymbol) { // typeof is allowed only for static/non local functions return !!(flags & TypeFormatFlags.UseTypeOfFunction) || // use typeof if format flags specify it (contains(symbolStack, symbol)); // it is type of the symbol uses itself recursively } } } function writeTypeOfSymbol(type: ObjectType, typeFormatFlags?: TypeFormatFlags) { writeKeyword(writer, SyntaxKind.TypeOfKeyword); writeSpace(writer); buildSymbolDisplay(type.symbol, writer, enclosingDeclaration, SymbolFlags.Value, SymbolFormatFlags.None, typeFormatFlags); } function writePropertyWithModifiers(prop: Symbol) { if (isReadonlySymbol(prop)) { writeKeyword(writer, SyntaxKind.ReadonlyKeyword); writeSpace(writer); } buildSymbolDisplay(prop, writer); if (prop.flags & SymbolFlags.Optional) { writePunctuation(writer, SyntaxKind.QuestionToken); } } function shouldAddParenthesisAroundFunctionType(callSignature: Signature, flags: TypeFormatFlags) { if (flags & TypeFormatFlags.InElementType) { return true; } else if (flags & TypeFormatFlags.InFirstTypeArgument) { // Add parenthesis around function type for the first type argument to avoid ambiguity const typeParameters = callSignature.target && (flags & TypeFormatFlags.WriteTypeArgumentsOfSignature) ? callSignature.target.typeParameters : callSignature.typeParameters; return typeParameters && typeParameters.length !== 0; } return false; } function writeLiteralType(type: ObjectType, flags: TypeFormatFlags) { if (type.objectFlags & ObjectFlags.Mapped) { if (getConstraintTypeFromMappedType(type).flags & (TypeFlags.TypeParameter | TypeFlags.Index)) { writeMappedType(type); return; } } const resolved = resolveStructuredTypeMembers(type); if (!resolved.properties.length && !resolved.stringIndexInfo && !resolved.numberIndexInfo) { if (!resolved.callSignatures.length && !resolved.constructSignatures.length) { writePunctuation(writer, SyntaxKind.OpenBraceToken); writePunctuation(writer, SyntaxKind.CloseBraceToken); return; } if (resolved.callSignatures.length === 1 && !resolved.constructSignatures.length) { const parenthesizeSignature = shouldAddParenthesisAroundFunctionType(resolved.callSignatures[0], flags); if (parenthesizeSignature) { writePunctuation(writer, SyntaxKind.OpenParenToken); } buildSignatureDisplay(resolved.callSignatures[0], writer, enclosingDeclaration, globalFlagsToPass | TypeFormatFlags.WriteArrowStyleSignature, /*kind*/ undefined, symbolStack); if (parenthesizeSignature) { writePunctuation(writer, SyntaxKind.CloseParenToken); } return; } if (resolved.constructSignatures.length === 1 && !resolved.callSignatures.length) { if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.OpenParenToken); } writeKeyword(writer, SyntaxKind.NewKeyword); writeSpace(writer); buildSignatureDisplay(resolved.constructSignatures[0], writer, enclosingDeclaration, globalFlagsToPass | TypeFormatFlags.WriteArrowStyleSignature, /*kind*/ undefined, symbolStack); if (flags & TypeFormatFlags.InElementType) { writePunctuation(writer, SyntaxKind.CloseParenToken); } return; } } const saveInObjectTypeLiteral = inObjectTypeLiteral; inObjectTypeLiteral = true; writePunctuation(writer, SyntaxKind.OpenBraceToken); writer.writeLine(); writer.increaseIndent(); writeObjectLiteralType(resolved); writer.decreaseIndent(); writePunctuation(writer, SyntaxKind.CloseBraceToken); inObjectTypeLiteral = saveInObjectTypeLiteral; } function writeObjectLiteralType(resolved: ResolvedType) { for (const signature of resolved.callSignatures) { buildSignatureDisplay(signature, writer, enclosingDeclaration, globalFlagsToPass, /*kind*/ undefined, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } for (const signature of resolved.constructSignatures) { buildSignatureDisplay(signature, writer, enclosingDeclaration, globalFlagsToPass, SignatureKind.Construct, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } buildIndexSignatureDisplay(resolved.stringIndexInfo, writer, IndexKind.String, enclosingDeclaration, globalFlags, symbolStack); buildIndexSignatureDisplay(resolved.numberIndexInfo, writer, IndexKind.Number, enclosingDeclaration, globalFlags, symbolStack); for (const p of resolved.properties) { const t = getTypeOfSymbol(p); if (p.flags & (SymbolFlags.Function | SymbolFlags.Method) && !getPropertiesOfObjectType(t).length) { const signatures = getSignaturesOfType(t, SignatureKind.Call); for (const signature of signatures) { writePropertyWithModifiers(p); buildSignatureDisplay(signature, writer, enclosingDeclaration, globalFlagsToPass, /*kind*/ undefined, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } } else { writePropertyWithModifiers(p); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeType(t, TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } } } function writeMappedType(type: MappedType) { writePunctuation(writer, SyntaxKind.OpenBraceToken); writer.writeLine(); writer.increaseIndent(); if (type.declaration.readonlyToken) { writeKeyword(writer, SyntaxKind.ReadonlyKeyword); writeSpace(writer); } writePunctuation(writer, SyntaxKind.OpenBracketToken); appendSymbolNameOnly(getTypeParameterFromMappedType(type).symbol, writer); writeSpace(writer); writeKeyword(writer, SyntaxKind.InKeyword); writeSpace(writer); writeType(getConstraintTypeFromMappedType(type), TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.CloseBracketToken); if (type.declaration.questionToken) { writePunctuation(writer, SyntaxKind.QuestionToken); } writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); writeType(getTemplateTypeFromMappedType(type), TypeFormatFlags.None); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); writer.decreaseIndent(); writePunctuation(writer, SyntaxKind.CloseBraceToken); } } function buildTypeParameterDisplayFromSymbol(symbol: Symbol, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags) { const targetSymbol = getTargetSymbol(symbol); if (targetSymbol.flags & SymbolFlags.Class || targetSymbol.flags & SymbolFlags.Interface || targetSymbol.flags & SymbolFlags.TypeAlias) { buildDisplayForTypeParametersAndDelimiters(getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol), writer, enclosingDeclaration, flags); } } function buildTypeParameterDisplay(tp: TypeParameter, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { appendSymbolNameOnly(tp.symbol, writer); const constraint = getConstraintOfTypeParameter(tp); if (constraint) { writeSpace(writer); writeKeyword(writer, SyntaxKind.ExtendsKeyword); writeSpace(writer); buildTypeDisplay(constraint, writer, enclosingDeclaration, flags, symbolStack); } const defaultType = getDefaultFromTypeParameter(tp); if (defaultType) { writeSpace(writer); writePunctuation(writer, SyntaxKind.EqualsToken); writeSpace(writer); buildTypeDisplay(defaultType, writer, enclosingDeclaration, flags, symbolStack); } } function buildParameterDisplay(p: Symbol, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { const parameterNode = p.valueDeclaration; if (parameterNode ? isRestParameter(parameterNode) : isTransientSymbol(p) && p.isRestParameter) { writePunctuation(writer, SyntaxKind.DotDotDotToken); } if (parameterNode && isBindingPattern(parameterNode.name)) { buildBindingPatternDisplay(parameterNode.name, writer, enclosingDeclaration, flags, symbolStack); } else { appendSymbolNameOnly(p, writer); } if (parameterNode && isOptionalParameter(parameterNode)) { writePunctuation(writer, SyntaxKind.QuestionToken); } writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); let type = getTypeOfSymbol(p); if (parameterNode && isRequiredInitializedParameter(parameterNode)) { type = includeFalsyTypes(type, TypeFlags.Undefined); } buildTypeDisplay(type, writer, enclosingDeclaration, flags, symbolStack); } function buildBindingPatternDisplay(bindingPattern: BindingPattern, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { // We have to explicitly emit square bracket and bracket because these tokens are not stored inside the node. if (bindingPattern.kind === SyntaxKind.ObjectBindingPattern) { writePunctuation(writer, SyntaxKind.OpenBraceToken); buildDisplayForCommaSeparatedList(bindingPattern.elements, writer, e => buildBindingElementDisplay(e, writer, enclosingDeclaration, flags, symbolStack)); writePunctuation(writer, SyntaxKind.CloseBraceToken); } else if (bindingPattern.kind === SyntaxKind.ArrayBindingPattern) { writePunctuation(writer, SyntaxKind.OpenBracketToken); const elements = bindingPattern.elements; buildDisplayForCommaSeparatedList(elements, writer, e => buildBindingElementDisplay(e, writer, enclosingDeclaration, flags, symbolStack)); if (elements && elements.hasTrailingComma) { writePunctuation(writer, SyntaxKind.CommaToken); } writePunctuation(writer, SyntaxKind.CloseBracketToken); } } function buildBindingElementDisplay(bindingElement: ArrayBindingElement, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (isOmittedExpression(bindingElement)) { return; } Debug.assert(bindingElement.kind === SyntaxKind.BindingElement); if (bindingElement.propertyName) { writer.writeProperty(getTextOfNode(bindingElement.propertyName)); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); } if (isBindingPattern(bindingElement.name)) { buildBindingPatternDisplay(bindingElement.name, writer, enclosingDeclaration, flags, symbolStack); } else { if (bindingElement.dotDotDotToken) { writePunctuation(writer, SyntaxKind.DotDotDotToken); } appendSymbolNameOnly(bindingElement.symbol, writer); } } function buildDisplayForTypeParametersAndDelimiters(typeParameters: TypeParameter[], writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (typeParameters && typeParameters.length) { writePunctuation(writer, SyntaxKind.LessThanToken); buildDisplayForCommaSeparatedList(typeParameters, writer, p => buildTypeParameterDisplay(p, writer, enclosingDeclaration, flags, symbolStack)); writePunctuation(writer, SyntaxKind.GreaterThanToken); } } function buildDisplayForCommaSeparatedList(list: T[], writer: SymbolWriter, action: (item: T) => void) { for (let i = 0; i < list.length; i++) { if (i > 0) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); } action(list[i]); } } function buildDisplayForTypeArgumentsAndDelimiters(typeParameters: TypeParameter[], mapper: TypeMapper, writer: SymbolWriter, enclosingDeclaration?: Node) { if (typeParameters && typeParameters.length) { writePunctuation(writer, SyntaxKind.LessThanToken); let flags = TypeFormatFlags.InFirstTypeArgument; for (let i = 0; i < typeParameters.length; i++) { if (i > 0) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); flags = TypeFormatFlags.None; } buildTypeDisplay(mapper(typeParameters[i]), writer, enclosingDeclaration, flags); } writePunctuation(writer, SyntaxKind.GreaterThanToken); } } function buildDisplayForParametersAndDelimiters(thisParameter: Symbol | undefined, parameters: Symbol[], writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { writePunctuation(writer, SyntaxKind.OpenParenToken); if (thisParameter) { buildParameterDisplay(thisParameter, writer, enclosingDeclaration, flags, symbolStack); } for (let i = 0; i < parameters.length; i++) { if (i > 0 || thisParameter) { writePunctuation(writer, SyntaxKind.CommaToken); writeSpace(writer); } buildParameterDisplay(parameters[i], writer, enclosingDeclaration, flags, symbolStack); } writePunctuation(writer, SyntaxKind.CloseParenToken); } function buildTypePredicateDisplay(predicate: TypePredicate, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]): void { if (isIdentifierTypePredicate(predicate)) { writer.writeParameter(predicate.parameterName); } else { writeKeyword(writer, SyntaxKind.ThisKeyword); } writeSpace(writer); writeKeyword(writer, SyntaxKind.IsKeyword); writeSpace(writer); buildTypeDisplay(predicate.type, writer, enclosingDeclaration, flags, symbolStack); } function buildReturnTypeDisplay(signature: Signature, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, symbolStack?: Symbol[]) { const returnType = getReturnTypeOfSignature(signature); if (flags & TypeFormatFlags.SuppressAnyReturnType && isTypeAny(returnType)) { return; } if (flags & TypeFormatFlags.WriteArrowStyleSignature) { writeSpace(writer); writePunctuation(writer, SyntaxKind.EqualsGreaterThanToken); } else { writePunctuation(writer, SyntaxKind.ColonToken); } writeSpace(writer); if (signature.typePredicate) { buildTypePredicateDisplay(signature.typePredicate, writer, enclosingDeclaration, flags, symbolStack); } else { buildTypeDisplay(returnType, writer, enclosingDeclaration, flags, symbolStack); } } function buildSignatureDisplay(signature: Signature, writer: SymbolWriter, enclosingDeclaration?: Node, flags?: TypeFormatFlags, kind?: SignatureKind, symbolStack?: Symbol[]) { if (kind === SignatureKind.Construct) { writeKeyword(writer, SyntaxKind.NewKeyword); writeSpace(writer); } if (signature.target && (flags & TypeFormatFlags.WriteTypeArgumentsOfSignature)) { // Instantiated signature, write type arguments instead // This is achieved by passing in the mapper separately buildDisplayForTypeArgumentsAndDelimiters(signature.target.typeParameters, signature.mapper, writer, enclosingDeclaration); } else { buildDisplayForTypeParametersAndDelimiters(signature.typeParameters, writer, enclosingDeclaration, flags, symbolStack); } buildDisplayForParametersAndDelimiters(signature.thisParameter, signature.parameters, writer, enclosingDeclaration, flags, symbolStack); buildReturnTypeDisplay(signature, writer, enclosingDeclaration, flags, symbolStack); } function buildIndexSignatureDisplay(info: IndexInfo, writer: SymbolWriter, kind: IndexKind, enclosingDeclaration?: Node, globalFlags?: TypeFormatFlags, symbolStack?: Symbol[]) { if (info) { if (info.isReadonly) { writeKeyword(writer, SyntaxKind.ReadonlyKeyword); writeSpace(writer); } writePunctuation(writer, SyntaxKind.OpenBracketToken); writer.writeParameter(info.declaration ? declarationNameToString(info.declaration.parameters[0].name) : "x"); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); switch (kind) { case IndexKind.Number: writeKeyword(writer, SyntaxKind.NumberKeyword); break; case IndexKind.String: writeKeyword(writer, SyntaxKind.StringKeyword); break; } writePunctuation(writer, SyntaxKind.CloseBracketToken); writePunctuation(writer, SyntaxKind.ColonToken); writeSpace(writer); buildTypeDisplay(info.type, writer, enclosingDeclaration, globalFlags, symbolStack); writePunctuation(writer, SyntaxKind.SemicolonToken); writer.writeLine(); } } return _displayBuilder || (_displayBuilder = { buildSymbolDisplay, buildTypeDisplay, buildTypeParameterDisplay, buildTypePredicateDisplay, buildParameterDisplay, buildDisplayForParametersAndDelimiters, buildDisplayForTypeParametersAndDelimiters, buildTypeParameterDisplayFromSymbol, buildSignatureDisplay, buildIndexSignatureDisplay, buildReturnTypeDisplay }); } function isDeclarationVisible(node: Declaration): boolean { if (node) { const links = getNodeLinks(node); if (links.isVisible === undefined) { links.isVisible = !!determineIfDeclarationIsVisible(); } return links.isVisible; } return false; function determineIfDeclarationIsVisible() { switch (node.kind) { case SyntaxKind.BindingElement: return isDeclarationVisible(node.parent.parent); case SyntaxKind.VariableDeclaration: if (isBindingPattern((node as VariableDeclaration).name) && !((node as VariableDeclaration).name as BindingPattern).elements.length) { // If the binding pattern is empty, this variable declaration is not visible return false; } // falls through case SyntaxKind.ModuleDeclaration: case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.TypeAliasDeclaration: case SyntaxKind.FunctionDeclaration: case SyntaxKind.EnumDeclaration: case SyntaxKind.ImportEqualsDeclaration: // external module augmentation is always visible if (isExternalModuleAugmentation(node)) { return true; } const parent = getDeclarationContainer(node); // If the node is not exported or it is not ambient module element (except import declaration) if (!(getCombinedModifierFlags(node) & ModifierFlags.Export) && !(node.kind !== SyntaxKind.ImportEqualsDeclaration && parent.kind !== SyntaxKind.SourceFile && isInAmbientContext(parent))) { return isGlobalSourceFile(parent); } // Exported members/ambient module elements (exception import declaration) are visible if parent is visible return isDeclarationVisible(parent); case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: if (getModifierFlags(node) & (ModifierFlags.Private | ModifierFlags.Protected)) { // Private/protected properties/methods are not visible return false; } // Public properties/methods are visible if its parents are visible, so: // falls through case SyntaxKind.Constructor: case SyntaxKind.ConstructSignature: case SyntaxKind.CallSignature: case SyntaxKind.IndexSignature: case SyntaxKind.Parameter: case SyntaxKind.ModuleBlock: case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.TypeLiteral: case SyntaxKind.TypeReference: case SyntaxKind.ArrayType: case SyntaxKind.TupleType: case SyntaxKind.UnionType: case SyntaxKind.IntersectionType: case SyntaxKind.ParenthesizedType: return isDeclarationVisible(node.parent); // Default binding, import specifier and namespace import is visible // only on demand so by default it is not visible case SyntaxKind.ImportClause: case SyntaxKind.NamespaceImport: case SyntaxKind.ImportSpecifier: return false; // Type parameters are always visible case SyntaxKind.TypeParameter: // Source file and namespace export are always visible case SyntaxKind.SourceFile: case SyntaxKind.NamespaceExportDeclaration: return true; // Export assignments do not create name bindings outside the module case SyntaxKind.ExportAssignment: return false; default: return false; } } } function collectLinkedAliases(node: Identifier): Node[] { let exportSymbol: Symbol; if (node.parent && node.parent.kind === SyntaxKind.ExportAssignment) { exportSymbol = resolveName(node.parent, node.text, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace | SymbolFlags.Alias, Diagnostics.Cannot_find_name_0, node); } else if (node.parent.kind === SyntaxKind.ExportSpecifier) { exportSymbol = getTargetOfExportSpecifier(node.parent, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace | SymbolFlags.Alias); } const result: Node[] = []; if (exportSymbol) { buildVisibleNodeList(exportSymbol.declarations); } return result; function buildVisibleNodeList(declarations: Declaration[]) { forEach(declarations, declaration => { getNodeLinks(declaration).isVisible = true; const resultNode = getAnyImportSyntax(declaration) || declaration; if (!contains(result, resultNode)) { result.push(resultNode); } if (isInternalModuleImportEqualsDeclaration(declaration)) { // Add the referenced top container visible const internalModuleReference = (declaration).moduleReference; const firstIdentifier = getFirstIdentifier(internalModuleReference); const importSymbol = resolveName(declaration, firstIdentifier.text, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace, undefined, undefined); if (importSymbol) { buildVisibleNodeList(importSymbol.declarations); } } }); } } /** * Push an entry on the type resolution stack. If an entry with the given target and the given property name * is already on the stack, and no entries in between already have a type, then a circularity has occurred. * In this case, the result values of the existing entry and all entries pushed after it are changed to false, * and the value false is returned. Otherwise, the new entry is just pushed onto the stack, and true is returned. * In order to see if the same query has already been done before, the target object and the propertyName both * must match the one passed in. * * @param target The symbol, type, or signature whose type is being queried * @param propertyName The property name that should be used to query the target for its type */ function pushTypeResolution(target: TypeSystemEntity, propertyName: TypeSystemPropertyName): boolean { const resolutionCycleStartIndex = findResolutionCycleStartIndex(target, propertyName); if (resolutionCycleStartIndex >= 0) { // A cycle was found const { length } = resolutionTargets; for (let i = resolutionCycleStartIndex; i < length; i++) { resolutionResults[i] = false; } return false; } resolutionTargets.push(target); resolutionResults.push(/*items*/ true); resolutionPropertyNames.push(propertyName); return true; } function findResolutionCycleStartIndex(target: TypeSystemEntity, propertyName: TypeSystemPropertyName): number { for (let i = resolutionTargets.length - 1; i >= 0; i--) { if (hasType(resolutionTargets[i], resolutionPropertyNames[i])) { return -1; } if (resolutionTargets[i] === target && resolutionPropertyNames[i] === propertyName) { return i; } } return -1; } function hasType(target: TypeSystemEntity, propertyName: TypeSystemPropertyName): Type { if (propertyName === TypeSystemPropertyName.Type) { return getSymbolLinks(target).type; } if (propertyName === TypeSystemPropertyName.DeclaredType) { return getSymbolLinks(target).declaredType; } if (propertyName === TypeSystemPropertyName.ResolvedBaseConstructorType) { return (target).resolvedBaseConstructorType; } if (propertyName === TypeSystemPropertyName.ResolvedReturnType) { return (target).resolvedReturnType; } Debug.fail("Unhandled TypeSystemPropertyName " + propertyName); } // Pop an entry from the type resolution stack and return its associated result value. The result value will // be true if no circularities were detected, or false if a circularity was found. function popTypeResolution(): boolean { resolutionTargets.pop(); resolutionPropertyNames.pop(); return resolutionResults.pop(); } function getDeclarationContainer(node: Node): Node { node = findAncestor(getRootDeclaration(node), node => { switch (node.kind) { case SyntaxKind.VariableDeclaration: case SyntaxKind.VariableDeclarationList: case SyntaxKind.ImportSpecifier: case SyntaxKind.NamedImports: case SyntaxKind.NamespaceImport: case SyntaxKind.ImportClause: return false; default: return true; } }); return node && node.parent; } function getTypeOfPrototypeProperty(prototype: Symbol): Type { // TypeScript 1.0 spec (April 2014): 8.4 // Every class automatically contains a static property member named 'prototype', // the type of which is an instantiation of the class type with type Any supplied as a type argument for each type parameter. // It is an error to explicitly declare a static property member with the name 'prototype'. const classType = getDeclaredTypeOfSymbol(getParentOfSymbol(prototype)); return classType.typeParameters ? createTypeReference(classType, map(classType.typeParameters, _ => anyType)) : classType; } // Return the type of the given property in the given type, or undefined if no such property exists function getTypeOfPropertyOfType(type: Type, name: string): Type { const prop = getPropertyOfType(type, name); return prop ? getTypeOfSymbol(prop) : undefined; } function isTypeAny(type: Type) { return type && (type.flags & TypeFlags.Any) !== 0; } // Return the type of a binding element parent. We check SymbolLinks first to see if a type has been // assigned by contextual typing. function getTypeForBindingElementParent(node: VariableLikeDeclaration) { const symbol = getSymbolOfNode(node); return symbol && getSymbolLinks(symbol).type || getTypeForVariableLikeDeclaration(node, /*includeOptionality*/ false); } function isComputedNonLiteralName(name: PropertyName): boolean { return name.kind === SyntaxKind.ComputedPropertyName && !isStringOrNumericLiteral((name).expression); } function getRestType(source: Type, properties: PropertyName[], symbol: Symbol): Type { source = filterType(source, t => !(t.flags & TypeFlags.Nullable)); if (source.flags & TypeFlags.Never) { return emptyObjectType; } if (source.flags & TypeFlags.Union) { return mapType(source, t => getRestType(t, properties, symbol)); } const members = createMap(); const names = createMap(); for (const name of properties) { names.set(getTextOfPropertyName(name), true); } for (const prop of getPropertiesOfType(source)) { const inNamesToRemove = names.has(prop.name); const isPrivate = getDeclarationModifierFlagsFromSymbol(prop) & (ModifierFlags.Private | ModifierFlags.Protected); const isSetOnlyAccessor = prop.flags & SymbolFlags.SetAccessor && !(prop.flags & SymbolFlags.GetAccessor); if (!inNamesToRemove && !isPrivate && !isClassMethod(prop) && !isSetOnlyAccessor) { members.set(prop.name, prop); } } const stringIndexInfo = getIndexInfoOfType(source, IndexKind.String); const numberIndexInfo = getIndexInfoOfType(source, IndexKind.Number); return createAnonymousType(symbol, members, emptyArray, emptyArray, stringIndexInfo, numberIndexInfo); } /** Return the inferred type for a binding element */ function getTypeForBindingElement(declaration: BindingElement): Type { const pattern = declaration.parent; const parentType = getTypeForBindingElementParent(pattern.parent); // If parent has the unknown (error) type, then so does this binding element if (parentType === unknownType) { return unknownType; } // If no type was specified or inferred for parent, or if the specified or inferred type is any, // infer from the initializer of the binding element if one is present. Otherwise, go with the // undefined or any type of the parent. if (!parentType || isTypeAny(parentType)) { if (declaration.initializer) { return checkDeclarationInitializer(declaration); } return parentType; } let type: Type; if (pattern.kind === SyntaxKind.ObjectBindingPattern) { if (declaration.dotDotDotToken) { if (!isValidSpreadType(parentType)) { error(declaration, Diagnostics.Rest_types_may_only_be_created_from_object_types); return unknownType; } const literalMembers: PropertyName[] = []; for (const element of pattern.elements) { if (!(element as BindingElement).dotDotDotToken) { literalMembers.push(element.propertyName || element.name as Identifier); } } type = getRestType(parentType, literalMembers, declaration.symbol); } else { // Use explicitly specified property name ({ p: xxx } form), or otherwise the implied name ({ p } form) const name = declaration.propertyName || declaration.name; if (isComputedNonLiteralName(name)) { // computed properties with non-literal names are treated as 'any' return anyType; } if (declaration.initializer) { getContextualType(declaration.initializer); } // Use type of the specified property, or otherwise, for a numeric name, the type of the numeric index signature, // or otherwise the type of the string index signature. const text = getTextOfPropertyName(name); type = getTypeOfPropertyOfType(parentType, text) || isNumericLiteralName(text) && getIndexTypeOfType(parentType, IndexKind.Number) || getIndexTypeOfType(parentType, IndexKind.String); if (!type) { error(name, Diagnostics.Type_0_has_no_property_1_and_no_string_index_signature, typeToString(parentType), declarationNameToString(name)); return unknownType; } } } else { // This elementType will be used if the specific property corresponding to this index is not // present (aka the tuple element property). This call also checks that the parentType is in // fact an iterable or array (depending on target language). const elementType = checkIteratedTypeOrElementType(parentType, pattern, /*allowStringInput*/ false, /*allowAsyncIterable*/ false); if (declaration.dotDotDotToken) { // Rest element has an array type with the same element type as the parent type type = createArrayType(elementType); } else { // Use specific property type when parent is a tuple or numeric index type when parent is an array const propName = "" + indexOf(pattern.elements, declaration); type = isTupleLikeType(parentType) ? getTypeOfPropertyOfType(parentType, propName) : elementType; if (!type) { if (isTupleType(parentType)) { error(declaration, Diagnostics.Tuple_type_0_with_length_1_cannot_be_assigned_to_tuple_with_length_2, typeToString(parentType), getTypeReferenceArity(parentType), pattern.elements.length); } else { error(declaration, Diagnostics.Type_0_has_no_property_1, typeToString(parentType), propName); } return unknownType; } } } // In strict null checking mode, if a default value of a non-undefined type is specified, remove // undefined from the final type. if (strictNullChecks && declaration.initializer && !(getFalsyFlags(checkExpressionCached(declaration.initializer)) & TypeFlags.Undefined)) { type = getTypeWithFacts(type, TypeFacts.NEUndefined); } return declaration.initializer ? getUnionType([type, checkExpressionCached(declaration.initializer)], /*subtypeReduction*/ true) : type; } function getTypeForDeclarationFromJSDocComment(declaration: Node) { const jsdocType = getJSDocType(declaration); if (jsdocType) { return getTypeFromTypeNode(jsdocType); } return undefined; } function isNullOrUndefined(node: Expression) { const expr = skipParentheses(node); return expr.kind === SyntaxKind.NullKeyword || expr.kind === SyntaxKind.Identifier && getResolvedSymbol(expr) === undefinedSymbol; } function isEmptyArrayLiteral(node: Expression) { const expr = skipParentheses(node); return expr.kind === SyntaxKind.ArrayLiteralExpression && (expr).elements.length === 0; } function addOptionality(type: Type, optional: boolean): Type { return strictNullChecks && optional ? includeFalsyTypes(type, TypeFlags.Undefined) : type; } // Return the inferred type for a variable, parameter, or property declaration function getTypeForVariableLikeDeclaration(declaration: VariableLikeDeclaration, includeOptionality: boolean): Type { if (declaration.flags & NodeFlags.JavaScriptFile) { // If this is a variable in a JavaScript file, then use the JSDoc type (if it has // one as its type), otherwise fallback to the below standard TS codepaths to // try to figure it out. const type = getTypeForDeclarationFromJSDocComment(declaration); if (type && type !== unknownType) { return type; } } // A variable declared in a for..in statement is of type string, or of type keyof T when the // right hand expression is of a type parameter type. if (declaration.parent.parent.kind === SyntaxKind.ForInStatement) { const indexType = getIndexType(checkNonNullExpression((declaration.parent.parent).expression)); return indexType.flags & (TypeFlags.TypeParameter | TypeFlags.Index) ? indexType : stringType; } if (declaration.parent.parent.kind === SyntaxKind.ForOfStatement) { // checkRightHandSideOfForOf will return undefined if the for-of expression type was // missing properties/signatures required to get its iteratedType (like // [Symbol.iterator] or next). This may be because we accessed properties from anyType, // or it may have led to an error inside getElementTypeOfIterable. const forOfStatement = declaration.parent.parent; return checkRightHandSideOfForOf(forOfStatement.expression, forOfStatement.awaitModifier) || anyType; } if (isBindingPattern(declaration.parent)) { return getTypeForBindingElement(declaration); } // Use type from type annotation if one is present if (declaration.type) { const declaredType = getTypeFromTypeNode(declaration.type); return addOptionality(declaredType, /*optional*/ declaration.questionToken && includeOptionality); } if ((noImplicitAny || declaration.flags & NodeFlags.JavaScriptFile) && declaration.kind === SyntaxKind.VariableDeclaration && !isBindingPattern(declaration.name) && !(getCombinedModifierFlags(declaration) & ModifierFlags.Export) && !isInAmbientContext(declaration)) { // If --noImplicitAny is on or the declaration is in a Javascript file, // use control flow tracked 'any' type for non-ambient, non-exported var or let variables with no // initializer or a 'null' or 'undefined' initializer. if (!(getCombinedNodeFlags(declaration) & NodeFlags.Const) && (!declaration.initializer || isNullOrUndefined(declaration.initializer))) { return autoType; } // Use control flow tracked 'any[]' type for non-ambient, non-exported variables with an empty array // literal initializer. if (declaration.initializer && isEmptyArrayLiteral(declaration.initializer)) { return autoArrayType; } } if (declaration.kind === SyntaxKind.Parameter) { const func = declaration.parent; // For a parameter of a set accessor, use the type of the get accessor if one is present if (func.kind === SyntaxKind.SetAccessor && !hasDynamicName(func)) { const getter = getDeclarationOfKind(declaration.parent.symbol, SyntaxKind.GetAccessor); if (getter) { const getterSignature = getSignatureFromDeclaration(getter); const thisParameter = getAccessorThisParameter(func as AccessorDeclaration); if (thisParameter && declaration === thisParameter) { // Use the type from the *getter* Debug.assert(!thisParameter.type); return getTypeOfSymbol(getterSignature.thisParameter); } return getReturnTypeOfSignature(getterSignature); } } // Use contextual parameter type if one is available let type: Type; if (declaration.symbol.name === "this") { type = getContextualThisParameterType(func); } else { type = getContextuallyTypedParameterType(declaration); } if (type) { return addOptionality(type, /*optional*/ declaration.questionToken && includeOptionality); } } // Use the type of the initializer expression if one is present if (declaration.initializer) { const type = checkDeclarationInitializer(declaration); return addOptionality(type, /*optional*/ declaration.questionToken && includeOptionality); } if (isJsxAttribute(declaration)) { // if JSX attribute doesn't have initializer, by default the attribute will have boolean value of true. // I.e is sugar for return trueType; } // If it is a short-hand property assignment, use the type of the identifier if (declaration.kind === SyntaxKind.ShorthandPropertyAssignment) { return checkIdentifier(declaration.name); } // If the declaration specifies a binding pattern, use the type implied by the binding pattern if (isBindingPattern(declaration.name)) { return getTypeFromBindingPattern(declaration.name, /*includePatternInType*/ false, /*reportErrors*/ true); } // No type specified and nothing can be inferred return undefined; } function getWidenedTypeFromJSSpecialPropertyDeclarations(symbol: Symbol) { const types: Type[] = []; let definedInConstructor = false; let definedInMethod = false; let jsDocType: Type; for (const declaration of symbol.declarations) { const expression = declaration.kind === SyntaxKind.BinaryExpression ? declaration : declaration.kind === SyntaxKind.PropertyAccessExpression ? getAncestor(declaration, SyntaxKind.BinaryExpression) : undefined; if (!expression) { return unknownType; } if (isPropertyAccessExpression(expression.left) && expression.left.expression.kind === SyntaxKind.ThisKeyword) { if (getThisContainer(expression, /*includeArrowFunctions*/ false).kind === SyntaxKind.Constructor) { definedInConstructor = true; } else { definedInMethod = true; } } // If there is a JSDoc type, use it const type = getTypeForDeclarationFromJSDocComment(expression.parent); if (type) { const declarationType = getWidenedType(type); if (!jsDocType) { jsDocType = declarationType; } else if (jsDocType !== unknownType && declarationType !== unknownType && !isTypeIdenticalTo(jsDocType, declarationType)) { const name = getNameOfDeclaration(declaration); error(name, Diagnostics.Subsequent_variable_declarations_must_have_the_same_type_Variable_0_must_be_of_type_1_but_here_has_type_2, declarationNameToString(name), typeToString(jsDocType), typeToString(declarationType)); } } else if (!jsDocType) { // If we don't have an explicit JSDoc type, get the type from the expression. types.push(getWidenedLiteralType(checkExpressionCached(expression.right))); } } const type = jsDocType || getUnionType(types, /*subtypeReduction*/ true); return getWidenedType(addOptionality(type, definedInMethod && !definedInConstructor)); } // Return the type implied by a binding pattern element. This is the type of the initializer of the element if // one is present. Otherwise, if the element is itself a binding pattern, it is the type implied by the binding // pattern. Otherwise, it is the type any. function getTypeFromBindingElement(element: BindingElement, includePatternInType?: boolean, reportErrors?: boolean): Type { if (element.initializer) { return checkDeclarationInitializer(element); } if (isBindingPattern(element.name)) { return getTypeFromBindingPattern(element.name, includePatternInType, reportErrors); } if (reportErrors && noImplicitAny && !declarationBelongsToPrivateAmbientMember(element)) { reportImplicitAnyError(element, anyType); } return anyType; } // Return the type implied by an object binding pattern function getTypeFromObjectBindingPattern(pattern: ObjectBindingPattern, includePatternInType: boolean, reportErrors: boolean): Type { const members = createMap(); let stringIndexInfo: IndexInfo; let hasComputedProperties = false; forEach(pattern.elements, e => { const name = e.propertyName || e.name; if (isComputedNonLiteralName(name)) { // do not include computed properties in the implied type hasComputedProperties = true; return; } if (e.dotDotDotToken) { stringIndexInfo = createIndexInfo(anyType, /*isReadonly*/ false); return; } const text = getTextOfPropertyName(name); const flags = SymbolFlags.Property | (e.initializer ? SymbolFlags.Optional : 0); const symbol = createSymbol(flags, text); symbol.type = getTypeFromBindingElement(e, includePatternInType, reportErrors); symbol.bindingElement = e; members.set(symbol.name, symbol); }); const result = createAnonymousType(undefined, members, emptyArray, emptyArray, stringIndexInfo, undefined); if (includePatternInType) { result.pattern = pattern; } if (hasComputedProperties) { result.objectFlags |= ObjectFlags.ObjectLiteralPatternWithComputedProperties; } return result; } // Return the type implied by an array binding pattern function getTypeFromArrayBindingPattern(pattern: BindingPattern, includePatternInType: boolean, reportErrors: boolean): Type { const elements = pattern.elements; const lastElement = lastOrUndefined(elements); if (elements.length === 0 || (!isOmittedExpression(lastElement) && lastElement.dotDotDotToken)) { return languageVersion >= ScriptTarget.ES2015 ? createIterableType(anyType) : anyArrayType; } // If the pattern has at least one element, and no rest element, then it should imply a tuple type. const elementTypes = map(elements, e => isOmittedExpression(e) ? anyType : getTypeFromBindingElement(e, includePatternInType, reportErrors)); let result = createTupleType(elementTypes); if (includePatternInType) { result = cloneTypeReference(result); result.pattern = pattern; } return result; } // Return the type implied by a binding pattern. This is the type implied purely by the binding pattern itself // and without regard to its context (i.e. without regard any type annotation or initializer associated with the // declaration in which the binding pattern is contained). For example, the implied type of [x, y] is [any, any] // and the implied type of { x, y: z = 1 } is { x: any; y: number; }. The type implied by a binding pattern is // used as the contextual type of an initializer associated with the binding pattern. Also, for a destructuring // parameter with no type annotation or initializer, the type implied by the binding pattern becomes the type of // the parameter. function getTypeFromBindingPattern(pattern: BindingPattern, includePatternInType?: boolean, reportErrors?: boolean): Type { return pattern.kind === SyntaxKind.ObjectBindingPattern ? getTypeFromObjectBindingPattern(pattern, includePatternInType, reportErrors) : getTypeFromArrayBindingPattern(pattern, includePatternInType, reportErrors); } // Return the type associated with a variable, parameter, or property declaration. In the simple case this is the type // specified in a type annotation or inferred from an initializer. However, in the case of a destructuring declaration it // is a bit more involved. For example: // // var [x, s = ""] = [1, "one"]; // // Here, the array literal [1, "one"] is contextually typed by the type [any, string], which is the implied type of the // binding pattern [x, s = ""]. Because the contextual type is a tuple type, the resulting type of [1, "one"] is the // tuple type [number, string]. Thus, the type inferred for 'x' is number and the type inferred for 's' is string. function getWidenedTypeForVariableLikeDeclaration(declaration: VariableLikeDeclaration, reportErrors?: boolean): Type { let type = getTypeForVariableLikeDeclaration(declaration, /*includeOptionality*/ true); if (type) { if (reportErrors) { reportErrorsFromWidening(declaration, type); } // During a normal type check we'll never get to here with a property assignment (the check of the containing // object literal uses a different path). We exclude widening only so that language services and type verification // tools see the actual type. if (declaration.kind === SyntaxKind.PropertyAssignment) { return type; } return getWidenedType(type); } // Rest parameters default to type any[], other parameters default to type any type = declaration.dotDotDotToken ? anyArrayType : anyType; // Report implicit any errors unless this is a private property within an ambient declaration if (reportErrors && noImplicitAny) { if (!declarationBelongsToPrivateAmbientMember(declaration)) { reportImplicitAnyError(declaration, type); } } return type; } function declarationBelongsToPrivateAmbientMember(declaration: VariableLikeDeclaration) { const root = getRootDeclaration(declaration); const memberDeclaration = root.kind === SyntaxKind.Parameter ? root.parent : root; return isPrivateWithinAmbient(memberDeclaration); } function getTypeOfVariableOrParameterOrProperty(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.type) { // Handle prototype property if (symbol.flags & SymbolFlags.Prototype) { return links.type = getTypeOfPrototypeProperty(symbol); } // Handle catch clause variables const declaration = symbol.valueDeclaration; if (isCatchClauseVariableDeclarationOrBindingElement(declaration)) { return links.type = anyType; } // Handle export default expressions if (declaration.kind === SyntaxKind.ExportAssignment) { return links.type = checkExpression((declaration).expression); } if (declaration.flags & NodeFlags.JavaScriptFile && declaration.kind === SyntaxKind.JSDocPropertyTag && (declaration).typeExpression) { return links.type = getTypeFromTypeNode((declaration).typeExpression.type); } // Handle variable, parameter or property if (!pushTypeResolution(symbol, TypeSystemPropertyName.Type)) { return unknownType; } let type: Type; // Handle certain special assignment kinds, which happen to union across multiple declarations: // * module.exports = expr // * exports.p = expr // * this.p = expr // * className.prototype.method = expr if (declaration.kind === SyntaxKind.BinaryExpression || declaration.kind === SyntaxKind.PropertyAccessExpression && declaration.parent.kind === SyntaxKind.BinaryExpression) { type = getWidenedTypeFromJSSpecialPropertyDeclarations(symbol); } else { type = getWidenedTypeForVariableLikeDeclaration(declaration, /*reportErrors*/ true); } if (!popTypeResolution()) { type = reportCircularityError(symbol); } links.type = type; } return links.type; } function getAnnotatedAccessorType(accessor: AccessorDeclaration): Type { if (accessor) { if (accessor.kind === SyntaxKind.GetAccessor) { return accessor.type && getTypeFromTypeNode(accessor.type); } else { const setterTypeAnnotation = getSetAccessorTypeAnnotationNode(accessor); return setterTypeAnnotation && getTypeFromTypeNode(setterTypeAnnotation); } } return undefined; } function getAnnotatedAccessorThisParameter(accessor: AccessorDeclaration): Symbol | undefined { const parameter = getAccessorThisParameter(accessor); return parameter && parameter.symbol; } function getThisTypeOfDeclaration(declaration: SignatureDeclaration): Type | undefined { return getThisTypeOfSignature(getSignatureFromDeclaration(declaration)); } function getTypeOfAccessors(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.type) { const getter = getDeclarationOfKind(symbol, SyntaxKind.GetAccessor); const setter = getDeclarationOfKind(symbol, SyntaxKind.SetAccessor); if (getter && getter.flags & NodeFlags.JavaScriptFile) { const jsDocType = getTypeForDeclarationFromJSDocComment(getter); if (jsDocType) { return links.type = jsDocType; } } if (!pushTypeResolution(symbol, TypeSystemPropertyName.Type)) { return unknownType; } let type: Type; // First try to see if the user specified a return type on the get-accessor. const getterReturnType = getAnnotatedAccessorType(getter); if (getterReturnType) { type = getterReturnType; } else { // If the user didn't specify a return type, try to use the set-accessor's parameter type. const setterParameterType = getAnnotatedAccessorType(setter); if (setterParameterType) { type = setterParameterType; } else { // If there are no specified types, try to infer it from the body of the get accessor if it exists. if (getter && getter.body) { type = getReturnTypeFromBody(getter); } // Otherwise, fall back to 'any'. else { if (noImplicitAny) { if (setter) { error(setter, Diagnostics.Property_0_implicitly_has_type_any_because_its_set_accessor_lacks_a_parameter_type_annotation, symbolToString(symbol)); } else { Debug.assert(!!getter, "there must existed getter as we are current checking either setter or getter in this function"); error(getter, Diagnostics.Property_0_implicitly_has_type_any_because_its_get_accessor_lacks_a_return_type_annotation, symbolToString(symbol)); } } type = anyType; } } } if (!popTypeResolution()) { type = anyType; if (noImplicitAny) { const getter = getDeclarationOfKind(symbol, SyntaxKind.GetAccessor); error(getter, Diagnostics._0_implicitly_has_return_type_any_because_it_does_not_have_a_return_type_annotation_and_is_referenced_directly_or_indirectly_in_one_of_its_return_expressions, symbolToString(symbol)); } } links.type = type; } return links.type; } function getBaseTypeVariableOfClass(symbol: Symbol) { const baseConstructorType = getBaseConstructorTypeOfClass(getDeclaredTypeOfClassOrInterface(symbol)); return baseConstructorType.flags & TypeFlags.TypeVariable ? baseConstructorType : undefined; } function getTypeOfFuncClassEnumModule(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.type) { if (symbol.flags & SymbolFlags.Module && isShorthandAmbientModuleSymbol(symbol)) { links.type = anyType; } else { const type = createObjectType(ObjectFlags.Anonymous, symbol); if (symbol.flags & SymbolFlags.Class) { const baseTypeVariable = getBaseTypeVariableOfClass(symbol); links.type = baseTypeVariable ? getIntersectionType([type, baseTypeVariable]) : type; } else { links.type = strictNullChecks && symbol.flags & SymbolFlags.Optional ? includeFalsyTypes(type, TypeFlags.Undefined) : type; } } } return links.type; } function getTypeOfEnumMember(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.type) { links.type = getDeclaredTypeOfEnumMember(symbol); } return links.type; } function getTypeOfAlias(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.type) { const targetSymbol = resolveAlias(symbol); // It only makes sense to get the type of a value symbol. If the result of resolving // the alias is not a value, then it has no type. To get the type associated with a // type symbol, call getDeclaredTypeOfSymbol. // This check is important because without it, a call to getTypeOfSymbol could end // up recursively calling getTypeOfAlias, causing a stack overflow. links.type = targetSymbol.flags & SymbolFlags.Value ? getTypeOfSymbol(targetSymbol) : unknownType; } return links.type; } function getTypeOfInstantiatedSymbol(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.type) { if (symbolInstantiationDepth === 100) { error(symbol.valueDeclaration, Diagnostics.Generic_type_instantiation_is_excessively_deep_and_possibly_infinite); links.type = unknownType; } else { if (!pushTypeResolution(symbol, TypeSystemPropertyName.Type)) { return unknownType; } symbolInstantiationDepth++; let type = instantiateType(getTypeOfSymbol(links.target), links.mapper); symbolInstantiationDepth--; if (!popTypeResolution()) { type = reportCircularityError(symbol); } links.type = type; } } return links.type; } function reportCircularityError(symbol: Symbol) { // Check if variable has type annotation that circularly references the variable itself if ((symbol.valueDeclaration).type) { error(symbol.valueDeclaration, Diagnostics._0_is_referenced_directly_or_indirectly_in_its_own_type_annotation, symbolToString(symbol)); return unknownType; } // Otherwise variable has initializer that circularly references the variable itself if (noImplicitAny) { error(symbol.valueDeclaration, Diagnostics._0_implicitly_has_type_any_because_it_does_not_have_a_type_annotation_and_is_referenced_directly_or_indirectly_in_its_own_initializer, symbolToString(symbol)); } return anyType; } function getTypeOfSymbol(symbol: Symbol): Type { if (getCheckFlags(symbol) & CheckFlags.Instantiated) { return getTypeOfInstantiatedSymbol(symbol); } if (symbol.flags & (SymbolFlags.Variable | SymbolFlags.Property)) { return getTypeOfVariableOrParameterOrProperty(symbol); } if (symbol.flags & (SymbolFlags.Function | SymbolFlags.Method | SymbolFlags.Class | SymbolFlags.Enum | SymbolFlags.ValueModule)) { return getTypeOfFuncClassEnumModule(symbol); } if (symbol.flags & SymbolFlags.EnumMember) { return getTypeOfEnumMember(symbol); } if (symbol.flags & SymbolFlags.Accessor) { return getTypeOfAccessors(symbol); } if (symbol.flags & SymbolFlags.Alias) { return getTypeOfAlias(symbol); } return unknownType; } function isReferenceToType(type: Type, target: Type) { return type !== undefined && target !== undefined && (getObjectFlags(type) & ObjectFlags.Reference) !== 0 && (type).target === target; } function getTargetType(type: Type): Type { return getObjectFlags(type) & ObjectFlags.Reference ? (type).target : type; } function hasBaseType(type: Type, checkBase: Type) { return check(type); function check(type: Type): boolean { if (getObjectFlags(type) & (ObjectFlags.ClassOrInterface | ObjectFlags.Reference)) { const target = getTargetType(type); return target === checkBase || forEach(getBaseTypes(target), check); } else if (type.flags & TypeFlags.Intersection) { return forEach((type).types, check); } } } // Appends the type parameters given by a list of declarations to a set of type parameters and returns the resulting set. // The function allocates a new array if the input type parameter set is undefined, but otherwise it modifies the set // in-place and returns the same array. function appendTypeParameters(typeParameters: TypeParameter[], declarations: TypeParameterDeclaration[]): TypeParameter[] { for (const declaration of declarations) { const tp = getDeclaredTypeOfTypeParameter(getSymbolOfNode(declaration)); if (!typeParameters) { typeParameters = [tp]; } else if (!contains(typeParameters, tp)) { typeParameters.push(tp); } } return typeParameters; } // Appends the outer type parameters of a node to a set of type parameters and returns the resulting set. The function // allocates a new array if the input type parameter set is undefined, but otherwise it modifies the set in-place and // returns the same array. function appendOuterTypeParameters(typeParameters: TypeParameter[], node: Node): TypeParameter[] { while (true) { node = node.parent; if (!node) { return typeParameters; } if (node.kind === SyntaxKind.ClassDeclaration || node.kind === SyntaxKind.ClassExpression || node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.FunctionExpression || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.ArrowFunction) { const declarations = (node).typeParameters; if (declarations) { return appendTypeParameters(appendOuterTypeParameters(typeParameters, node), declarations); } } } } // The outer type parameters are those defined by enclosing generic classes, methods, or functions. function getOuterTypeParametersOfClassOrInterface(symbol: Symbol): TypeParameter[] { const declaration = symbol.flags & SymbolFlags.Class ? symbol.valueDeclaration : getDeclarationOfKind(symbol, SyntaxKind.InterfaceDeclaration); return appendOuterTypeParameters(/*typeParameters*/ undefined, declaration); } // The local type parameters are the combined set of type parameters from all declarations of the class, // interface, or type alias. function getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol: Symbol): TypeParameter[] { let result: TypeParameter[]; for (const node of symbol.declarations) { if (node.kind === SyntaxKind.InterfaceDeclaration || node.kind === SyntaxKind.ClassDeclaration || node.kind === SyntaxKind.ClassExpression || node.kind === SyntaxKind.TypeAliasDeclaration) { const declaration = node; if (declaration.typeParameters) { result = appendTypeParameters(result, declaration.typeParameters); } } } return result; } // The full set of type parameters for a generic class or interface type consists of its outer type parameters plus // its locally declared type parameters. function getTypeParametersOfClassOrInterface(symbol: Symbol): TypeParameter[] { return concatenate(getOuterTypeParametersOfClassOrInterface(symbol), getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol)); } // A type is a mixin constructor if it has a single construct signature taking no type parameters and a single // rest parameter of type any[]. function isMixinConstructorType(type: Type) { const signatures = getSignaturesOfType(type, SignatureKind.Construct); if (signatures.length === 1) { const s = signatures[0]; return !s.typeParameters && s.parameters.length === 1 && s.hasRestParameter && getTypeOfParameter(s.parameters[0]) === anyArrayType; } return false; } function isConstructorType(type: Type): boolean { if (isValidBaseType(type) && getSignaturesOfType(type, SignatureKind.Construct).length > 0) { return true; } if (type.flags & TypeFlags.TypeVariable) { const constraint = getBaseConstraintOfType(type); return constraint && isValidBaseType(constraint) && isMixinConstructorType(constraint); } return false; } function getBaseTypeNodeOfClass(type: InterfaceType): ExpressionWithTypeArguments { return getClassExtendsHeritageClauseElement(type.symbol.valueDeclaration); } function getConstructorsForTypeArguments(type: Type, typeArgumentNodes: TypeNode[], location: Node): Signature[] { const typeArgCount = length(typeArgumentNodes); const isJavaScript = isInJavaScriptFile(location); return filter(getSignaturesOfType(type, SignatureKind.Construct), sig => (isJavaScript || typeArgCount >= getMinTypeArgumentCount(sig.typeParameters)) && typeArgCount <= length(sig.typeParameters)); } function getInstantiatedConstructorsForTypeArguments(type: Type, typeArgumentNodes: TypeNode[], location: Node): Signature[] { let signatures = getConstructorsForTypeArguments(type, typeArgumentNodes, location); if (typeArgumentNodes) { const typeArguments = map(typeArgumentNodes, getTypeFromTypeNode); signatures = map(signatures, sig => getSignatureInstantiation(sig, typeArguments)); } return signatures; } /** * The base constructor of a class can resolve to * * undefinedType if the class has no extends clause, * * unknownType if an error occurred during resolution of the extends expression, * * nullType if the extends expression is the null value, * * anyType if the extends expression has type any, or * * an object type with at least one construct signature. */ function getBaseConstructorTypeOfClass(type: InterfaceType): Type { if (!type.resolvedBaseConstructorType) { const baseTypeNode = getBaseTypeNodeOfClass(type); if (!baseTypeNode) { return type.resolvedBaseConstructorType = undefinedType; } if (!pushTypeResolution(type, TypeSystemPropertyName.ResolvedBaseConstructorType)) { return unknownType; } const baseConstructorType = checkExpression(baseTypeNode.expression); if (baseConstructorType.flags & (TypeFlags.Object | TypeFlags.Intersection)) { // Resolving the members of a class requires us to resolve the base class of that class. // We force resolution here such that we catch circularities now. resolveStructuredTypeMembers(baseConstructorType); } if (!popTypeResolution()) { error(type.symbol.valueDeclaration, Diagnostics._0_is_referenced_directly_or_indirectly_in_its_own_base_expression, symbolToString(type.symbol)); return type.resolvedBaseConstructorType = unknownType; } if (!(baseConstructorType.flags & TypeFlags.Any) && baseConstructorType !== nullWideningType && !isConstructorType(baseConstructorType)) { error(baseTypeNode.expression, Diagnostics.Type_0_is_not_a_constructor_function_type, typeToString(baseConstructorType)); return type.resolvedBaseConstructorType = unknownType; } type.resolvedBaseConstructorType = baseConstructorType; } return type.resolvedBaseConstructorType; } function getBaseTypes(type: InterfaceType): BaseType[] { if (!type.resolvedBaseTypes) { if (type.objectFlags & ObjectFlags.Tuple) { type.resolvedBaseTypes = [createArrayType(getUnionType(type.typeParameters))]; } else if (type.symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface)) { if (type.symbol.flags & SymbolFlags.Class) { resolveBaseTypesOfClass(type); } if (type.symbol.flags & SymbolFlags.Interface) { resolveBaseTypesOfInterface(type); } } else { Debug.fail("type must be class or interface"); } } return type.resolvedBaseTypes; } function resolveBaseTypesOfClass(type: InterfaceType): void { type.resolvedBaseTypes = type.resolvedBaseTypes || emptyArray; const baseConstructorType = getApparentType(getBaseConstructorTypeOfClass(type)); if (!(baseConstructorType.flags & (TypeFlags.Object | TypeFlags.Intersection | TypeFlags.Any))) { return; } const baseTypeNode = getBaseTypeNodeOfClass(type); let baseType: Type; const originalBaseType = baseConstructorType && baseConstructorType.symbol ? getDeclaredTypeOfSymbol(baseConstructorType.symbol) : undefined; if (baseConstructorType.symbol && baseConstructorType.symbol.flags & SymbolFlags.Class && areAllOuterTypeParametersApplied(originalBaseType)) { // When base constructor type is a class with no captured type arguments we know that the constructors all have the same type parameters as the // class and all return the instance type of the class. There is no need for further checks and we can apply the // type arguments in the same manner as a type reference to get the same error reporting experience. baseType = getTypeFromClassOrInterfaceReference(baseTypeNode, baseConstructorType.symbol, typeArgumentsFromTypeReferenceNode(baseTypeNode)); } else if (baseConstructorType.flags & TypeFlags.Any) { baseType = baseConstructorType; } else { // The class derives from a "class-like" constructor function, check that we have at least one construct signature // with a matching number of type parameters and use the return type of the first instantiated signature. Elsewhere // we check that all instantiated signatures return the same type. const constructors = getInstantiatedConstructorsForTypeArguments(baseConstructorType, baseTypeNode.typeArguments, baseTypeNode); if (!constructors.length) { error(baseTypeNode.expression, Diagnostics.No_base_constructor_has_the_specified_number_of_type_arguments); return; } baseType = getReturnTypeOfSignature(constructors[0]); } // In a JS file, you can use the @augments jsdoc tag to specify a base type with type parameters const valueDecl = type.symbol.valueDeclaration; if (valueDecl && isInJavaScriptFile(valueDecl)) { const augTag = getJSDocAugmentsTag(type.symbol.valueDeclaration); if (augTag) { baseType = getTypeFromTypeNode(augTag.typeExpression.type); } } if (baseType === unknownType) { return; } if (!isValidBaseType(baseType)) { error(baseTypeNode.expression, Diagnostics.Base_constructor_return_type_0_is_not_a_class_or_interface_type, typeToString(baseType)); return; } if (type === baseType || hasBaseType(baseType, type)) { error(valueDecl, Diagnostics.Type_0_recursively_references_itself_as_a_base_type, typeToString(type, /*enclosingDeclaration*/ undefined, TypeFormatFlags.WriteArrayAsGenericType)); return; } if (type.resolvedBaseTypes === emptyArray) { type.resolvedBaseTypes = [baseType]; } else { type.resolvedBaseTypes.push(baseType); } } function areAllOuterTypeParametersApplied(type: Type): boolean { // An unapplied type parameter has its symbol still the same as the matching argument symbol. // Since parameters are applied outer-to-inner, only the last outer parameter needs to be checked. const outerTypeParameters = (type).outerTypeParameters; if (outerTypeParameters) { const last = outerTypeParameters.length - 1; const typeArguments = (type).typeArguments; return outerTypeParameters[last].symbol !== typeArguments[last].symbol; } return true; } // A valid base type is `any`, any non-generic object type or intersection of non-generic // object types. function isValidBaseType(type: Type): boolean { return type.flags & (TypeFlags.Object | TypeFlags.NonPrimitive | TypeFlags.Any) && !isGenericMappedType(type) || type.flags & TypeFlags.Intersection && !forEach((type).types, t => !isValidBaseType(t)); } function resolveBaseTypesOfInterface(type: InterfaceType): void { type.resolvedBaseTypes = type.resolvedBaseTypes || emptyArray; for (const declaration of type.symbol.declarations) { if (declaration.kind === SyntaxKind.InterfaceDeclaration && getInterfaceBaseTypeNodes(declaration)) { for (const node of getInterfaceBaseTypeNodes(declaration)) { const baseType = getTypeFromTypeNode(node); if (baseType !== unknownType) { if (isValidBaseType(baseType)) { if (type !== baseType && !hasBaseType(baseType, type)) { if (type.resolvedBaseTypes === emptyArray) { type.resolvedBaseTypes = [baseType]; } else { type.resolvedBaseTypes.push(baseType); } } else { error(declaration, Diagnostics.Type_0_recursively_references_itself_as_a_base_type, typeToString(type, /*enclosingDeclaration*/ undefined, TypeFormatFlags.WriteArrayAsGenericType)); } } else { error(node, Diagnostics.An_interface_may_only_extend_a_class_or_another_interface); } } } } } } // Returns true if the interface given by the symbol is free of "this" references. Specifically, the result is // true if the interface itself contains no references to "this" in its body, if all base types are interfaces, // and if none of the base interfaces have a "this" type. function isIndependentInterface(symbol: Symbol): boolean { for (const declaration of symbol.declarations) { if (declaration.kind === SyntaxKind.InterfaceDeclaration) { if (declaration.flags & NodeFlags.ContainsThis) { return false; } const baseTypeNodes = getInterfaceBaseTypeNodes(declaration); if (baseTypeNodes) { for (const node of baseTypeNodes) { if (isEntityNameExpression(node.expression)) { const baseSymbol = resolveEntityName(node.expression, SymbolFlags.Type, /*ignoreErrors*/ true); if (!baseSymbol || !(baseSymbol.flags & SymbolFlags.Interface) || getDeclaredTypeOfClassOrInterface(baseSymbol).thisType) { return false; } } } } } } return true; } function getDeclaredTypeOfClassOrInterface(symbol: Symbol): InterfaceType { const links = getSymbolLinks(symbol); if (!links.declaredType) { const kind = symbol.flags & SymbolFlags.Class ? ObjectFlags.Class : ObjectFlags.Interface; const type = links.declaredType = createObjectType(kind, symbol); const outerTypeParameters = getOuterTypeParametersOfClassOrInterface(symbol); const localTypeParameters = getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol); // A class or interface is generic if it has type parameters or a "this" type. We always give classes a "this" type // because it is not feasible to analyze all members to determine if the "this" type escapes the class (in particular, // property types inferred from initializers and method return types inferred from return statements are very hard // to exhaustively analyze). We give interfaces a "this" type if we can't definitely determine that they are free of // "this" references. if (outerTypeParameters || localTypeParameters || kind === ObjectFlags.Class || !isIndependentInterface(symbol)) { type.objectFlags |= ObjectFlags.Reference; type.typeParameters = concatenate(outerTypeParameters, localTypeParameters); type.outerTypeParameters = outerTypeParameters; type.localTypeParameters = localTypeParameters; (type).instantiations = createMap(); (type).instantiations.set(getTypeListId(type.typeParameters), type); (type).target = type; (type).typeArguments = type.typeParameters; type.thisType = createType(TypeFlags.TypeParameter); type.thisType.isThisType = true; type.thisType.symbol = symbol; type.thisType.constraint = type; } } return links.declaredType; } function getDeclaredTypeOfTypeAlias(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.declaredType) { // Note that we use the links object as the target here because the symbol object is used as the unique // identity for resolution of the 'type' property in SymbolLinks. if (!pushTypeResolution(symbol, TypeSystemPropertyName.DeclaredType)) { return unknownType; } let declaration: JSDocTypedefTag | TypeAliasDeclaration = getDeclarationOfKind(symbol, SyntaxKind.JSDocTypedefTag); let type: Type; if (declaration) { if (declaration.jsDocTypeLiteral) { type = getTypeFromTypeNode(declaration.jsDocTypeLiteral); } else { type = getTypeFromTypeNode(declaration.typeExpression.type); } } else { declaration = getDeclarationOfKind(symbol, SyntaxKind.TypeAliasDeclaration); type = getTypeFromTypeNode(declaration.type); } if (popTypeResolution()) { const typeParameters = getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol); if (typeParameters) { // Initialize the instantiation cache for generic type aliases. The declared type corresponds to // an instantiation of the type alias with the type parameters supplied as type arguments. links.typeParameters = typeParameters; links.instantiations = createMap(); links.instantiations.set(getTypeListId(typeParameters), type); } } else { type = unknownType; error(declaration.name, Diagnostics.Type_alias_0_circularly_references_itself, symbolToString(symbol)); } links.declaredType = type; } return links.declaredType; } function isLiteralEnumMember(symbol: Symbol, member: EnumMember) { const expr = member.initializer; if (!expr) { return !isInAmbientContext(member); } return expr.kind === SyntaxKind.NumericLiteral || expr.kind === SyntaxKind.PrefixUnaryExpression && (expr).operator === SyntaxKind.MinusToken && (expr).operand.kind === SyntaxKind.NumericLiteral || expr.kind === SyntaxKind.Identifier && !!symbol.exports.get((expr).text); } function enumHasLiteralMembers(symbol: Symbol) { for (const declaration of symbol.declarations) { if (declaration.kind === SyntaxKind.EnumDeclaration) { for (const member of (declaration).members) { if (!isLiteralEnumMember(symbol, member)) { return false; } } } } return true; } function createEnumLiteralType(symbol: Symbol, baseType: EnumType, text: string) { const type = createType(TypeFlags.EnumLiteral); type.symbol = symbol; type.baseType = baseType; type.text = text; return type; } function getDeclaredTypeOfEnum(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.declaredType) { const enumType = links.declaredType = createType(TypeFlags.Enum); enumType.symbol = symbol; if (enumHasLiteralMembers(symbol)) { const memberTypeList: Type[] = []; const memberTypes: EnumLiteralType[] = []; for (const declaration of enumType.symbol.declarations) { if (declaration.kind === SyntaxKind.EnumDeclaration) { computeEnumMemberValues(declaration); for (const member of (declaration).members) { const memberSymbol = getSymbolOfNode(member); const value = getEnumMemberValue(member); if (!memberTypes[value]) { const memberType = memberTypes[value] = createEnumLiteralType(memberSymbol, enumType, "" + value); memberTypeList.push(memberType); } } } } enumType.memberTypes = memberTypes; if (memberTypeList.length > 1) { enumType.flags |= TypeFlags.Union; (enumType).types = memberTypeList; unionTypes.set(getTypeListId(memberTypeList), enumType); } } } return links.declaredType; } function getDeclaredTypeOfEnumMember(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.declaredType) { const enumType = getDeclaredTypeOfEnum(getParentOfSymbol(symbol)); links.declaredType = enumType.flags & TypeFlags.Union ? enumType.memberTypes[getEnumMemberValue(symbol.valueDeclaration)] : enumType; } return links.declaredType; } function getDeclaredTypeOfTypeParameter(symbol: Symbol): TypeParameter { const links = getSymbolLinks(symbol); if (!links.declaredType) { const type = createType(TypeFlags.TypeParameter); type.symbol = symbol; links.declaredType = type; } return links.declaredType; } function getDeclaredTypeOfAlias(symbol: Symbol): Type { const links = getSymbolLinks(symbol); if (!links.declaredType) { links.declaredType = getDeclaredTypeOfSymbol(resolveAlias(symbol)); } return links.declaredType; } function getDeclaredTypeOfSymbol(symbol: Symbol): Type { if (symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface)) { return getDeclaredTypeOfClassOrInterface(symbol); } if (symbol.flags & SymbolFlags.TypeAlias) { return getDeclaredTypeOfTypeAlias(symbol); } if (symbol.flags & SymbolFlags.TypeParameter) { return getDeclaredTypeOfTypeParameter(symbol); } if (symbol.flags & SymbolFlags.Enum) { return getDeclaredTypeOfEnum(symbol); } if (symbol.flags & SymbolFlags.EnumMember) { return getDeclaredTypeOfEnumMember(symbol); } if (symbol.flags & SymbolFlags.Alias) { return getDeclaredTypeOfAlias(symbol); } return unknownType; } // A type reference is considered independent if each type argument is considered independent. function isIndependentTypeReference(node: TypeReferenceNode): boolean { if (node.typeArguments) { for (const typeNode of node.typeArguments) { if (!isIndependentType(typeNode)) { return false; } } } return true; } // A type is considered independent if it the any, string, number, boolean, symbol, or void keyword, a string // literal type, an array with an element type that is considered independent, or a type reference that is // considered independent. function isIndependentType(node: TypeNode): boolean { switch (node.kind) { case SyntaxKind.AnyKeyword: case SyntaxKind.StringKeyword: case SyntaxKind.NumberKeyword: case SyntaxKind.BooleanKeyword: case SyntaxKind.SymbolKeyword: case SyntaxKind.ObjectKeyword: case SyntaxKind.VoidKeyword: case SyntaxKind.UndefinedKeyword: case SyntaxKind.NullKeyword: case SyntaxKind.NeverKeyword: case SyntaxKind.LiteralType: return true; case SyntaxKind.ArrayType: return isIndependentType((node).elementType); case SyntaxKind.TypeReference: return isIndependentTypeReference(node); } return false; } // A variable-like declaration is considered independent (free of this references) if it has a type annotation // that specifies an independent type, or if it has no type annotation and no initializer (and thus of type any). function isIndependentVariableLikeDeclaration(node: VariableLikeDeclaration): boolean { return node.type && isIndependentType(node.type) || !node.type && !node.initializer; } // A function-like declaration is considered independent (free of this references) if it has a return type // annotation that is considered independent and if each parameter is considered independent. function isIndependentFunctionLikeDeclaration(node: FunctionLikeDeclaration): boolean { if (node.kind !== SyntaxKind.Constructor && (!node.type || !isIndependentType(node.type))) { return false; } for (const parameter of node.parameters) { if (!isIndependentVariableLikeDeclaration(parameter)) { return false; } } return true; } // Returns true if the class or interface member given by the symbol is free of "this" references. The // function may return false for symbols that are actually free of "this" references because it is not // feasible to perform a complete analysis in all cases. In particular, property members with types // inferred from their initializers and function members with inferred return types are conservatively // assumed not to be free of "this" references. function isIndependentMember(symbol: Symbol): boolean { if (symbol.declarations && symbol.declarations.length === 1) { const declaration = symbol.declarations[0]; if (declaration) { switch (declaration.kind) { case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: return isIndependentVariableLikeDeclaration(declaration); case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.Constructor: return isIndependentFunctionLikeDeclaration(declaration); } } } return false; } function createSymbolTable(symbols: Symbol[]): SymbolTable { const result = createMap(); for (const symbol of symbols) { result.set(symbol.name, symbol); } return result; } // The mappingThisOnly flag indicates that the only type parameter being mapped is "this". When the flag is true, // we check symbols to see if we can quickly conclude they are free of "this" references, thus needing no instantiation. function createInstantiatedSymbolTable(symbols: Symbol[], mapper: TypeMapper, mappingThisOnly: boolean): SymbolTable { const result = createMap(); for (const symbol of symbols) { result.set(symbol.name, mappingThisOnly && isIndependentMember(symbol) ? symbol : instantiateSymbol(symbol, mapper)); } return result; } function addInheritedMembers(symbols: SymbolTable, baseSymbols: Symbol[]) { for (const s of baseSymbols) { if (!symbols.has(s.name)) { symbols.set(s.name, s); } } } function resolveDeclaredMembers(type: InterfaceType): InterfaceTypeWithDeclaredMembers { if (!(type).declaredProperties) { const symbol = type.symbol; (type).declaredProperties = getNamedMembers(symbol.members); (type).declaredCallSignatures = getSignaturesOfSymbol(symbol.members.get("__call")); (type).declaredConstructSignatures = getSignaturesOfSymbol(symbol.members.get("__new")); (type).declaredStringIndexInfo = getIndexInfoOfSymbol(symbol, IndexKind.String); (type).declaredNumberIndexInfo = getIndexInfoOfSymbol(symbol, IndexKind.Number); } return type; } function getTypeWithThisArgument(type: Type, thisArgument?: Type): Type { if (getObjectFlags(type) & ObjectFlags.Reference) { const target = (type).target; const typeArguments = (type).typeArguments; if (length(target.typeParameters) === length(typeArguments)) { return createTypeReference(target, concatenate(typeArguments, [thisArgument || target.thisType])); } } else if (type.flags & TypeFlags.Intersection) { return getIntersectionType(map((type).types, t => getTypeWithThisArgument(t, thisArgument))); } return type; } function resolveObjectTypeMembers(type: ObjectType, source: InterfaceTypeWithDeclaredMembers, typeParameters: TypeParameter[], typeArguments: Type[]) { let mapper: TypeMapper; let members: SymbolTable; let callSignatures: Signature[]; let constructSignatures: Signature[]; let stringIndexInfo: IndexInfo; let numberIndexInfo: IndexInfo; if (rangeEquals(typeParameters, typeArguments, 0, typeParameters.length)) { mapper = identityMapper; members = source.symbol ? source.symbol.members : createSymbolTable(source.declaredProperties); callSignatures = source.declaredCallSignatures; constructSignatures = source.declaredConstructSignatures; stringIndexInfo = source.declaredStringIndexInfo; numberIndexInfo = source.declaredNumberIndexInfo; } else { mapper = createTypeMapper(typeParameters, typeArguments); members = createInstantiatedSymbolTable(source.declaredProperties, mapper, /*mappingThisOnly*/ typeParameters.length === 1); callSignatures = instantiateSignatures(source.declaredCallSignatures, mapper); constructSignatures = instantiateSignatures(source.declaredConstructSignatures, mapper); stringIndexInfo = instantiateIndexInfo(source.declaredStringIndexInfo, mapper); numberIndexInfo = instantiateIndexInfo(source.declaredNumberIndexInfo, mapper); } const baseTypes = getBaseTypes(source); if (baseTypes.length) { if (source.symbol && members === source.symbol.members) { members = createSymbolTable(source.declaredProperties); } const thisArgument = lastOrUndefined(typeArguments); for (const baseType of baseTypes) { const instantiatedBaseType = thisArgument ? getTypeWithThisArgument(instantiateType(baseType, mapper), thisArgument) : baseType; addInheritedMembers(members, getPropertiesOfType(instantiatedBaseType)); callSignatures = concatenate(callSignatures, getSignaturesOfType(instantiatedBaseType, SignatureKind.Call)); constructSignatures = concatenate(constructSignatures, getSignaturesOfType(instantiatedBaseType, SignatureKind.Construct)); if (!stringIndexInfo) { stringIndexInfo = instantiatedBaseType === anyType ? createIndexInfo(anyType, /*isReadonly*/ false) : getIndexInfoOfType(instantiatedBaseType, IndexKind.String); } numberIndexInfo = numberIndexInfo || getIndexInfoOfType(instantiatedBaseType, IndexKind.Number); } } setStructuredTypeMembers(type, members, callSignatures, constructSignatures, stringIndexInfo, numberIndexInfo); } function resolveClassOrInterfaceMembers(type: InterfaceType): void { resolveObjectTypeMembers(type, resolveDeclaredMembers(type), emptyArray, emptyArray); } function resolveTypeReferenceMembers(type: TypeReference): void { const source = resolveDeclaredMembers(type.target); const typeParameters = concatenate(source.typeParameters, [source.thisType]); const typeArguments = type.typeArguments && type.typeArguments.length === typeParameters.length ? type.typeArguments : concatenate(type.typeArguments, [type]); resolveObjectTypeMembers(type, source, typeParameters, typeArguments); } function createSignature(declaration: SignatureDeclaration, typeParameters: TypeParameter[], thisParameter: Symbol | undefined, parameters: Symbol[], resolvedReturnType: Type, typePredicate: TypePredicate, minArgumentCount: number, hasRestParameter: boolean, hasLiteralTypes: boolean): Signature { const sig = new Signature(checker); sig.declaration = declaration; sig.typeParameters = typeParameters; sig.parameters = parameters; sig.thisParameter = thisParameter; sig.resolvedReturnType = resolvedReturnType; sig.typePredicate = typePredicate; sig.minArgumentCount = minArgumentCount; sig.hasRestParameter = hasRestParameter; sig.hasLiteralTypes = hasLiteralTypes; return sig; } function cloneSignature(sig: Signature): Signature { return createSignature(sig.declaration, sig.typeParameters, sig.thisParameter, sig.parameters, sig.resolvedReturnType, sig.typePredicate, sig.minArgumentCount, sig.hasRestParameter, sig.hasLiteralTypes); } function getDefaultConstructSignatures(classType: InterfaceType): Signature[] { const baseConstructorType = getBaseConstructorTypeOfClass(classType); const baseSignatures = getSignaturesOfType(baseConstructorType, SignatureKind.Construct); if (baseSignatures.length === 0) { return [createSignature(undefined, classType.localTypeParameters, undefined, emptyArray, classType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false)]; } const baseTypeNode = getBaseTypeNodeOfClass(classType); const isJavaScript = isInJavaScriptFile(baseTypeNode); const typeArguments = typeArgumentsFromTypeReferenceNode(baseTypeNode); const typeArgCount = length(typeArguments); const result: Signature[] = []; for (const baseSig of baseSignatures) { const minTypeArgumentCount = getMinTypeArgumentCount(baseSig.typeParameters); const typeParamCount = length(baseSig.typeParameters); if ((isJavaScript || typeArgCount >= minTypeArgumentCount) && typeArgCount <= typeParamCount) { const sig = typeParamCount ? createSignatureInstantiation(baseSig, fillMissingTypeArguments(typeArguments, baseSig.typeParameters, minTypeArgumentCount, baseTypeNode)) : cloneSignature(baseSig); sig.typeParameters = classType.localTypeParameters; sig.resolvedReturnType = classType; result.push(sig); } } return result; } function findMatchingSignature(signatureList: Signature[], signature: Signature, partialMatch: boolean, ignoreThisTypes: boolean, ignoreReturnTypes: boolean): Signature { for (const s of signatureList) { if (compareSignaturesIdentical(s, signature, partialMatch, ignoreThisTypes, ignoreReturnTypes, compareTypesIdentical)) { return s; } } } function findMatchingSignatures(signatureLists: Signature[][], signature: Signature, listIndex: number): Signature[] { if (signature.typeParameters) { // We require an exact match for generic signatures, so we only return signatures from the first // signature list and only if they have exact matches in the other signature lists. if (listIndex > 0) { return undefined; } for (let i = 1; i < signatureLists.length; i++) { if (!findMatchingSignature(signatureLists[i], signature, /*partialMatch*/ false, /*ignoreThisTypes*/ false, /*ignoreReturnTypes*/ false)) { return undefined; } } return [signature]; } let result: Signature[] = undefined; for (let i = 0; i < signatureLists.length; i++) { // Allow matching non-generic signatures to have excess parameters and different return types const match = i === listIndex ? signature : findMatchingSignature(signatureLists[i], signature, /*partialMatch*/ true, /*ignoreThisTypes*/ true, /*ignoreReturnTypes*/ true); if (!match) { return undefined; } if (!contains(result, match)) { (result || (result = [])).push(match); } } return result; } // The signatures of a union type are those signatures that are present in each of the constituent types. // Generic signatures must match exactly, but non-generic signatures are allowed to have extra optional // parameters and may differ in return types. When signatures differ in return types, the resulting return // type is the union of the constituent return types. function getUnionSignatures(types: Type[], kind: SignatureKind): Signature[] { const signatureLists = map(types, t => getSignaturesOfType(t, kind)); let result: Signature[] = undefined; for (let i = 0; i < signatureLists.length; i++) { for (const signature of signatureLists[i]) { // Only process signatures with parameter lists that aren't already in the result list if (!result || !findMatchingSignature(result, signature, /*partialMatch*/ false, /*ignoreThisTypes*/ true, /*ignoreReturnTypes*/ true)) { const unionSignatures = findMatchingSignatures(signatureLists, signature, i); if (unionSignatures) { let s = signature; // Union the result types when more than one signature matches if (unionSignatures.length > 1) { s = cloneSignature(signature); if (forEach(unionSignatures, sig => sig.thisParameter)) { const thisType = getUnionType(map(unionSignatures, sig => getTypeOfSymbol(sig.thisParameter) || anyType), /*subtypeReduction*/ true); s.thisParameter = createSymbolWithType(signature.thisParameter, thisType); } // Clear resolved return type we possibly got from cloneSignature s.resolvedReturnType = undefined; s.unionSignatures = unionSignatures; } (result || (result = [])).push(s); } } } } return result || emptyArray; } function getUnionIndexInfo(types: Type[], kind: IndexKind): IndexInfo { const indexTypes: Type[] = []; let isAnyReadonly = false; for (const type of types) { const indexInfo = getIndexInfoOfType(type, kind); if (!indexInfo) { return undefined; } indexTypes.push(indexInfo.type); isAnyReadonly = isAnyReadonly || indexInfo.isReadonly; } return createIndexInfo(getUnionType(indexTypes, /*subtypeReduction*/ true), isAnyReadonly); } function resolveUnionTypeMembers(type: UnionType) { // The members and properties collections are empty for union types. To get all properties of a union // type use getPropertiesOfType (only the language service uses this). const callSignatures = getUnionSignatures(type.types, SignatureKind.Call); const constructSignatures = getUnionSignatures(type.types, SignatureKind.Construct); const stringIndexInfo = getUnionIndexInfo(type.types, IndexKind.String); const numberIndexInfo = getUnionIndexInfo(type.types, IndexKind.Number); setStructuredTypeMembers(type, emptySymbols, callSignatures, constructSignatures, stringIndexInfo, numberIndexInfo); } function intersectTypes(type1: Type, type2: Type): Type { return !type1 ? type2 : !type2 ? type1 : getIntersectionType([type1, type2]); } function intersectIndexInfos(info1: IndexInfo, info2: IndexInfo): IndexInfo { return !info1 ? info2 : !info2 ? info1 : createIndexInfo( getIntersectionType([info1.type, info2.type]), info1.isReadonly && info2.isReadonly); } function unionSpreadIndexInfos(info1: IndexInfo, info2: IndexInfo): IndexInfo { return info1 && info2 && createIndexInfo( getUnionType([info1.type, info2.type]), info1.isReadonly || info2.isReadonly); } function includeMixinType(type: Type, types: Type[], index: number): Type { const mixedTypes: Type[] = []; for (let i = 0; i < types.length; i++) { if (i === index) { mixedTypes.push(type); } else if (isMixinConstructorType(types[i])) { mixedTypes.push(getReturnTypeOfSignature(getSignaturesOfType(types[i], SignatureKind.Construct)[0])); } } return getIntersectionType(mixedTypes); } function resolveIntersectionTypeMembers(type: IntersectionType) { // The members and properties collections are empty for intersection types. To get all properties of an // intersection type use getPropertiesOfType (only the language service uses this). let callSignatures: Signature[] = emptyArray; let constructSignatures: Signature[] = emptyArray; let stringIndexInfo: IndexInfo; let numberIndexInfo: IndexInfo; const types = type.types; const mixinCount = countWhere(types, isMixinConstructorType); for (let i = 0; i < types.length; i++) { const t = type.types[i]; // When an intersection type contains mixin constructor types, the construct signatures from // those types are discarded and their return types are mixed into the return types of all // other construct signatures in the intersection type. For example, the intersection type // '{ new(...args: any[]) => A } & { new(s: string) => B }' has a single construct signature // 'new(s: string) => A & B'. if (mixinCount === 0 || mixinCount === types.length && i === 0 || !isMixinConstructorType(t)) { let signatures = getSignaturesOfType(t, SignatureKind.Construct); if (signatures.length && mixinCount > 0) { signatures = map(signatures, s => { const clone = cloneSignature(s); clone.resolvedReturnType = includeMixinType(getReturnTypeOfSignature(s), types, i); return clone; }); } constructSignatures = concatenate(constructSignatures, signatures); } callSignatures = concatenate(callSignatures, getSignaturesOfType(t, SignatureKind.Call)); stringIndexInfo = intersectIndexInfos(stringIndexInfo, getIndexInfoOfType(t, IndexKind.String)); numberIndexInfo = intersectIndexInfos(numberIndexInfo, getIndexInfoOfType(t, IndexKind.Number)); } setStructuredTypeMembers(type, emptySymbols, callSignatures, constructSignatures, stringIndexInfo, numberIndexInfo); } /** * Converts an AnonymousType to a ResolvedType. */ function resolveAnonymousTypeMembers(type: AnonymousType) { const symbol = type.symbol; if (type.target) { const members = createInstantiatedSymbolTable(getPropertiesOfObjectType(type.target), type.mapper, /*mappingThisOnly*/ false); const callSignatures = instantiateSignatures(getSignaturesOfType(type.target, SignatureKind.Call), type.mapper); const constructSignatures = instantiateSignatures(getSignaturesOfType(type.target, SignatureKind.Construct), type.mapper); const stringIndexInfo = instantiateIndexInfo(getIndexInfoOfType(type.target, IndexKind.String), type.mapper); const numberIndexInfo = instantiateIndexInfo(getIndexInfoOfType(type.target, IndexKind.Number), type.mapper); setStructuredTypeMembers(type, members, callSignatures, constructSignatures, stringIndexInfo, numberIndexInfo); } else if (symbol.flags & SymbolFlags.TypeLiteral) { const members = symbol.members; const callSignatures = getSignaturesOfSymbol(members.get("__call")); const constructSignatures = getSignaturesOfSymbol(members.get("__new")); const stringIndexInfo = getIndexInfoOfSymbol(symbol, IndexKind.String); const numberIndexInfo = getIndexInfoOfSymbol(symbol, IndexKind.Number); setStructuredTypeMembers(type, members, callSignatures, constructSignatures, stringIndexInfo, numberIndexInfo); } else { // Combinations of function, class, enum and module let members = emptySymbols; let constructSignatures: Signature[] = emptyArray; let stringIndexInfo: IndexInfo = undefined; if (symbol.exports) { members = getExportsOfSymbol(symbol); } if (symbol.flags & SymbolFlags.Class) { const classType = getDeclaredTypeOfClassOrInterface(symbol); constructSignatures = getSignaturesOfSymbol(symbol.members.get("__constructor")); if (!constructSignatures.length) { constructSignatures = getDefaultConstructSignatures(classType); } const baseConstructorType = getBaseConstructorTypeOfClass(classType); if (baseConstructorType.flags & (TypeFlags.Object | TypeFlags.Intersection | TypeFlags.TypeVariable)) { members = createSymbolTable(getNamedMembers(members)); addInheritedMembers(members, getPropertiesOfType(baseConstructorType)); } else if (baseConstructorType === anyType) { stringIndexInfo = createIndexInfo(anyType, /*isReadonly*/ false); } } const numberIndexInfo = symbol.flags & SymbolFlags.Enum ? enumNumberIndexInfo : undefined; setStructuredTypeMembers(type, members, emptyArray, constructSignatures, stringIndexInfo, numberIndexInfo); // We resolve the members before computing the signatures because a signature may use // typeof with a qualified name expression that circularly references the type we are // in the process of resolving (see issue #6072). The temporarily empty signature list // will never be observed because a qualified name can't reference signatures. if (symbol.flags & (SymbolFlags.Function | SymbolFlags.Method)) { (type).callSignatures = getSignaturesOfSymbol(symbol); } } } /** Resolve the members of a mapped type { [P in K]: T } */ function resolveMappedTypeMembers(type: MappedType) { const members: SymbolTable = createMap(); let stringIndexInfo: IndexInfo; // Resolve upfront such that recursive references see an empty object type. setStructuredTypeMembers(type, emptySymbols, emptyArray, emptyArray, undefined, undefined); // In { [P in K]: T }, we refer to P as the type parameter type, K as the constraint type, // and T as the template type. const typeParameter = getTypeParameterFromMappedType(type); const constraintType = getConstraintTypeFromMappedType(type); const templateType = getTemplateTypeFromMappedType(type); const modifiersType = getApparentType(getModifiersTypeFromMappedType(type)); // The 'T' in 'keyof T' const templateReadonly = !!type.declaration.readonlyToken; const templateOptional = !!type.declaration.questionToken; if (type.declaration.typeParameter.constraint.kind === SyntaxKind.TypeOperator) { // We have a { [P in keyof T]: X } for (const propertySymbol of getPropertiesOfType(modifiersType)) { addMemberForKeyType(getLiteralTypeFromPropertyName(propertySymbol), propertySymbol); } if (getIndexInfoOfType(modifiersType, IndexKind.String)) { addMemberForKeyType(stringType); } } else { // First, if the constraint type is a type parameter, obtain the base constraint. Then, // if the key type is a 'keyof X', obtain 'keyof C' where C is the base constraint of X. // Finally, iterate over the constituents of the resulting iteration type. const keyType = constraintType.flags & TypeFlags.TypeVariable ? getApparentType(constraintType) : constraintType; const iterationType = keyType.flags & TypeFlags.Index ? getIndexType(getApparentType((keyType).type)) : keyType; forEachType(iterationType, addMemberForKeyType); } setStructuredTypeMembers(type, members, emptyArray, emptyArray, stringIndexInfo, undefined); function addMemberForKeyType(t: Type, propertySymbol?: Symbol) { // Create a mapper from T to the current iteration type constituent. Then, if the // mapped type is itself an instantiated type, combine the iteration mapper with the // instantiation mapper. const iterationMapper = createTypeMapper([typeParameter], [t]); const templateMapper = type.mapper ? combineTypeMappers(type.mapper, iterationMapper) : iterationMapper; const propType = instantiateType(templateType, templateMapper); // If the current iteration type constituent is a string literal type, create a property. // Otherwise, for type string create a string index signature. if (t.flags & TypeFlags.StringLiteral) { const propName = (t).text; const modifiersProp = getPropertyOfType(modifiersType, propName); const isOptional = templateOptional || !!(modifiersProp && modifiersProp.flags & SymbolFlags.Optional); const prop = createSymbol(SymbolFlags.Property | (isOptional ? SymbolFlags.Optional : 0), propName); prop.checkFlags = templateReadonly || modifiersProp && isReadonlySymbol(modifiersProp) ? CheckFlags.Readonly : 0; prop.type = propType; if (propertySymbol) { prop.syntheticOrigin = propertySymbol; } members.set(propName, prop); } else if (t.flags & TypeFlags.String) { stringIndexInfo = createIndexInfo(propType, templateReadonly); } } } function getTypeParameterFromMappedType(type: MappedType) { return type.typeParameter || (type.typeParameter = getDeclaredTypeOfTypeParameter(getSymbolOfNode(type.declaration.typeParameter))); } function getConstraintTypeFromMappedType(type: MappedType) { return type.constraintType || (type.constraintType = instantiateType(getConstraintOfTypeParameter(getTypeParameterFromMappedType(type)), type.mapper || identityMapper) || unknownType); } function getTemplateTypeFromMappedType(type: MappedType) { return type.templateType || (type.templateType = type.declaration.type ? instantiateType(addOptionality(getTypeFromTypeNode(type.declaration.type), !!type.declaration.questionToken), type.mapper || identityMapper) : unknownType); } function getModifiersTypeFromMappedType(type: MappedType) { if (!type.modifiersType) { const constraintDeclaration = type.declaration.typeParameter.constraint; if (constraintDeclaration.kind === SyntaxKind.TypeOperator) { // If the constraint declaration is a 'keyof T' node, the modifiers type is T. We check // AST nodes here because, when T is a non-generic type, the logic below eagerly resolves // 'keyof T' to a literal union type and we can't recover T from that type. type.modifiersType = instantiateType(getTypeFromTypeNode((constraintDeclaration).type), type.mapper || identityMapper); } else { // Otherwise, get the declared constraint type, and if the constraint type is a type parameter, // get the constraint of that type parameter. If the resulting type is an indexed type 'keyof T', // the modifiers type is T. Otherwise, the modifiers type is {}. const declaredType = getTypeFromMappedTypeNode(type.declaration); const constraint = getConstraintTypeFromMappedType(declaredType); const extendedConstraint = constraint && constraint.flags & TypeFlags.TypeParameter ? getConstraintOfTypeParameter(constraint) : constraint; type.modifiersType = extendedConstraint && extendedConstraint.flags & TypeFlags.Index ? instantiateType((extendedConstraint).type, type.mapper || identityMapper) : emptyObjectType; } } return type.modifiersType; } function isGenericMappedType(type: Type) { if (getObjectFlags(type) & ObjectFlags.Mapped) { const constraintType = getConstraintTypeFromMappedType(type); return maybeTypeOfKind(constraintType, TypeFlags.TypeVariable | TypeFlags.Index); } return false; } function resolveStructuredTypeMembers(type: StructuredType): ResolvedType { if (!(type).members) { if (type.flags & TypeFlags.Object) { if ((type).objectFlags & ObjectFlags.Reference) { resolveTypeReferenceMembers(type); } else if ((type).objectFlags & ObjectFlags.ClassOrInterface) { resolveClassOrInterfaceMembers(type); } else if ((type).objectFlags & ObjectFlags.Anonymous) { resolveAnonymousTypeMembers(type); } else if ((type).objectFlags & ObjectFlags.Mapped) { resolveMappedTypeMembers(type); } } else if (type.flags & TypeFlags.Union) { resolveUnionTypeMembers(type); } else if (type.flags & TypeFlags.Intersection) { resolveIntersectionTypeMembers(type); } } return type; } /** Return properties of an object type or an empty array for other types */ function getPropertiesOfObjectType(type: Type): Symbol[] { if (type.flags & TypeFlags.Object) { return resolveStructuredTypeMembers(type).properties; } return emptyArray; } /** If the given type is an object type and that type has a property by the given name, * return the symbol for that property. Otherwise return undefined. */ function getPropertyOfObjectType(type: Type, name: string): Symbol { if (type.flags & TypeFlags.Object) { const resolved = resolveStructuredTypeMembers(type); const symbol = resolved.members.get(name); if (symbol && symbolIsValue(symbol)) { return symbol; } } } function getPropertiesOfUnionOrIntersectionType(type: UnionOrIntersectionType): Symbol[] { if (!type.resolvedProperties) { const members = createMap(); for (const current of type.types) { for (const prop of getPropertiesOfType(current)) { if (!members.has(prop.name)) { const combinedProp = getPropertyOfUnionOrIntersectionType(type, prop.name); if (combinedProp) { members.set(prop.name, combinedProp); } } } // The properties of a union type are those that are present in all constituent types, so // we only need to check the properties of the first type if (type.flags & TypeFlags.Union) { break; } } type.resolvedProperties = getNamedMembers(members); } return type.resolvedProperties; } function getPropertiesOfType(type: Type): Symbol[] { type = getApparentType(type); return type.flags & TypeFlags.UnionOrIntersection ? getPropertiesOfUnionOrIntersectionType(type) : getPropertiesOfObjectType(type); } function getAllPossiblePropertiesOfType(type: Type): Symbol[] { if (type.flags & TypeFlags.Union) { const props = createMap(); for (const memberType of (type as UnionType).types) { for (const { name } of getPropertiesOfType(memberType)) { if (!props.has(name)) { props.set(name, createUnionOrIntersectionProperty(type as UnionType, name)); } } } return arrayFrom(props.values()); } else { return getPropertiesOfType(type); } } function getConstraintOfType(type: TypeVariable | UnionOrIntersectionType): Type { return type.flags & TypeFlags.TypeParameter ? getConstraintOfTypeParameter(type) : type.flags & TypeFlags.IndexedAccess ? getConstraintOfIndexedAccess(type) : getBaseConstraintOfType(type); } function getConstraintOfTypeParameter(typeParameter: TypeParameter): Type { return hasNonCircularBaseConstraint(typeParameter) ? getConstraintFromTypeParameter(typeParameter) : undefined; } function getConstraintOfIndexedAccess(type: IndexedAccessType) { const baseObjectType = getBaseConstraintOfType(type.objectType); const baseIndexType = getBaseConstraintOfType(type.indexType); return baseObjectType || baseIndexType ? getIndexedAccessType(baseObjectType || type.objectType, baseIndexType || type.indexType) : undefined; } function getBaseConstraintOfType(type: Type): Type { if (type.flags & (TypeFlags.TypeVariable | TypeFlags.UnionOrIntersection)) { const constraint = getResolvedBaseConstraint(type); if (constraint !== noConstraintType && constraint !== circularConstraintType) { return constraint; } } else if (type.flags & TypeFlags.Index) { return stringType; } return undefined; } function hasNonCircularBaseConstraint(type: TypeVariable): boolean { return getResolvedBaseConstraint(type) !== circularConstraintType; } /** * Return the resolved base constraint of a type variable. The noConstraintType singleton is returned if the * type variable has no constraint, and the circularConstraintType singleton is returned if the constraint * circularly references the type variable. */ function getResolvedBaseConstraint(type: TypeVariable | UnionOrIntersectionType): Type { let typeStack: Type[]; let circular: boolean; if (!type.resolvedBaseConstraint) { typeStack = []; const constraint = getBaseConstraint(type); type.resolvedBaseConstraint = circular ? circularConstraintType : getTypeWithThisArgument(constraint || noConstraintType, type); } return type.resolvedBaseConstraint; function getBaseConstraint(t: Type): Type { if (contains(typeStack, t)) { circular = true; return undefined; } typeStack.push(t); const result = computeBaseConstraint(t); typeStack.pop(); return result; } function computeBaseConstraint(t: Type): Type { if (t.flags & TypeFlags.TypeParameter) { const constraint = getConstraintFromTypeParameter(t); return (t).isThisType ? constraint : constraint ? getBaseConstraint(constraint) : undefined; } if (t.flags & TypeFlags.UnionOrIntersection) { const types = (t).types; const baseTypes: Type[] = []; for (const type of types) { const baseType = getBaseConstraint(type); if (baseType) { baseTypes.push(baseType); } } return t.flags & TypeFlags.Union && baseTypes.length === types.length ? getUnionType(baseTypes) : t.flags & TypeFlags.Intersection && baseTypes.length ? getIntersectionType(baseTypes) : undefined; } if (t.flags & TypeFlags.Index) { return stringType; } if (t.flags & TypeFlags.IndexedAccess) { const baseObjectType = getBaseConstraint((t).objectType); const baseIndexType = getBaseConstraint((t).indexType); const baseIndexedAccess = baseObjectType && baseIndexType ? getIndexedAccessType(baseObjectType, baseIndexType) : undefined; return baseIndexedAccess && baseIndexedAccess !== unknownType ? getBaseConstraint(baseIndexedAccess) : undefined; } return t; } } function getApparentTypeOfIntersectionType(type: IntersectionType) { return type.resolvedApparentType || (type.resolvedApparentType = getTypeWithThisArgument(type, type)); } /** * Gets the default type for a type parameter. * * If the type parameter is the result of an instantiation, this gets the instantiated * default type of its target. If the type parameter has no default type, `undefined` * is returned. * * This function *does not* perform a circularity check. */ function getDefaultFromTypeParameter(typeParameter: TypeParameter): Type | undefined { if (!typeParameter.default) { if (typeParameter.target) { const targetDefault = getDefaultFromTypeParameter(typeParameter.target); typeParameter.default = targetDefault ? instantiateType(targetDefault, typeParameter.mapper) : noConstraintType; } else { const defaultDeclaration = typeParameter.symbol && forEach(typeParameter.symbol.declarations, decl => isTypeParameter(decl) && decl.default); typeParameter.default = defaultDeclaration ? getTypeFromTypeNode(defaultDeclaration) : noConstraintType; } } return typeParameter.default === noConstraintType ? undefined : typeParameter.default; } /** * For a type parameter, return the base constraint of the type parameter. For the string, number, * boolean, and symbol primitive types, return the corresponding object types. Otherwise return the * type itself. Note that the apparent type of a union type is the union type itself. */ function getApparentType(type: Type): Type { const t = type.flags & TypeFlags.TypeVariable ? getBaseConstraintOfType(type) || emptyObjectType : type; return t.flags & TypeFlags.Intersection ? getApparentTypeOfIntersectionType(t) : t.flags & TypeFlags.StringLike ? globalStringType : t.flags & TypeFlags.NumberLike ? globalNumberType : t.flags & TypeFlags.BooleanLike ? globalBooleanType : t.flags & TypeFlags.ESSymbol ? getGlobalESSymbolType(/*reportErrors*/ languageVersion >= ScriptTarget.ES2015) : t.flags & TypeFlags.NonPrimitive ? emptyObjectType : t; } function createUnionOrIntersectionProperty(containingType: UnionOrIntersectionType, name: string): Symbol { let props: Symbol[]; const types = containingType.types; const isUnion = containingType.flags & TypeFlags.Union; const excludeModifiers = isUnion ? ModifierFlags.NonPublicAccessibilityModifier : 0; // Flags we want to propagate to the result if they exist in all source symbols let commonFlags = isUnion ? SymbolFlags.None : SymbolFlags.Optional; let syntheticFlag = CheckFlags.SyntheticMethod; let checkFlags = 0; for (const current of types) { const type = getApparentType(current); if (type !== unknownType) { const prop = getPropertyOfType(type, name); const modifiers = prop ? getDeclarationModifierFlagsFromSymbol(prop) : 0; if (prop && !(modifiers & excludeModifiers)) { commonFlags &= prop.flags; if (!props) { props = [prop]; } else if (!contains(props, prop)) { props.push(prop); } checkFlags |= (isReadonlySymbol(prop) ? CheckFlags.Readonly : 0) | (!(modifiers & ModifierFlags.NonPublicAccessibilityModifier) ? CheckFlags.ContainsPublic : 0) | (modifiers & ModifierFlags.Protected ? CheckFlags.ContainsProtected : 0) | (modifiers & ModifierFlags.Private ? CheckFlags.ContainsPrivate : 0) | (modifiers & ModifierFlags.Static ? CheckFlags.ContainsStatic : 0); if (!isMethodLike(prop)) { syntheticFlag = CheckFlags.SyntheticProperty; } } else if (isUnion) { checkFlags |= CheckFlags.Partial; } } } if (!props) { return undefined; } if (props.length === 1 && !(checkFlags & CheckFlags.Partial)) { return props[0]; } const propTypes: Type[] = []; const declarations: Declaration[] = []; let commonType: Type = undefined; for (const prop of props) { if (prop.declarations) { addRange(declarations, prop.declarations); } const type = getTypeOfSymbol(prop); if (!commonType) { commonType = type; } else if (type !== commonType) { checkFlags |= CheckFlags.HasNonUniformType; } propTypes.push(type); } const result = createSymbol(SymbolFlags.Property | commonFlags, name); result.checkFlags = syntheticFlag | checkFlags; result.containingType = containingType; result.declarations = declarations; result.type = isUnion ? getUnionType(propTypes) : getIntersectionType(propTypes); return result; } // Return the symbol for a given property in a union or intersection type, or undefined if the property // does not exist in any constituent type. Note that the returned property may only be present in some // constituents, in which case the isPartial flag is set when the containing type is union type. We need // these partial properties when identifying discriminant properties, but otherwise they are filtered out // and do not appear to be present in the union type. function getUnionOrIntersectionProperty(type: UnionOrIntersectionType, name: string): Symbol { const properties = type.propertyCache || (type.propertyCache = createMap()); let property = properties.get(name); if (!property) { property = createUnionOrIntersectionProperty(type, name); if (property) { properties.set(name, property); } } return property; } function getPropertyOfUnionOrIntersectionType(type: UnionOrIntersectionType, name: string): Symbol { const property = getUnionOrIntersectionProperty(type, name); // We need to filter out partial properties in union types return property && !(getCheckFlags(property) & CheckFlags.Partial) ? property : undefined; } /** * Return the symbol for the property with the given name in the given type. Creates synthetic union properties when * necessary, maps primitive types and type parameters are to their apparent types, and augments with properties from * Object and Function as appropriate. * * @param type a type to look up property from * @param name a name of property to look up in a given type */ function getPropertyOfType(type: Type, name: string): Symbol { type = getApparentType(type); if (type.flags & TypeFlags.Object) { const resolved = resolveStructuredTypeMembers(type); const symbol = resolved.members.get(name); if (symbol && symbolIsValue(symbol)) { return symbol; } if (resolved === anyFunctionType || resolved.callSignatures.length || resolved.constructSignatures.length) { const symbol = getPropertyOfObjectType(globalFunctionType, name); if (symbol) { return symbol; } } return getPropertyOfObjectType(globalObjectType, name); } if (type.flags & TypeFlags.UnionOrIntersection) { return getPropertyOfUnionOrIntersectionType(type, name); } return undefined; } function getSignaturesOfStructuredType(type: Type, kind: SignatureKind): Signature[] { if (type.flags & TypeFlags.StructuredType) { const resolved = resolveStructuredTypeMembers(type); return kind === SignatureKind.Call ? resolved.callSignatures : resolved.constructSignatures; } return emptyArray; } /** * Return the signatures of the given kind in the given type. Creates synthetic union signatures when necessary and * maps primitive types and type parameters are to their apparent types. */ function getSignaturesOfType(type: Type, kind: SignatureKind): Signature[] { return getSignaturesOfStructuredType(getApparentType(type), kind); } function getIndexInfoOfStructuredType(type: Type, kind: IndexKind): IndexInfo { if (type.flags & TypeFlags.StructuredType) { const resolved = resolveStructuredTypeMembers(type); return kind === IndexKind.String ? resolved.stringIndexInfo : resolved.numberIndexInfo; } } function getIndexTypeOfStructuredType(type: Type, kind: IndexKind): Type { const info = getIndexInfoOfStructuredType(type, kind); return info && info.type; } // Return the indexing info of the given kind in the given type. Creates synthetic union index types when necessary and // maps primitive types and type parameters are to their apparent types. function getIndexInfoOfType(type: Type, kind: IndexKind): IndexInfo { return getIndexInfoOfStructuredType(getApparentType(type), kind); } // Return the index type of the given kind in the given type. Creates synthetic union index types when necessary and // maps primitive types and type parameters are to their apparent types. function getIndexTypeOfType(type: Type, kind: IndexKind): Type { return getIndexTypeOfStructuredType(getApparentType(type), kind); } function getImplicitIndexTypeOfType(type: Type, kind: IndexKind): Type { if (isObjectLiteralType(type)) { const propTypes: Type[] = []; for (const prop of getPropertiesOfType(type)) { if (kind === IndexKind.String || isNumericLiteralName(prop.name)) { propTypes.push(getTypeOfSymbol(prop)); } } if (propTypes.length) { return getUnionType(propTypes, /*subtypeReduction*/ true); } } return undefined; } function getTypeParametersFromJSDocTemplate(declaration: SignatureDeclaration): TypeParameter[] { if (declaration.flags & NodeFlags.JavaScriptFile) { const templateTag = getJSDocTemplateTag(declaration); if (templateTag) { return getTypeParametersFromDeclaration(templateTag.typeParameters); } } return undefined; } // Return list of type parameters with duplicates removed (duplicate identifier errors are generated in the actual // type checking functions). function getTypeParametersFromDeclaration(typeParameterDeclarations: TypeParameterDeclaration[]): TypeParameter[] { const result: TypeParameter[] = []; forEach(typeParameterDeclarations, node => { const tp = getDeclaredTypeOfTypeParameter(node.symbol); if (!contains(result, tp)) { result.push(tp); } }); return result; } function symbolsToArray(symbols: SymbolTable): Symbol[] { const result: Symbol[] = []; symbols.forEach((symbol, id) => { if (!isReservedMemberName(id)) { result.push(symbol); } }); return result; } function isJSDocOptionalParameter(node: ParameterDeclaration) { if (node.flags & NodeFlags.JavaScriptFile) { if (node.type && node.type.kind === SyntaxKind.JSDocOptionalType) { return true; } const paramTags = getJSDocParameterTags(node); if (paramTags) { for (const paramTag of paramTags) { if (paramTag.isBracketed) { return true; } if (paramTag.typeExpression) { return paramTag.typeExpression.type.kind === SyntaxKind.JSDocOptionalType; } } } } } function tryFindAmbientModule(moduleName: string, withAugmentations: boolean) { if (isExternalModuleNameRelative(moduleName)) { return undefined; } const symbol = getSymbol(globals, `"${moduleName}"`, SymbolFlags.ValueModule); // merged symbol is module declaration symbol combined with all augmentations return symbol && withAugmentations ? getMergedSymbol(symbol) : symbol; } function isOptionalParameter(node: ParameterDeclaration) { if (hasQuestionToken(node) || isJSDocOptionalParameter(node)) { return true; } if (node.initializer) { const signatureDeclaration = node.parent; const signature = getSignatureFromDeclaration(signatureDeclaration); const parameterIndex = ts.indexOf(signatureDeclaration.parameters, node); Debug.assert(parameterIndex >= 0); return parameterIndex >= signature.minArgumentCount; } const iife = getImmediatelyInvokedFunctionExpression(node.parent); if (iife) { return !node.type && !node.dotDotDotToken && indexOf((node.parent as SignatureDeclaration).parameters, node) >= iife.arguments.length; } return false; } function createTypePredicateFromTypePredicateNode(node: TypePredicateNode): IdentifierTypePredicate | ThisTypePredicate { if (node.parameterName.kind === SyntaxKind.Identifier) { const parameterName = node.parameterName as Identifier; return { kind: TypePredicateKind.Identifier, parameterName: parameterName ? parameterName.text : undefined, parameterIndex: parameterName ? getTypePredicateParameterIndex((node.parent as SignatureDeclaration).parameters, parameterName) : undefined, type: getTypeFromTypeNode(node.type) } as IdentifierTypePredicate; } else { return { kind: TypePredicateKind.This, type: getTypeFromTypeNode(node.type) } as ThisTypePredicate; } } /** * Gets the minimum number of type arguments needed to satisfy all non-optional type * parameters. */ function getMinTypeArgumentCount(typeParameters: TypeParameter[] | undefined): number { let minTypeArgumentCount = 0; if (typeParameters) { for (let i = 0; i < typeParameters.length; i++) { if (!getDefaultFromTypeParameter(typeParameters[i])) { minTypeArgumentCount = i + 1; } } } return minTypeArgumentCount; } /** * Fill in default types for unsupplied type arguments. If `typeArguments` is undefined * when a default type is supplied, a new array will be created and returned. * * @param typeArguments The supplied type arguments. * @param typeParameters The requested type parameters. * @param minTypeArgumentCount The minimum number of required type arguments. */ function fillMissingTypeArguments(typeArguments: Type[] | undefined, typeParameters: TypeParameter[] | undefined, minTypeArgumentCount: number, location?: Node) { const numTypeParameters = length(typeParameters); if (numTypeParameters) { const numTypeArguments = length(typeArguments); const isJavaScript = isInJavaScriptFile(location); if ((isJavaScript || numTypeArguments >= minTypeArgumentCount) && numTypeArguments <= numTypeParameters) { if (!typeArguments) { typeArguments = []; } // Map an unsatisfied type parameter with a default type. // If a type parameter does not have a default type, or if the default type // is a forward reference, the empty object type is used. for (let i = numTypeArguments; i < numTypeParameters; i++) { typeArguments[i] = isJavaScript ? anyType : emptyObjectType; } for (let i = numTypeArguments; i < numTypeParameters; i++) { const mapper = createTypeMapper(typeParameters, typeArguments); const defaultType = getDefaultFromTypeParameter(typeParameters[i]); typeArguments[i] = defaultType ? instantiateType(defaultType, mapper) : isJavaScript ? anyType : emptyObjectType; } } } return typeArguments; } function getSignatureFromDeclaration(declaration: SignatureDeclaration): Signature { const links = getNodeLinks(declaration); if (!links.resolvedSignature) { const parameters: Symbol[] = []; let hasLiteralTypes = false; let minArgumentCount = 0; let thisParameter: Symbol = undefined; let hasThisParameter: boolean; const iife = getImmediatelyInvokedFunctionExpression(declaration); const isJSConstructSignature = isJSDocConstructSignature(declaration); const isUntypedSignatureInJSFile = !iife && !isJSConstructSignature && isInJavaScriptFile(declaration) && !hasJSDocParameterTags(declaration); // If this is a JSDoc construct signature, then skip the first parameter in the // parameter list. The first parameter represents the return type of the construct // signature. for (let i = isJSConstructSignature ? 1 : 0; i < declaration.parameters.length; i++) { const param = declaration.parameters[i]; let paramSymbol = param.symbol; // Include parameter symbol instead of property symbol in the signature if (paramSymbol && !!(paramSymbol.flags & SymbolFlags.Property) && !isBindingPattern(param.name)) { const resolvedSymbol = resolveName(param, paramSymbol.name, SymbolFlags.Value, undefined, undefined); paramSymbol = resolvedSymbol; } if (i === 0 && paramSymbol.name === "this") { hasThisParameter = true; thisParameter = param.symbol; } else { parameters.push(paramSymbol); } if (param.type && param.type.kind === SyntaxKind.LiteralType) { hasLiteralTypes = true; } // Record a new minimum argument count if this is not an optional parameter const isOptionalParameter = param.initializer || param.questionToken || param.dotDotDotToken || iife && parameters.length > iife.arguments.length && !param.type || isJSDocOptionalParameter(param) || isUntypedSignatureInJSFile; if (!isOptionalParameter) { minArgumentCount = parameters.length; } } // If only one accessor includes a this-type annotation, the other behaves as if it had the same type annotation if ((declaration.kind === SyntaxKind.GetAccessor || declaration.kind === SyntaxKind.SetAccessor) && !hasDynamicName(declaration) && (!hasThisParameter || !thisParameter)) { const otherKind = declaration.kind === SyntaxKind.GetAccessor ? SyntaxKind.SetAccessor : SyntaxKind.GetAccessor; const other = getDeclarationOfKind(declaration.symbol, otherKind); if (other) { thisParameter = getAnnotatedAccessorThisParameter(other); } } const classType = declaration.kind === SyntaxKind.Constructor ? getDeclaredTypeOfClassOrInterface(getMergedSymbol((declaration.parent).symbol)) : undefined; const typeParameters = classType ? classType.localTypeParameters : declaration.typeParameters ? getTypeParametersFromDeclaration(declaration.typeParameters) : getTypeParametersFromJSDocTemplate(declaration); const returnType = getSignatureReturnTypeFromDeclaration(declaration, isJSConstructSignature, classType); const typePredicate = declaration.type && declaration.type.kind === SyntaxKind.TypePredicate ? createTypePredicateFromTypePredicateNode(declaration.type as TypePredicateNode) : undefined; links.resolvedSignature = createSignature(declaration, typeParameters, thisParameter, parameters, returnType, typePredicate, minArgumentCount, hasRestParameter(declaration), hasLiteralTypes); } return links.resolvedSignature; } function getSignatureReturnTypeFromDeclaration(declaration: SignatureDeclaration, isJSConstructSignature: boolean, classType: Type) { if (isJSConstructSignature) { return getTypeFromTypeNode(declaration.parameters[0].type); } else if (classType) { return classType; } else if (declaration.type) { return getTypeFromTypeNode(declaration.type); } if (declaration.flags & NodeFlags.JavaScriptFile) { const type = getReturnTypeFromJSDocComment(declaration); if (type && type !== unknownType) { return type; } } // TypeScript 1.0 spec (April 2014): // If only one accessor includes a type annotation, the other behaves as if it had the same type annotation. if (declaration.kind === SyntaxKind.GetAccessor && !hasDynamicName(declaration)) { const setter = getDeclarationOfKind(declaration.symbol, SyntaxKind.SetAccessor); return getAnnotatedAccessorType(setter); } if (nodeIsMissing((declaration).body)) { return anyType; } } function containsArgumentsReference(declaration: FunctionLikeDeclaration): boolean { const links = getNodeLinks(declaration); if (links.containsArgumentsReference === undefined) { if (links.flags & NodeCheckFlags.CaptureArguments) { links.containsArgumentsReference = true; } else { links.containsArgumentsReference = traverse(declaration.body); } } return links.containsArgumentsReference; function traverse(node: Node): boolean { if (!node) return false; switch (node.kind) { case SyntaxKind.Identifier: return (node).text === "arguments" && isPartOfExpression(node); case SyntaxKind.PropertyDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: return (node).name.kind === SyntaxKind.ComputedPropertyName && traverse((node).name); default: return !nodeStartsNewLexicalEnvironment(node) && !isPartOfTypeNode(node) && forEachChild(node, traverse); } } } function getSignaturesOfSymbol(symbol: Symbol): Signature[] { if (!symbol) return emptyArray; const result: Signature[] = []; for (let i = 0; i < symbol.declarations.length; i++) { const node = symbol.declarations[i]; switch (node.kind) { case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.FunctionDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.Constructor: case SyntaxKind.CallSignature: case SyntaxKind.ConstructSignature: case SyntaxKind.IndexSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: case SyntaxKind.JSDocFunctionType: // Don't include signature if node is the implementation of an overloaded function. A node is considered // an implementation node if it has a body and the previous node is of the same kind and immediately // precedes the implementation node (i.e. has the same parent and ends where the implementation starts). if (i > 0 && (node).body) { const previous = symbol.declarations[i - 1]; if (node.parent === previous.parent && node.kind === previous.kind && node.pos === previous.end) { break; } } result.push(getSignatureFromDeclaration(node)); } } return result; } function resolveExternalModuleTypeByLiteral(name: StringLiteral) { const moduleSym = resolveExternalModuleName(name, name); if (moduleSym) { const resolvedModuleSymbol = resolveExternalModuleSymbol(moduleSym); if (resolvedModuleSymbol) { return getTypeOfSymbol(resolvedModuleSymbol); } } return anyType; } function getThisTypeOfSignature(signature: Signature): Type | undefined { if (signature.thisParameter) { return getTypeOfSymbol(signature.thisParameter); } } function getReturnTypeOfSignature(signature: Signature): Type { if (!signature.resolvedReturnType) { if (!pushTypeResolution(signature, TypeSystemPropertyName.ResolvedReturnType)) { return unknownType; } let type: Type; if (signature.target) { type = instantiateType(getReturnTypeOfSignature(signature.target), signature.mapper); } else if (signature.unionSignatures) { type = getUnionType(map(signature.unionSignatures, getReturnTypeOfSignature), /*subtypeReduction*/ true); } else { type = getReturnTypeFromBody(signature.declaration); } if (!popTypeResolution()) { type = anyType; if (noImplicitAny) { const declaration = signature.declaration; const name = getNameOfDeclaration(declaration); if (name) { error(name, Diagnostics._0_implicitly_has_return_type_any_because_it_does_not_have_a_return_type_annotation_and_is_referenced_directly_or_indirectly_in_one_of_its_return_expressions, declarationNameToString(name)); } else { error(declaration, Diagnostics.Function_implicitly_has_return_type_any_because_it_does_not_have_a_return_type_annotation_and_is_referenced_directly_or_indirectly_in_one_of_its_return_expressions); } } } signature.resolvedReturnType = type; } return signature.resolvedReturnType; } function getRestTypeOfSignature(signature: Signature): Type { if (signature.hasRestParameter) { const type = getTypeOfSymbol(lastOrUndefined(signature.parameters)); if (getObjectFlags(type) & ObjectFlags.Reference && (type).target === globalArrayType) { return (type).typeArguments[0]; } } return anyType; } function getSignatureInstantiation(signature: Signature, typeArguments: Type[]): Signature { typeArguments = fillMissingTypeArguments(typeArguments, signature.typeParameters, getMinTypeArgumentCount(signature.typeParameters)); const instantiations = signature.instantiations || (signature.instantiations = createMap()); const id = getTypeListId(typeArguments); let instantiation = instantiations.get(id); if (!instantiation) { instantiations.set(id, instantiation = createSignatureInstantiation(signature, typeArguments)); } return instantiation; } function createSignatureInstantiation(signature: Signature, typeArguments: Type[]): Signature { return instantiateSignature(signature, createTypeMapper(signature.typeParameters, typeArguments), /*eraseTypeParameters*/ true); } function getErasedSignature(signature: Signature): Signature { if (!signature.typeParameters) return signature; if (!signature.erasedSignatureCache) { signature.erasedSignatureCache = instantiateSignature(signature, createTypeEraser(signature.typeParameters), /*eraseTypeParameters*/ true); } return signature.erasedSignatureCache; } function getOrCreateTypeFromSignature(signature: Signature): ObjectType { // There are two ways to declare a construct signature, one is by declaring a class constructor // using the constructor keyword, and the other is declaring a bare construct signature in an // object type literal or interface (using the new keyword). Each way of declaring a constructor // will result in a different declaration kind. if (!signature.isolatedSignatureType) { const isConstructor = signature.declaration.kind === SyntaxKind.Constructor || signature.declaration.kind === SyntaxKind.ConstructSignature; const type = createObjectType(ObjectFlags.Anonymous); type.members = emptySymbols; type.properties = emptyArray; type.callSignatures = !isConstructor ? [signature] : emptyArray; type.constructSignatures = isConstructor ? [signature] : emptyArray; signature.isolatedSignatureType = type; } return signature.isolatedSignatureType; } function getIndexSymbol(symbol: Symbol): Symbol { return symbol.members.get("__index"); } function getIndexDeclarationOfSymbol(symbol: Symbol, kind: IndexKind): SignatureDeclaration { const syntaxKind = kind === IndexKind.Number ? SyntaxKind.NumberKeyword : SyntaxKind.StringKeyword; const indexSymbol = getIndexSymbol(symbol); if (indexSymbol) { for (const decl of indexSymbol.declarations) { const node = decl; if (node.parameters.length === 1) { const parameter = node.parameters[0]; if (parameter && parameter.type && parameter.type.kind === syntaxKind) { return node; } } } } return undefined; } function createIndexInfo(type: Type, isReadonly: boolean, declaration?: SignatureDeclaration): IndexInfo { return { type, isReadonly, declaration }; } function getIndexInfoOfSymbol(symbol: Symbol, kind: IndexKind): IndexInfo { const declaration = getIndexDeclarationOfSymbol(symbol, kind); if (declaration) { return createIndexInfo(declaration.type ? getTypeFromTypeNode(declaration.type) : anyType, (getModifierFlags(declaration) & ModifierFlags.Readonly) !== 0, declaration); } return undefined; } function getConstraintDeclaration(type: TypeParameter) { return (getDeclarationOfKind(type.symbol, SyntaxKind.TypeParameter)).constraint; } function getConstraintFromTypeParameter(typeParameter: TypeParameter): Type { if (!typeParameter.constraint) { if (typeParameter.target) { const targetConstraint = getConstraintOfTypeParameter(typeParameter.target); typeParameter.constraint = targetConstraint ? instantiateType(targetConstraint, typeParameter.mapper) : noConstraintType; } else { const constraintDeclaration = getConstraintDeclaration(typeParameter); typeParameter.constraint = constraintDeclaration ? getTypeFromTypeNode(constraintDeclaration) : noConstraintType; } } return typeParameter.constraint === noConstraintType ? undefined : typeParameter.constraint; } function getParentSymbolOfTypeParameter(typeParameter: TypeParameter): Symbol { return getSymbolOfNode(getDeclarationOfKind(typeParameter.symbol, SyntaxKind.TypeParameter).parent); } function getTypeListId(types: Type[]) { let result = ""; if (types) { const length = types.length; let i = 0; while (i < length) { const startId = types[i].id; let count = 1; while (i + count < length && types[i + count].id === startId + count) { count++; } if (result.length) { result += ","; } result += startId; if (count > 1) { result += ":" + count; } i += count; } } return result; } // This function is used to propagate certain flags when creating new object type references and union types. // It is only necessary to do so if a constituent type might be the undefined type, the null type, the type // of an object literal or the anyFunctionType. This is because there are operations in the type checker // that care about the presence of such types at arbitrary depth in a containing type. function getPropagatingFlagsOfTypes(types: Type[], excludeKinds: TypeFlags): TypeFlags { let result: TypeFlags = 0; for (const type of types) { if (!(type.flags & excludeKinds)) { result |= type.flags; } } return result & TypeFlags.PropagatingFlags; } function createTypeReference(target: GenericType, typeArguments: Type[]): TypeReference { const id = getTypeListId(typeArguments); let type = target.instantiations.get(id); if (!type) { type = createObjectType(ObjectFlags.Reference, target.symbol); target.instantiations.set(id, type); type.flags |= typeArguments ? getPropagatingFlagsOfTypes(typeArguments, /*excludeKinds*/ 0) : 0; type.target = target; type.typeArguments = typeArguments; } return type; } function cloneTypeReference(source: TypeReference): TypeReference { const type = createType(source.flags); type.symbol = source.symbol; type.objectFlags = source.objectFlags; type.target = source.target; type.typeArguments = source.typeArguments; return type; } function getTypeReferenceArity(type: TypeReference): number { return length(type.target.typeParameters); } // Get type from reference to class or interface function getTypeFromClassOrInterfaceReference(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference, symbol: Symbol, typeArgs: Type[]): Type { const type = getDeclaredTypeOfSymbol(getMergedSymbol(symbol)); const typeParameters = type.localTypeParameters; if (typeParameters) { const numTypeArguments = length(node.typeArguments); const minTypeArgumentCount = getMinTypeArgumentCount(typeParameters); if (!isInJavaScriptFile(node) && (numTypeArguments < minTypeArgumentCount || numTypeArguments > typeParameters.length)) { error(node, minTypeArgumentCount === typeParameters.length ? Diagnostics.Generic_type_0_requires_1_type_argument_s : Diagnostics.Generic_type_0_requires_between_1_and_2_type_arguments, typeToString(type, /*enclosingDeclaration*/ undefined, TypeFormatFlags.WriteArrayAsGenericType), minTypeArgumentCount, typeParameters.length); return unknownType; } // In a type reference, the outer type parameters of the referenced class or interface are automatically // supplied as type arguments and the type reference only specifies arguments for the local type parameters // of the class or interface. const typeArguments = concatenate(type.outerTypeParameters, fillMissingTypeArguments(typeArgs, typeParameters, minTypeArgumentCount, node)); return createTypeReference(type, typeArguments); } if (node.typeArguments) { error(node, Diagnostics.Type_0_is_not_generic, typeToString(type)); return unknownType; } return type; } function getTypeAliasInstantiation(symbol: Symbol, typeArguments: Type[]): Type { const type = getDeclaredTypeOfSymbol(symbol); const links = getSymbolLinks(symbol); const typeParameters = links.typeParameters; const id = getTypeListId(typeArguments); let instantiation = links.instantiations.get(id); if (!instantiation) { links.instantiations.set(id, instantiation = instantiateTypeNoAlias(type, createTypeMapper(typeParameters, fillMissingTypeArguments(typeArguments, typeParameters, getMinTypeArgumentCount(typeParameters))))); } return instantiation; } // Get type from reference to type alias. When a type alias is generic, the declared type of the type alias may include // references to the type parameters of the alias. We replace those with the actual type arguments by instantiating the // declared type. Instantiations are cached using the type identities of the type arguments as the key. function getTypeFromTypeAliasReference(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference, symbol: Symbol, typeArguments: Type[]): Type { const type = getDeclaredTypeOfSymbol(symbol); const typeParameters = getSymbolLinks(symbol).typeParameters; if (typeParameters) { const numTypeArguments = length(node.typeArguments); const minTypeArgumentCount = getMinTypeArgumentCount(typeParameters); if (numTypeArguments < minTypeArgumentCount || numTypeArguments > typeParameters.length) { error(node, minTypeArgumentCount === typeParameters.length ? Diagnostics.Generic_type_0_requires_1_type_argument_s : Diagnostics.Generic_type_0_requires_between_1_and_2_type_arguments, symbolToString(symbol), minTypeArgumentCount, typeParameters.length); return unknownType; } return getTypeAliasInstantiation(symbol, typeArguments); } if (node.typeArguments) { error(node, Diagnostics.Type_0_is_not_generic, symbolToString(symbol)); return unknownType; } return type; } // Get type from reference to named type that cannot be generic (enum or type parameter) function getTypeFromNonGenericTypeReference(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference, symbol: Symbol): Type { if (node.typeArguments) { error(node, Diagnostics.Type_0_is_not_generic, symbolToString(symbol)); return unknownType; } return getDeclaredTypeOfSymbol(symbol); } function getTypeReferenceName(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference): EntityNameOrEntityNameExpression | undefined { switch (node.kind) { case SyntaxKind.TypeReference: return (node).typeName; case SyntaxKind.JSDocTypeReference: return (node).name; case SyntaxKind.ExpressionWithTypeArguments: // We only support expressions that are simple qualified names. For other // expressions this produces undefined. const expr = (node).expression; if (isEntityNameExpression(expr)) { return expr; } // fall through; } return undefined; } function resolveTypeReferenceName(typeReferenceName: EntityNameExpression | EntityName) { if (!typeReferenceName) { return unknownSymbol; } return resolveEntityName(typeReferenceName, SymbolFlags.Type) || unknownSymbol; } function getTypeReferenceType(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference, symbol: Symbol) { const typeArguments = typeArgumentsFromTypeReferenceNode(node); // Do unconditionally so we mark type arguments as referenced. if (symbol === unknownSymbol) { return unknownType; } if (symbol.flags & (SymbolFlags.Class | SymbolFlags.Interface)) { return getTypeFromClassOrInterfaceReference(node, symbol, typeArguments); } if (symbol.flags & SymbolFlags.TypeAlias) { return getTypeFromTypeAliasReference(node, symbol, typeArguments); } if (symbol.flags & SymbolFlags.Value && node.kind === SyntaxKind.JSDocTypeReference) { // A JSDocTypeReference may have resolved to a value (as opposed to a type). In // that case, the type of this reference is just the type of the value we resolved // to. return getTypeOfSymbol(symbol); } return getTypeFromNonGenericTypeReference(node, symbol); } function getPrimitiveTypeFromJSDocTypeReference(node: JSDocTypeReference): Type { if (isIdentifier(node.name)) { switch (node.name.text) { case "String": return stringType; case "Number": return numberType; case "Boolean": return booleanType; case "Void": return voidType; case "Undefined": return undefinedType; case "Null": return nullType; case "Object": return anyType; case "Function": return anyFunctionType; case "Array": case "array": return !node.typeArguments || !node.typeArguments.length ? createArrayType(anyType) : undefined; case "Promise": case "promise": return !node.typeArguments || !node.typeArguments.length ? createPromiseType(anyType) : undefined; } } } function getTypeFromJSDocNullableTypeNode(node: JSDocNullableType) { const type = getTypeFromTypeNode(node.type); return strictNullChecks ? getUnionType([type, nullType]) : type; } function getTypeFromTypeReference(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference): Type { const links = getNodeLinks(node); if (!links.resolvedType) { let symbol: Symbol; let type: Type; if (node.kind === SyntaxKind.JSDocTypeReference) { type = getPrimitiveTypeFromJSDocTypeReference(node); if (!type) { const typeReferenceName = getTypeReferenceName(node); symbol = resolveTypeReferenceName(typeReferenceName); type = getTypeReferenceType(node, symbol); } } else { // We only support expressions that are simple qualified names. For other expressions this produces undefined. const typeNameOrExpression: EntityNameOrEntityNameExpression = node.kind === SyntaxKind.TypeReference ? (node).typeName : isEntityNameExpression((node).expression) ? (node).expression : undefined; symbol = typeNameOrExpression && resolveEntityName(typeNameOrExpression, SymbolFlags.Type) || unknownSymbol; type = getTypeReferenceType(node, symbol); } // Cache both the resolved symbol and the resolved type. The resolved symbol is needed in when we check the // type reference in checkTypeReferenceOrExpressionWithTypeArguments. links.resolvedSymbol = symbol; links.resolvedType = type; } return links.resolvedType; } function typeArgumentsFromTypeReferenceNode(node: TypeReferenceNode | ExpressionWithTypeArguments | JSDocTypeReference): Type[] { return map(node.typeArguments, getTypeFromTypeNode); } function getTypeFromTypeQueryNode(node: TypeQueryNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { // TypeScript 1.0 spec (April 2014): 3.6.3 // The expression is processed as an identifier expression (section 4.3) // or property access expression(section 4.10), // the widened type(section 3.9) of which becomes the result. links.resolvedType = getWidenedType(checkExpression(node.exprName)); } return links.resolvedType; } function getTypeOfGlobalSymbol(symbol: Symbol, arity: number): ObjectType { function getTypeDeclaration(symbol: Symbol): Declaration { const declarations = symbol.declarations; for (const declaration of declarations) { switch (declaration.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.EnumDeclaration: return declaration; } } } if (!symbol) { return arity ? emptyGenericType : emptyObjectType; } const type = getDeclaredTypeOfSymbol(symbol); if (!(type.flags & TypeFlags.Object)) { error(getTypeDeclaration(symbol), Diagnostics.Global_type_0_must_be_a_class_or_interface_type, symbol.name); return arity ? emptyGenericType : emptyObjectType; } if (length((type).typeParameters) !== arity) { error(getTypeDeclaration(symbol), Diagnostics.Global_type_0_must_have_1_type_parameter_s, symbol.name, arity); return arity ? emptyGenericType : emptyObjectType; } return type; } function getGlobalValueSymbol(name: string, reportErrors: boolean): Symbol { return getGlobalSymbol(name, SymbolFlags.Value, reportErrors ? Diagnostics.Cannot_find_global_value_0 : undefined); } function getGlobalTypeSymbol(name: string, reportErrors: boolean): Symbol { return getGlobalSymbol(name, SymbolFlags.Type, reportErrors ? Diagnostics.Cannot_find_global_type_0 : undefined); } function getGlobalSymbol(name: string, meaning: SymbolFlags, diagnostic: DiagnosticMessage): Symbol { return resolveName(undefined, name, meaning, diagnostic, name); } function getGlobalType(name: string, arity: 0, reportErrors: boolean): ObjectType; function getGlobalType(name: string, arity: number, reportErrors: boolean): GenericType; function getGlobalType(name: string, arity: number, reportErrors: boolean): ObjectType { const symbol = getGlobalTypeSymbol(name, reportErrors); return symbol || reportErrors ? getTypeOfGlobalSymbol(symbol, arity) : undefined; } function getGlobalTypedPropertyDescriptorType() { return deferredGlobalTypedPropertyDescriptorType || (deferredGlobalTypedPropertyDescriptorType = getGlobalType("TypedPropertyDescriptor", /*arity*/ 1, /*reportErrors*/ true)) || emptyGenericType; } function getGlobalTemplateStringsArrayType() { return deferredGlobalTemplateStringsArrayType || (deferredGlobalTemplateStringsArrayType = getGlobalType("TemplateStringsArray", /*arity*/ 0, /*reportErrors*/ true)) || emptyObjectType; } function getGlobalESSymbolConstructorSymbol(reportErrors: boolean) { return deferredGlobalESSymbolConstructorSymbol || (deferredGlobalESSymbolConstructorSymbol = getGlobalValueSymbol("Symbol", reportErrors)); } function getGlobalESSymbolType(reportErrors: boolean) { return deferredGlobalESSymbolType || (deferredGlobalESSymbolType = getGlobalType("Symbol", /*arity*/ 0, reportErrors)) || emptyObjectType; } function getGlobalPromiseType(reportErrors: boolean) { return deferredGlobalPromiseType || (deferredGlobalPromiseType = getGlobalType("Promise", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalPromiseConstructorSymbol(reportErrors: boolean): Symbol | undefined { return deferredGlobalPromiseConstructorSymbol || (deferredGlobalPromiseConstructorSymbol = getGlobalValueSymbol("Promise", reportErrors)); } function getGlobalPromiseConstructorLikeType(reportErrors: boolean) { return deferredGlobalPromiseConstructorLikeType || (deferredGlobalPromiseConstructorLikeType = getGlobalType("PromiseConstructorLike", /*arity*/ 0, reportErrors)) || emptyObjectType; } function getGlobalAsyncIterableType(reportErrors: boolean) { return deferredGlobalAsyncIterableType || (deferredGlobalAsyncIterableType = getGlobalType("AsyncIterable", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalAsyncIteratorType(reportErrors: boolean) { return deferredGlobalAsyncIteratorType || (deferredGlobalAsyncIteratorType = getGlobalType("AsyncIterator", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalAsyncIterableIteratorType(reportErrors: boolean) { return deferredGlobalAsyncIterableIteratorType || (deferredGlobalAsyncIterableIteratorType = getGlobalType("AsyncIterableIterator", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalIterableType(reportErrors: boolean) { return deferredGlobalIterableType || (deferredGlobalIterableType = getGlobalType("Iterable", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalIteratorType(reportErrors: boolean) { return deferredGlobalIteratorType || (deferredGlobalIteratorType = getGlobalType("Iterator", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalIterableIteratorType(reportErrors: boolean) { return deferredGlobalIterableIteratorType || (deferredGlobalIterableIteratorType = getGlobalType("IterableIterator", /*arity*/ 1, reportErrors)) || emptyGenericType; } function getGlobalTypeOrUndefined(name: string, arity = 0): ObjectType { const symbol = getGlobalSymbol(name, SymbolFlags.Type, /*diagnostic*/ undefined); return symbol && getTypeOfGlobalSymbol(symbol, arity); } /** * Returns a type that is inside a namespace at the global scope, e.g. * getExportedTypeFromNamespace('JSX', 'Element') returns the JSX.Element type */ function getExportedTypeFromNamespace(namespace: string, name: string): Type { const namespaceSymbol = getGlobalSymbol(namespace, SymbolFlags.Namespace, /*diagnosticMessage*/ undefined); const typeSymbol = namespaceSymbol && getSymbol(namespaceSymbol.exports, name, SymbolFlags.Type); return typeSymbol && getDeclaredTypeOfSymbol(typeSymbol); } /** * Instantiates a global type that is generic with some element type, and returns that instantiation. */ function createTypeFromGenericGlobalType(genericGlobalType: GenericType, typeArguments: Type[]): ObjectType { return genericGlobalType !== emptyGenericType ? createTypeReference(genericGlobalType, typeArguments) : emptyObjectType; } function createTypedPropertyDescriptorType(propertyType: Type): Type { return createTypeFromGenericGlobalType(getGlobalTypedPropertyDescriptorType(), [propertyType]); } function createAsyncIterableType(iteratedType: Type): Type { return createTypeFromGenericGlobalType(getGlobalAsyncIterableType(/*reportErrors*/ true), [iteratedType]); } function createAsyncIterableIteratorType(iteratedType: Type): Type { return createTypeFromGenericGlobalType(getGlobalAsyncIterableIteratorType(/*reportErrors*/ true), [iteratedType]); } function createIterableType(iteratedType: Type): Type { return createTypeFromGenericGlobalType(getGlobalIterableType(/*reportErrors*/ true), [iteratedType]); } function createIterableIteratorType(iteratedType: Type): Type { return createTypeFromGenericGlobalType(getGlobalIterableIteratorType(/*reportErrors*/ true), [iteratedType]); } function createArrayType(elementType: Type): ObjectType { return createTypeFromGenericGlobalType(globalArrayType, [elementType]); } function getTypeFromArrayTypeNode(node: ArrayTypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = createArrayType(getTypeFromTypeNode(node.elementType)); } return links.resolvedType; } // We represent tuple types as type references to synthesized generic interface types created by // this function. The types are of the form: // // interface Tuple extends Array { 0: T0, 1: T1, 2: T2, ... } // // Note that the generic type created by this function has no symbol associated with it. The same // is true for each of the synthesized type parameters. function createTupleTypeOfArity(arity: number): GenericType { const typeParameters: TypeParameter[] = []; const properties: Symbol[] = []; for (let i = 0; i < arity; i++) { const typeParameter = createType(TypeFlags.TypeParameter); typeParameters.push(typeParameter); const property = createSymbol(SymbolFlags.Property, "" + i); property.type = typeParameter; properties.push(property); } const type = createObjectType(ObjectFlags.Tuple | ObjectFlags.Reference); type.typeParameters = typeParameters; type.outerTypeParameters = undefined; type.localTypeParameters = typeParameters; type.instantiations = createMap(); type.instantiations.set(getTypeListId(type.typeParameters), type); type.target = type; type.typeArguments = type.typeParameters; type.thisType = createType(TypeFlags.TypeParameter); type.thisType.isThisType = true; type.thisType.constraint = type; type.declaredProperties = properties; type.declaredCallSignatures = emptyArray; type.declaredConstructSignatures = emptyArray; type.declaredStringIndexInfo = undefined; type.declaredNumberIndexInfo = undefined; return type; } function getTupleTypeOfArity(arity: number): GenericType { return tupleTypes[arity] || (tupleTypes[arity] = createTupleTypeOfArity(arity)); } function createTupleType(elementTypes: Type[]) { return createTypeReference(getTupleTypeOfArity(elementTypes.length), elementTypes); } function getTypeFromTupleTypeNode(node: TupleTypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = createTupleType(map(node.elementTypes, getTypeFromTypeNode)); } return links.resolvedType; } interface TypeSet extends Array { containsAny?: boolean; containsUndefined?: boolean; containsNull?: boolean; containsNonWideningType?: boolean; containsString?: boolean; containsNumber?: boolean; containsStringOrNumberLiteral?: boolean; containsObjectType?: boolean; containsEmptyObject?: boolean; unionIndex?: number; } function binarySearchTypes(types: Type[], type: Type): number { let low = 0; let high = types.length - 1; const typeId = type.id; while (low <= high) { const middle = low + ((high - low) >> 1); const id = types[middle].id; if (id === typeId) { return middle; } else if (id > typeId) { high = middle - 1; } else { low = middle + 1; } } return ~low; } function containsType(types: Type[], type: Type): boolean { return binarySearchTypes(types, type) >= 0; } function addTypeToUnion(typeSet: TypeSet, type: Type) { const flags = type.flags; if (flags & TypeFlags.Union) { addTypesToUnion(typeSet, (type).types); } else if (flags & TypeFlags.Any) { typeSet.containsAny = true; } else if (!strictNullChecks && flags & TypeFlags.Nullable) { if (flags & TypeFlags.Undefined) typeSet.containsUndefined = true; if (flags & TypeFlags.Null) typeSet.containsNull = true; if (!(flags & TypeFlags.ContainsWideningType)) typeSet.containsNonWideningType = true; } else if (!(flags & TypeFlags.Never)) { if (flags & TypeFlags.String) typeSet.containsString = true; if (flags & TypeFlags.Number) typeSet.containsNumber = true; if (flags & TypeFlags.StringOrNumberLiteral) typeSet.containsStringOrNumberLiteral = true; const len = typeSet.length; const index = len && type.id > typeSet[len - 1].id ? ~len : binarySearchTypes(typeSet, type); if (index < 0) { if (!(flags & TypeFlags.Object && (type).objectFlags & ObjectFlags.Anonymous && type.symbol && type.symbol.flags & (SymbolFlags.Function | SymbolFlags.Method) && containsIdenticalType(typeSet, type))) { typeSet.splice(~index, 0, type); } } } } // Add the given types to the given type set. Order is preserved, duplicates are removed, // and nested types of the given kind are flattened into the set. function addTypesToUnion(typeSet: TypeSet, types: Type[]) { for (const type of types) { addTypeToUnion(typeSet, type); } } function containsIdenticalType(types: Type[], type: Type) { for (const t of types) { if (isTypeIdenticalTo(t, type)) { return true; } } return false; } function isSubtypeOfAny(candidate: Type, types: Type[]): boolean { for (const type of types) { if (candidate !== type && isTypeSubtypeOf(candidate, type)) { return true; } } return false; } function isSetOfLiteralsFromSameEnum(types: TypeSet): boolean { const first = types[0]; if (first.flags & TypeFlags.EnumLiteral) { const firstEnum = getParentOfSymbol(first.symbol); for (let i = 1; i < types.length; i++) { const other = types[i]; if (!(other.flags & TypeFlags.EnumLiteral) || (firstEnum !== getParentOfSymbol(other.symbol))) { return false; } } return true; } return false; } function removeSubtypes(types: TypeSet) { if (types.length === 0 || isSetOfLiteralsFromSameEnum(types)) { return; } let i = types.length; while (i > 0) { i--; if (isSubtypeOfAny(types[i], types)) { orderedRemoveItemAt(types, i); } } } function removeRedundantLiteralTypes(types: TypeSet) { let i = types.length; while (i > 0) { i--; const t = types[i]; const remove = t.flags & TypeFlags.StringLiteral && types.containsString || t.flags & TypeFlags.NumberLiteral && types.containsNumber || t.flags & TypeFlags.StringOrNumberLiteral && t.flags & TypeFlags.FreshLiteral && containsType(types, (t).regularType); if (remove) { orderedRemoveItemAt(types, i); } } } // We sort and deduplicate the constituent types based on object identity. If the subtypeReduction // flag is specified we also reduce the constituent type set to only include types that aren't subtypes // of other types. Subtype reduction is expensive for large union types and is possible only when union // types are known not to circularly reference themselves (as is the case with union types created by // expression constructs such as array literals and the || and ?: operators). Named types can // circularly reference themselves and therefore cannot be subtype reduced during their declaration. // For example, "type Item = string | (() => Item" is a named type that circularly references itself. function getUnionType(types: Type[], subtypeReduction?: boolean, aliasSymbol?: Symbol, aliasTypeArguments?: Type[]): Type { if (types.length === 0) { return neverType; } if (types.length === 1) { return types[0]; } const typeSet = [] as TypeSet; addTypesToUnion(typeSet, types); if (typeSet.containsAny) { return anyType; } if (subtypeReduction) { removeSubtypes(typeSet); } else if (typeSet.containsStringOrNumberLiteral) { removeRedundantLiteralTypes(typeSet); } if (typeSet.length === 0) { return typeSet.containsNull ? typeSet.containsNonWideningType ? nullType : nullWideningType : typeSet.containsUndefined ? typeSet.containsNonWideningType ? undefinedType : undefinedWideningType : neverType; } return getUnionTypeFromSortedList(typeSet, aliasSymbol, aliasTypeArguments); } // This function assumes the constituent type list is sorted and deduplicated. function getUnionTypeFromSortedList(types: Type[], aliasSymbol?: Symbol, aliasTypeArguments?: Type[]): Type { if (types.length === 0) { return neverType; } if (types.length === 1) { return types[0]; } const id = getTypeListId(types); let type = unionTypes.get(id); if (!type) { const propagatedFlags = getPropagatingFlagsOfTypes(types, /*excludeKinds*/ TypeFlags.Nullable); type = createType(TypeFlags.Union | propagatedFlags); unionTypes.set(id, type); type.types = types; type.aliasSymbol = aliasSymbol; type.aliasTypeArguments = aliasTypeArguments; } return type; } function getTypeFromUnionTypeNode(node: UnionTypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getUnionType(map(node.types, getTypeFromTypeNode), /*subtypeReduction*/ false, getAliasSymbolForTypeNode(node), getAliasTypeArgumentsForTypeNode(node)); } return links.resolvedType; } function addTypeToIntersection(typeSet: TypeSet, type: Type) { if (type.flags & TypeFlags.Intersection) { addTypesToIntersection(typeSet, (type).types); } else if (type.flags & TypeFlags.Any) { typeSet.containsAny = true; } else if (getObjectFlags(type) & ObjectFlags.Anonymous && isEmptyObjectType(type)) { typeSet.containsEmptyObject = true; } else if (!(type.flags & TypeFlags.Never) && (strictNullChecks || !(type.flags & TypeFlags.Nullable)) && !contains(typeSet, type)) { if (type.flags & TypeFlags.Object) { typeSet.containsObjectType = true; } if (type.flags & TypeFlags.Union && typeSet.unionIndex === undefined) { typeSet.unionIndex = typeSet.length; } if (!(type.flags & TypeFlags.Object && (type).objectFlags & ObjectFlags.Anonymous && type.symbol && type.symbol.flags & (SymbolFlags.Function | SymbolFlags.Method) && containsIdenticalType(typeSet, type))) { typeSet.push(type); } } } // Add the given types to the given type set. Order is preserved, duplicates are removed, // and nested types of the given kind are flattened into the set. function addTypesToIntersection(typeSet: TypeSet, types: Type[]) { for (const type of types) { addTypeToIntersection(typeSet, type); } } // We normalize combinations of intersection and union types based on the distributive property of the '&' // operator. Specifically, because X & (A | B) is equivalent to X & A | X & B, we can transform intersection // types with union type constituents into equivalent union types with intersection type constituents and // effectively ensure that union types are always at the top level in type representations. // // We do not perform structural deduplication on intersection types. Intersection types are created only by the & // type operator and we can't reduce those because we want to support recursive intersection types. For example, // a type alias of the form "type List = T & { next: List }" cannot be reduced during its declaration. // Also, unlike union types, the order of the constituent types is preserved in order that overload resolution // for intersections of types with signatures can be deterministic. function getIntersectionType(types: Type[], aliasSymbol?: Symbol, aliasTypeArguments?: Type[]): Type { if (types.length === 0) { return emptyObjectType; } const typeSet = [] as TypeSet; addTypesToIntersection(typeSet, types); if (typeSet.containsAny) { return anyType; } if (typeSet.containsEmptyObject && !typeSet.containsObjectType) { typeSet.push(emptyObjectType); } if (typeSet.length === 1) { return typeSet[0]; } const unionIndex = typeSet.unionIndex; if (unionIndex !== undefined) { // We are attempting to construct a type of the form X & (A | B) & Y. Transform this into a type of // the form X & A & Y | X & B & Y and recursively reduce until no union type constituents remain. const unionType = typeSet[unionIndex]; return getUnionType(map(unionType.types, t => getIntersectionType(replaceElement(typeSet, unionIndex, t))), /*subtypeReduction*/ false, aliasSymbol, aliasTypeArguments); } const id = getTypeListId(typeSet); let type = intersectionTypes.get(id); if (!type) { const propagatedFlags = getPropagatingFlagsOfTypes(typeSet, /*excludeKinds*/ TypeFlags.Nullable); type = createType(TypeFlags.Intersection | propagatedFlags); intersectionTypes.set(id, type); type.types = typeSet; type.aliasSymbol = aliasSymbol; type.aliasTypeArguments = aliasTypeArguments; } return type; } function getTypeFromIntersectionTypeNode(node: IntersectionTypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getIntersectionType(map(node.types, getTypeFromTypeNode), getAliasSymbolForTypeNode(node), getAliasTypeArgumentsForTypeNode(node)); } return links.resolvedType; } function getIndexTypeForGenericType(type: TypeVariable | UnionOrIntersectionType) { if (!type.resolvedIndexType) { type.resolvedIndexType = createType(TypeFlags.Index); type.resolvedIndexType.type = type; } return type.resolvedIndexType; } function getLiteralTypeFromPropertyName(prop: Symbol) { return getDeclarationModifierFlagsFromSymbol(prop) & ModifierFlags.NonPublicAccessibilityModifier || startsWith(prop.name, "__@") ? neverType : getLiteralTypeForText(TypeFlags.StringLiteral, unescapeIdentifier(prop.name)); } function getLiteralTypeFromPropertyNames(type: Type) { return getUnionType(map(getPropertiesOfType(type), getLiteralTypeFromPropertyName)); } function getIndexType(type: Type): Type { return maybeTypeOfKind(type, TypeFlags.TypeVariable) ? getIndexTypeForGenericType(type) : getObjectFlags(type) & ObjectFlags.Mapped ? getConstraintTypeFromMappedType(type) : type.flags & TypeFlags.Any || getIndexInfoOfType(type, IndexKind.String) ? stringType : getLiteralTypeFromPropertyNames(type); } function getIndexTypeOrString(type: Type): Type { const indexType = getIndexType(type); return indexType !== neverType ? indexType : stringType; } function getTypeFromTypeOperatorNode(node: TypeOperatorNode) { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getIndexType(getTypeFromTypeNode(node.type)); } return links.resolvedType; } function createIndexedAccessType(objectType: Type, indexType: Type) { const type = createType(TypeFlags.IndexedAccess); type.objectType = objectType; type.indexType = indexType; return type; } function getPropertyTypeForIndexType(objectType: Type, indexType: Type, accessNode: ElementAccessExpression | IndexedAccessTypeNode, cacheSymbol: boolean) { const accessExpression = accessNode && accessNode.kind === SyntaxKind.ElementAccessExpression ? accessNode : undefined; const propName = indexType.flags & (TypeFlags.StringLiteral | TypeFlags.NumberLiteral | TypeFlags.EnumLiteral) ? (indexType).text : accessExpression && checkThatExpressionIsProperSymbolReference(accessExpression.argumentExpression, indexType, /*reportError*/ false) ? getPropertyNameForKnownSymbolName(((accessExpression.argumentExpression).name).text) : undefined; if (propName !== undefined) { const prop = getPropertyOfType(objectType, propName); if (prop) { if (accessExpression) { if (isAssignmentTarget(accessExpression) && (isReferenceToReadonlyEntity(accessExpression, prop) || isReferenceThroughNamespaceImport(accessExpression))) { error(accessExpression.argumentExpression, Diagnostics.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, symbolToString(prop)); return unknownType; } if (cacheSymbol) { getNodeLinks(accessNode).resolvedSymbol = prop; } } return getTypeOfSymbol(prop); } } if (isTypeAnyOrAllConstituentTypesHaveKind(indexType, TypeFlags.StringLike | TypeFlags.NumberLike | TypeFlags.ESSymbol)) { if (isTypeAny(objectType)) { return anyType; } const indexInfo = isTypeAnyOrAllConstituentTypesHaveKind(indexType, TypeFlags.NumberLike) && getIndexInfoOfType(objectType, IndexKind.Number) || getIndexInfoOfType(objectType, IndexKind.String) || undefined; if (indexInfo) { if (accessExpression && indexInfo.isReadonly && (isAssignmentTarget(accessExpression) || isDeleteTarget(accessExpression))) { error(accessExpression, Diagnostics.Index_signature_in_type_0_only_permits_reading, typeToString(objectType)); return unknownType; } return indexInfo.type; } if (accessExpression && !isConstEnumObjectType(objectType)) { if (noImplicitAny && !compilerOptions.suppressImplicitAnyIndexErrors) { if (getIndexTypeOfType(objectType, IndexKind.Number)) { error(accessExpression.argumentExpression, Diagnostics.Element_implicitly_has_an_any_type_because_index_expression_is_not_of_type_number); } else { error(accessExpression, Diagnostics.Element_implicitly_has_an_any_type_because_type_0_has_no_index_signature, typeToString(objectType)); } } return anyType; } } if (accessNode) { const indexNode = accessNode.kind === SyntaxKind.ElementAccessExpression ? (accessNode).argumentExpression : (accessNode).indexType; if (indexType.flags & (TypeFlags.StringLiteral | TypeFlags.NumberLiteral)) { error(indexNode, Diagnostics.Property_0_does_not_exist_on_type_1, (indexType).text, typeToString(objectType)); } else if (indexType.flags & (TypeFlags.String | TypeFlags.Number)) { error(indexNode, Diagnostics.Type_0_has_no_matching_index_signature_for_type_1, typeToString(objectType), typeToString(indexType)); } else { error(indexNode, Diagnostics.Type_0_cannot_be_used_as_an_index_type, typeToString(indexType)); } return unknownType; } return anyType; } function getIndexedAccessForMappedType(type: MappedType, indexType: Type, accessNode?: ElementAccessExpression | IndexedAccessTypeNode) { const accessExpression = accessNode && accessNode.kind === SyntaxKind.ElementAccessExpression ? accessNode : undefined; if (accessExpression && isAssignmentTarget(accessExpression) && type.declaration.readonlyToken) { error(accessExpression, Diagnostics.Index_signature_in_type_0_only_permits_reading, typeToString(type)); return unknownType; } const mapper = createTypeMapper([getTypeParameterFromMappedType(type)], [indexType]); const templateMapper = type.mapper ? combineTypeMappers(type.mapper, mapper) : mapper; return instantiateType(getTemplateTypeFromMappedType(type), templateMapper); } function getIndexedAccessType(objectType: Type, indexType: Type, accessNode?: ElementAccessExpression | IndexedAccessTypeNode) { // If the index type is generic, if the object type is generic and doesn't originate in an expression, // or if the object type is a mapped type with a generic constraint, we are performing a higher-order // index access where we cannot meaningfully access the properties of the object type. Note that for a // generic T and a non-generic K, we eagerly resolve T[K] if it originates in an expression. This is to // preserve backwards compatibility. For example, an element access 'this["foo"]' has always been resolved // eagerly using the constraint type of 'this' at the given location. if (maybeTypeOfKind(indexType, TypeFlags.TypeVariable | TypeFlags.Index) || maybeTypeOfKind(objectType, TypeFlags.TypeVariable) && !(accessNode && accessNode.kind === SyntaxKind.ElementAccessExpression) || isGenericMappedType(objectType)) { if (objectType.flags & TypeFlags.Any) { return objectType; } // If the object type is a mapped type { [P in K]: E }, we instantiate E using a mapper that substitutes // the index type for P. For example, for an index access { [P in K]: Box }[X], we construct the // type Box. if (isGenericMappedType(objectType)) { return getIndexedAccessForMappedType(objectType, indexType, accessNode); } // Otherwise we defer the operation by creating an indexed access type. const id = objectType.id + "," + indexType.id; let type = indexedAccessTypes.get(id); if (!type) { indexedAccessTypes.set(id, type = createIndexedAccessType(objectType, indexType)); } return type; } // In the following we resolve T[K] to the type of the property in T selected by K. const apparentObjectType = getApparentType(objectType); if (indexType.flags & TypeFlags.Union && !(indexType.flags & TypeFlags.Primitive)) { const propTypes: Type[] = []; for (const t of (indexType).types) { const propType = getPropertyTypeForIndexType(apparentObjectType, t, accessNode, /*cacheSymbol*/ false); if (propType === unknownType) { return unknownType; } propTypes.push(propType); } return getUnionType(propTypes); } return getPropertyTypeForIndexType(apparentObjectType, indexType, accessNode, /*cacheSymbol*/ true); } function getTypeFromIndexedAccessTypeNode(node: IndexedAccessTypeNode) { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getIndexedAccessType(getTypeFromTypeNode(node.objectType), getTypeFromTypeNode(node.indexType), node); } return links.resolvedType; } function getTypeFromMappedTypeNode(node: MappedTypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { const type = createObjectType(ObjectFlags.Mapped, node.symbol); type.declaration = node; type.aliasSymbol = getAliasSymbolForTypeNode(node); type.aliasTypeArguments = getAliasTypeArgumentsForTypeNode(node); links.resolvedType = type; // Eagerly resolve the constraint type which forces an error if the constraint type circularly // references itself through one or more type aliases. getConstraintTypeFromMappedType(type); } return links.resolvedType; } function getTypeFromTypeLiteralOrFunctionOrConstructorTypeNode(node: TypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { // Deferred resolution of members is handled by resolveObjectTypeMembers const aliasSymbol = getAliasSymbolForTypeNode(node); if (node.symbol.members.size === 0 && !aliasSymbol) { links.resolvedType = emptyTypeLiteralType; } else { const type = createObjectType(ObjectFlags.Anonymous, node.symbol); type.aliasSymbol = aliasSymbol; type.aliasTypeArguments = getAliasTypeArgumentsForTypeNode(node); links.resolvedType = type; } } return links.resolvedType; } function getAliasSymbolForTypeNode(node: TypeNode) { return node.parent.kind === SyntaxKind.TypeAliasDeclaration ? getSymbolOfNode(node.parent) : undefined; } function getAliasTypeArgumentsForTypeNode(node: TypeNode) { const symbol = getAliasSymbolForTypeNode(node); return symbol ? getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(symbol) : undefined; } /** * Since the source of spread types are object literals, which are not binary, * this function should be called in a left folding style, with left = previous result of getSpreadType * and right = the new element to be spread. */ function getSpreadType(left: Type, right: Type): Type { if (left.flags & TypeFlags.Any || right.flags & TypeFlags.Any) { return anyType; } left = filterType(left, t => !(t.flags & TypeFlags.Nullable)); if (left.flags & TypeFlags.Never) { return right; } right = filterType(right, t => !(t.flags & TypeFlags.Nullable)); if (right.flags & TypeFlags.Never) { return left; } if (left.flags & TypeFlags.Union) { return mapType(left, t => getSpreadType(t, right)); } if (right.flags & TypeFlags.Union) { return mapType(right, t => getSpreadType(left, t)); } if (right.flags & TypeFlags.NonPrimitive) { return emptyObjectType; } const members = createMap(); const skippedPrivateMembers = createMap(); let stringIndexInfo: IndexInfo; let numberIndexInfo: IndexInfo; if (left === emptyObjectType) { // for the first spread element, left === emptyObjectType, so take the right's string indexer stringIndexInfo = getIndexInfoOfType(right, IndexKind.String); numberIndexInfo = getIndexInfoOfType(right, IndexKind.Number); } else { stringIndexInfo = unionSpreadIndexInfos(getIndexInfoOfType(left, IndexKind.String), getIndexInfoOfType(right, IndexKind.String)); numberIndexInfo = unionSpreadIndexInfos(getIndexInfoOfType(left, IndexKind.Number), getIndexInfoOfType(right, IndexKind.Number)); } for (const rightProp of getPropertiesOfType(right)) { // we approximate own properties as non-methods plus methods that are inside the object literal const isSetterWithoutGetter = rightProp.flags & SymbolFlags.SetAccessor && !(rightProp.flags & SymbolFlags.GetAccessor); if (getDeclarationModifierFlagsFromSymbol(rightProp) & (ModifierFlags.Private | ModifierFlags.Protected)) { skippedPrivateMembers.set(rightProp.name, true); } else if (!isClassMethod(rightProp) && !isSetterWithoutGetter) { members.set(rightProp.name, getNonReadonlySymbol(rightProp)); } } for (const leftProp of getPropertiesOfType(left)) { if (leftProp.flags & SymbolFlags.SetAccessor && !(leftProp.flags & SymbolFlags.GetAccessor) || skippedPrivateMembers.has(leftProp.name) || isClassMethod(leftProp)) { continue; } if (members.has(leftProp.name)) { const rightProp = members.get(leftProp.name); const rightType = getTypeOfSymbol(rightProp); if (maybeTypeOfKind(rightType, TypeFlags.Undefined) || rightProp.flags & SymbolFlags.Optional) { const declarations: Declaration[] = concatenate(leftProp.declarations, rightProp.declarations); const flags = SymbolFlags.Property | (leftProp.flags & SymbolFlags.Optional); const result = createSymbol(flags, leftProp.name); result.type = getUnionType([getTypeOfSymbol(leftProp), getTypeWithFacts(rightType, TypeFacts.NEUndefined)]); result.leftSpread = leftProp; result.rightSpread = rightProp; result.declarations = declarations; members.set(leftProp.name, result); } } else { members.set(leftProp.name, getNonReadonlySymbol(leftProp)); } } return createAnonymousType(undefined, members, emptyArray, emptyArray, stringIndexInfo, numberIndexInfo); } function getNonReadonlySymbol(prop: Symbol) { if (!isReadonlySymbol(prop)) { return prop; } const flags = SymbolFlags.Property | (prop.flags & SymbolFlags.Optional); const result = createSymbol(flags, prop.name); result.type = getTypeOfSymbol(prop); result.declarations = prop.declarations; result.syntheticOrigin = prop; return result; } function isClassMethod(prop: Symbol) { return prop.flags & SymbolFlags.Method && find(prop.declarations, decl => isClassLike(decl.parent)); } function createLiteralType(flags: TypeFlags, text: string) { const type = createType(flags); type.text = text; return type; } function getFreshTypeOfLiteralType(type: Type) { if (type.flags & TypeFlags.StringOrNumberLiteral && !(type.flags & TypeFlags.FreshLiteral)) { if (!(type).freshType) { const freshType = createLiteralType(type.flags | TypeFlags.FreshLiteral, (type).text); freshType.regularType = type; (type).freshType = freshType; } return (type).freshType; } return type; } function getRegularTypeOfLiteralType(type: Type) { return type.flags & TypeFlags.StringOrNumberLiteral && type.flags & TypeFlags.FreshLiteral ? (type).regularType : type; } function getLiteralTypeForText(flags: TypeFlags, text: string) { const map = flags & TypeFlags.StringLiteral ? stringLiteralTypes : numericLiteralTypes; let type = map.get(text); if (!type) { map.set(text, type = createLiteralType(flags, text)); } return type; } function getTypeFromLiteralTypeNode(node: LiteralTypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getRegularTypeOfLiteralType(checkExpression(node.literal)); } return links.resolvedType; } function getTypeFromJSDocVariadicType(node: JSDocVariadicType): Type { const links = getNodeLinks(node); if (!links.resolvedType) { const type = getTypeFromTypeNode(node.type); links.resolvedType = type ? createArrayType(type) : unknownType; } return links.resolvedType; } function getTypeFromJSDocTupleType(node: JSDocTupleType): Type { const links = getNodeLinks(node); if (!links.resolvedType) { const types = map(node.types, getTypeFromTypeNode); links.resolvedType = createTupleType(types); } return links.resolvedType; } function getThisType(node: Node): Type { const container = getThisContainer(node, /*includeArrowFunctions*/ false); const parent = container && container.parent; if (parent && (isClassLike(parent) || parent.kind === SyntaxKind.InterfaceDeclaration)) { if (!(getModifierFlags(container) & ModifierFlags.Static) && (container.kind !== SyntaxKind.Constructor || isNodeDescendantOf(node, (container).body))) { return getDeclaredTypeOfClassOrInterface(getSymbolOfNode(parent)).thisType; } } error(node, Diagnostics.A_this_type_is_available_only_in_a_non_static_member_of_a_class_or_interface); return unknownType; } function getTypeFromThisTypeNode(node: TypeNode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { links.resolvedType = getThisType(node); } return links.resolvedType; } function getTypeFromTypeNode(node: TypeNode): Type { switch (node.kind) { case SyntaxKind.AnyKeyword: case SyntaxKind.JSDocAllType: case SyntaxKind.JSDocUnknownType: return anyType; case SyntaxKind.StringKeyword: return stringType; case SyntaxKind.NumberKeyword: return numberType; case SyntaxKind.BooleanKeyword: return booleanType; case SyntaxKind.SymbolKeyword: return esSymbolType; case SyntaxKind.VoidKeyword: return voidType; case SyntaxKind.UndefinedKeyword: return undefinedType; case SyntaxKind.NullKeyword: return nullType; case SyntaxKind.NeverKeyword: return neverType; case SyntaxKind.ObjectKeyword: return nonPrimitiveType; case SyntaxKind.ThisType: case SyntaxKind.ThisKeyword: return getTypeFromThisTypeNode(node); case SyntaxKind.LiteralType: return getTypeFromLiteralTypeNode(node); case SyntaxKind.JSDocLiteralType: return getTypeFromLiteralTypeNode((node).literal); case SyntaxKind.TypeReference: case SyntaxKind.JSDocTypeReference: return getTypeFromTypeReference(node); case SyntaxKind.TypePredicate: return booleanType; case SyntaxKind.ExpressionWithTypeArguments: return getTypeFromTypeReference(node); case SyntaxKind.TypeQuery: return getTypeFromTypeQueryNode(node); case SyntaxKind.ArrayType: case SyntaxKind.JSDocArrayType: return getTypeFromArrayTypeNode(node); case SyntaxKind.TupleType: return getTypeFromTupleTypeNode(node); case SyntaxKind.UnionType: case SyntaxKind.JSDocUnionType: return getTypeFromUnionTypeNode(node); case SyntaxKind.IntersectionType: return getTypeFromIntersectionTypeNode(node); case SyntaxKind.JSDocNullableType: return getTypeFromJSDocNullableTypeNode(node); case SyntaxKind.ParenthesizedType: case SyntaxKind.JSDocNonNullableType: case SyntaxKind.JSDocConstructorType: case SyntaxKind.JSDocThisType: case SyntaxKind.JSDocOptionalType: return getTypeFromTypeNode((node).type); case SyntaxKind.JSDocRecordType: return getTypeFromTypeNode((node as JSDocRecordType).literal); case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.TypeLiteral: case SyntaxKind.JSDocTypeLiteral: case SyntaxKind.JSDocFunctionType: return getTypeFromTypeLiteralOrFunctionOrConstructorTypeNode(node); case SyntaxKind.TypeOperator: return getTypeFromTypeOperatorNode(node); case SyntaxKind.IndexedAccessType: return getTypeFromIndexedAccessTypeNode(node); case SyntaxKind.MappedType: return getTypeFromMappedTypeNode(node); // This function assumes that an identifier or qualified name is a type expression // Callers should first ensure this by calling isTypeNode case SyntaxKind.Identifier: case SyntaxKind.QualifiedName: const symbol = getSymbolAtLocation(node); return symbol && getDeclaredTypeOfSymbol(symbol); case SyntaxKind.JSDocTupleType: return getTypeFromJSDocTupleType(node); case SyntaxKind.JSDocVariadicType: return getTypeFromJSDocVariadicType(node); default: return unknownType; } } function instantiateList(items: T[], mapper: TypeMapper, instantiator: (item: T, mapper: TypeMapper) => T): T[] { if (items && items.length) { const result: T[] = []; for (const v of items) { result.push(instantiator(v, mapper)); } return result; } return items; } function instantiateTypes(types: Type[], mapper: TypeMapper) { return instantiateList(types, mapper, instantiateType); } function instantiateSignatures(signatures: Signature[], mapper: TypeMapper) { return instantiateList(signatures, mapper, instantiateSignature); } function instantiateCached(type: T, mapper: TypeMapper, instantiator: (item: T, mapper: TypeMapper) => T): T { const instantiations = mapper.instantiations || (mapper.instantiations = []); return instantiations[type.id] || (instantiations[type.id] = instantiator(type, mapper)); } function makeUnaryTypeMapper(source: Type, target: Type) { return (t: Type) => t === source ? target : t; } function makeBinaryTypeMapper(source1: Type, target1: Type, source2: Type, target2: Type) { return (t: Type) => t === source1 ? target1 : t === source2 ? target2 : t; } function makeArrayTypeMapper(sources: Type[], targets: Type[]) { return (t: Type) => { for (let i = 0; i < sources.length; i++) { if (t === sources[i]) { return targets ? targets[i] : anyType; } } return t; }; } function createTypeMapper(sources: Type[], targets: Type[]): TypeMapper { const mapper: TypeMapper = sources.length === 1 ? makeUnaryTypeMapper(sources[0], targets ? targets[0] : anyType) : sources.length === 2 ? makeBinaryTypeMapper(sources[0], targets ? targets[0] : anyType, sources[1], targets ? targets[1] : anyType) : makeArrayTypeMapper(sources, targets); mapper.mappedTypes = sources; return mapper; } function createTypeEraser(sources: Type[]): TypeMapper { return createTypeMapper(sources, /*targets*/ undefined); } /** * Maps forward-references to later types parameters to the empty object type. * This is used during inference when instantiating type parameter defaults. */ function createBackreferenceMapper(typeParameters: TypeParameter[], index: number) { const mapper: TypeMapper = t => indexOf(typeParameters, t) >= index ? emptyObjectType : t; mapper.mappedTypes = typeParameters; return mapper; } function getInferenceMapper(context: InferenceContext): TypeMapper { if (!context.mapper) { const mapper: TypeMapper = t => { const typeParameters = context.signature.typeParameters; for (let i = 0; i < typeParameters.length; i++) { if (t === typeParameters[i]) { context.inferences[i].isFixed = true; return getInferredType(context, i); } } return t; }; mapper.mappedTypes = context.signature.typeParameters; mapper.context = context; context.mapper = mapper; } return context.mapper; } function identityMapper(type: Type): Type { return type; } function combineTypeMappers(mapper1: TypeMapper, mapper2: TypeMapper): TypeMapper { const mapper: TypeMapper = t => instantiateType(mapper1(t), mapper2); mapper.mappedTypes = concatenate(mapper1.mappedTypes, mapper2.mappedTypes); return mapper; } function createReplacementMapper(source: Type, target: Type, baseMapper: TypeMapper) { const mapper: TypeMapper = t => t === source ? target : baseMapper(t); mapper.mappedTypes = baseMapper.mappedTypes; return mapper; } function cloneTypeParameter(typeParameter: TypeParameter): TypeParameter { const result = createType(TypeFlags.TypeParameter); result.symbol = typeParameter.symbol; result.target = typeParameter; return result; } function cloneTypePredicate(predicate: TypePredicate, mapper: TypeMapper): ThisTypePredicate | IdentifierTypePredicate { if (isIdentifierTypePredicate(predicate)) { return { kind: TypePredicateKind.Identifier, parameterName: predicate.parameterName, parameterIndex: predicate.parameterIndex, type: instantiateType(predicate.type, mapper) } as IdentifierTypePredicate; } else { return { kind: TypePredicateKind.This, type: instantiateType(predicate.type, mapper) } as ThisTypePredicate; } } function instantiateSignature(signature: Signature, mapper: TypeMapper, eraseTypeParameters?: boolean): Signature { let freshTypeParameters: TypeParameter[]; let freshTypePredicate: TypePredicate; if (signature.typeParameters && !eraseTypeParameters) { // First create a fresh set of type parameters, then include a mapping from the old to the // new type parameters in the mapper function. Finally store this mapper in the new type // parameters such that we can use it when instantiating constraints. freshTypeParameters = map(signature.typeParameters, cloneTypeParameter); mapper = combineTypeMappers(createTypeMapper(signature.typeParameters, freshTypeParameters), mapper); for (const tp of freshTypeParameters) { tp.mapper = mapper; } } if (signature.typePredicate) { freshTypePredicate = cloneTypePredicate(signature.typePredicate, mapper); } const result = createSignature(signature.declaration, freshTypeParameters, signature.thisParameter && instantiateSymbol(signature.thisParameter, mapper), instantiateList(signature.parameters, mapper, instantiateSymbol), instantiateType(signature.resolvedReturnType, mapper), freshTypePredicate, signature.minArgumentCount, signature.hasRestParameter, signature.hasLiteralTypes); result.target = signature; result.mapper = mapper; return result; } function instantiateSymbol(symbol: Symbol, mapper: TypeMapper): Symbol { if (getCheckFlags(symbol) & CheckFlags.Instantiated) { const links = getSymbolLinks(symbol); // If symbol being instantiated is itself a instantiation, fetch the original target and combine the // type mappers. This ensures that original type identities are properly preserved and that aliases // always reference a non-aliases. symbol = links.target; mapper = combineTypeMappers(links.mapper, mapper); } // Keep the flags from the symbol we're instantiating. Mark that is instantiated, and // also transient so that we can just store data on it directly. const result = createSymbol(symbol.flags, symbol.name); result.checkFlags = CheckFlags.Instantiated; result.declarations = symbol.declarations; result.parent = symbol.parent; result.target = symbol; result.mapper = mapper; if (symbol.valueDeclaration) { result.valueDeclaration = symbol.valueDeclaration; } return result; } function instantiateAnonymousType(type: AnonymousType, mapper: TypeMapper): AnonymousType { const result = createObjectType(ObjectFlags.Anonymous | ObjectFlags.Instantiated, type.symbol); result.target = type.objectFlags & ObjectFlags.Instantiated ? type.target : type; result.mapper = type.objectFlags & ObjectFlags.Instantiated ? combineTypeMappers(type.mapper, mapper) : mapper; result.aliasSymbol = type.aliasSymbol; result.aliasTypeArguments = instantiateTypes(type.aliasTypeArguments, mapper); return result; } function instantiateMappedType(type: MappedType, mapper: TypeMapper): Type { // Check if we have a homomorphic mapped type, i.e. a type of the form { [P in keyof T]: X } for some // type variable T. If so, the mapped type is distributive over a union type and when T is instantiated // to a union type A | B, we produce { [P in keyof A]: X } | { [P in keyof B]: X }. Furthermore, for // homomorphic mapped types we leave primitive types alone. For example, when T is instantiated to a // union type A | undefined, we produce { [P in keyof A]: X } | undefined. const constraintType = getConstraintTypeFromMappedType(type); if (constraintType.flags & TypeFlags.Index) { const typeVariable = (constraintType).type; if (typeVariable.flags & TypeFlags.TypeParameter) { const mappedTypeVariable = instantiateType(typeVariable, mapper); if (typeVariable !== mappedTypeVariable) { return mapType(mappedTypeVariable, t => { if (isMappableType(t)) { return instantiateMappedObjectType(type, createReplacementMapper(typeVariable, t, mapper)); } return t; }); } } } return instantiateMappedObjectType(type, mapper); } function isMappableType(type: Type) { return type.flags & (TypeFlags.TypeParameter | TypeFlags.Object | TypeFlags.Intersection | TypeFlags.IndexedAccess); } function instantiateMappedObjectType(type: MappedType, mapper: TypeMapper): Type { const result = createObjectType(ObjectFlags.Mapped | ObjectFlags.Instantiated, type.symbol); result.declaration = type.declaration; result.mapper = type.mapper ? combineTypeMappers(type.mapper, mapper) : mapper; result.aliasSymbol = type.aliasSymbol; result.aliasTypeArguments = instantiateTypes(type.aliasTypeArguments, mapper); return result; } function isSymbolInScopeOfMappedTypeParameter(symbol: Symbol, mapper: TypeMapper) { if (!(symbol.declarations && symbol.declarations.length)) { return false; } const mappedTypes = mapper.mappedTypes; // Starting with the parent of the symbol's declaration, check if the mapper maps any of // the type parameters introduced by enclosing declarations. We just pick the first // declaration since multiple declarations will all have the same parent anyway. return !!findAncestor(symbol.declarations[0], node => { if (node.kind === SyntaxKind.ModuleDeclaration || node.kind === SyntaxKind.SourceFile) { return "quit"; } switch (node.kind) { case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.FunctionDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.Constructor: case SyntaxKind.CallSignature: case SyntaxKind.ConstructSignature: case SyntaxKind.IndexSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.TypeAliasDeclaration: const declaration = node as DeclarationWithTypeParameters; if (declaration.typeParameters) { for (const d of declaration.typeParameters) { if (contains(mappedTypes, getDeclaredTypeOfTypeParameter(getSymbolOfNode(d)))) { return true; } } } if (isClassLike(node) || node.kind === SyntaxKind.InterfaceDeclaration) { const thisType = getDeclaredTypeOfClassOrInterface(getSymbolOfNode(node)).thisType; if (thisType && contains(mappedTypes, thisType)) { return true; } } break; case SyntaxKind.MappedType: if (contains(mappedTypes, getDeclaredTypeOfTypeParameter(getSymbolOfNode((node).typeParameter)))) { return true; } break; case SyntaxKind.JSDocFunctionType: const func = node as JSDocFunctionType; for (const p of func.parameters) { if (contains(mappedTypes, getTypeOfNode(p))) { return true; } } break; } }); } function isTopLevelTypeAlias(symbol: Symbol) { if (symbol.declarations && symbol.declarations.length) { const parentKind = symbol.declarations[0].parent.kind; return parentKind === SyntaxKind.SourceFile || parentKind === SyntaxKind.ModuleBlock; } return false; } function instantiateType(type: Type, mapper: TypeMapper): Type { if (type && mapper !== identityMapper) { // If we are instantiating a type that has a top-level type alias, obtain the instantiation through // the type alias instead in order to share instantiations for the same type arguments. This can // dramatically reduce the number of structurally identical types we generate. Note that we can only // perform this optimization for top-level type aliases. Consider: // // function f1(x: T) { // type Foo = { x: X, t: T }; // let obj: Foo = { x: x }; // return obj; // } // function f2(x: U) { return f1(x); } // let z = f2(42); // // Above, the declaration of f2 has an inferred return type that is an instantiation of f1's Foo // equivalent to { x: U, t: U }. When instantiating this return type, we can't go back to Foo's // cache because all cached instantiations are of the form { x: ???, t: T }, i.e. they have not been // instantiated for T. Instead, we need to further instantiate the { x: U, t: U } form. if (type.aliasSymbol && isTopLevelTypeAlias(type.aliasSymbol)) { if (type.aliasTypeArguments) { return getTypeAliasInstantiation(type.aliasSymbol, instantiateTypes(type.aliasTypeArguments, mapper)); } return type; } return instantiateTypeNoAlias(type, mapper); } return type; } function instantiateTypeNoAlias(type: Type, mapper: TypeMapper): Type { if (type.flags & TypeFlags.TypeParameter) { return mapper(type); } if (type.flags & TypeFlags.Object) { if ((type).objectFlags & ObjectFlags.Anonymous) { // If the anonymous type originates in a declaration of a function, method, class, or // interface, in an object type literal, or in an object literal expression, we may need // to instantiate the type because it might reference a type parameter. We skip instantiation // if none of the type parameters that are in scope in the type's declaration are mapped by // the given mapper, however we can only do that analysis if the type isn't itself an // instantiation. return type.symbol && type.symbol.flags & (SymbolFlags.Function | SymbolFlags.Method | SymbolFlags.Class | SymbolFlags.TypeLiteral | SymbolFlags.ObjectLiteral) && ((type).objectFlags & ObjectFlags.Instantiated || isSymbolInScopeOfMappedTypeParameter(type.symbol, mapper)) ? instantiateCached(type, mapper, instantiateAnonymousType) : type; } if ((type).objectFlags & ObjectFlags.Mapped) { return instantiateCached(type, mapper, instantiateMappedType); } if ((type).objectFlags & ObjectFlags.Reference) { return createTypeReference((type).target, instantiateTypes((type).typeArguments, mapper)); } } if (type.flags & TypeFlags.Union && !(type.flags & TypeFlags.Primitive)) { return getUnionType(instantiateTypes((type).types, mapper), /*subtypeReduction*/ false, type.aliasSymbol, instantiateTypes(type.aliasTypeArguments, mapper)); } if (type.flags & TypeFlags.Intersection) { return getIntersectionType(instantiateTypes((type).types, mapper), type.aliasSymbol, instantiateTypes(type.aliasTypeArguments, mapper)); } if (type.flags & TypeFlags.Index) { return getIndexType(instantiateType((type).type, mapper)); } if (type.flags & TypeFlags.IndexedAccess) { return getIndexedAccessType(instantiateType((type).objectType, mapper), instantiateType((type).indexType, mapper)); } return type; } function instantiateIndexInfo(info: IndexInfo, mapper: TypeMapper): IndexInfo { return info && createIndexInfo(instantiateType(info.type, mapper), info.isReadonly, info.declaration); } // Returns true if the given expression contains (at any level of nesting) a function or arrow expression // that is subject to contextual typing. function isContextSensitive(node: Expression | MethodDeclaration | ObjectLiteralElementLike | JsxAttributeLike): boolean { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); switch (node.kind) { case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return isContextSensitiveFunctionLikeDeclaration(node); case SyntaxKind.ObjectLiteralExpression: return forEach((node).properties, isContextSensitive); case SyntaxKind.ArrayLiteralExpression: return forEach((node).elements, isContextSensitive); case SyntaxKind.ConditionalExpression: return isContextSensitive((node).whenTrue) || isContextSensitive((node).whenFalse); case SyntaxKind.BinaryExpression: return (node).operatorToken.kind === SyntaxKind.BarBarToken && (isContextSensitive((node).left) || isContextSensitive((node).right)); case SyntaxKind.PropertyAssignment: return isContextSensitive((node).initializer); case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: return isContextSensitiveFunctionLikeDeclaration(node); case SyntaxKind.ParenthesizedExpression: return isContextSensitive((node).expression); case SyntaxKind.JsxAttributes: return forEach((node).properties, isContextSensitive); case SyntaxKind.JsxAttribute: // If there is no initializer, JSX attribute has a boolean value of true which is not context sensitive. return (node).initializer && isContextSensitive((node).initializer); case SyntaxKind.JsxExpression: // It is possible to that node.expression is undefined (e.g
) return (node).expression && isContextSensitive((node).expression); } return false; } function isContextSensitiveFunctionLikeDeclaration(node: FunctionLikeDeclaration) { // Functions with type parameters are not context sensitive. if (node.typeParameters) { return false; } // Functions with any parameters that lack type annotations are context sensitive. if (forEach(node.parameters, p => !p.type)) { return true; } // For arrow functions we now know we're not context sensitive. if (node.kind === SyntaxKind.ArrowFunction) { return false; } // If the first parameter is not an explicit 'this' parameter, then the function has // an implicit 'this' parameter which is subject to contextual typing. Otherwise we // know that all parameters (including 'this') have type annotations and nothing is // subject to contextual typing. const parameter = firstOrUndefined(node.parameters); return !(parameter && parameterIsThisKeyword(parameter)); } function isContextSensitiveFunctionOrObjectLiteralMethod(func: Node): func is FunctionExpression | ArrowFunction | MethodDeclaration { return (isFunctionExpressionOrArrowFunction(func) || isObjectLiteralMethod(func)) && isContextSensitiveFunctionLikeDeclaration(func); } function getTypeWithoutSignatures(type: Type): Type { if (type.flags & TypeFlags.Object) { const resolved = resolveStructuredTypeMembers(type); if (resolved.constructSignatures.length) { const result = createObjectType(ObjectFlags.Anonymous, type.symbol); result.members = resolved.members; result.properties = resolved.properties; result.callSignatures = emptyArray; result.constructSignatures = emptyArray; return result; } } else if (type.flags & TypeFlags.Intersection) { return getIntersectionType(map((type).types, getTypeWithoutSignatures)); } return type; } // TYPE CHECKING function isTypeIdenticalTo(source: Type, target: Type): boolean { return isTypeRelatedTo(source, target, identityRelation); } function compareTypesIdentical(source: Type, target: Type): Ternary { return isTypeRelatedTo(source, target, identityRelation) ? Ternary.True : Ternary.False; } function compareTypesAssignable(source: Type, target: Type): Ternary { return isTypeRelatedTo(source, target, assignableRelation) ? Ternary.True : Ternary.False; } function isTypeSubtypeOf(source: Type, target: Type): boolean { return isTypeRelatedTo(source, target, subtypeRelation); } function isTypeAssignableTo(source: Type, target: Type): boolean { return isTypeRelatedTo(source, target, assignableRelation); } // A type S is considered to be an instance of a type T if S and T are the same type or if S is a // subtype of T but not structurally identical to T. This specifically means that two distinct but // structurally identical types (such as two classes) are not considered instances of each other. function isTypeInstanceOf(source: Type, target: Type): boolean { return getTargetType(source) === getTargetType(target) || isTypeSubtypeOf(source, target) && !isTypeIdenticalTo(source, target); } /** * This is *not* a bi-directional relationship. * If one needs to check both directions for comparability, use a second call to this function or 'checkTypeComparableTo'. */ function isTypeComparableTo(source: Type, target: Type): boolean { return isTypeRelatedTo(source, target, comparableRelation); } function areTypesComparable(type1: Type, type2: Type): boolean { return isTypeComparableTo(type1, type2) || isTypeComparableTo(type2, type1); } function checkTypeSubtypeOf(source: Type, target: Type, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { return checkTypeRelatedTo(source, target, subtypeRelation, errorNode, headMessage, containingMessageChain); } function checkTypeAssignableTo(source: Type, target: Type, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { return checkTypeRelatedTo(source, target, assignableRelation, errorNode, headMessage, containingMessageChain); } /** * This is *not* a bi-directional relationship. * If one needs to check both directions for comparability, use a second call to this function or 'isTypeComparableTo'. */ function checkTypeComparableTo(source: Type, target: Type, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { return checkTypeRelatedTo(source, target, comparableRelation, errorNode, headMessage, containingMessageChain); } function isSignatureAssignableTo(source: Signature, target: Signature, ignoreReturnTypes: boolean): boolean { return compareSignaturesRelated(source, target, /*checkAsCallback*/ false, ignoreReturnTypes, /*reportErrors*/ false, /*errorReporter*/ undefined, compareTypesAssignable) !== Ternary.False; } type ErrorReporter = (message: DiagnosticMessage, arg0?: string, arg1?: string) => void; /** * See signatureRelatedTo, compareSignaturesIdentical */ function compareSignaturesRelated(source: Signature, target: Signature, checkAsCallback: boolean, ignoreReturnTypes: boolean, reportErrors: boolean, errorReporter: ErrorReporter, compareTypes: (s: Type, t: Type, reportErrors?: boolean) => Ternary): Ternary { // TODO (drosen): De-duplicate code between related functions. if (source === target) { return Ternary.True; } if (!target.hasRestParameter && source.minArgumentCount > target.parameters.length) { return Ternary.False; } // Spec 1.0 Section 3.8.3 & 3.8.4: // M and N (the signatures) are instantiated using type Any as the type argument for all type parameters declared by M and N source = getErasedSignature(source); target = getErasedSignature(target); let result = Ternary.True; const sourceThisType = getThisTypeOfSignature(source); if (sourceThisType && sourceThisType !== voidType) { const targetThisType = getThisTypeOfSignature(target); if (targetThisType) { // void sources are assignable to anything. const related = compareTypes(sourceThisType, targetThisType, /*reportErrors*/ false) || compareTypes(targetThisType, sourceThisType, reportErrors); if (!related) { if (reportErrors) { errorReporter(Diagnostics.The_this_types_of_each_signature_are_incompatible); } return Ternary.False; } result &= related; } } const sourceMax = getNumNonRestParameters(source); const targetMax = getNumNonRestParameters(target); const checkCount = getNumParametersToCheckForSignatureRelatability(source, sourceMax, target, targetMax); const sourceParams = source.parameters; const targetParams = target.parameters; for (let i = 0; i < checkCount; i++) { const sourceType = i < sourceMax ? getTypeOfParameter(sourceParams[i]) : getRestTypeOfSignature(source); const targetType = i < targetMax ? getTypeOfParameter(targetParams[i]) : getRestTypeOfSignature(target); const sourceSig = getSingleCallSignature(getNonNullableType(sourceType)); const targetSig = getSingleCallSignature(getNonNullableType(targetType)); // In order to ensure that any generic type Foo is at least co-variant with respect to T no matter // how Foo uses T, we need to relate parameters bi-variantly (given that parameters are input positions, // they naturally relate only contra-variantly). However, if the source and target parameters both have // function types with a single call signature, we known we are relating two callback parameters. In // that case it is sufficient to only relate the parameters of the signatures co-variantly because, // similar to return values, callback parameters are output positions. This means that a Promise, // where T is used only in callback parameter positions, will be co-variant (as opposed to bi-variant) // with respect to T. const callbacks = sourceSig && targetSig && !sourceSig.typePredicate && !targetSig.typePredicate && (getFalsyFlags(sourceType) & TypeFlags.Nullable) === (getFalsyFlags(targetType) & TypeFlags.Nullable); const related = callbacks ? compareSignaturesRelated(targetSig, sourceSig, /*checkAsCallback*/ true, /*ignoreReturnTypes*/ false, reportErrors, errorReporter, compareTypes) : !checkAsCallback && compareTypes(sourceType, targetType, /*reportErrors*/ false) || compareTypes(targetType, sourceType, reportErrors); if (!related) { if (reportErrors) { errorReporter(Diagnostics.Types_of_parameters_0_and_1_are_incompatible, sourceParams[i < sourceMax ? i : sourceMax].name, targetParams[i < targetMax ? i : targetMax].name); } return Ternary.False; } result &= related; } if (!ignoreReturnTypes) { const targetReturnType = getReturnTypeOfSignature(target); if (targetReturnType === voidType) { return result; } const sourceReturnType = getReturnTypeOfSignature(source); // The following block preserves behavior forbidding boolean returning functions from being assignable to type guard returning functions if (target.typePredicate) { if (source.typePredicate) { result &= compareTypePredicateRelatedTo(source.typePredicate, target.typePredicate, reportErrors, errorReporter, compareTypes); } else if (isIdentifierTypePredicate(target.typePredicate)) { if (reportErrors) { errorReporter(Diagnostics.Signature_0_must_have_a_type_predicate, signatureToString(source)); } return Ternary.False; } } else { // When relating callback signatures, we still need to relate return types bi-variantly as otherwise // the containing type wouldn't be co-variant. For example, interface Foo { add(cb: () => T): void } // wouldn't be co-variant for T without this rule. result &= checkAsCallback && compareTypes(targetReturnType, sourceReturnType, /*reportErrors*/ false) || compareTypes(sourceReturnType, targetReturnType, reportErrors); } } return result; } function compareTypePredicateRelatedTo(source: TypePredicate, target: TypePredicate, reportErrors: boolean, errorReporter: ErrorReporter, compareTypes: (s: Type, t: Type, reportErrors?: boolean) => Ternary): Ternary { if (source.kind !== target.kind) { if (reportErrors) { errorReporter(Diagnostics.A_this_based_type_guard_is_not_compatible_with_a_parameter_based_type_guard); errorReporter(Diagnostics.Type_predicate_0_is_not_assignable_to_1, typePredicateToString(source), typePredicateToString(target)); } return Ternary.False; } if (source.kind === TypePredicateKind.Identifier) { const sourceIdentifierPredicate = source as IdentifierTypePredicate; const targetIdentifierPredicate = target as IdentifierTypePredicate; if (sourceIdentifierPredicate.parameterIndex !== targetIdentifierPredicate.parameterIndex) { if (reportErrors) { errorReporter(Diagnostics.Parameter_0_is_not_in_the_same_position_as_parameter_1, sourceIdentifierPredicate.parameterName, targetIdentifierPredicate.parameterName); errorReporter(Diagnostics.Type_predicate_0_is_not_assignable_to_1, typePredicateToString(source), typePredicateToString(target)); } return Ternary.False; } } const related = compareTypes(source.type, target.type, reportErrors); if (related === Ternary.False && reportErrors) { errorReporter(Diagnostics.Type_predicate_0_is_not_assignable_to_1, typePredicateToString(source), typePredicateToString(target)); } return related; } function isImplementationCompatibleWithOverload(implementation: Signature, overload: Signature): boolean { const erasedSource = getErasedSignature(implementation); const erasedTarget = getErasedSignature(overload); // First see if the return types are compatible in either direction. const sourceReturnType = getReturnTypeOfSignature(erasedSource); const targetReturnType = getReturnTypeOfSignature(erasedTarget); if (targetReturnType === voidType || isTypeRelatedTo(targetReturnType, sourceReturnType, assignableRelation) || isTypeRelatedTo(sourceReturnType, targetReturnType, assignableRelation)) { return isSignatureAssignableTo(erasedSource, erasedTarget, /*ignoreReturnTypes*/ true); } return false; } function getNumNonRestParameters(signature: Signature) { const numParams = signature.parameters.length; return signature.hasRestParameter ? numParams - 1 : numParams; } function getNumParametersToCheckForSignatureRelatability(source: Signature, sourceNonRestParamCount: number, target: Signature, targetNonRestParamCount: number) { if (source.hasRestParameter === target.hasRestParameter) { if (source.hasRestParameter) { // If both have rest parameters, get the max and add 1 to // compensate for the rest parameter. return Math.max(sourceNonRestParamCount, targetNonRestParamCount) + 1; } else { return Math.min(sourceNonRestParamCount, targetNonRestParamCount); } } else { // Return the count for whichever signature doesn't have rest parameters. return source.hasRestParameter ? targetNonRestParamCount : sourceNonRestParamCount; } } function isEmptyResolvedType(t: ResolvedType) { return t.properties.length === 0 && t.callSignatures.length === 0 && t.constructSignatures.length === 0 && !t.stringIndexInfo && !t.numberIndexInfo; } function isEmptyObjectType(type: Type): boolean { return type.flags & TypeFlags.Object ? isEmptyResolvedType(resolveStructuredTypeMembers(type)) : type.flags & TypeFlags.Union ? forEach((type).types, isEmptyObjectType) : type.flags & TypeFlags.Intersection ? !forEach((type).types, t => !isEmptyObjectType(t)) : false; } function isEnumTypeRelatedTo(source: EnumType, target: EnumType, errorReporter?: ErrorReporter) { if (source === target) { return true; } const id = source.id + "," + target.id; const relation = enumRelation.get(id); if (relation !== undefined) { return relation; } if (source.symbol.name !== target.symbol.name || !(source.symbol.flags & SymbolFlags.RegularEnum) || !(target.symbol.flags & SymbolFlags.RegularEnum) || (source.flags & TypeFlags.Union) !== (target.flags & TypeFlags.Union)) { enumRelation.set(id, false); return false; } const targetEnumType = getTypeOfSymbol(target.symbol); for (const property of getPropertiesOfType(getTypeOfSymbol(source.symbol))) { if (property.flags & SymbolFlags.EnumMember) { const targetProperty = getPropertyOfType(targetEnumType, property.name); if (!targetProperty || !(targetProperty.flags & SymbolFlags.EnumMember)) { if (errorReporter) { errorReporter(Diagnostics.Property_0_is_missing_in_type_1, property.name, typeToString(target, /*enclosingDeclaration*/ undefined, TypeFormatFlags.UseFullyQualifiedType)); } enumRelation.set(id, false); return false; } } } enumRelation.set(id, true); return true; } function isSimpleTypeRelatedTo(source: Type, target: Type, relation: Map, errorReporter?: ErrorReporter) { if (target.flags & TypeFlags.Never) return false; if (target.flags & TypeFlags.Any || source.flags & TypeFlags.Never) return true; if (source.flags & TypeFlags.StringLike && target.flags & TypeFlags.String) return true; if (source.flags & TypeFlags.NumberLike && target.flags & TypeFlags.Number) return true; if (source.flags & TypeFlags.BooleanLike && target.flags & TypeFlags.Boolean) return true; if (source.flags & TypeFlags.EnumLiteral && target.flags & TypeFlags.Enum && (source).baseType === target) return true; if (source.flags & TypeFlags.Enum && target.flags & TypeFlags.Enum && isEnumTypeRelatedTo(source, target, errorReporter)) return true; if (source.flags & TypeFlags.Undefined && (!strictNullChecks || target.flags & (TypeFlags.Undefined | TypeFlags.Void))) return true; if (source.flags & TypeFlags.Null && (!strictNullChecks || target.flags & TypeFlags.Null)) return true; if (source.flags & TypeFlags.Object && target.flags & TypeFlags.NonPrimitive) return true; if (relation === assignableRelation || relation === comparableRelation) { if (source.flags & TypeFlags.Any) return true; if ((source.flags & TypeFlags.Number | source.flags & TypeFlags.NumberLiteral) && target.flags & TypeFlags.EnumLike) return true; if (source.flags & TypeFlags.EnumLiteral && target.flags & TypeFlags.EnumLiteral && (source).text === (target).text && isEnumTypeRelatedTo((source).baseType, (target).baseType, errorReporter)) { return true; } if (source.flags & TypeFlags.EnumLiteral && target.flags & TypeFlags.Enum && isEnumTypeRelatedTo(target, (source).baseType, errorReporter)) { return true; } } return false; } function isTypeRelatedTo(source: Type, target: Type, relation: Map) { if (source.flags & TypeFlags.StringOrNumberLiteral && source.flags & TypeFlags.FreshLiteral) { source = (source).regularType; } if (target.flags & TypeFlags.StringOrNumberLiteral && target.flags & TypeFlags.FreshLiteral) { target = (target).regularType; } if (source === target || relation !== identityRelation && isSimpleTypeRelatedTo(source, target, relation)) { return true; } if (source.flags & TypeFlags.Object && target.flags & TypeFlags.Object) { const id = relation !== identityRelation || source.id < target.id ? source.id + "," + target.id : target.id + "," + source.id; const related = relation.get(id); if (related !== undefined) { return related === RelationComparisonResult.Succeeded; } } if (source.flags & TypeFlags.StructuredOrTypeVariable || target.flags & TypeFlags.StructuredOrTypeVariable) { return checkTypeRelatedTo(source, target, relation, /*errorNode*/ undefined); } return false; } /** * Checks if 'source' is related to 'target' (e.g.: is a assignable to). * @param source The left-hand-side of the relation. * @param target The right-hand-side of the relation. * @param relation The relation considered. One of 'identityRelation', 'subtypeRelation', 'assignableRelation', or 'comparableRelation'. * Used as both to determine which checks are performed and as a cache of previously computed results. * @param errorNode The suggested node upon which all errors will be reported, if defined. This may or may not be the actual node used. * @param headMessage If the error chain should be prepended by a head message, then headMessage will be used. * @param containingMessageChain A chain of errors to prepend any new errors found. */ function checkTypeRelatedTo( source: Type, target: Type, relation: Map, errorNode: Node, headMessage?: DiagnosticMessage, containingMessageChain?: DiagnosticMessageChain): boolean { let errorInfo: DiagnosticMessageChain; let sourceStack: Type[]; let targetStack: Type[]; let maybeStack: Map[]; let expandingFlags: number; let depth = 0; let overflow = false; Debug.assert(relation !== identityRelation || !errorNode, "no error reporting in identity checking"); const result = isRelatedTo(source, target, /*reportErrors*/ !!errorNode, headMessage); if (overflow) { error(errorNode, Diagnostics.Excessive_stack_depth_comparing_types_0_and_1, typeToString(source), typeToString(target)); } else if (errorInfo) { if (containingMessageChain) { errorInfo = concatenateDiagnosticMessageChains(containingMessageChain, errorInfo); } diagnostics.add(createDiagnosticForNodeFromMessageChain(errorNode, errorInfo)); } return result !== Ternary.False; function reportError(message: DiagnosticMessage, arg0?: string, arg1?: string, arg2?: string): void { Debug.assert(!!errorNode); errorInfo = chainDiagnosticMessages(errorInfo, message, arg0, arg1, arg2); } function reportRelationError(message: DiagnosticMessage, source: Type, target: Type) { let sourceType = typeToString(source); let targetType = typeToString(target); if (sourceType === targetType) { sourceType = typeToString(source, /*enclosingDeclaration*/ undefined, TypeFormatFlags.UseFullyQualifiedType); targetType = typeToString(target, /*enclosingDeclaration*/ undefined, TypeFormatFlags.UseFullyQualifiedType); } if (!message) { if (relation === comparableRelation) { message = Diagnostics.Type_0_is_not_comparable_to_type_1; } else if (sourceType === targetType) { message = Diagnostics.Type_0_is_not_assignable_to_type_1_Two_different_types_with_this_name_exist_but_they_are_unrelated; } else { message = Diagnostics.Type_0_is_not_assignable_to_type_1; } } reportError(message, sourceType, targetType); } function tryElaborateErrorsForPrimitivesAndObjects(source: Type, target: Type) { const sourceType = typeToString(source); const targetType = typeToString(target); if ((globalStringType === source && stringType === target) || (globalNumberType === source && numberType === target) || (globalBooleanType === source && booleanType === target) || (getGlobalESSymbolType(/*reportErrors*/ false) === source && esSymbolType === target)) { reportError(Diagnostics._0_is_a_primitive_but_1_is_a_wrapper_object_Prefer_using_0_when_possible, targetType, sourceType); } } function isUnionOrIntersectionTypeWithoutNullableConstituents(type: Type): boolean { if (!(type.flags & TypeFlags.UnionOrIntersection)) { return false; } // at this point we know that this is union or intersection type possibly with nullable constituents. // check if we still will have compound type if we ignore nullable components. let seenNonNullable = false; for (const t of (type).types) { if (t.flags & TypeFlags.Nullable) { continue; } if (seenNonNullable) { return true; } seenNonNullable = true; } return false; } /** * Compare two types and return * * Ternary.True if they are related with no assumptions, * * Ternary.Maybe if they are related with assumptions of other relationships, or * * Ternary.False if they are not related. */ function isRelatedTo(source: Type, target: Type, reportErrors?: boolean, headMessage?: DiagnosticMessage): Ternary { let result: Ternary; if (source.flags & TypeFlags.StringOrNumberLiteral && source.flags & TypeFlags.FreshLiteral) { source = (source).regularType; } if (target.flags & TypeFlags.StringOrNumberLiteral && target.flags & TypeFlags.FreshLiteral) { target = (target).regularType; } // both types are the same - covers 'they are the same primitive type or both are Any' or the same type parameter cases if (source === target) return Ternary.True; if (relation === identityRelation) { return isIdenticalTo(source, target); } if (isSimpleTypeRelatedTo(source, target, relation, reportErrors ? reportError : undefined)) return Ternary.True; if (getObjectFlags(source) & ObjectFlags.ObjectLiteral && source.flags & TypeFlags.FreshLiteral) { if (hasExcessProperties(source, target, reportErrors)) { if (reportErrors) { reportRelationError(headMessage, source, target); } return Ternary.False; } // Above we check for excess properties with respect to the entire target type. When union // and intersection types are further deconstructed on the target side, we don't want to // make the check again (as it might fail for a partial target type). Therefore we obtain // the regular source type and proceed with that. if (isUnionOrIntersectionTypeWithoutNullableConstituents(target)) { source = getRegularTypeOfObjectLiteral(source); } } const saveErrorInfo = errorInfo; // Note that these checks are specifically ordered to produce correct results. In particular, // we need to deconstruct unions before intersections (because unions are always at the top), // and we need to handle "each" relations before "some" relations for the same kind of type. if (source.flags & TypeFlags.Union) { if (relation === comparableRelation) { result = someTypeRelatedToType(source as UnionType, target, reportErrors && !(source.flags & TypeFlags.Primitive)); } else { result = eachTypeRelatedToType(source as UnionType, target, reportErrors && !(source.flags & TypeFlags.Primitive)); } if (result) { return result; } } else { if (target.flags & TypeFlags.Union) { if (result = typeRelatedToSomeType(source, target, reportErrors && !(source.flags & TypeFlags.Primitive) && !(target.flags & TypeFlags.Primitive))) { return result; } } else if (target.flags & TypeFlags.Intersection) { if (result = typeRelatedToEachType(source, target as IntersectionType, reportErrors)) { return result; } } else if (source.flags & TypeFlags.Intersection) { // Check to see if any constituents of the intersection are immediately related to the target. // // Don't report errors though. Checking whether a constituent is related to the source is not actually // useful and leads to some confusing error messages. Instead it is better to let the below checks // take care of this, or to not elaborate at all. For instance, // // - For an object type (such as 'C = A & B'), users are usually more interested in structural errors. // // - For a union type (such as '(A | B) = (C & D)'), it's better to hold onto the whole intersection // than to report that 'D' is not assignable to 'A' or 'B'. // // - For a primitive type or type parameter (such as 'number = A & B') there is no point in // breaking the intersection apart. if (result = someTypeRelatedToType(source, target, /*reportErrors*/ false)) { return result; } } if (source.flags & TypeFlags.StructuredOrTypeVariable || target.flags & TypeFlags.StructuredOrTypeVariable) { if (result = recursiveTypeRelatedTo(source, target, reportErrors)) { errorInfo = saveErrorInfo; return result; } } } if (reportErrors) { if (source.flags & TypeFlags.Object && target.flags & TypeFlags.Primitive) { tryElaborateErrorsForPrimitivesAndObjects(source, target); } else if (source.symbol && source.flags & TypeFlags.Object && globalObjectType === source) { reportError(Diagnostics.The_Object_type_is_assignable_to_very_few_other_types_Did_you_mean_to_use_the_any_type_instead); } reportRelationError(headMessage, source, target); } return Ternary.False; } function isIdenticalTo(source: Type, target: Type): Ternary { let result: Ternary; if (source.flags & TypeFlags.Object && target.flags & TypeFlags.Object) { return recursiveTypeRelatedTo(source, target, /*reportErrors*/ false); } if (source.flags & TypeFlags.Union && target.flags & TypeFlags.Union || source.flags & TypeFlags.Intersection && target.flags & TypeFlags.Intersection) { if (result = eachTypeRelatedToSomeType(source, target)) { if (result &= eachTypeRelatedToSomeType(target, source)) { return result; } } } return Ternary.False; } function hasExcessProperties(source: FreshObjectLiteralType, target: Type, reportErrors: boolean): boolean { if (maybeTypeOfKind(target, TypeFlags.Object) && !(getObjectFlags(target) & ObjectFlags.ObjectLiteralPatternWithComputedProperties)) { const isComparingJsxAttributes = !!(source.flags & TypeFlags.JsxAttributes); if ((relation === assignableRelation || relation === comparableRelation) && (isTypeSubsetOf(globalObjectType, target) || (!isComparingJsxAttributes && isEmptyObjectType(target)))) { return false; } for (const prop of getPropertiesOfObjectType(source)) { if (!isKnownProperty(target, prop.name, isComparingJsxAttributes)) { if (reportErrors) { // We know *exactly* where things went wrong when comparing the types. // Use this property as the error node as this will be more helpful in // reasoning about what went wrong. Debug.assert(!!errorNode); if (isJsxAttributes(errorNode) || isJsxOpeningLikeElement(errorNode)) { // JsxAttributes has an object-literal flag and undergo same type-assignablity check as normal object-literal. // However, using an object-literal error message will be very confusing to the users so we give different a message. reportError(Diagnostics.Property_0_does_not_exist_on_type_1, symbolToString(prop), typeToString(target)); } else { errorNode = prop.valueDeclaration; reportError(Diagnostics.Object_literal_may_only_specify_known_properties_and_0_does_not_exist_in_type_1, symbolToString(prop), typeToString(target)); } } return true; } } } return false; } function eachTypeRelatedToSomeType(source: UnionOrIntersectionType, target: UnionOrIntersectionType): Ternary { let result = Ternary.True; const sourceTypes = source.types; for (const sourceType of sourceTypes) { const related = typeRelatedToSomeType(sourceType, target, /*reportErrors*/ false); if (!related) { return Ternary.False; } result &= related; } return result; } function typeRelatedToSomeType(source: Type, target: UnionOrIntersectionType, reportErrors: boolean): Ternary { const targetTypes = target.types; if (target.flags & TypeFlags.Union && containsType(targetTypes, source)) { return Ternary.True; } for (const type of targetTypes) { const related = isRelatedTo(source, type, /*reportErrors*/ false); if (related) { return related; } } if (reportErrors) { const discriminantType = findMatchingDiscriminantType(source, target); isRelatedTo(source, discriminantType || targetTypes[targetTypes.length - 1], /*reportErrors*/ true); } return Ternary.False; } function findMatchingDiscriminantType(source: Type, target: UnionOrIntersectionType) { const sourceProperties = getPropertiesOfObjectType(source); if (sourceProperties) { for (const sourceProperty of sourceProperties) { if (isDiscriminantProperty(target, sourceProperty.name)) { const sourceType = getTypeOfSymbol(sourceProperty); for (const type of target.types) { const targetType = getTypeOfPropertyOfType(type, sourceProperty.name); if (targetType && isRelatedTo(sourceType, targetType)) { return type; } } } } } } function typeRelatedToEachType(source: Type, target: UnionOrIntersectionType, reportErrors: boolean): Ternary { let result = Ternary.True; const targetTypes = target.types; for (const targetType of targetTypes) { const related = isRelatedTo(source, targetType, reportErrors); if (!related) { return Ternary.False; } result &= related; } return result; } function someTypeRelatedToType(source: UnionOrIntersectionType, target: Type, reportErrors: boolean): Ternary { const sourceTypes = source.types; if (source.flags & TypeFlags.Union && containsType(sourceTypes, target)) { return Ternary.True; } const len = sourceTypes.length; for (let i = 0; i < len; i++) { const related = isRelatedTo(sourceTypes[i], target, reportErrors && i === len - 1); if (related) { return related; } } return Ternary.False; } function eachTypeRelatedToType(source: UnionOrIntersectionType, target: Type, reportErrors: boolean): Ternary { let result = Ternary.True; const sourceTypes = source.types; for (const sourceType of sourceTypes) { const related = isRelatedTo(sourceType, target, reportErrors); if (!related) { return Ternary.False; } result &= related; } return result; } function typeArgumentsRelatedTo(source: TypeReference, target: TypeReference, reportErrors: boolean): Ternary { const sources = source.typeArguments || emptyArray; const targets = target.typeArguments || emptyArray; if (sources.length !== targets.length && relation === identityRelation) { return Ternary.False; } const length = sources.length <= targets.length ? sources.length : targets.length; let result = Ternary.True; for (let i = 0; i < length; i++) { const related = isRelatedTo(sources[i], targets[i], reportErrors); if (!related) { return Ternary.False; } result &= related; } return result; } // Determine if possibly recursive types are related. First, check if the result is already available in the global cache. // Second, check if we have already started a comparison of the given two types in which case we assume the result to be true. // Third, check if both types are part of deeply nested chains of generic type instantiations and if so assume the types are // equal and infinitely expanding. Fourth, if we have reached a depth of 100 nested comparisons, assume we have runaway recursion // and issue an error. Otherwise, actually compare the structure of the two types. function recursiveTypeRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (overflow) { return Ternary.False; } const id = relation !== identityRelation || source.id < target.id ? source.id + "," + target.id : target.id + "," + source.id; const related = relation.get(id); if (related !== undefined) { if (reportErrors && related === RelationComparisonResult.Failed) { // We are elaborating errors and the cached result is an unreported failure. Record the result as a reported // failure and continue computing the relation such that errors get reported. relation.set(id, RelationComparisonResult.FailedAndReported); } else { return related === RelationComparisonResult.Succeeded ? Ternary.True : Ternary.False; } } if (depth > 0) { for (let i = 0; i < depth; i++) { // If source and target are already being compared, consider them related with assumptions if (maybeStack[i].get(id)) { return Ternary.Maybe; } } if (depth === 100) { overflow = true; return Ternary.False; } } else { sourceStack = []; targetStack = []; maybeStack = []; expandingFlags = 0; } sourceStack[depth] = source; targetStack[depth] = target; maybeStack[depth] = createMap(); maybeStack[depth].set(id, RelationComparisonResult.Succeeded); depth++; const saveExpandingFlags = expandingFlags; if (!(expandingFlags & 1) && isDeeplyNestedType(source, sourceStack, depth)) expandingFlags |= 1; if (!(expandingFlags & 2) && isDeeplyNestedType(target, targetStack, depth)) expandingFlags |= 2; const result = expandingFlags !== 3 ? structuredTypeRelatedTo(source, target, reportErrors) : Ternary.Maybe; expandingFlags = saveExpandingFlags; depth--; if (result) { const maybeCache = maybeStack[depth]; // If result is definitely true, copy assumptions to global cache, else copy to next level up const destinationCache = (result === Ternary.True || depth === 0) ? relation : maybeStack[depth - 1]; copyEntries(maybeCache, destinationCache); } else { // A false result goes straight into global cache (when something is false under assumptions it // will also be false without assumptions) relation.set(id, reportErrors ? RelationComparisonResult.FailedAndReported : RelationComparisonResult.Failed); } return result; } function structuredTypeRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { let result: Ternary; const saveErrorInfo = errorInfo; if (target.flags & TypeFlags.TypeParameter) { // A source type { [P in keyof T]: X } is related to a target type T if X is related to T[P]. if (getObjectFlags(source) & ObjectFlags.Mapped && getConstraintTypeFromMappedType(source) === getIndexType(target)) { if (!(source).declaration.questionToken) { const templateType = getTemplateTypeFromMappedType(source); const indexedAccessType = getIndexedAccessType(target, getTypeParameterFromMappedType(source)); if (result = isRelatedTo(templateType, indexedAccessType, reportErrors)) { return result; } } } } else if (target.flags & TypeFlags.Index) { // A keyof S is related to a keyof T if T is related to S. if (source.flags & TypeFlags.Index) { if (result = isRelatedTo((target).type, (source).type, /*reportErrors*/ false)) { return result; } } // A type S is assignable to keyof T if S is assignable to keyof C, where C is the // constraint of T. const constraint = getConstraintOfType((target).type); if (constraint) { if (result = isRelatedTo(source, getIndexType(constraint), reportErrors)) { return result; } } } else if (target.flags & TypeFlags.IndexedAccess) { // A type S is related to a type T[K] if S is related to A[K], where K is string-like and // A is the apparent type of S. const constraint = getConstraintOfType(target); if (constraint) { if (result = isRelatedTo(source, constraint, reportErrors)) { errorInfo = saveErrorInfo; return result; } } } if (source.flags & TypeFlags.TypeParameter) { // A source type T is related to a target type { [P in keyof T]: X } if T[P] is related to X. if (getObjectFlags(target) & ObjectFlags.Mapped && getConstraintTypeFromMappedType(target) === getIndexType(source)) { const indexedAccessType = getIndexedAccessType(source, getTypeParameterFromMappedType(target)); const templateType = getTemplateTypeFromMappedType(target); if (result = isRelatedTo(indexedAccessType, templateType, reportErrors)) { errorInfo = saveErrorInfo; return result; } } else { let constraint = getConstraintOfTypeParameter(source); // A type parameter with no constraint is not related to the non-primitive object type. if (constraint || !(target.flags & TypeFlags.NonPrimitive)) { if (!constraint || constraint.flags & TypeFlags.Any) { constraint = emptyObjectType; } // The constraint may need to be further instantiated with its 'this' type. constraint = getTypeWithThisArgument(constraint, source); // Report constraint errors only if the constraint is not the empty object type const reportConstraintErrors = reportErrors && constraint !== emptyObjectType; if (result = isRelatedTo(constraint, target, reportConstraintErrors)) { errorInfo = saveErrorInfo; return result; } } } } else if (source.flags & TypeFlags.IndexedAccess) { // A type S[K] is related to a type T if A[K] is related to T, where K is string-like and // A is the apparent type of S. const constraint = getConstraintOfType(source); if (constraint) { if (result = isRelatedTo(constraint, target, reportErrors)) { errorInfo = saveErrorInfo; return result; } } else if (target.flags & TypeFlags.IndexedAccess && (source).indexType === (target).indexType) { // if we have indexed access types with identical index types, see if relationship holds for // the two object types. if (result = isRelatedTo((source).objectType, (target).objectType, reportErrors)) { return result; } } } else { if (getObjectFlags(source) & ObjectFlags.Reference && getObjectFlags(target) & ObjectFlags.Reference && (source).target === (target).target) { // We have type references to same target type, see if relationship holds for all type arguments if (result = typeArgumentsRelatedTo(source, target, reportErrors)) { return result; } } // Even if relationship doesn't hold for unions, intersections, or generic type references, // it may hold in a structural comparison. const sourceIsPrimitive = !!(source.flags & TypeFlags.Primitive); if (relation !== identityRelation) { source = getApparentType(source); } // In a check of the form X = A & B, we will have previously checked if A relates to X or B relates // to X. Failing both of those we want to check if the aggregation of A and B's members structurally // relates to X. Thus, we include intersection types on the source side here. if (source.flags & (TypeFlags.Object | TypeFlags.Intersection) && target.flags & TypeFlags.Object) { // Report structural errors only if we haven't reported any errors yet const reportStructuralErrors = reportErrors && errorInfo === saveErrorInfo && !sourceIsPrimitive; if (isGenericMappedType(source) || isGenericMappedType(target)) { result = mappedTypeRelatedTo(source, target, reportStructuralErrors); } else { result = propertiesRelatedTo(source, target, reportStructuralErrors); if (result) { result &= signaturesRelatedTo(source, target, SignatureKind.Call, reportStructuralErrors); if (result) { result &= signaturesRelatedTo(source, target, SignatureKind.Construct, reportStructuralErrors); if (result) { result &= indexTypesRelatedTo(source, target, IndexKind.String, sourceIsPrimitive, reportStructuralErrors); if (result) { result &= indexTypesRelatedTo(source, target, IndexKind.Number, sourceIsPrimitive, reportStructuralErrors); } } } } } if (result) { errorInfo = saveErrorInfo; return result; } } } return Ternary.False; } // A type [P in S]: X is related to a type [Q in T]: Y if T is related to S and X' is // related to Y, where X' is an instantiation of X in which P is replaced with Q. Notice // that S and T are contra-variant whereas X and Y are co-variant. function mappedTypeRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (isGenericMappedType(target)) { if (isGenericMappedType(source)) { const sourceReadonly = !!(source).declaration.readonlyToken; const sourceOptional = !!(source).declaration.questionToken; const targetReadonly = !!(target).declaration.readonlyToken; const targetOptional = !!(target).declaration.questionToken; const modifiersRelated = relation === identityRelation ? sourceReadonly === targetReadonly && sourceOptional === targetOptional : relation === comparableRelation || !sourceOptional || targetOptional; if (modifiersRelated) { let result: Ternary; if (result = isRelatedTo(getConstraintTypeFromMappedType(target), getConstraintTypeFromMappedType(source), reportErrors)) { const mapper = createTypeMapper([getTypeParameterFromMappedType(source)], [getTypeParameterFromMappedType(target)]); return result & isRelatedTo(instantiateType(getTemplateTypeFromMappedType(source), mapper), getTemplateTypeFromMappedType(target), reportErrors); } } } else if ((target).declaration.questionToken && isEmptyObjectType(source)) { return Ternary.True; } } else if (relation !== identityRelation) { const resolved = resolveStructuredTypeMembers(target); if (isEmptyResolvedType(resolved) || resolved.stringIndexInfo && resolved.stringIndexInfo.type.flags & TypeFlags.Any) { return Ternary.True; } } return Ternary.False; } function propertiesRelatedTo(source: Type, target: Type, reportErrors: boolean): Ternary { if (relation === identityRelation) { return propertiesIdenticalTo(source, target); } let result = Ternary.True; const properties = getPropertiesOfObjectType(target); const requireOptionalProperties = relation === subtypeRelation && !(getObjectFlags(source) & ObjectFlags.ObjectLiteral); for (const targetProp of properties) { const sourceProp = getPropertyOfType(source, targetProp.name); if (sourceProp !== targetProp) { if (!sourceProp) { if (!(targetProp.flags & SymbolFlags.Optional) || requireOptionalProperties) { if (reportErrors) { reportError(Diagnostics.Property_0_is_missing_in_type_1, symbolToString(targetProp), typeToString(source)); } return Ternary.False; } } else if (!(targetProp.flags & SymbolFlags.Prototype)) { const sourcePropFlags = getDeclarationModifierFlagsFromSymbol(sourceProp); const targetPropFlags = getDeclarationModifierFlagsFromSymbol(targetProp); if (sourcePropFlags & ModifierFlags.Private || targetPropFlags & ModifierFlags.Private) { if (getCheckFlags(sourceProp) & CheckFlags.ContainsPrivate) { if (reportErrors) { reportError(Diagnostics.Property_0_has_conflicting_declarations_and_is_inaccessible_in_type_1, symbolToString(sourceProp), typeToString(source)); } return Ternary.False; } if (sourceProp.valueDeclaration !== targetProp.valueDeclaration) { if (reportErrors) { if (sourcePropFlags & ModifierFlags.Private && targetPropFlags & ModifierFlags.Private) { reportError(Diagnostics.Types_have_separate_declarations_of_a_private_property_0, symbolToString(targetProp)); } else { reportError(Diagnostics.Property_0_is_private_in_type_1_but_not_in_type_2, symbolToString(targetProp), typeToString(sourcePropFlags & ModifierFlags.Private ? source : target), typeToString(sourcePropFlags & ModifierFlags.Private ? target : source)); } } return Ternary.False; } } else if (targetPropFlags & ModifierFlags.Protected) { if (!isValidOverrideOf(sourceProp, targetProp)) { if (reportErrors) { reportError(Diagnostics.Property_0_is_protected_but_type_1_is_not_a_class_derived_from_2, symbolToString(targetProp), typeToString(getDeclaringClass(sourceProp) || source), typeToString(getDeclaringClass(targetProp) || target)); } return Ternary.False; } } else if (sourcePropFlags & ModifierFlags.Protected) { if (reportErrors) { reportError(Diagnostics.Property_0_is_protected_in_type_1_but_public_in_type_2, symbolToString(targetProp), typeToString(source), typeToString(target)); } return Ternary.False; } const related = isRelatedTo(getTypeOfSymbol(sourceProp), getTypeOfSymbol(targetProp), reportErrors); if (!related) { if (reportErrors) { reportError(Diagnostics.Types_of_property_0_are_incompatible, symbolToString(targetProp)); } return Ternary.False; } result &= related; // When checking for comparability, be more lenient with optional properties. if (relation !== comparableRelation && sourceProp.flags & SymbolFlags.Optional && !(targetProp.flags & SymbolFlags.Optional)) { // TypeScript 1.0 spec (April 2014): 3.8.3 // S is a subtype of a type T, and T is a supertype of S if ... // S' and T are object types and, for each member M in T.. // M is a property and S' contains a property N where // if M is a required property, N is also a required property // (M - property in T) // (N - property in S) if (reportErrors) { reportError(Diagnostics.Property_0_is_optional_in_type_1_but_required_in_type_2, symbolToString(targetProp), typeToString(source), typeToString(target)); } return Ternary.False; } } } } return result; } function propertiesIdenticalTo(source: Type, target: Type): Ternary { if (!(source.flags & TypeFlags.Object && target.flags & TypeFlags.Object)) { return Ternary.False; } const sourceProperties = getPropertiesOfObjectType(source); const targetProperties = getPropertiesOfObjectType(target); if (sourceProperties.length !== targetProperties.length) { return Ternary.False; } let result = Ternary.True; for (const sourceProp of sourceProperties) { const targetProp = getPropertyOfObjectType(target, sourceProp.name); if (!targetProp) { return Ternary.False; } const related = compareProperties(sourceProp, targetProp, isRelatedTo); if (!related) { return Ternary.False; } result &= related; } return result; } function signaturesRelatedTo(source: Type, target: Type, kind: SignatureKind, reportErrors: boolean): Ternary { if (relation === identityRelation) { return signaturesIdenticalTo(source, target, kind); } if (target === anyFunctionType || source === anyFunctionType) { return Ternary.True; } const sourceSignatures = getSignaturesOfType(source, kind); const targetSignatures = getSignaturesOfType(target, kind); if (kind === SignatureKind.Construct && sourceSignatures.length && targetSignatures.length) { if (isAbstractConstructorType(source) && !isAbstractConstructorType(target)) { // An abstract constructor type is not assignable to a non-abstract constructor type // as it would otherwise be possible to new an abstract class. Note that the assignability // check we perform for an extends clause excludes construct signatures from the target, // so this check never proceeds. if (reportErrors) { reportError(Diagnostics.Cannot_assign_an_abstract_constructor_type_to_a_non_abstract_constructor_type); } return Ternary.False; } if (!constructorVisibilitiesAreCompatible(sourceSignatures[0], targetSignatures[0], reportErrors)) { return Ternary.False; } } let result = Ternary.True; const saveErrorInfo = errorInfo; if (getObjectFlags(source) & ObjectFlags.Instantiated && getObjectFlags(target) & ObjectFlags.Instantiated && source.symbol === target.symbol) { // We instantiations of the same anonymous type (which typically will be the type of a method). // Simply do a pairwise comparison of the signatures in the two signature lists instead of the // much more expensive N * M comparison matrix we explore below. for (let i = 0; i < targetSignatures.length; i++) { const related = signatureRelatedTo(sourceSignatures[i], targetSignatures[i], reportErrors); if (!related) { return Ternary.False; } result &= related; } } else { outer: for (const t of targetSignatures) { // Only elaborate errors from the first failure let shouldElaborateErrors = reportErrors; for (const s of sourceSignatures) { const related = signatureRelatedTo(s, t, shouldElaborateErrors); if (related) { result &= related; errorInfo = saveErrorInfo; continue outer; } shouldElaborateErrors = false; } if (shouldElaborateErrors) { reportError(Diagnostics.Type_0_provides_no_match_for_the_signature_1, typeToString(source), signatureToString(t, /*enclosingDeclaration*/ undefined, /*flags*/ undefined, kind)); } return Ternary.False; } } return result; } /** * See signatureAssignableTo, compareSignaturesIdentical */ function signatureRelatedTo(source: Signature, target: Signature, reportErrors: boolean): Ternary { return compareSignaturesRelated(source, target, /*checkAsCallback*/ false, /*ignoreReturnTypes*/ false, reportErrors, reportError, isRelatedTo); } function signaturesIdenticalTo(source: Type, target: Type, kind: SignatureKind): Ternary { const sourceSignatures = getSignaturesOfType(source, kind); const targetSignatures = getSignaturesOfType(target, kind); if (sourceSignatures.length !== targetSignatures.length) { return Ternary.False; } let result = Ternary.True; for (let i = 0; i < sourceSignatures.length; i++) { const related = compareSignaturesIdentical(sourceSignatures[i], targetSignatures[i], /*partialMatch*/ false, /*ignoreThisTypes*/ false, /*ignoreReturnTypes*/ false, isRelatedTo); if (!related) { return Ternary.False; } result &= related; } return result; } function eachPropertyRelatedTo(source: Type, target: Type, kind: IndexKind, reportErrors: boolean): Ternary { let result = Ternary.True; for (const prop of getPropertiesOfObjectType(source)) { if (kind === IndexKind.String || isNumericLiteralName(prop.name)) { const related = isRelatedTo(getTypeOfSymbol(prop), target, reportErrors); if (!related) { if (reportErrors) { reportError(Diagnostics.Property_0_is_incompatible_with_index_signature, symbolToString(prop)); } return Ternary.False; } result &= related; } } return result; } function indexInfoRelatedTo(sourceInfo: IndexInfo, targetInfo: IndexInfo, reportErrors: boolean) { const related = isRelatedTo(sourceInfo.type, targetInfo.type, reportErrors); if (!related && reportErrors) { reportError(Diagnostics.Index_signatures_are_incompatible); } return related; } function indexTypesRelatedTo(source: Type, target: Type, kind: IndexKind, sourceIsPrimitive: boolean, reportErrors: boolean) { if (relation === identityRelation) { return indexTypesIdenticalTo(source, target, kind); } const targetInfo = getIndexInfoOfType(target, kind); if (!targetInfo || targetInfo.type.flags & TypeFlags.Any && !sourceIsPrimitive) { // Index signature of type any permits assignment from everything but primitives return Ternary.True; } const sourceInfo = getIndexInfoOfType(source, kind) || kind === IndexKind.Number && getIndexInfoOfType(source, IndexKind.String); if (sourceInfo) { return indexInfoRelatedTo(sourceInfo, targetInfo, reportErrors); } if (isObjectLiteralType(source)) { let related = Ternary.True; if (kind === IndexKind.String) { const sourceNumberInfo = getIndexInfoOfType(source, IndexKind.Number); if (sourceNumberInfo) { related = indexInfoRelatedTo(sourceNumberInfo, targetInfo, reportErrors); } } if (related) { related &= eachPropertyRelatedTo(source, targetInfo.type, kind, reportErrors); } return related; } if (reportErrors) { reportError(Diagnostics.Index_signature_is_missing_in_type_0, typeToString(source)); } return Ternary.False; } function indexTypesIdenticalTo(source: Type, target: Type, indexKind: IndexKind): Ternary { const targetInfo = getIndexInfoOfType(target, indexKind); const sourceInfo = getIndexInfoOfType(source, indexKind); if (!sourceInfo && !targetInfo) { return Ternary.True; } if (sourceInfo && targetInfo && sourceInfo.isReadonly === targetInfo.isReadonly) { return isRelatedTo(sourceInfo.type, targetInfo.type); } return Ternary.False; } function constructorVisibilitiesAreCompatible(sourceSignature: Signature, targetSignature: Signature, reportErrors: boolean) { if (!sourceSignature.declaration || !targetSignature.declaration) { return true; } const sourceAccessibility = getModifierFlags(sourceSignature.declaration) & ModifierFlags.NonPublicAccessibilityModifier; const targetAccessibility = getModifierFlags(targetSignature.declaration) & ModifierFlags.NonPublicAccessibilityModifier; // A public, protected and private signature is assignable to a private signature. if (targetAccessibility === ModifierFlags.Private) { return true; } // A public and protected signature is assignable to a protected signature. if (targetAccessibility === ModifierFlags.Protected && sourceAccessibility !== ModifierFlags.Private) { return true; } // Only a public signature is assignable to public signature. if (targetAccessibility !== ModifierFlags.Protected && !sourceAccessibility) { return true; } if (reportErrors) { reportError(Diagnostics.Cannot_assign_a_0_constructor_type_to_a_1_constructor_type, visibilityToString(sourceAccessibility), visibilityToString(targetAccessibility)); } return false; } } // Invoke the callback for each underlying property symbol of the given symbol and return the first // value that isn't undefined. function forEachProperty(prop: Symbol, callback: (p: Symbol) => T): T { if (getCheckFlags(prop) & CheckFlags.Synthetic) { for (const t of (prop).containingType.types) { const p = getPropertyOfType(t, prop.name); const result = p && forEachProperty(p, callback); if (result) { return result; } } return undefined; } return callback(prop); } // Return the declaring class type of a property or undefined if property not declared in class function getDeclaringClass(prop: Symbol) { return prop.parent && prop.parent.flags & SymbolFlags.Class ? getDeclaredTypeOfSymbol(getParentOfSymbol(prop)) : undefined; } // Return true if some underlying source property is declared in a class that derives // from the given base class. function isPropertyInClassDerivedFrom(prop: Symbol, baseClass: Type) { return forEachProperty(prop, sp => { const sourceClass = getDeclaringClass(sp); return sourceClass ? hasBaseType(sourceClass, baseClass) : false; }); } // Return true if source property is a valid override of protected parts of target property. function isValidOverrideOf(sourceProp: Symbol, targetProp: Symbol) { return !forEachProperty(targetProp, tp => getDeclarationModifierFlagsFromSymbol(tp) & ModifierFlags.Protected ? !isPropertyInClassDerivedFrom(sourceProp, getDeclaringClass(tp)) : false); } // Return true if the given class derives from each of the declaring classes of the protected // constituents of the given property. function isClassDerivedFromDeclaringClasses(checkClass: Type, prop: Symbol) { return forEachProperty(prop, p => getDeclarationModifierFlagsFromSymbol(p) & ModifierFlags.Protected ? !hasBaseType(checkClass, getDeclaringClass(p)) : false) ? undefined : checkClass; } // Return true if the given type is the constructor type for an abstract class function isAbstractConstructorType(type: Type) { if (getObjectFlags(type) & ObjectFlags.Anonymous) { const symbol = type.symbol; if (symbol && symbol.flags & SymbolFlags.Class) { const declaration = getClassLikeDeclarationOfSymbol(symbol); if (declaration && getModifierFlags(declaration) & ModifierFlags.Abstract) { return true; } } } return false; } // Return true if the given type is deeply nested. We consider this to be the case when structural type comparisons // for 5 or more occurrences or instantiations of the type have been recorded on the given stack. It is possible, // though highly unlikely, for this test to be true in a situation where a chain of instantiations is not infinitely // expanding. Effectively, we will generate a false positive when two types are structurally equal to at least 5 // levels, but unequal at some level beyond that. function isDeeplyNestedType(type: Type, stack: Type[], depth: number): boolean { // We track all object types that have an associated symbol (representing the origin of the type) if (depth >= 5 && type.flags & TypeFlags.Object) { const symbol = type.symbol; if (symbol) { let count = 0; for (let i = 0; i < depth; i++) { const t = stack[i]; if (t.flags & TypeFlags.Object && t.symbol === symbol) { count++; if (count >= 5) return true; } } } } return false; } function isPropertyIdenticalTo(sourceProp: Symbol, targetProp: Symbol): boolean { return compareProperties(sourceProp, targetProp, compareTypesIdentical) !== Ternary.False; } function compareProperties(sourceProp: Symbol, targetProp: Symbol, compareTypes: (source: Type, target: Type) => Ternary): Ternary { // Two members are considered identical when // - they are public properties with identical names, optionality, and types, // - they are private or protected properties originating in the same declaration and having identical types if (sourceProp === targetProp) { return Ternary.True; } const sourcePropAccessibility = getDeclarationModifierFlagsFromSymbol(sourceProp) & ModifierFlags.NonPublicAccessibilityModifier; const targetPropAccessibility = getDeclarationModifierFlagsFromSymbol(targetProp) & ModifierFlags.NonPublicAccessibilityModifier; if (sourcePropAccessibility !== targetPropAccessibility) { return Ternary.False; } if (sourcePropAccessibility) { if (getTargetSymbol(sourceProp) !== getTargetSymbol(targetProp)) { return Ternary.False; } } else { if ((sourceProp.flags & SymbolFlags.Optional) !== (targetProp.flags & SymbolFlags.Optional)) { return Ternary.False; } } if (isReadonlySymbol(sourceProp) !== isReadonlySymbol(targetProp)) { return Ternary.False; } return compareTypes(getTypeOfSymbol(sourceProp), getTypeOfSymbol(targetProp)); } function isMatchingSignature(source: Signature, target: Signature, partialMatch: boolean) { // A source signature matches a target signature if the two signatures have the same number of required, // optional, and rest parameters. if (source.parameters.length === target.parameters.length && source.minArgumentCount === target.minArgumentCount && source.hasRestParameter === target.hasRestParameter) { return true; } // A source signature partially matches a target signature if the target signature has no fewer required // parameters and no more overall parameters than the source signature (where a signature with a rest // parameter is always considered to have more overall parameters than one without). const sourceRestCount = source.hasRestParameter ? 1 : 0; const targetRestCount = target.hasRestParameter ? 1 : 0; if (partialMatch && source.minArgumentCount <= target.minArgumentCount && ( sourceRestCount > targetRestCount || sourceRestCount === targetRestCount && source.parameters.length >= target.parameters.length)) { return true; } return false; } /** * See signatureRelatedTo, compareSignaturesIdentical */ function compareSignaturesIdentical(source: Signature, target: Signature, partialMatch: boolean, ignoreThisTypes: boolean, ignoreReturnTypes: boolean, compareTypes: (s: Type, t: Type) => Ternary): Ternary { // TODO (drosen): De-duplicate code between related functions. if (source === target) { return Ternary.True; } if (!(isMatchingSignature(source, target, partialMatch))) { return Ternary.False; } // Check that the two signatures have the same number of type parameters. We might consider // also checking that any type parameter constraints match, but that would require instantiating // the constraints with a common set of type arguments to get relatable entities in places where // type parameters occur in the constraints. The complexity of doing that doesn't seem worthwhile, // particularly as we're comparing erased versions of the signatures below. if (length(source.typeParameters) !== length(target.typeParameters)) { return Ternary.False; } // Spec 1.0 Section 3.8.3 & 3.8.4: // M and N (the signatures) are instantiated using type Any as the type argument for all type parameters declared by M and N source = getErasedSignature(source); target = getErasedSignature(target); let result = Ternary.True; if (!ignoreThisTypes) { const sourceThisType = getThisTypeOfSignature(source); if (sourceThisType) { const targetThisType = getThisTypeOfSignature(target); if (targetThisType) { const related = compareTypes(sourceThisType, targetThisType); if (!related) { return Ternary.False; } result &= related; } } } const targetLen = target.parameters.length; for (let i = 0; i < targetLen; i++) { const s = isRestParameterIndex(source, i) ? getRestTypeOfSignature(source) : getTypeOfParameter(source.parameters[i]); const t = isRestParameterIndex(target, i) ? getRestTypeOfSignature(target) : getTypeOfParameter(target.parameters[i]); const related = compareTypes(s, t); if (!related) { return Ternary.False; } result &= related; } if (!ignoreReturnTypes) { result &= compareTypes(getReturnTypeOfSignature(source), getReturnTypeOfSignature(target)); } return result; } function isRestParameterIndex(signature: Signature, parameterIndex: number) { return signature.hasRestParameter && parameterIndex >= signature.parameters.length - 1; } function isSupertypeOfEach(candidate: Type, types: Type[]): boolean { for (const t of types) { if (candidate !== t && !isTypeSubtypeOf(t, candidate)) return false; } return true; } function literalTypesWithSameBaseType(types: Type[]): boolean { let commonBaseType: Type; for (const t of types) { const baseType = getBaseTypeOfLiteralType(t); if (!commonBaseType) { commonBaseType = baseType; } if (baseType === t || baseType !== commonBaseType) { return false; } } return true; } // When the candidate types are all literal types with the same base type, the common // supertype is a union of those literal types. Otherwise, the common supertype is the // first type that is a supertype of each of the other types. function getSupertypeOrUnion(types: Type[]): Type { return literalTypesWithSameBaseType(types) ? getUnionType(types) : forEach(types, t => isSupertypeOfEach(t, types) ? t : undefined); } function getCommonSupertype(types: Type[]): Type { if (!strictNullChecks) { return getSupertypeOrUnion(types); } const primaryTypes = filter(types, t => !(t.flags & TypeFlags.Nullable)); if (!primaryTypes.length) { return getUnionType(types, /*subtypeReduction*/ true); } const supertype = getSupertypeOrUnion(primaryTypes); return supertype && includeFalsyTypes(supertype, getFalsyFlagsOfTypes(types) & TypeFlags.Nullable); } function reportNoCommonSupertypeError(types: Type[], errorLocation: Node, errorMessageChainHead: DiagnosticMessageChain): void { // The downfallType/bestSupertypeDownfallType is the first type that caused a particular candidate // to not be the common supertype. So if it weren't for this one downfallType (and possibly others), // the type in question could have been the common supertype. let bestSupertype: Type; let bestSupertypeDownfallType: Type; let bestSupertypeScore = 0; for (let i = 0; i < types.length; i++) { let score = 0; let downfallType: Type = undefined; for (let j = 0; j < types.length; j++) { if (isTypeSubtypeOf(types[j], types[i])) { score++; } else if (!downfallType) { downfallType = types[j]; } } Debug.assert(!!downfallType, "If there is no common supertype, each type should have a downfallType"); if (score > bestSupertypeScore) { bestSupertype = types[i]; bestSupertypeDownfallType = downfallType; bestSupertypeScore = score; } // types.length - 1 is the maximum score, given that getCommonSupertype returned false if (bestSupertypeScore === types.length - 1) { break; } } // In the following errors, the {1} slot is before the {0} slot because checkTypeSubtypeOf supplies the // subtype as the first argument to the error checkTypeSubtypeOf(bestSupertypeDownfallType, bestSupertype, errorLocation, Diagnostics.Type_argument_candidate_1_is_not_a_valid_type_argument_because_it_is_not_a_supertype_of_candidate_0, errorMessageChainHead); } function isArrayType(type: Type): boolean { return getObjectFlags(type) & ObjectFlags.Reference && (type).target === globalArrayType; } function isArrayLikeType(type: Type): boolean { // A type is array-like if it is a reference to the global Array or global ReadonlyArray type, // or if it is not the undefined or null type and if it is assignable to ReadonlyArray return getObjectFlags(type) & ObjectFlags.Reference && ((type).target === globalArrayType || (type).target === globalReadonlyArrayType) || !(type.flags & TypeFlags.Nullable) && isTypeAssignableTo(type, anyReadonlyArrayType); } function isTupleLikeType(type: Type): boolean { return !!getPropertyOfType(type, "0"); } function isUnitType(type: Type): boolean { return (type.flags & (TypeFlags.Literal | TypeFlags.Undefined | TypeFlags.Null)) !== 0; } function isLiteralType(type: Type): boolean { return type.flags & TypeFlags.Boolean ? true : type.flags & TypeFlags.Union ? type.flags & TypeFlags.Enum ? true : !forEach((type).types, t => !isUnitType(t)) : isUnitType(type); } function getBaseTypeOfLiteralType(type: Type): Type { return type.flags & TypeFlags.StringLiteral ? stringType : type.flags & TypeFlags.NumberLiteral ? numberType : type.flags & TypeFlags.BooleanLiteral ? booleanType : type.flags & TypeFlags.EnumLiteral ? (type).baseType : type.flags & TypeFlags.Union && !(type.flags & TypeFlags.Enum) ? getUnionType(sameMap((type).types, getBaseTypeOfLiteralType)) : type; } function getWidenedLiteralType(type: Type): Type { return type.flags & TypeFlags.StringLiteral && type.flags & TypeFlags.FreshLiteral ? stringType : type.flags & TypeFlags.NumberLiteral && type.flags & TypeFlags.FreshLiteral ? numberType : type.flags & TypeFlags.BooleanLiteral ? booleanType : type.flags & TypeFlags.EnumLiteral ? (type).baseType : type.flags & TypeFlags.Union && !(type.flags & TypeFlags.Enum) ? getUnionType(sameMap((type).types, getWidenedLiteralType)) : type; } /** * Check if a Type was written as a tuple type literal. * Prefer using isTupleLikeType() unless the use of `elementTypes` is required. */ function isTupleType(type: Type): boolean { return !!(getObjectFlags(type) & ObjectFlags.Reference && (type).target.objectFlags & ObjectFlags.Tuple); } function getFalsyFlagsOfTypes(types: Type[]): TypeFlags { let result: TypeFlags = 0; for (const t of types) { result |= getFalsyFlags(t); } return result; } // Returns the String, Number, Boolean, StringLiteral, NumberLiteral, BooleanLiteral, Void, Undefined, or Null // flags for the string, number, boolean, "", 0, false, void, undefined, or null types respectively. Returns // no flags for all other types (including non-falsy literal types). function getFalsyFlags(type: Type): TypeFlags { return type.flags & TypeFlags.Union ? getFalsyFlagsOfTypes((type).types) : type.flags & TypeFlags.StringLiteral ? (type).text === "" ? TypeFlags.StringLiteral : 0 : type.flags & TypeFlags.NumberLiteral ? (type).text === "0" ? TypeFlags.NumberLiteral : 0 : type.flags & TypeFlags.BooleanLiteral ? type === falseType ? TypeFlags.BooleanLiteral : 0 : type.flags & TypeFlags.PossiblyFalsy; } function includeFalsyTypes(type: Type, flags: TypeFlags) { if ((getFalsyFlags(type) & flags) === flags) { return type; } const types = [type]; if (flags & TypeFlags.StringLike) types.push(emptyStringType); if (flags & TypeFlags.NumberLike) types.push(zeroType); if (flags & TypeFlags.BooleanLike) types.push(falseType); if (flags & TypeFlags.Void) types.push(voidType); if (flags & TypeFlags.Undefined) types.push(undefinedType); if (flags & TypeFlags.Null) types.push(nullType); return getUnionType(types); } function removeDefinitelyFalsyTypes(type: Type): Type { return getFalsyFlags(type) & TypeFlags.DefinitelyFalsy ? filterType(type, t => !(getFalsyFlags(t) & TypeFlags.DefinitelyFalsy)) : type; } function getNonNullableType(type: Type): Type { return strictNullChecks ? getTypeWithFacts(type, TypeFacts.NEUndefinedOrNull) : type; } /** * Return true if type was inferred from an object literal or written as an object type literal * with no call or construct signatures. */ function isObjectLiteralType(type: Type) { return type.symbol && (type.symbol.flags & (SymbolFlags.ObjectLiteral | SymbolFlags.TypeLiteral)) !== 0 && getSignaturesOfType(type, SignatureKind.Call).length === 0 && getSignaturesOfType(type, SignatureKind.Construct).length === 0; } function createSymbolWithType(source: Symbol, type: Type) { const symbol = createSymbol(source.flags, source.name); symbol.declarations = source.declarations; symbol.parent = source.parent; symbol.type = type; symbol.target = source; if (source.valueDeclaration) { symbol.valueDeclaration = source.valueDeclaration; } return symbol; } function transformTypeOfMembers(type: Type, f: (propertyType: Type) => Type) { const members = createMap(); for (const property of getPropertiesOfObjectType(type)) { const original = getTypeOfSymbol(property); const updated = f(original); members.set(property.name, updated === original ? property : createSymbolWithType(property, updated)); } return members; } /** * If the the provided object literal is subject to the excess properties check, * create a new that is exempt. Recursively mark object literal members as exempt. * Leave signatures alone since they are not subject to the check. */ function getRegularTypeOfObjectLiteral(type: Type): Type { if (!(getObjectFlags(type) & ObjectFlags.ObjectLiteral && type.flags & TypeFlags.FreshLiteral)) { return type; } const regularType = (type).regularType; if (regularType) { return regularType; } const resolved = type; const members = transformTypeOfMembers(type, getRegularTypeOfObjectLiteral); const regularNew = createAnonymousType(resolved.symbol, members, resolved.callSignatures, resolved.constructSignatures, resolved.stringIndexInfo, resolved.numberIndexInfo); regularNew.flags = resolved.flags & ~TypeFlags.FreshLiteral; regularNew.objectFlags |= ObjectFlags.ObjectLiteral; (type).regularType = regularNew; return regularNew; } function getWidenedProperty(prop: Symbol): Symbol { const original = getTypeOfSymbol(prop); const widened = getWidenedType(original); return widened === original ? prop : createSymbolWithType(prop, widened); } function getWidenedTypeOfObjectLiteral(type: Type): Type { const members = createMap(); for (const prop of getPropertiesOfObjectType(type)) { // Since get accessors already widen their return value there is no need to // widen accessor based properties here. members.set(prop.name, prop.flags & SymbolFlags.Property ? getWidenedProperty(prop) : prop); } const stringIndexInfo = getIndexInfoOfType(type, IndexKind.String); const numberIndexInfo = getIndexInfoOfType(type, IndexKind.Number); return createAnonymousType(type.symbol, members, emptyArray, emptyArray, stringIndexInfo && createIndexInfo(getWidenedType(stringIndexInfo.type), stringIndexInfo.isReadonly), numberIndexInfo && createIndexInfo(getWidenedType(numberIndexInfo.type), numberIndexInfo.isReadonly)); } function getWidenedConstituentType(type: Type): Type { return type.flags & TypeFlags.Nullable ? type : getWidenedType(type); } function getWidenedType(type: Type): Type { if (type.flags & TypeFlags.RequiresWidening) { if (type.flags & TypeFlags.Nullable) { return anyType; } if (getObjectFlags(type) & ObjectFlags.ObjectLiteral) { return getWidenedTypeOfObjectLiteral(type); } if (type.flags & TypeFlags.Union) { return getUnionType(sameMap((type).types, getWidenedConstituentType)); } if (isArrayType(type) || isTupleType(type)) { return createTypeReference((type).target, sameMap((type).typeArguments, getWidenedType)); } } return type; } /** * Reports implicit any errors that occur as a result of widening 'null' and 'undefined' * to 'any'. A call to reportWideningErrorsInType is normally accompanied by a call to * getWidenedType. But in some cases getWidenedType is called without reporting errors * (type argument inference is an example). * * The return value indicates whether an error was in fact reported. The particular circumstances * are on a best effort basis. Currently, if the null or undefined that causes widening is inside * an object literal property (arbitrarily deeply), this function reports an error. If no error is * reported, reportImplicitAnyError is a suitable fallback to report a general error. */ function reportWideningErrorsInType(type: Type): boolean { let errorReported = false; if (type.flags & TypeFlags.Union) { for (const t of (type).types) { if (reportWideningErrorsInType(t)) { errorReported = true; } } } if (isArrayType(type) || isTupleType(type)) { for (const t of (type).typeArguments) { if (reportWideningErrorsInType(t)) { errorReported = true; } } } if (getObjectFlags(type) & ObjectFlags.ObjectLiteral) { for (const p of getPropertiesOfObjectType(type)) { const t = getTypeOfSymbol(p); if (t.flags & TypeFlags.ContainsWideningType) { if (!reportWideningErrorsInType(t)) { error(p.valueDeclaration, Diagnostics.Object_literal_s_property_0_implicitly_has_an_1_type, p.name, typeToString(getWidenedType(t))); } errorReported = true; } } } return errorReported; } function reportImplicitAnyError(declaration: Declaration, type: Type) { const typeAsString = typeToString(getWidenedType(type)); let diagnostic: DiagnosticMessage; switch (declaration.kind) { case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: diagnostic = Diagnostics.Member_0_implicitly_has_an_1_type; break; case SyntaxKind.Parameter: diagnostic = (declaration).dotDotDotToken ? Diagnostics.Rest_parameter_0_implicitly_has_an_any_type : Diagnostics.Parameter_0_implicitly_has_an_1_type; break; case SyntaxKind.BindingElement: diagnostic = Diagnostics.Binding_element_0_implicitly_has_an_1_type; break; case SyntaxKind.FunctionDeclaration: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: if (!(declaration as NamedDeclaration).name) { error(declaration, Diagnostics.Function_expression_which_lacks_return_type_annotation_implicitly_has_an_0_return_type, typeAsString); return; } diagnostic = Diagnostics._0_which_lacks_return_type_annotation_implicitly_has_an_1_return_type; break; default: diagnostic = Diagnostics.Variable_0_implicitly_has_an_1_type; } error(declaration, diagnostic, declarationNameToString(getNameOfDeclaration(declaration)), typeAsString); } function reportErrorsFromWidening(declaration: Declaration, type: Type) { if (produceDiagnostics && noImplicitAny && type.flags & TypeFlags.ContainsWideningType) { // Report implicit any error within type if possible, otherwise report error on declaration if (!reportWideningErrorsInType(type)) { reportImplicitAnyError(declaration, type); } } } function forEachMatchingParameterType(source: Signature, target: Signature, callback: (s: Type, t: Type) => void) { const sourceMax = source.parameters.length; const targetMax = target.parameters.length; let count: number; if (source.hasRestParameter && target.hasRestParameter) { count = Math.max(sourceMax, targetMax); } else if (source.hasRestParameter) { count = targetMax; } else if (target.hasRestParameter) { count = sourceMax; } else { count = Math.min(sourceMax, targetMax); } for (let i = 0; i < count; i++) { callback(getTypeAtPosition(source, i), getTypeAtPosition(target, i)); } } function createInferenceContext(signature: Signature, inferUnionTypes: boolean, useAnyForNoInferences: boolean): InferenceContext { const inferences = map(signature.typeParameters, createTypeInferencesObject); return { signature, inferUnionTypes, inferences, inferredTypes: new Array(signature.typeParameters.length), useAnyForNoInferences }; } function createTypeInferencesObject(): TypeInferences { return { primary: undefined, secondary: undefined, topLevel: true, isFixed: false, }; } // Return true if the given type could possibly reference a type parameter for which // we perform type inference (i.e. a type parameter of a generic function). We cache // results for union and intersection types for performance reasons. function couldContainTypeVariables(type: Type): boolean { const objectFlags = getObjectFlags(type); return !!(type.flags & TypeFlags.TypeVariable || objectFlags & ObjectFlags.Reference && forEach((type).typeArguments, couldContainTypeVariables) || objectFlags & ObjectFlags.Anonymous && type.symbol && type.symbol.flags & (SymbolFlags.Method | SymbolFlags.TypeLiteral | SymbolFlags.Class) || objectFlags & ObjectFlags.Mapped || type.flags & TypeFlags.UnionOrIntersection && couldUnionOrIntersectionContainTypeVariables(type)); } function couldUnionOrIntersectionContainTypeVariables(type: UnionOrIntersectionType): boolean { if (type.couldContainTypeVariables === undefined) { type.couldContainTypeVariables = forEach(type.types, couldContainTypeVariables); } return type.couldContainTypeVariables; } function isTypeParameterAtTopLevel(type: Type, typeParameter: TypeParameter): boolean { return type === typeParameter || type.flags & TypeFlags.UnionOrIntersection && forEach((type).types, t => isTypeParameterAtTopLevel(t, typeParameter)); } // Infer a suitable input type for a homomorphic mapped type { [P in keyof T]: X }. We construct // an object type with the same set of properties as the source type, where the type of each // property is computed by inferring from the source property type to X for the type // variable T[P] (i.e. we treat the type T[P] as the type variable we're inferring for). function inferTypeForHomomorphicMappedType(source: Type, target: MappedType): Type { const properties = getPropertiesOfType(source); let indexInfo = getIndexInfoOfType(source, IndexKind.String); if (properties.length === 0 && !indexInfo) { return undefined; } const typeVariable = getIndexedAccessType((getConstraintTypeFromMappedType(target)).type, getTypeParameterFromMappedType(target)); const typeVariableArray = [typeVariable]; const typeInferences = createTypeInferencesObject(); const typeInferencesArray = [typeInferences]; const templateType = getTemplateTypeFromMappedType(target); const readonlyMask = target.declaration.readonlyToken ? false : true; const optionalMask = target.declaration.questionToken ? 0 : SymbolFlags.Optional; const members = createMap(); for (const prop of properties) { const inferredPropType = inferTargetType(getTypeOfSymbol(prop)); if (!inferredPropType) { return undefined; } const inferredProp = createSymbol(SymbolFlags.Property | prop.flags & optionalMask, prop.name); inferredProp.checkFlags = readonlyMask && isReadonlySymbol(prop) ? CheckFlags.Readonly : 0; inferredProp.declarations = prop.declarations; inferredProp.type = inferredPropType; members.set(prop.name, inferredProp); } if (indexInfo) { const inferredIndexType = inferTargetType(indexInfo.type); if (!inferredIndexType) { return undefined; } indexInfo = createIndexInfo(inferredIndexType, readonlyMask && indexInfo.isReadonly); } return createAnonymousType(undefined, members, emptyArray, emptyArray, indexInfo, undefined); function inferTargetType(sourceType: Type): Type { typeInferences.primary = undefined; typeInferences.secondary = undefined; inferTypes(typeVariableArray, typeInferencesArray, sourceType, templateType); const inferences = typeInferences.primary || typeInferences.secondary; return inferences && getUnionType(inferences, /*subtypeReduction*/ true); } } function inferTypesWithContext(context: InferenceContext, originalSource: Type, originalTarget: Type) { inferTypes(context.signature.typeParameters, context.inferences, originalSource, originalTarget); } function inferTypes(typeVariables: TypeVariable[], typeInferences: TypeInferences[], originalSource: Type, originalTarget: Type) { let symbolStack: Symbol[]; let visited: Map; let inferiority = 0; inferFromTypes(originalSource, originalTarget); function inferFromTypes(source: Type, target: Type) { if (!couldContainTypeVariables(target)) { return; } if (source.aliasSymbol && source.aliasTypeArguments && source.aliasSymbol === target.aliasSymbol) { // Source and target are types originating in the same generic type alias declaration. // Simply infer from source type arguments to target type arguments. const sourceTypes = source.aliasTypeArguments; const targetTypes = target.aliasTypeArguments; for (let i = 0; i < sourceTypes.length; i++) { inferFromTypes(sourceTypes[i], targetTypes[i]); } return; } if (source.flags & TypeFlags.Union && target.flags & TypeFlags.Union && !(source.flags & TypeFlags.Enum && target.flags & TypeFlags.Enum) || source.flags & TypeFlags.Intersection && target.flags & TypeFlags.Intersection) { // Source and target are both unions or both intersections. If source and target // are the same type, just relate each constituent type to itself. if (source === target) { for (const t of (source).types) { inferFromTypes(t, t); } return; } // Find each source constituent type that has an identically matching target constituent // type, and for each such type infer from the type to itself. When inferring from a // type to itself we effectively find all type parameter occurrences within that type // and infer themselves as their type arguments. We have special handling for numeric // and string literals because the number and string types are not represented as unions // of all their possible values. let matchingTypes: Type[]; for (const t of (source).types) { if (typeIdenticalToSomeType(t, (target).types)) { (matchingTypes || (matchingTypes = [])).push(t); inferFromTypes(t, t); } else if (t.flags & (TypeFlags.NumberLiteral | TypeFlags.StringLiteral)) { const b = getBaseTypeOfLiteralType(t); if (typeIdenticalToSomeType(b, (target).types)) { (matchingTypes || (matchingTypes = [])).push(t, b); } } } // Next, to improve the quality of inferences, reduce the source and target types by // removing the identically matched constituents. For example, when inferring from // 'string | string[]' to 'string | T' we reduce the types to 'string[]' and 'T'. if (matchingTypes) { source = removeTypesFromUnionOrIntersection(source, matchingTypes); target = removeTypesFromUnionOrIntersection(target, matchingTypes); } } if (target.flags & TypeFlags.TypeVariable) { // If target is a type parameter, make an inference, unless the source type contains // the anyFunctionType (the wildcard type that's used to avoid contextually typing functions). // Because the anyFunctionType is internal, it should not be exposed to the user by adding // it as an inference candidate. Hopefully, a better candidate will come along that does // not contain anyFunctionType when we come back to this argument for its second round // of inference. if (source.flags & TypeFlags.ContainsAnyFunctionType) { return; } for (let i = 0; i < typeVariables.length; i++) { if (target === typeVariables[i]) { const inferences = typeInferences[i]; if (!inferences.isFixed) { // Any inferences that are made to a type parameter in a union type are inferior // to inferences made to a flat (non-union) type. This is because if we infer to // T | string[], we really don't know if we should be inferring to T or not (because // the correct constituent on the target side could be string[]). Therefore, we put // such inferior inferences into a secondary bucket, and only use them if the primary // bucket is empty. const candidates = inferiority ? inferences.secondary || (inferences.secondary = []) : inferences.primary || (inferences.primary = []); if (!contains(candidates, source)) { candidates.push(source); } if (target.flags & TypeFlags.TypeParameter && !isTypeParameterAtTopLevel(originalTarget, target)) { inferences.topLevel = false; } } return; } } } else if (getObjectFlags(source) & ObjectFlags.Reference && getObjectFlags(target) & ObjectFlags.Reference && (source).target === (target).target) { // If source and target are references to the same generic type, infer from type arguments const sourceTypes = (source).typeArguments || emptyArray; const targetTypes = (target).typeArguments || emptyArray; const count = sourceTypes.length < targetTypes.length ? sourceTypes.length : targetTypes.length; for (let i = 0; i < count; i++) { inferFromTypes(sourceTypes[i], targetTypes[i]); } } else if (target.flags & TypeFlags.UnionOrIntersection) { const targetTypes = (target).types; let typeVariableCount = 0; let typeVariable: TypeVariable; // First infer to each type in union or intersection that isn't a type variable for (const t of targetTypes) { if (t.flags & TypeFlags.TypeVariable && contains(typeVariables, t)) { typeVariable = t; typeVariableCount++; } else { inferFromTypes(source, t); } } // Next, if target containings a single naked type variable, make a secondary inference to that type // variable. This gives meaningful results for union types in co-variant positions and intersection // types in contra-variant positions (such as callback parameters). if (typeVariableCount === 1) { inferiority++; inferFromTypes(source, typeVariable); inferiority--; } } else if (source.flags & TypeFlags.UnionOrIntersection) { // Source is a union or intersection type, infer from each constituent type const sourceTypes = (source).types; for (const sourceType of sourceTypes) { inferFromTypes(sourceType, target); } } else { source = getApparentType(source); if (source.flags & TypeFlags.Object) { const key = source.id + "," + target.id; if (visited && visited.get(key)) { return; } (visited || (visited = createMap())).set(key, true); // If we are already processing another target type with the same associated symbol (such as // an instantiation of the same generic type), we do not explore this target as it would yield // no further inferences. We exclude the static side of classes from this check since it shares // its symbol with the instance side which would lead to false positives. const isNonConstructorObject = target.flags & TypeFlags.Object && !(getObjectFlags(target) & ObjectFlags.Anonymous && target.symbol && target.symbol.flags & SymbolFlags.Class); const symbol = isNonConstructorObject ? target.symbol : undefined; if (symbol) { if (contains(symbolStack, symbol)) { return; } (symbolStack || (symbolStack = [])).push(symbol); inferFromObjectTypes(source, target); symbolStack.pop(); } else { inferFromObjectTypes(source, target); } } } } function inferFromObjectTypes(source: Type, target: Type) { if (getObjectFlags(target) & ObjectFlags.Mapped) { const constraintType = getConstraintTypeFromMappedType(target); if (constraintType.flags & TypeFlags.Index) { // We're inferring from some source type S to a homomorphic mapped type { [P in keyof T]: X }, // where T is a type variable. Use inferTypeForHomomorphicMappedType to infer a suitable source // type and then make a secondary inference from that type to T. We make a secondary inference // such that direct inferences to T get priority over inferences to Partial, for example. const index = indexOf(typeVariables, (constraintType).type); if (index >= 0 && !typeInferences[index].isFixed) { const inferredType = inferTypeForHomomorphicMappedType(source, target); if (inferredType) { inferiority++; inferFromTypes(inferredType, typeVariables[index]); inferiority--; } } return; } if (constraintType.flags & TypeFlags.TypeParameter) { // We're inferring from some source type S to a mapped type { [P in T]: X }, where T is a type // parameter. Infer from 'keyof S' to T and infer from a union of each property type in S to X. inferFromTypes(getIndexType(source), constraintType); inferFromTypes(getUnionType(map(getPropertiesOfType(source), getTypeOfSymbol)), getTemplateTypeFromMappedType(target)); return; } } inferFromProperties(source, target); inferFromSignatures(source, target, SignatureKind.Call); inferFromSignatures(source, target, SignatureKind.Construct); inferFromIndexTypes(source, target); } function inferFromProperties(source: Type, target: Type) { const properties = getPropertiesOfObjectType(target); for (const targetProp of properties) { const sourceProp = getPropertyOfObjectType(source, targetProp.name); if (sourceProp) { inferFromTypes(getTypeOfSymbol(sourceProp), getTypeOfSymbol(targetProp)); } } } function inferFromSignatures(source: Type, target: Type, kind: SignatureKind) { const sourceSignatures = getSignaturesOfType(source, kind); const targetSignatures = getSignaturesOfType(target, kind); const sourceLen = sourceSignatures.length; const targetLen = targetSignatures.length; const len = sourceLen < targetLen ? sourceLen : targetLen; for (let i = 0; i < len; i++) { inferFromSignature(getErasedSignature(sourceSignatures[sourceLen - len + i]), getErasedSignature(targetSignatures[targetLen - len + i])); } } function inferFromParameterTypes(source: Type, target: Type) { return inferFromTypes(source, target); } function inferFromSignature(source: Signature, target: Signature) { forEachMatchingParameterType(source, target, inferFromParameterTypes); if (source.typePredicate && target.typePredicate && source.typePredicate.kind === target.typePredicate.kind) { inferFromTypes(source.typePredicate.type, target.typePredicate.type); } else { inferFromTypes(getReturnTypeOfSignature(source), getReturnTypeOfSignature(target)); } } function inferFromIndexTypes(source: Type, target: Type) { const targetStringIndexType = getIndexTypeOfType(target, IndexKind.String); if (targetStringIndexType) { const sourceIndexType = getIndexTypeOfType(source, IndexKind.String) || getImplicitIndexTypeOfType(source, IndexKind.String); if (sourceIndexType) { inferFromTypes(sourceIndexType, targetStringIndexType); } } const targetNumberIndexType = getIndexTypeOfType(target, IndexKind.Number); if (targetNumberIndexType) { const sourceIndexType = getIndexTypeOfType(source, IndexKind.Number) || getIndexTypeOfType(source, IndexKind.String) || getImplicitIndexTypeOfType(source, IndexKind.Number); if (sourceIndexType) { inferFromTypes(sourceIndexType, targetNumberIndexType); } } } } function typeIdenticalToSomeType(type: Type, types: Type[]): boolean { for (const t of types) { if (isTypeIdenticalTo(t, type)) { return true; } } return false; } /** * Return a new union or intersection type computed by removing a given set of types * from a given union or intersection type. */ function removeTypesFromUnionOrIntersection(type: UnionOrIntersectionType, typesToRemove: Type[]) { const reducedTypes: Type[] = []; for (const t of type.types) { if (!typeIdenticalToSomeType(t, typesToRemove)) { reducedTypes.push(t); } } return type.flags & TypeFlags.Union ? getUnionType(reducedTypes) : getIntersectionType(reducedTypes); } function getInferenceCandidates(context: InferenceContext, index: number): Type[] { const inferences = context.inferences[index]; return inferences.primary || inferences.secondary || emptyArray; } function hasPrimitiveConstraint(type: TypeParameter): boolean { const constraint = getConstraintOfTypeParameter(type); return constraint && maybeTypeOfKind(constraint, TypeFlags.Primitive | TypeFlags.Index); } function getInferredType(context: InferenceContext, index: number): Type { let inferredType = context.inferredTypes[index]; let inferenceSucceeded: boolean; if (!inferredType) { const inferences = getInferenceCandidates(context, index); if (inferences.length) { // We widen inferred literal types if // all inferences were made to top-level ocurrences of the type parameter, and // the type parameter has no constraint or its constraint includes no primitive or literal types, and // the type parameter was fixed during inference or does not occur at top-level in the return type. const signature = context.signature; const widenLiteralTypes = context.inferences[index].topLevel && !hasPrimitiveConstraint(signature.typeParameters[index]) && (context.inferences[index].isFixed || !isTypeParameterAtTopLevel(getReturnTypeOfSignature(signature), signature.typeParameters[index])); const baseInferences = widenLiteralTypes ? sameMap(inferences, getWidenedLiteralType) : inferences; // Infer widened union or supertype, or the unknown type for no common supertype const unionOrSuperType = context.inferUnionTypes ? getUnionType(baseInferences, /*subtypeReduction*/ true) : getCommonSupertype(baseInferences); inferredType = unionOrSuperType ? getWidenedType(unionOrSuperType) : unknownType; inferenceSucceeded = !!unionOrSuperType; } else { // Infer either the default or the empty object type when no inferences were // made. It is important to remember that in this case, inference still // succeeds, meaning there is no error for not having inference candidates. An // inference error only occurs when there are *conflicting* candidates, i.e. // candidates with no common supertype. const defaultType = getDefaultFromTypeParameter(context.signature.typeParameters[index]); if (defaultType) { // Instantiate the default type. Any forward reference to a type // parameter should be instantiated to the empty object type. inferredType = instantiateType(defaultType, combineTypeMappers( createBackreferenceMapper(context.signature.typeParameters, index), getInferenceMapper(context))); } else { inferredType = context.useAnyForNoInferences ? anyType : emptyObjectType; } inferenceSucceeded = true; } context.inferredTypes[index] = inferredType; // Only do the constraint check if inference succeeded (to prevent cascading errors) if (inferenceSucceeded) { const constraint = getConstraintOfTypeParameter(context.signature.typeParameters[index]); if (constraint) { const instantiatedConstraint = instantiateType(constraint, getInferenceMapper(context)); if (!isTypeAssignableTo(inferredType, getTypeWithThisArgument(instantiatedConstraint, inferredType))) { context.inferredTypes[index] = inferredType = instantiatedConstraint; } } } else if (context.failedTypeParameterIndex === undefined || context.failedTypeParameterIndex > index) { // If inference failed, it is necessary to record the index of the failed type parameter (the one we are on). // It might be that inference has already failed on a later type parameter on a previous call to inferTypeArguments. // So if this failure is on preceding type parameter, this type parameter is the new failure index. context.failedTypeParameterIndex = index; } } return inferredType; } function getInferredTypes(context: InferenceContext): Type[] { for (let i = 0; i < context.inferredTypes.length; i++) { getInferredType(context, i); } return context.inferredTypes; } // EXPRESSION TYPE CHECKING function getResolvedSymbol(node: Identifier): Symbol { const links = getNodeLinks(node); if (!links.resolvedSymbol) { links.resolvedSymbol = !nodeIsMissing(node) && resolveName(node, node.text, SymbolFlags.Value | SymbolFlags.ExportValue, Diagnostics.Cannot_find_name_0, node, Diagnostics.Cannot_find_name_0_Did_you_mean_1) || unknownSymbol; } return links.resolvedSymbol; } function isInTypeQuery(node: Node): boolean { // TypeScript 1.0 spec (April 2014): 3.6.3 // A type query consists of the keyword typeof followed by an expression. // The expression is restricted to a single identifier or a sequence of identifiers separated by periods return !!findAncestor( node, n => n.kind === SyntaxKind.TypeQuery ? true : n.kind === SyntaxKind.Identifier || n.kind === SyntaxKind.QualifiedName ? false : "quit"); } // Return the flow cache key for a "dotted name" (i.e. a sequence of identifiers // separated by dots). The key consists of the id of the symbol referenced by the // leftmost identifier followed by zero or more property names separated by dots. // The result is undefined if the reference isn't a dotted name. We prefix nodes // occurring in an apparent type position with '@' because the control flow type // of such nodes may be based on the apparent type instead of the declared type. function getFlowCacheKey(node: Node): string { if (node.kind === SyntaxKind.Identifier) { const symbol = getResolvedSymbol(node); return symbol !== unknownSymbol ? (isApparentTypePosition(node) ? "@" : "") + getSymbolId(symbol) : undefined; } if (node.kind === SyntaxKind.ThisKeyword) { return "0"; } if (node.kind === SyntaxKind.PropertyAccessExpression) { const key = getFlowCacheKey((node).expression); return key && key + "." + (node).name.text; } return undefined; } function getLeftmostIdentifierOrThis(node: Node): Node { switch (node.kind) { case SyntaxKind.Identifier: case SyntaxKind.ThisKeyword: return node; case SyntaxKind.PropertyAccessExpression: return getLeftmostIdentifierOrThis((node).expression); } return undefined; } function isMatchingReference(source: Node, target: Node): boolean { switch (source.kind) { case SyntaxKind.Identifier: return target.kind === SyntaxKind.Identifier && getResolvedSymbol(source) === getResolvedSymbol(target) || (target.kind === SyntaxKind.VariableDeclaration || target.kind === SyntaxKind.BindingElement) && getExportSymbolOfValueSymbolIfExported(getResolvedSymbol(source)) === getSymbolOfNode(target); case SyntaxKind.ThisKeyword: return target.kind === SyntaxKind.ThisKeyword; case SyntaxKind.SuperKeyword: return target.kind === SyntaxKind.SuperKeyword; case SyntaxKind.PropertyAccessExpression: return target.kind === SyntaxKind.PropertyAccessExpression && (source).name.text === (target).name.text && isMatchingReference((source).expression, (target).expression); } return false; } function containsMatchingReference(source: Node, target: Node) { while (source.kind === SyntaxKind.PropertyAccessExpression) { source = (source).expression; if (isMatchingReference(source, target)) { return true; } } return false; } // Return true if target is a property access xxx.yyy, source is a property access xxx.zzz, the declared // type of xxx is a union type, and yyy is a property that is possibly a discriminant. We consider a property // a possible discriminant if its type differs in the constituents of containing union type, and if every // choice is a unit type or a union of unit types. function containsMatchingReferenceDiscriminant(source: Node, target: Node) { return target.kind === SyntaxKind.PropertyAccessExpression && containsMatchingReference(source, (target).expression) && isDiscriminantProperty(getDeclaredTypeOfReference((target).expression), (target).name.text); } function getDeclaredTypeOfReference(expr: Node): Type { if (expr.kind === SyntaxKind.Identifier) { return getTypeOfSymbol(getResolvedSymbol(expr)); } if (expr.kind === SyntaxKind.PropertyAccessExpression) { const type = getDeclaredTypeOfReference((expr).expression); return type && getTypeOfPropertyOfType(type, (expr).name.text); } return undefined; } function isDiscriminantProperty(type: Type, name: string) { if (type && type.flags & TypeFlags.Union) { const prop = getUnionOrIntersectionProperty(type, name); if (prop && getCheckFlags(prop) & CheckFlags.SyntheticProperty) { if ((prop).isDiscriminantProperty === undefined) { (prop).isDiscriminantProperty = (prop).checkFlags & CheckFlags.HasNonUniformType && isLiteralType(getTypeOfSymbol(prop)); } return (prop).isDiscriminantProperty; } } return false; } function isOrContainsMatchingReference(source: Node, target: Node) { return isMatchingReference(source, target) || containsMatchingReference(source, target); } function hasMatchingArgument(callExpression: CallExpression, reference: Node) { if (callExpression.arguments) { for (const argument of callExpression.arguments) { if (isOrContainsMatchingReference(reference, argument)) { return true; } } } if (callExpression.expression.kind === SyntaxKind.PropertyAccessExpression && isOrContainsMatchingReference(reference, (callExpression.expression).expression)) { return true; } return false; } function getFlowNodeId(flow: FlowNode): number { if (!flow.id) { flow.id = nextFlowId; nextFlowId++; } return flow.id; } function typeMaybeAssignableTo(source: Type, target: Type) { if (!(source.flags & TypeFlags.Union)) { return isTypeAssignableTo(source, target); } for (const t of (source).types) { if (isTypeAssignableTo(t, target)) { return true; } } return false; } // Remove those constituent types of declaredType to which no constituent type of assignedType is assignable. // For example, when a variable of type number | string | boolean is assigned a value of type number | boolean, // we remove type string. function getAssignmentReducedType(declaredType: UnionType, assignedType: Type) { if (declaredType !== assignedType) { if (assignedType.flags & TypeFlags.Never) { return assignedType; } const reducedType = filterType(declaredType, t => typeMaybeAssignableTo(assignedType, t)); if (!(reducedType.flags & TypeFlags.Never)) { return reducedType; } } return declaredType; } function getTypeFactsOfTypes(types: Type[]): TypeFacts { let result: TypeFacts = TypeFacts.None; for (const t of types) { result |= getTypeFacts(t); } return result; } function isFunctionObjectType(type: ObjectType): boolean { // We do a quick check for a "bind" property before performing the more expensive subtype // check. This gives us a quicker out in the common case where an object type is not a function. const resolved = resolveStructuredTypeMembers(type); return !!(resolved.callSignatures.length || resolved.constructSignatures.length || resolved.members.get("bind") && isTypeSubtypeOf(type, globalFunctionType)); } function getTypeFacts(type: Type): TypeFacts { const flags = type.flags; if (flags & TypeFlags.String) { return strictNullChecks ? TypeFacts.StringStrictFacts : TypeFacts.StringFacts; } if (flags & TypeFlags.StringLiteral) { return strictNullChecks ? (type).text === "" ? TypeFacts.EmptyStringStrictFacts : TypeFacts.NonEmptyStringStrictFacts : (type).text === "" ? TypeFacts.EmptyStringFacts : TypeFacts.NonEmptyStringFacts; } if (flags & (TypeFlags.Number | TypeFlags.Enum)) { return strictNullChecks ? TypeFacts.NumberStrictFacts : TypeFacts.NumberFacts; } if (flags & (TypeFlags.NumberLiteral | TypeFlags.EnumLiteral)) { const isZero = (type).text === "0"; return strictNullChecks ? isZero ? TypeFacts.ZeroStrictFacts : TypeFacts.NonZeroStrictFacts : isZero ? TypeFacts.ZeroFacts : TypeFacts.NonZeroFacts; } if (flags & TypeFlags.Boolean) { return strictNullChecks ? TypeFacts.BooleanStrictFacts : TypeFacts.BooleanFacts; } if (flags & TypeFlags.BooleanLike) { return strictNullChecks ? type === falseType ? TypeFacts.FalseStrictFacts : TypeFacts.TrueStrictFacts : type === falseType ? TypeFacts.FalseFacts : TypeFacts.TrueFacts; } if (flags & TypeFlags.Object) { return isFunctionObjectType(type) ? strictNullChecks ? TypeFacts.FunctionStrictFacts : TypeFacts.FunctionFacts : strictNullChecks ? TypeFacts.ObjectStrictFacts : TypeFacts.ObjectFacts; } if (flags & (TypeFlags.Void | TypeFlags.Undefined)) { return TypeFacts.UndefinedFacts; } if (flags & TypeFlags.Null) { return TypeFacts.NullFacts; } if (flags & TypeFlags.ESSymbol) { return strictNullChecks ? TypeFacts.SymbolStrictFacts : TypeFacts.SymbolFacts; } if (flags & TypeFlags.NonPrimitive) { return strictNullChecks ? TypeFacts.ObjectStrictFacts : TypeFacts.ObjectFacts; } if (flags & TypeFlags.TypeVariable) { return getTypeFacts(getBaseConstraintOfType(type) || emptyObjectType); } if (flags & TypeFlags.UnionOrIntersection) { return getTypeFactsOfTypes((type).types); } return TypeFacts.All; } function getTypeWithFacts(type: Type, include: TypeFacts) { return filterType(type, t => (getTypeFacts(t) & include) !== 0); } function getTypeWithDefault(type: Type, defaultExpression: Expression) { if (defaultExpression) { const defaultType = getTypeOfExpression(defaultExpression); return getUnionType([getTypeWithFacts(type, TypeFacts.NEUndefined), defaultType]); } return type; } function getTypeOfDestructuredProperty(type: Type, name: PropertyName) { const text = getTextOfPropertyName(name); return getTypeOfPropertyOfType(type, text) || isNumericLiteralName(text) && getIndexTypeOfType(type, IndexKind.Number) || getIndexTypeOfType(type, IndexKind.String) || unknownType; } function getTypeOfDestructuredArrayElement(type: Type, index: number) { return isTupleLikeType(type) && getTypeOfPropertyOfType(type, "" + index) || checkIteratedTypeOrElementType(type, /*errorNode*/ undefined, /*allowStringInput*/ false, /*allowAsyncIterable*/ false) || unknownType; } function getTypeOfDestructuredSpreadExpression(type: Type) { return createArrayType(checkIteratedTypeOrElementType(type, /*errorNode*/ undefined, /*allowStringInput*/ false, /*allowAsyncIterable*/ false) || unknownType); } function getAssignedTypeOfBinaryExpression(node: BinaryExpression): Type { const isDestructuringDefaultAssignment = node.parent.kind === SyntaxKind.ArrayLiteralExpression && isDestructuringAssignmentTarget(node.parent) || node.parent.kind === SyntaxKind.PropertyAssignment && isDestructuringAssignmentTarget(node.parent.parent); return isDestructuringDefaultAssignment ? getTypeWithDefault(getAssignedType(node), node.right) : getTypeOfExpression(node.right); } function isDestructuringAssignmentTarget(parent: Node) { return parent.parent.kind === SyntaxKind.BinaryExpression && (parent.parent as BinaryExpression).left === parent || parent.parent.kind === SyntaxKind.ForOfStatement && (parent.parent as ForOfStatement).initializer === parent; } function getAssignedTypeOfArrayLiteralElement(node: ArrayLiteralExpression, element: Expression): Type { return getTypeOfDestructuredArrayElement(getAssignedType(node), indexOf(node.elements, element)); } function getAssignedTypeOfSpreadExpression(node: SpreadElement): Type { return getTypeOfDestructuredSpreadExpression(getAssignedType(node.parent)); } function getAssignedTypeOfPropertyAssignment(node: PropertyAssignment | ShorthandPropertyAssignment): Type { return getTypeOfDestructuredProperty(getAssignedType(node.parent), node.name); } function getAssignedTypeOfShorthandPropertyAssignment(node: ShorthandPropertyAssignment): Type { return getTypeWithDefault(getAssignedTypeOfPropertyAssignment(node), node.objectAssignmentInitializer); } function getAssignedType(node: Expression): Type { const parent = node.parent; switch (parent.kind) { case SyntaxKind.ForInStatement: return stringType; case SyntaxKind.ForOfStatement: return checkRightHandSideOfForOf((parent).expression, (parent).awaitModifier) || unknownType; case SyntaxKind.BinaryExpression: return getAssignedTypeOfBinaryExpression(parent); case SyntaxKind.DeleteExpression: return undefinedType; case SyntaxKind.ArrayLiteralExpression: return getAssignedTypeOfArrayLiteralElement(parent, node); case SyntaxKind.SpreadElement: return getAssignedTypeOfSpreadExpression(parent); case SyntaxKind.PropertyAssignment: return getAssignedTypeOfPropertyAssignment(parent); case SyntaxKind.ShorthandPropertyAssignment: return getAssignedTypeOfShorthandPropertyAssignment(parent); } return unknownType; } function getInitialTypeOfBindingElement(node: BindingElement): Type { const pattern = node.parent; const parentType = getInitialType(pattern.parent); const type = pattern.kind === SyntaxKind.ObjectBindingPattern ? getTypeOfDestructuredProperty(parentType, node.propertyName || node.name) : !node.dotDotDotToken ? getTypeOfDestructuredArrayElement(parentType, indexOf(pattern.elements, node)) : getTypeOfDestructuredSpreadExpression(parentType); return getTypeWithDefault(type, node.initializer); } function getTypeOfInitializer(node: Expression) { // Return the cached type if one is available. If the type of the variable was inferred // from its initializer, we'll already have cached the type. Otherwise we compute it now // without caching such that transient types are reflected. const links = getNodeLinks(node); return links.resolvedType || getTypeOfExpression(node); } function getInitialTypeOfVariableDeclaration(node: VariableDeclaration) { if (node.initializer) { return getTypeOfInitializer(node.initializer); } if (node.parent.parent.kind === SyntaxKind.ForInStatement) { return stringType; } if (node.parent.parent.kind === SyntaxKind.ForOfStatement) { return checkRightHandSideOfForOf((node.parent.parent).expression, (node.parent.parent).awaitModifier) || unknownType; } return unknownType; } function getInitialType(node: VariableDeclaration | BindingElement) { return node.kind === SyntaxKind.VariableDeclaration ? getInitialTypeOfVariableDeclaration(node) : getInitialTypeOfBindingElement(node); } function getInitialOrAssignedType(node: VariableDeclaration | BindingElement | Expression) { return node.kind === SyntaxKind.VariableDeclaration || node.kind === SyntaxKind.BindingElement ? getInitialType(node) : getAssignedType(node); } function isEmptyArrayAssignment(node: VariableDeclaration | BindingElement | Expression) { return node.kind === SyntaxKind.VariableDeclaration && (node).initializer && isEmptyArrayLiteral((node).initializer) || node.kind !== SyntaxKind.BindingElement && node.parent.kind === SyntaxKind.BinaryExpression && isEmptyArrayLiteral((node.parent).right); } function getReferenceCandidate(node: Expression): Expression { switch (node.kind) { case SyntaxKind.ParenthesizedExpression: return getReferenceCandidate((node).expression); case SyntaxKind.BinaryExpression: switch ((node).operatorToken.kind) { case SyntaxKind.EqualsToken: return getReferenceCandidate((node).left); case SyntaxKind.CommaToken: return getReferenceCandidate((node).right); } } return node; } function getReferenceRoot(node: Node): Node { const parent = node.parent; return parent.kind === SyntaxKind.ParenthesizedExpression || parent.kind === SyntaxKind.BinaryExpression && (parent).operatorToken.kind === SyntaxKind.EqualsToken && (parent).left === node || parent.kind === SyntaxKind.BinaryExpression && (parent).operatorToken.kind === SyntaxKind.CommaToken && (parent).right === node ? getReferenceRoot(parent) : node; } function getTypeOfSwitchClause(clause: CaseClause | DefaultClause) { if (clause.kind === SyntaxKind.CaseClause) { const caseType = getRegularTypeOfLiteralType(getTypeOfExpression((clause).expression)); return isUnitType(caseType) ? caseType : undefined; } return neverType; } function getSwitchClauseTypes(switchStatement: SwitchStatement): Type[] { const links = getNodeLinks(switchStatement); if (!links.switchTypes) { // If all case clauses specify expressions that have unit types, we return an array // of those unit types. Otherwise we return an empty array. const types = map(switchStatement.caseBlock.clauses, getTypeOfSwitchClause); links.switchTypes = !contains(types, undefined) ? types : emptyArray; } return links.switchTypes; } function eachTypeContainedIn(source: Type, types: Type[]) { return source.flags & TypeFlags.Union ? !forEach((source).types, t => !contains(types, t)) : contains(types, source); } function isTypeSubsetOf(source: Type, target: Type) { return source === target || target.flags & TypeFlags.Union && isTypeSubsetOfUnion(source, target); } function isTypeSubsetOfUnion(source: Type, target: UnionType) { if (source.flags & TypeFlags.Union) { for (const t of (source).types) { if (!containsType(target.types, t)) { return false; } } return true; } if (source.flags & TypeFlags.EnumLiteral && target.flags & TypeFlags.Enum && (source).baseType === target) { return true; } return containsType(target.types, source); } function forEachType(type: Type, f: (t: Type) => T): T { return type.flags & TypeFlags.Union ? forEach((type).types, f) : f(type); } function filterType(type: Type, f: (t: Type) => boolean): Type { if (type.flags & TypeFlags.Union) { const types = (type).types; const filtered = filter(types, f); return filtered === types ? type : getUnionTypeFromSortedList(filtered); } return f(type) ? type : neverType; } // Apply a mapping function to a type and return the resulting type. If the source type // is a union type, the mapping function is applied to each constituent type and a union // of the resulting types is returned. function mapType(type: Type, mapper: (t: Type) => Type): Type { if (!(type.flags & TypeFlags.Union)) { return mapper(type); } const types = (type).types; let mappedType: Type; let mappedTypes: Type[]; for (const current of types) { const t = mapper(current); if (t) { if (!mappedType) { mappedType = t; } else if (!mappedTypes) { mappedTypes = [mappedType, t]; } else { mappedTypes.push(t); } } } return mappedTypes ? getUnionType(mappedTypes) : mappedType; } function extractTypesOfKind(type: Type, kind: TypeFlags) { return filterType(type, t => (t.flags & kind) !== 0); } // Return a new type in which occurrences of the string and number primitive types in // typeWithPrimitives have been replaced with occurrences of string literals and numeric // literals in typeWithLiterals, respectively. function replacePrimitivesWithLiterals(typeWithPrimitives: Type, typeWithLiterals: Type) { if (isTypeSubsetOf(stringType, typeWithPrimitives) && maybeTypeOfKind(typeWithLiterals, TypeFlags.StringLiteral) || isTypeSubsetOf(numberType, typeWithPrimitives) && maybeTypeOfKind(typeWithLiterals, TypeFlags.NumberLiteral)) { return mapType(typeWithPrimitives, t => t.flags & TypeFlags.String ? extractTypesOfKind(typeWithLiterals, TypeFlags.String | TypeFlags.StringLiteral) : t.flags & TypeFlags.Number ? extractTypesOfKind(typeWithLiterals, TypeFlags.Number | TypeFlags.NumberLiteral) : t); } return typeWithPrimitives; } function isIncomplete(flowType: FlowType) { return flowType.flags === 0; } function getTypeFromFlowType(flowType: FlowType) { return flowType.flags === 0 ? (flowType).type : flowType; } function createFlowType(type: Type, incomplete: boolean): FlowType { return incomplete ? { flags: 0, type } : type; } // An evolving array type tracks the element types that have so far been seen in an // 'x.push(value)' or 'x[n] = value' operation along the control flow graph. Evolving // array types are ultimately converted into manifest array types (using getFinalArrayType) // and never escape the getFlowTypeOfReference function. function createEvolvingArrayType(elementType: Type): EvolvingArrayType { const result = createObjectType(ObjectFlags.EvolvingArray); result.elementType = elementType; return result; } function getEvolvingArrayType(elementType: Type): EvolvingArrayType { return evolvingArrayTypes[elementType.id] || (evolvingArrayTypes[elementType.id] = createEvolvingArrayType(elementType)); } // When adding evolving array element types we do not perform subtype reduction. Instead, // we defer subtype reduction until the evolving array type is finalized into a manifest // array type. function addEvolvingArrayElementType(evolvingArrayType: EvolvingArrayType, node: Expression): EvolvingArrayType { const elementType = getBaseTypeOfLiteralType(getContextFreeTypeOfExpression(node)); return isTypeSubsetOf(elementType, evolvingArrayType.elementType) ? evolvingArrayType : getEvolvingArrayType(getUnionType([evolvingArrayType.elementType, elementType])); } function createFinalArrayType(elementType: Type) { return elementType.flags & TypeFlags.Never ? autoArrayType : createArrayType(elementType.flags & TypeFlags.Union ? getUnionType((elementType).types, /*subtypeReduction*/ true) : elementType); } // We perform subtype reduction upon obtaining the final array type from an evolving array type. function getFinalArrayType(evolvingArrayType: EvolvingArrayType): Type { return evolvingArrayType.finalArrayType || (evolvingArrayType.finalArrayType = createFinalArrayType(evolvingArrayType.elementType)); } function finalizeEvolvingArrayType(type: Type): Type { return getObjectFlags(type) & ObjectFlags.EvolvingArray ? getFinalArrayType(type) : type; } function getElementTypeOfEvolvingArrayType(type: Type) { return getObjectFlags(type) & ObjectFlags.EvolvingArray ? (type).elementType : neverType; } function isEvolvingArrayTypeList(types: Type[]) { let hasEvolvingArrayType = false; for (const t of types) { if (!(t.flags & TypeFlags.Never)) { if (!(getObjectFlags(t) & ObjectFlags.EvolvingArray)) { return false; } hasEvolvingArrayType = true; } } return hasEvolvingArrayType; } // At flow control branch or loop junctions, if the type along every antecedent code path // is an evolving array type, we construct a combined evolving array type. Otherwise we // finalize all evolving array types. function getUnionOrEvolvingArrayType(types: Type[], subtypeReduction: boolean) { return isEvolvingArrayTypeList(types) ? getEvolvingArrayType(getUnionType(map(types, getElementTypeOfEvolvingArrayType))) : getUnionType(sameMap(types, finalizeEvolvingArrayType), subtypeReduction); } // Return true if the given node is 'x' in an 'x.length', x.push(value)', 'x.unshift(value)' or // 'x[n] = value' operation, where 'n' is an expression of type any, undefined, or a number-like type. function isEvolvingArrayOperationTarget(node: Node) { const root = getReferenceRoot(node); const parent = root.parent; const isLengthPushOrUnshift = parent.kind === SyntaxKind.PropertyAccessExpression && ( (parent).name.text === "length" || parent.parent.kind === SyntaxKind.CallExpression && isPushOrUnshiftIdentifier((parent).name)); const isElementAssignment = parent.kind === SyntaxKind.ElementAccessExpression && (parent).expression === root && parent.parent.kind === SyntaxKind.BinaryExpression && (parent.parent).operatorToken.kind === SyntaxKind.EqualsToken && (parent.parent).left === parent && !isAssignmentTarget(parent.parent) && isTypeAnyOrAllConstituentTypesHaveKind(getTypeOfExpression((parent).argumentExpression), TypeFlags.NumberLike | TypeFlags.Undefined); return isLengthPushOrUnshift || isElementAssignment; } function maybeTypePredicateCall(node: CallExpression) { const links = getNodeLinks(node); if (links.maybeTypePredicate === undefined) { links.maybeTypePredicate = getMaybeTypePredicate(node); } return links.maybeTypePredicate; } function getMaybeTypePredicate(node: CallExpression) { if (node.expression.kind !== SyntaxKind.SuperKeyword) { const funcType = checkNonNullExpression(node.expression); if (funcType !== silentNeverType) { const apparentType = getApparentType(funcType); if (apparentType !== unknownType) { const callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); return !!forEach(callSignatures, sig => sig.typePredicate); } } } return false; } function getFlowTypeOfReference(reference: Node, declaredType: Type, initialType = declaredType, flowContainer?: Node, couldBeUninitialized?: boolean) { let key: string; if (!reference.flowNode || !couldBeUninitialized && !(declaredType.flags & TypeFlags.Narrowable)) { return declaredType; } const visitedFlowStart = visitedFlowCount; const evolvedType = getTypeFromFlowType(getTypeAtFlowNode(reference.flowNode)); visitedFlowCount = visitedFlowStart; // When the reference is 'x' in an 'x.length', 'x.push(value)', 'x.unshift(value)' or x[n] = value' operation, // we give type 'any[]' to 'x' instead of using the type determined by control flow analysis such that operations // on empty arrays are possible without implicit any errors and new element types can be inferred without // type mismatch errors. const resultType = getObjectFlags(evolvedType) & ObjectFlags.EvolvingArray && isEvolvingArrayOperationTarget(reference) ? anyArrayType : finalizeEvolvingArrayType(evolvedType); if (reference.parent.kind === SyntaxKind.NonNullExpression && getTypeWithFacts(resultType, TypeFacts.NEUndefinedOrNull).flags & TypeFlags.Never) { return declaredType; } return resultType; function getTypeAtFlowNode(flow: FlowNode): FlowType { while (true) { if (flow.flags & FlowFlags.Shared) { // We cache results of flow type resolution for shared nodes that were previously visited in // the same getFlowTypeOfReference invocation. A node is considered shared when it is the // antecedent of more than one node. for (let i = visitedFlowStart; i < visitedFlowCount; i++) { if (visitedFlowNodes[i] === flow) { return visitedFlowTypes[i]; } } } let type: FlowType; if (flow.flags & FlowFlags.AfterFinally) { // block flow edge: finally -> pre-try (for larger explanation check comment in binder.ts - bindTryStatement (flow).locked = true; type = getTypeAtFlowNode((flow).antecedent); (flow).locked = false; } else if (flow.flags & FlowFlags.PreFinally) { // locked pre-finally flows are filtered out in getTypeAtFlowBranchLabel // so here just redirect to antecedent flow = (flow).antecedent; continue; } else if (flow.flags & FlowFlags.Assignment) { type = getTypeAtFlowAssignment(flow); if (!type) { flow = (flow).antecedent; continue; } } else if (flow.flags & FlowFlags.Condition) { type = getTypeAtFlowCondition(flow); } else if (flow.flags & FlowFlags.SwitchClause) { type = getTypeAtSwitchClause(flow); } else if (flow.flags & FlowFlags.Label) { if ((flow).antecedents.length === 1) { flow = (flow).antecedents[0]; continue; } type = flow.flags & FlowFlags.BranchLabel ? getTypeAtFlowBranchLabel(flow) : getTypeAtFlowLoopLabel(flow); } else if (flow.flags & FlowFlags.ArrayMutation) { type = getTypeAtFlowArrayMutation(flow); if (!type) { flow = (flow).antecedent; continue; } } else if (flow.flags & FlowFlags.Start) { // Check if we should continue with the control flow of the containing function. const container = (flow).container; if (container && container !== flowContainer && reference.kind !== SyntaxKind.PropertyAccessExpression && reference.kind !== SyntaxKind.ThisKeyword) { flow = container.flowNode; continue; } // At the top of the flow we have the initial type. type = initialType; } else { // Unreachable code errors are reported in the binding phase. Here we // simply return the non-auto declared type to reduce follow-on errors. type = convertAutoToAny(declaredType); } if (flow.flags & FlowFlags.Shared) { // Record visited node and the associated type in the cache. visitedFlowNodes[visitedFlowCount] = flow; visitedFlowTypes[visitedFlowCount] = type; visitedFlowCount++; } return type; } } function getTypeAtFlowAssignment(flow: FlowAssignment) { const node = flow.node; // Assignments only narrow the computed type if the declared type is a union type. Thus, we // only need to evaluate the assigned type if the declared type is a union type. if (isMatchingReference(reference, node)) { if (getAssignmentTargetKind(node) === AssignmentKind.Compound) { const flowType = getTypeAtFlowNode(flow.antecedent); return createFlowType(getBaseTypeOfLiteralType(getTypeFromFlowType(flowType)), isIncomplete(flowType)); } if (declaredType === autoType || declaredType === autoArrayType) { if (isEmptyArrayAssignment(node)) { return getEvolvingArrayType(neverType); } const assignedType = getBaseTypeOfLiteralType(getInitialOrAssignedType(node)); return isTypeAssignableTo(assignedType, declaredType) ? assignedType : anyArrayType; } if (declaredType.flags & TypeFlags.Union) { return getAssignmentReducedType(declaredType, getInitialOrAssignedType(node)); } return declaredType; } // We didn't have a direct match. However, if the reference is a dotted name, this // may be an assignment to a left hand part of the reference. For example, for a // reference 'x.y.z', we may be at an assignment to 'x.y' or 'x'. In that case, // return the declared type. if (containsMatchingReference(reference, node)) { return declaredType; } // Assignment doesn't affect reference return undefined; } function getTypeAtFlowArrayMutation(flow: FlowArrayMutation): FlowType { const node = flow.node; const expr = node.kind === SyntaxKind.CallExpression ? ((node).expression).expression : ((node).left).expression; if (isMatchingReference(reference, getReferenceCandidate(expr))) { const flowType = getTypeAtFlowNode(flow.antecedent); const type = getTypeFromFlowType(flowType); if (getObjectFlags(type) & ObjectFlags.EvolvingArray) { let evolvedType = type; if (node.kind === SyntaxKind.CallExpression) { for (const arg of (node).arguments) { evolvedType = addEvolvingArrayElementType(evolvedType, arg); } } else { const indexType = getTypeOfExpression(((node).left).argumentExpression); if (isTypeAnyOrAllConstituentTypesHaveKind(indexType, TypeFlags.NumberLike | TypeFlags.Undefined)) { evolvedType = addEvolvingArrayElementType(evolvedType, (node).right); } } return evolvedType === type ? flowType : createFlowType(evolvedType, isIncomplete(flowType)); } return flowType; } return undefined; } function getTypeAtFlowCondition(flow: FlowCondition): FlowType { const flowType = getTypeAtFlowNode(flow.antecedent); const type = getTypeFromFlowType(flowType); if (type.flags & TypeFlags.Never) { return flowType; } // If we have an antecedent type (meaning we're reachable in some way), we first // attempt to narrow the antecedent type. If that produces the never type, and if // the antecedent type is incomplete (i.e. a transient type in a loop), then we // take the type guard as an indication that control *could* reach here once we // have the complete type. We proceed by switching to the silent never type which // doesn't report errors when operators are applied to it. Note that this is the // *only* place a silent never type is ever generated. const assumeTrue = (flow.flags & FlowFlags.TrueCondition) !== 0; const nonEvolvingType = finalizeEvolvingArrayType(type); const narrowedType = narrowType(nonEvolvingType, flow.expression, assumeTrue); if (narrowedType === nonEvolvingType) { return flowType; } const incomplete = isIncomplete(flowType); const resultType = incomplete && narrowedType.flags & TypeFlags.Never ? silentNeverType : narrowedType; return createFlowType(resultType, incomplete); } function getTypeAtSwitchClause(flow: FlowSwitchClause): FlowType { const flowType = getTypeAtFlowNode(flow.antecedent); let type = getTypeFromFlowType(flowType); const expr = flow.switchStatement.expression; if (isMatchingReference(reference, expr)) { type = narrowTypeBySwitchOnDiscriminant(type, flow.switchStatement, flow.clauseStart, flow.clauseEnd); } else if (isMatchingReferenceDiscriminant(expr)) { type = narrowTypeByDiscriminant(type, expr, t => narrowTypeBySwitchOnDiscriminant(t, flow.switchStatement, flow.clauseStart, flow.clauseEnd)); } return createFlowType(type, isIncomplete(flowType)); } function getTypeAtFlowBranchLabel(flow: FlowLabel): FlowType { const antecedentTypes: Type[] = []; let subtypeReduction = false; let seenIncomplete = false; for (const antecedent of flow.antecedents) { if (antecedent.flags & FlowFlags.PreFinally && (antecedent).lock.locked) { // if flow correspond to branch from pre-try to finally and this branch is locked - this means that // we initially have started following the flow outside the finally block. // in this case we should ignore this branch. continue; } const flowType = getTypeAtFlowNode(antecedent); const type = getTypeFromFlowType(flowType); // If the type at a particular antecedent path is the declared type and the // reference is known to always be assigned (i.e. when declared and initial types // are the same), there is no reason to process more antecedents since the only // possible outcome is subtypes that will be removed in the final union type anyway. if (type === declaredType && declaredType === initialType) { return type; } if (!contains(antecedentTypes, type)) { antecedentTypes.push(type); } // If an antecedent type is not a subset of the declared type, we need to perform // subtype reduction. This happens when a "foreign" type is injected into the control // flow using the instanceof operator or a user defined type predicate. if (!isTypeSubsetOf(type, declaredType)) { subtypeReduction = true; } if (isIncomplete(flowType)) { seenIncomplete = true; } } return createFlowType(getUnionOrEvolvingArrayType(antecedentTypes, subtypeReduction), seenIncomplete); } function getTypeAtFlowLoopLabel(flow: FlowLabel): FlowType { // If we have previously computed the control flow type for the reference at // this flow loop junction, return the cached type. const id = getFlowNodeId(flow); const cache = flowLoopCaches[id] || (flowLoopCaches[id] = createMap()); if (!key) { key = getFlowCacheKey(reference); } const cached = cache.get(key); if (cached) { return cached; } // If this flow loop junction and reference are already being processed, return // the union of the types computed for each branch so far, marked as incomplete. // It is possible to see an empty array in cases where loops are nested and the // back edge of the outer loop reaches an inner loop that is already being analyzed. // In such cases we restart the analysis of the inner loop, which will then see // a non-empty in-process array for the outer loop and eventually terminate because // the first antecedent of a loop junction is always the non-looping control flow // path that leads to the top. for (let i = flowLoopStart; i < flowLoopCount; i++) { if (flowLoopNodes[i] === flow && flowLoopKeys[i] === key && flowLoopTypes[i].length) { return createFlowType(getUnionOrEvolvingArrayType(flowLoopTypes[i], /*subtypeReduction*/ false), /*incomplete*/ true); } } // Add the flow loop junction and reference to the in-process stack and analyze // each antecedent code path. const antecedentTypes: Type[] = []; let subtypeReduction = false; let firstAntecedentType: FlowType; flowLoopNodes[flowLoopCount] = flow; flowLoopKeys[flowLoopCount] = key; flowLoopTypes[flowLoopCount] = antecedentTypes; for (const antecedent of flow.antecedents) { flowLoopCount++; const flowType = getTypeAtFlowNode(antecedent); flowLoopCount--; if (!firstAntecedentType) { firstAntecedentType = flowType; } const type = getTypeFromFlowType(flowType); // If we see a value appear in the cache it is a sign that control flow analysis // was restarted and completed by checkExpressionCached. We can simply pick up // the resulting type and bail out. const cached = cache.get(key); if (cached) { return cached; } if (!contains(antecedentTypes, type)) { antecedentTypes.push(type); } // If an antecedent type is not a subset of the declared type, we need to perform // subtype reduction. This happens when a "foreign" type is injected into the control // flow using the instanceof operator or a user defined type predicate. if (!isTypeSubsetOf(type, declaredType)) { subtypeReduction = true; } // If the type at a particular antecedent path is the declared type there is no // reason to process more antecedents since the only possible outcome is subtypes // that will be removed in the final union type anyway. if (type === declaredType) { break; } } // The result is incomplete if the first antecedent (the non-looping control flow path) // is incomplete. const result = getUnionOrEvolvingArrayType(antecedentTypes, subtypeReduction); if (isIncomplete(firstAntecedentType)) { return createFlowType(result, /*incomplete*/ true); } cache.set(key, result); return result; } function isMatchingReferenceDiscriminant(expr: Expression) { return expr.kind === SyntaxKind.PropertyAccessExpression && declaredType.flags & TypeFlags.Union && isMatchingReference(reference, (expr).expression) && isDiscriminantProperty(declaredType, (expr).name.text); } function narrowTypeByDiscriminant(type: Type, propAccess: PropertyAccessExpression, narrowType: (t: Type) => Type): Type { const propName = propAccess.name.text; const propType = getTypeOfPropertyOfType(type, propName); const narrowedPropType = propType && narrowType(propType); return propType === narrowedPropType ? type : filterType(type, t => isTypeComparableTo(getTypeOfPropertyOfType(t, propName), narrowedPropType)); } function narrowTypeByTruthiness(type: Type, expr: Expression, assumeTrue: boolean): Type { if (isMatchingReference(reference, expr)) { return getTypeWithFacts(type, assumeTrue ? TypeFacts.Truthy : TypeFacts.Falsy); } if (isMatchingReferenceDiscriminant(expr)) { return narrowTypeByDiscriminant(type, expr, t => getTypeWithFacts(t, assumeTrue ? TypeFacts.Truthy : TypeFacts.Falsy)); } if (containsMatchingReferenceDiscriminant(reference, expr)) { return declaredType; } return type; } function narrowTypeByBinaryExpression(type: Type, expr: BinaryExpression, assumeTrue: boolean): Type { switch (expr.operatorToken.kind) { case SyntaxKind.EqualsToken: return narrowTypeByTruthiness(type, expr.left, assumeTrue); case SyntaxKind.EqualsEqualsToken: case SyntaxKind.ExclamationEqualsToken: case SyntaxKind.EqualsEqualsEqualsToken: case SyntaxKind.ExclamationEqualsEqualsToken: const operator = expr.operatorToken.kind; const left = getReferenceCandidate(expr.left); const right = getReferenceCandidate(expr.right); if (left.kind === SyntaxKind.TypeOfExpression && right.kind === SyntaxKind.StringLiteral) { return narrowTypeByTypeof(type, left, operator, right, assumeTrue); } if (right.kind === SyntaxKind.TypeOfExpression && left.kind === SyntaxKind.StringLiteral) { return narrowTypeByTypeof(type, right, operator, left, assumeTrue); } if (isMatchingReference(reference, left)) { return narrowTypeByEquality(type, operator, right, assumeTrue); } if (isMatchingReference(reference, right)) { return narrowTypeByEquality(type, operator, left, assumeTrue); } if (isMatchingReferenceDiscriminant(left)) { return narrowTypeByDiscriminant(type, left, t => narrowTypeByEquality(t, operator, right, assumeTrue)); } if (isMatchingReferenceDiscriminant(right)) { return narrowTypeByDiscriminant(type, right, t => narrowTypeByEquality(t, operator, left, assumeTrue)); } if (containsMatchingReferenceDiscriminant(reference, left) || containsMatchingReferenceDiscriminant(reference, right)) { return declaredType; } break; case SyntaxKind.InstanceOfKeyword: return narrowTypeByInstanceof(type, expr, assumeTrue); case SyntaxKind.CommaToken: return narrowType(type, expr.right, assumeTrue); } return type; } function narrowTypeByEquality(type: Type, operator: SyntaxKind, value: Expression, assumeTrue: boolean): Type { if (type.flags & TypeFlags.Any) { return type; } if (operator === SyntaxKind.ExclamationEqualsToken || operator === SyntaxKind.ExclamationEqualsEqualsToken) { assumeTrue = !assumeTrue; } const valueType = getTypeOfExpression(value); if (valueType.flags & TypeFlags.Nullable) { if (!strictNullChecks) { return type; } const doubleEquals = operator === SyntaxKind.EqualsEqualsToken || operator === SyntaxKind.ExclamationEqualsToken; const facts = doubleEquals ? assumeTrue ? TypeFacts.EQUndefinedOrNull : TypeFacts.NEUndefinedOrNull : value.kind === SyntaxKind.NullKeyword ? assumeTrue ? TypeFacts.EQNull : TypeFacts.NENull : assumeTrue ? TypeFacts.EQUndefined : TypeFacts.NEUndefined; return getTypeWithFacts(type, facts); } if (type.flags & TypeFlags.NotUnionOrUnit) { return type; } if (assumeTrue) { const narrowedType = filterType(type, t => areTypesComparable(t, valueType)); return narrowedType.flags & TypeFlags.Never ? type : replacePrimitivesWithLiterals(narrowedType, valueType); } if (isUnitType(valueType)) { const regularType = getRegularTypeOfLiteralType(valueType); return filterType(type, t => getRegularTypeOfLiteralType(t) !== regularType); } return type; } function narrowTypeByTypeof(type: Type, typeOfExpr: TypeOfExpression, operator: SyntaxKind, literal: LiteralExpression, assumeTrue: boolean): Type { // We have '==', '!=', '====', or !==' operator with 'typeof xxx' and string literal operands const target = getReferenceCandidate(typeOfExpr.expression); if (!isMatchingReference(reference, target)) { // For a reference of the form 'x.y', a 'typeof x === ...' type guard resets the // narrowed type of 'y' to its declared type. if (containsMatchingReference(reference, target)) { return declaredType; } return type; } if (operator === SyntaxKind.ExclamationEqualsToken || operator === SyntaxKind.ExclamationEqualsEqualsToken) { assumeTrue = !assumeTrue; } if (assumeTrue && !(type.flags & TypeFlags.Union)) { // We narrow a non-union type to an exact primitive type if the non-union type // is a supertype of that primitive type. For example, type 'any' can be narrowed // to one of the primitive types. const targetType = typeofTypesByName.get(literal.text); if (targetType) { if (isTypeSubtypeOf(targetType, type)) { return targetType; } if (type.flags & TypeFlags.TypeVariable) { const constraint = getBaseConstraintOfType(type) || anyType; if (isTypeSubtypeOf(targetType, constraint)) { return getIntersectionType([type, targetType]); } } } } const facts = assumeTrue ? typeofEQFacts.get(literal.text) || TypeFacts.TypeofEQHostObject : typeofNEFacts.get(literal.text) || TypeFacts.TypeofNEHostObject; return getTypeWithFacts(type, facts); } function narrowTypeBySwitchOnDiscriminant(type: Type, switchStatement: SwitchStatement, clauseStart: number, clauseEnd: number) { // We only narrow if all case expressions specify values with unit types const switchTypes = getSwitchClauseTypes(switchStatement); if (!switchTypes.length) { return type; } const clauseTypes = switchTypes.slice(clauseStart, clauseEnd); const hasDefaultClause = clauseStart === clauseEnd || contains(clauseTypes, neverType); const discriminantType = getUnionType(clauseTypes); const caseType = discriminantType.flags & TypeFlags.Never ? neverType : replacePrimitivesWithLiterals(filterType(type, t => isTypeComparableTo(discriminantType, t)), discriminantType); if (!hasDefaultClause) { return caseType; } const defaultType = filterType(type, t => !(isUnitType(t) && contains(switchTypes, getRegularTypeOfLiteralType(t)))); return caseType.flags & TypeFlags.Never ? defaultType : getUnionType([caseType, defaultType]); } function narrowTypeByInstanceof(type: Type, expr: BinaryExpression, assumeTrue: boolean): Type { const left = getReferenceCandidate(expr.left); if (!isMatchingReference(reference, left)) { // For a reference of the form 'x.y', an 'x instanceof T' type guard resets the // narrowed type of 'y' to its declared type. if (containsMatchingReference(reference, left)) { return declaredType; } return type; } // Check that right operand is a function type with a prototype property const rightType = getTypeOfExpression(expr.right); if (!isTypeSubtypeOf(rightType, globalFunctionType)) { return type; } let targetType: Type; const prototypeProperty = getPropertyOfType(rightType, "prototype"); if (prototypeProperty) { // Target type is type of the prototype property const prototypePropertyType = getTypeOfSymbol(prototypeProperty); if (!isTypeAny(prototypePropertyType)) { targetType = prototypePropertyType; } } // Don't narrow from 'any' if the target type is exactly 'Object' or 'Function' if (isTypeAny(type) && (targetType === globalObjectType || targetType === globalFunctionType)) { return type; } if (!targetType) { // Target type is type of construct signature let constructSignatures: Signature[]; if (getObjectFlags(rightType) & ObjectFlags.Interface) { constructSignatures = resolveDeclaredMembers(rightType).declaredConstructSignatures; } else if (getObjectFlags(rightType) & ObjectFlags.Anonymous) { constructSignatures = getSignaturesOfType(rightType, SignatureKind.Construct); } if (constructSignatures && constructSignatures.length) { targetType = getUnionType(map(constructSignatures, signature => getReturnTypeOfSignature(getErasedSignature(signature)))); } } if (targetType) { return getNarrowedType(type, targetType, assumeTrue, isTypeInstanceOf); } return type; } function getNarrowedType(type: Type, candidate: Type, assumeTrue: boolean, isRelated: (source: Type, target: Type) => boolean) { if (!assumeTrue) { return filterType(type, t => !isRelated(t, candidate)); } // If the current type is a union type, remove all constituents that couldn't be instances of // the candidate type. If one or more constituents remain, return a union of those. if (type.flags & TypeFlags.Union) { const assignableType = filterType(type, t => isRelated(t, candidate)); if (!(assignableType.flags & TypeFlags.Never)) { return assignableType; } } // If the candidate type is a subtype of the target type, narrow to the candidate type. // Otherwise, if the target type is assignable to the candidate type, keep the target type. // Otherwise, if the candidate type is assignable to the target type, narrow to the candidate // type. Otherwise, the types are completely unrelated, so narrow to an intersection of the // two types. return isTypeSubtypeOf(candidate, type) ? candidate : isTypeAssignableTo(type, candidate) ? type : isTypeAssignableTo(candidate, type) ? candidate : getIntersectionType([type, candidate]); } function narrowTypeByTypePredicate(type: Type, callExpression: CallExpression, assumeTrue: boolean): Type { if (!hasMatchingArgument(callExpression, reference) || !maybeTypePredicateCall(callExpression)) { return type; } const signature = getResolvedSignature(callExpression); const predicate = signature.typePredicate; if (!predicate) { return type; } // Don't narrow from 'any' if the predicate type is exactly 'Object' or 'Function' if (isTypeAny(type) && (predicate.type === globalObjectType || predicate.type === globalFunctionType)) { return type; } if (isIdentifierTypePredicate(predicate)) { const predicateArgument = callExpression.arguments[predicate.parameterIndex - (signature.thisParameter ? 1 : 0)]; if (predicateArgument) { if (isMatchingReference(reference, predicateArgument)) { return getNarrowedType(type, predicate.type, assumeTrue, isTypeSubtypeOf); } if (containsMatchingReference(reference, predicateArgument)) { return declaredType; } } } else { const invokedExpression = skipParentheses(callExpression.expression); if (invokedExpression.kind === SyntaxKind.ElementAccessExpression || invokedExpression.kind === SyntaxKind.PropertyAccessExpression) { const accessExpression = invokedExpression as ElementAccessExpression | PropertyAccessExpression; const possibleReference = skipParentheses(accessExpression.expression); if (isMatchingReference(reference, possibleReference)) { return getNarrowedType(type, predicate.type, assumeTrue, isTypeSubtypeOf); } if (containsMatchingReference(reference, possibleReference)) { return declaredType; } } } return type; } // Narrow the given type based on the given expression having the assumed boolean value. The returned type // will be a subtype or the same type as the argument. function narrowType(type: Type, expr: Expression, assumeTrue: boolean): Type { switch (expr.kind) { case SyntaxKind.Identifier: case SyntaxKind.ThisKeyword: case SyntaxKind.SuperKeyword: case SyntaxKind.PropertyAccessExpression: return narrowTypeByTruthiness(type, expr, assumeTrue); case SyntaxKind.CallExpression: return narrowTypeByTypePredicate(type, expr, assumeTrue); case SyntaxKind.ParenthesizedExpression: return narrowType(type, (expr).expression, assumeTrue); case SyntaxKind.BinaryExpression: return narrowTypeByBinaryExpression(type, expr, assumeTrue); case SyntaxKind.PrefixUnaryExpression: if ((expr).operator === SyntaxKind.ExclamationToken) { return narrowType(type, (expr).operand, !assumeTrue); } break; } return type; } } function getTypeOfSymbolAtLocation(symbol: Symbol, location: Node) { // If we have an identifier or a property access at the given location, if the location is // an dotted name expression, and if the location is not an assignment target, obtain the type // of the expression (which will reflect control flow analysis). If the expression indeed // resolved to the given symbol, return the narrowed type. if (location.kind === SyntaxKind.Identifier) { if (isRightSideOfQualifiedNameOrPropertyAccess(location)) { location = location.parent; } if (isPartOfExpression(location) && !isAssignmentTarget(location)) { const type = getTypeOfExpression(location); if (getExportSymbolOfValueSymbolIfExported(getNodeLinks(location).resolvedSymbol) === symbol) { return type; } } } // The location isn't a reference to the given symbol, meaning we're being asked // a hypothetical question of what type the symbol would have if there was a reference // to it at the given location. Since we have no control flow information for the // hypothetical reference (control flow information is created and attached by the // binder), we simply return the declared type of the symbol. return getTypeOfSymbol(symbol); } function getControlFlowContainer(node: Node): Node { return findAncestor(node.parent, node => isFunctionLike(node) && !getImmediatelyInvokedFunctionExpression(node) || node.kind === SyntaxKind.ModuleBlock || node.kind === SyntaxKind.SourceFile || node.kind === SyntaxKind.PropertyDeclaration); } // Check if a parameter is assigned anywhere within its declaring function. function isParameterAssigned(symbol: Symbol) { const func = getRootDeclaration(symbol.valueDeclaration).parent; const links = getNodeLinks(func); if (!(links.flags & NodeCheckFlags.AssignmentsMarked)) { links.flags |= NodeCheckFlags.AssignmentsMarked; if (!hasParentWithAssignmentsMarked(func)) { markParameterAssignments(func); } } return symbol.isAssigned || false; } function hasParentWithAssignmentsMarked(node: Node) { return !!findAncestor(node.parent, node => isFunctionLike(node) && !!(getNodeLinks(node).flags & NodeCheckFlags.AssignmentsMarked)); } function markParameterAssignments(node: Node) { if (node.kind === SyntaxKind.Identifier) { if (isAssignmentTarget(node)) { const symbol = getResolvedSymbol(node); if (symbol.valueDeclaration && getRootDeclaration(symbol.valueDeclaration).kind === SyntaxKind.Parameter) { symbol.isAssigned = true; } } } else { forEachChild(node, markParameterAssignments); } } function isConstVariable(symbol: Symbol) { return symbol.flags & SymbolFlags.Variable && (getDeclarationNodeFlagsFromSymbol(symbol) & NodeFlags.Const) !== 0 && getTypeOfSymbol(symbol) !== autoArrayType; } /** remove undefined from the annotated type of a parameter when there is an initializer (that doesn't include undefined) */ function removeOptionalityFromDeclaredType(declaredType: Type, declaration: VariableLikeDeclaration): Type { const annotationIncludesUndefined = strictNullChecks && declaration.kind === SyntaxKind.Parameter && declaration.initializer && getFalsyFlags(declaredType) & TypeFlags.Undefined && !(getFalsyFlags(checkExpression(declaration.initializer)) & TypeFlags.Undefined); return annotationIncludesUndefined ? getTypeWithFacts(declaredType, TypeFacts.NEUndefined) : declaredType; } function isApparentTypePosition(node: Node) { const parent = node.parent; return parent.kind === SyntaxKind.PropertyAccessExpression || parent.kind === SyntaxKind.CallExpression && (parent).expression === node || parent.kind === SyntaxKind.ElementAccessExpression && (parent).expression === node; } function typeHasNullableConstraint(type: Type) { return type.flags & TypeFlags.TypeVariable && maybeTypeOfKind(getBaseConstraintOfType(type) || emptyObjectType, TypeFlags.Nullable); } function getDeclaredOrApparentType(symbol: Symbol, node: Node) { // When a node is the left hand expression of a property access, element access, or call expression, // and the type of the node includes type variables with constraints that are nullable, we fetch the // apparent type of the node *before* performing control flow analysis such that narrowings apply to // the constraint type. const type = getTypeOfSymbol(symbol); if (isApparentTypePosition(node) && forEachType(type, typeHasNullableConstraint)) { return mapType(getWidenedType(type), getApparentType); } return type; } function checkIdentifier(node: Identifier): Type { const symbol = getResolvedSymbol(node); if (symbol === unknownSymbol) { return unknownType; } // As noted in ECMAScript 6 language spec, arrow functions never have an arguments objects. // Although in down-level emit of arrow function, we emit it using function expression which means that // arguments objects will be bound to the inner object; emitting arrow function natively in ES6, arguments objects // will be bound to non-arrow function that contain this arrow function. This results in inconsistent behavior. // To avoid that we will give an error to users if they use arguments objects in arrow function so that they // can explicitly bound arguments objects if (symbol === argumentsSymbol) { const container = getContainingFunction(node); if (languageVersion < ScriptTarget.ES2015) { if (container.kind === SyntaxKind.ArrowFunction) { error(node, Diagnostics.The_arguments_object_cannot_be_referenced_in_an_arrow_function_in_ES3_and_ES5_Consider_using_a_standard_function_expression); } else if (hasModifier(container, ModifierFlags.Async)) { error(node, Diagnostics.The_arguments_object_cannot_be_referenced_in_an_async_function_or_method_in_ES3_and_ES5_Consider_using_a_standard_function_or_method); } } getNodeLinks(container).flags |= NodeCheckFlags.CaptureArguments; return getTypeOfSymbol(symbol); } if (symbol.flags & SymbolFlags.Alias && !isInTypeQuery(node) && !isConstEnumOrConstEnumOnlyModule(resolveAlias(symbol))) { markAliasSymbolAsReferenced(symbol); } const localOrExportSymbol = getExportSymbolOfValueSymbolIfExported(symbol); if (localOrExportSymbol.flags & SymbolFlags.Class) { const declaration = localOrExportSymbol.valueDeclaration; // Due to the emit for class decorators, any reference to the class from inside of the class body // must instead be rewritten to point to a temporary variable to avoid issues with the double-bind // behavior of class names in ES6. if (declaration.kind === SyntaxKind.ClassDeclaration && nodeIsDecorated(declaration)) { let container = getContainingClass(node); while (container !== undefined) { if (container === declaration && container.name !== node) { getNodeLinks(declaration).flags |= NodeCheckFlags.ClassWithConstructorReference; getNodeLinks(node).flags |= NodeCheckFlags.ConstructorReferenceInClass; break; } container = getContainingClass(container); } } else if (declaration.kind === SyntaxKind.ClassExpression) { // When we emit a class expression with static members that contain a reference // to the constructor in the initializer, we will need to substitute that // binding with an alias as the class name is not in scope. let container = getThisContainer(node, /*includeArrowFunctions*/ false); while (container !== undefined) { if (container.parent === declaration) { if (container.kind === SyntaxKind.PropertyDeclaration && hasModifier(container, ModifierFlags.Static)) { getNodeLinks(declaration).flags |= NodeCheckFlags.ClassWithConstructorReference; getNodeLinks(node).flags |= NodeCheckFlags.ConstructorReferenceInClass; } break; } container = getThisContainer(container, /*includeArrowFunctions*/ false); } } } checkCollisionWithCapturedSuperVariable(node, node); checkCollisionWithCapturedThisVariable(node, node); checkCollisionWithCapturedNewTargetVariable(node, node); checkNestedBlockScopedBinding(node, symbol); const type = getDeclaredOrApparentType(localOrExportSymbol, node); const declaration = localOrExportSymbol.valueDeclaration; const assignmentKind = getAssignmentTargetKind(node); if (assignmentKind) { if (!(localOrExportSymbol.flags & SymbolFlags.Variable)) { error(node, Diagnostics.Cannot_assign_to_0_because_it_is_not_a_variable, symbolToString(symbol)); return unknownType; } if (isReadonlySymbol(localOrExportSymbol)) { error(node, Diagnostics.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, symbolToString(symbol)); return unknownType; } } // We only narrow variables and parameters occurring in a non-assignment position. For all other // entities we simply return the declared type. if (!(localOrExportSymbol.flags & SymbolFlags.Variable) || assignmentKind === AssignmentKind.Definite || !declaration) { return type; } // The declaration container is the innermost function that encloses the declaration of the variable // or parameter. The flow container is the innermost function starting with which we analyze the control // flow graph to determine the control flow based type. const isParameter = getRootDeclaration(declaration).kind === SyntaxKind.Parameter; const declarationContainer = getControlFlowContainer(declaration); let flowContainer = getControlFlowContainer(node); const isOuterVariable = flowContainer !== declarationContainer; // When the control flow originates in a function expression or arrow function and we are referencing // a const variable or parameter from an outer function, we extend the origin of the control flow // analysis to include the immediately enclosing function. while (flowContainer !== declarationContainer && (flowContainer.kind === SyntaxKind.FunctionExpression || flowContainer.kind === SyntaxKind.ArrowFunction || isObjectLiteralOrClassExpressionMethod(flowContainer)) && (isConstVariable(localOrExportSymbol) || isParameter && !isParameterAssigned(localOrExportSymbol))) { flowContainer = getControlFlowContainer(flowContainer); } // We only look for uninitialized variables in strict null checking mode, and only when we can analyze // the entire control flow graph from the variable's declaration (i.e. when the flow container and // declaration container are the same). const assumeInitialized = isParameter || isOuterVariable || type !== autoType && type !== autoArrayType && (!strictNullChecks || (type.flags & TypeFlags.Any) !== 0 || isInTypeQuery(node) || node.parent.kind === SyntaxKind.ExportSpecifier) || isInAmbientContext(declaration); const initialType = assumeInitialized ? (isParameter ? removeOptionalityFromDeclaredType(type, getRootDeclaration(declaration) as VariableLikeDeclaration) : type) : type === autoType || type === autoArrayType ? undefinedType : includeFalsyTypes(type, TypeFlags.Undefined); const flowType = getFlowTypeOfReference(node, type, initialType, flowContainer, !assumeInitialized); // A variable is considered uninitialized when it is possible to analyze the entire control flow graph // from declaration to use, and when the variable's declared type doesn't include undefined but the // control flow based type does include undefined. if (type === autoType || type === autoArrayType) { if (flowType === autoType || flowType === autoArrayType) { if (noImplicitAny) { error(getNameOfDeclaration(declaration), Diagnostics.Variable_0_implicitly_has_type_1_in_some_locations_where_its_type_cannot_be_determined, symbolToString(symbol), typeToString(flowType)); error(node, Diagnostics.Variable_0_implicitly_has_an_1_type, symbolToString(symbol), typeToString(flowType)); } return convertAutoToAny(flowType); } } else if (!assumeInitialized && !(getFalsyFlags(type) & TypeFlags.Undefined) && getFalsyFlags(flowType) & TypeFlags.Undefined) { error(node, Diagnostics.Variable_0_is_used_before_being_assigned, symbolToString(symbol)); // Return the declared type to reduce follow-on errors return type; } return assignmentKind ? getBaseTypeOfLiteralType(flowType) : flowType; } function isInsideFunction(node: Node, threshold: Node): boolean { return !!findAncestor(node, n => n === threshold ? "quit" : isFunctionLike(n)); } function checkNestedBlockScopedBinding(node: Identifier, symbol: Symbol): void { if (languageVersion >= ScriptTarget.ES2015 || (symbol.flags & (SymbolFlags.BlockScopedVariable | SymbolFlags.Class)) === 0 || symbol.valueDeclaration.parent.kind === SyntaxKind.CatchClause) { return; } // 1. walk from the use site up to the declaration and check // if there is anything function like between declaration and use-site (is binding/class is captured in function). // 2. walk from the declaration up to the boundary of lexical environment and check // if there is an iteration statement in between declaration and boundary (is binding/class declared inside iteration statement) const container = getEnclosingBlockScopeContainer(symbol.valueDeclaration); const usedInFunction = isInsideFunction(node.parent, container); let current = container; let containedInIterationStatement = false; while (current && !nodeStartsNewLexicalEnvironment(current)) { if (isIterationStatement(current, /*lookInLabeledStatements*/ false)) { containedInIterationStatement = true; break; } current = current.parent; } if (containedInIterationStatement) { if (usedInFunction) { // mark iteration statement as containing block-scoped binding captured in some function getNodeLinks(current).flags |= NodeCheckFlags.LoopWithCapturedBlockScopedBinding; } // mark variables that are declared in loop initializer and reassigned inside the body of ForStatement. // if body of ForStatement will be converted to function then we'll need a extra machinery to propagate reassigned values back. if (container.kind === SyntaxKind.ForStatement && getAncestor(symbol.valueDeclaration, SyntaxKind.VariableDeclarationList).parent === container && isAssignedInBodyOfForStatement(node, container)) { getNodeLinks(symbol.valueDeclaration).flags |= NodeCheckFlags.NeedsLoopOutParameter; } // set 'declared inside loop' bit on the block-scoped binding getNodeLinks(symbol.valueDeclaration).flags |= NodeCheckFlags.BlockScopedBindingInLoop; } if (usedInFunction) { getNodeLinks(symbol.valueDeclaration).flags |= NodeCheckFlags.CapturedBlockScopedBinding; } } function isAssignedInBodyOfForStatement(node: Identifier, container: ForStatement): boolean { // skip parenthesized nodes let current: Node = node; while (current.parent.kind === SyntaxKind.ParenthesizedExpression) { current = current.parent; } // check if node is used as LHS in some assignment expression let isAssigned = false; if (isAssignmentTarget(current)) { isAssigned = true; } else if ((current.parent.kind === SyntaxKind.PrefixUnaryExpression || current.parent.kind === SyntaxKind.PostfixUnaryExpression)) { const expr = current.parent; isAssigned = expr.operator === SyntaxKind.PlusPlusToken || expr.operator === SyntaxKind.MinusMinusToken; } if (!isAssigned) { return false; } // at this point we know that node is the target of assignment // now check that modification happens inside the statement part of the ForStatement return !!findAncestor(current, n => n === container ? "quit" : n === container.statement); } function captureLexicalThis(node: Node, container: Node): void { getNodeLinks(node).flags |= NodeCheckFlags.LexicalThis; if (container.kind === SyntaxKind.PropertyDeclaration || container.kind === SyntaxKind.Constructor) { const classNode = container.parent; getNodeLinks(classNode).flags |= NodeCheckFlags.CaptureThis; } else { getNodeLinks(container).flags |= NodeCheckFlags.CaptureThis; } } function findFirstSuperCall(n: Node): Node { if (isSuperCall(n)) { return n; } else if (isFunctionLike(n)) { return undefined; } return forEachChild(n, findFirstSuperCall); } /** * Return a cached result if super-statement is already found. * Otherwise, find a super statement in a given constructor function and cache the result in the node-links of the constructor * * @param constructor constructor-function to look for super statement */ function getSuperCallInConstructor(constructor: ConstructorDeclaration): ExpressionStatement { const links = getNodeLinks(constructor); // Only trying to find super-call if we haven't yet tried to find one. Once we try, we will record the result if (links.hasSuperCall === undefined) { links.superCall = findFirstSuperCall(constructor.body); links.hasSuperCall = links.superCall ? true : false; } return links.superCall; } /** * Check if the given class-declaration extends null then return true. * Otherwise, return false * @param classDecl a class declaration to check if it extends null */ function classDeclarationExtendsNull(classDecl: ClassDeclaration): boolean { const classSymbol = getSymbolOfNode(classDecl); const classInstanceType = getDeclaredTypeOfSymbol(classSymbol); const baseConstructorType = getBaseConstructorTypeOfClass(classInstanceType); return baseConstructorType === nullWideningType; } function checkThisBeforeSuper(node: Node, container: Node, diagnosticMessage: DiagnosticMessage) { const containingClassDecl = container.parent; const baseTypeNode = getClassExtendsHeritageClauseElement(containingClassDecl); // If a containing class does not have extends clause or the class extends null // skip checking whether super statement is called before "this" accessing. if (baseTypeNode && !classDeclarationExtendsNull(containingClassDecl)) { const superCall = getSuperCallInConstructor(container); // We should give an error in the following cases: // - No super-call // - "this" is accessing before super-call. // i.e super(this) // this.x; super(); // We want to make sure that super-call is done before accessing "this" so that // "this" is not accessed as a parameter of the super-call. if (!superCall || superCall.end > node.pos) { // In ES6, super inside constructor of class-declaration has to precede "this" accessing error(node, diagnosticMessage); } } } function checkThisExpression(node: Node): Type { // Stop at the first arrow function so that we can // tell whether 'this' needs to be captured. let container = getThisContainer(node, /* includeArrowFunctions */ true); let needToCaptureLexicalThis = false; if (container.kind === SyntaxKind.Constructor) { checkThisBeforeSuper(node, container, Diagnostics.super_must_be_called_before_accessing_this_in_the_constructor_of_a_derived_class); } // Now skip arrow functions to get the "real" owner of 'this'. if (container.kind === SyntaxKind.ArrowFunction) { container = getThisContainer(container, /* includeArrowFunctions */ false); // When targeting es6, arrow function lexically bind "this" so we do not need to do the work of binding "this" in emitted code needToCaptureLexicalThis = (languageVersion < ScriptTarget.ES2015); } switch (container.kind) { case SyntaxKind.ModuleDeclaration: error(node, Diagnostics.this_cannot_be_referenced_in_a_module_or_namespace_body); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks break; case SyntaxKind.EnumDeclaration: error(node, Diagnostics.this_cannot_be_referenced_in_current_location); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks break; case SyntaxKind.Constructor: if (isInConstructorArgumentInitializer(node, container)) { error(node, Diagnostics.this_cannot_be_referenced_in_constructor_arguments); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks } break; case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: if (getModifierFlags(container) & ModifierFlags.Static) { error(node, Diagnostics.this_cannot_be_referenced_in_a_static_property_initializer); // do not return here so in case if lexical this is captured - it will be reflected in flags on NodeLinks } break; case SyntaxKind.ComputedPropertyName: error(node, Diagnostics.this_cannot_be_referenced_in_a_computed_property_name); break; } if (needToCaptureLexicalThis) { captureLexicalThis(node, container); } if (isFunctionLike(container) && (!isInParameterInitializerBeforeContainingFunction(node) || getThisParameter(container))) { // Note: a parameter initializer should refer to class-this unless function-this is explicitly annotated. // If this is a function in a JS file, it might be a class method. Check if it's the RHS // of a x.prototype.y = function [name]() { .... } if (container.kind === SyntaxKind.FunctionExpression && container.parent.kind === SyntaxKind.BinaryExpression && getSpecialPropertyAssignmentKind(container.parent as BinaryExpression) === SpecialPropertyAssignmentKind.PrototypeProperty) { // Get the 'x' of 'x.prototype.y = f' (here, 'f' is 'container') const className = (((container.parent as BinaryExpression) // x.prototype.y = f .left as PropertyAccessExpression) // x.prototype.y .expression as PropertyAccessExpression) // x.prototype .expression; // x const classSymbol = checkExpression(className).symbol; if (classSymbol && classSymbol.members && (classSymbol.flags & SymbolFlags.Function)) { return getInferredClassType(classSymbol); } } const thisType = getThisTypeOfDeclaration(container) || getContextualThisParameterType(container); if (thisType) { return thisType; } } if (isClassLike(container.parent)) { const symbol = getSymbolOfNode(container.parent); const type = hasModifier(container, ModifierFlags.Static) ? getTypeOfSymbol(symbol) : (getDeclaredTypeOfSymbol(symbol)).thisType; return getFlowTypeOfReference(node, type); } if (isInJavaScriptFile(node)) { const type = getTypeForThisExpressionFromJSDoc(container); if (type && type !== unknownType) { return type; } } if (noImplicitThis) { // With noImplicitThis, functions may not reference 'this' if it has type 'any' error(node, Diagnostics.this_implicitly_has_type_any_because_it_does_not_have_a_type_annotation); } return anyType; } function getTypeForThisExpressionFromJSDoc(node: Node) { const jsdocType = getJSDocType(node); if (jsdocType && jsdocType.kind === SyntaxKind.JSDocFunctionType) { const jsDocFunctionType = jsdocType; if (jsDocFunctionType.parameters.length > 0 && jsDocFunctionType.parameters[0].type.kind === SyntaxKind.JSDocThisType) { return getTypeFromTypeNode(jsDocFunctionType.parameters[0].type); } } } function isInConstructorArgumentInitializer(node: Node, constructorDecl: Node): boolean { return !!findAncestor(node, n => n === constructorDecl ? "quit" : n.kind === SyntaxKind.Parameter); } function checkSuperExpression(node: Node): Type { const isCallExpression = node.parent.kind === SyntaxKind.CallExpression && (node.parent).expression === node; let container = getSuperContainer(node, /*stopOnFunctions*/ true); let needToCaptureLexicalThis = false; // adjust the container reference in case if super is used inside arrow functions with arbitrarily deep nesting if (!isCallExpression) { while (container && container.kind === SyntaxKind.ArrowFunction) { container = getSuperContainer(container, /*stopOnFunctions*/ true); needToCaptureLexicalThis = languageVersion < ScriptTarget.ES2015; } } const canUseSuperExpression = isLegalUsageOfSuperExpression(container); let nodeCheckFlag: NodeCheckFlags = 0; if (!canUseSuperExpression) { // issue more specific error if super is used in computed property name // class A { foo() { return "1" }} // class B { // [super.foo()]() {} // } const current = findAncestor(node, n => n === container ? "quit" : n.kind === SyntaxKind.ComputedPropertyName); if (current && current.kind === SyntaxKind.ComputedPropertyName) { error(node, Diagnostics.super_cannot_be_referenced_in_a_computed_property_name); } else if (isCallExpression) { error(node, Diagnostics.Super_calls_are_not_permitted_outside_constructors_or_in_nested_functions_inside_constructors); } else if (!container || !container.parent || !(isClassLike(container.parent) || container.parent.kind === SyntaxKind.ObjectLiteralExpression)) { error(node, Diagnostics.super_can_only_be_referenced_in_members_of_derived_classes_or_object_literal_expressions); } else { error(node, Diagnostics.super_property_access_is_permitted_only_in_a_constructor_member_function_or_member_accessor_of_a_derived_class); } return unknownType; } if (!isCallExpression && container.kind === SyntaxKind.Constructor) { checkThisBeforeSuper(node, container, Diagnostics.super_must_be_called_before_accessing_a_property_of_super_in_the_constructor_of_a_derived_class); } if ((getModifierFlags(container) & ModifierFlags.Static) || isCallExpression) { nodeCheckFlag = NodeCheckFlags.SuperStatic; } else { nodeCheckFlag = NodeCheckFlags.SuperInstance; } getNodeLinks(node).flags |= nodeCheckFlag; // Due to how we emit async functions, we need to specialize the emit for an async method that contains a `super` reference. // This is due to the fact that we emit the body of an async function inside of a generator function. As generator // functions cannot reference `super`, we emit a helper inside of the method body, but outside of the generator. This helper // uses an arrow function, which is permitted to reference `super`. // // There are two primary ways we can access `super` from within an async method. The first is getting the value of a property // or indexed access on super, either as part of a right-hand-side expression or call expression. The second is when setting the value // of a property or indexed access, either as part of an assignment expression or destructuring assignment. // // The simplest case is reading a value, in which case we will emit something like the following: // // // ts // ... // async asyncMethod() { // let x = await super.asyncMethod(); // return x; // } // ... // // // js // ... // asyncMethod() { // const _super = name => super[name]; // return __awaiter(this, arguments, Promise, function *() { // let x = yield _super("asyncMethod").call(this); // return x; // }); // } // ... // // The more complex case is when we wish to assign a value, especially as part of a destructuring assignment. As both cases // are legal in ES6, but also likely less frequent, we emit the same more complex helper for both scenarios: // // // ts // ... // async asyncMethod(ar: Promise) { // [super.a, super.b] = await ar; // } // ... // // // js // ... // asyncMethod(ar) { // const _super = (function (geti, seti) { // const cache = Object.create(null); // return name => cache[name] || (cache[name] = { get value() { return geti(name); }, set value(v) { seti(name, v); } }); // })(name => super[name], (name, value) => super[name] = value); // return __awaiter(this, arguments, Promise, function *() { // [_super("a").value, _super("b").value] = yield ar; // }); // } // ... // // This helper creates an object with a "value" property that wraps the `super` property or indexed access for both get and set. // This is required for destructuring assignments, as a call expression cannot be used as the target of a destructuring assignment // while a property access can. if (container.kind === SyntaxKind.MethodDeclaration && getModifierFlags(container) & ModifierFlags.Async) { if (isSuperProperty(node.parent) && isAssignmentTarget(node.parent)) { getNodeLinks(container).flags |= NodeCheckFlags.AsyncMethodWithSuperBinding; } else { getNodeLinks(container).flags |= NodeCheckFlags.AsyncMethodWithSuper; } } if (needToCaptureLexicalThis) { // call expressions are allowed only in constructors so they should always capture correct 'this' // super property access expressions can also appear in arrow functions - // in this case they should also use correct lexical this captureLexicalThis(node.parent, container); } if (container.parent.kind === SyntaxKind.ObjectLiteralExpression) { if (languageVersion < ScriptTarget.ES2015) { error(node, Diagnostics.super_is_only_allowed_in_members_of_object_literal_expressions_when_option_target_is_ES2015_or_higher); return unknownType; } else { // for object literal assume that type of 'super' is 'any' return anyType; } } // at this point the only legal case for parent is ClassLikeDeclaration const classLikeDeclaration = container.parent; const classType = getDeclaredTypeOfSymbol(getSymbolOfNode(classLikeDeclaration)); const baseClassType = classType && getBaseTypes(classType)[0]; if (!baseClassType) { if (!getClassExtendsHeritageClauseElement(classLikeDeclaration)) { error(node, Diagnostics.super_can_only_be_referenced_in_a_derived_class); } return unknownType; } if (container.kind === SyntaxKind.Constructor && isInConstructorArgumentInitializer(node, container)) { // issue custom error message for super property access in constructor arguments (to be aligned with old compiler) error(node, Diagnostics.super_cannot_be_referenced_in_constructor_arguments); return unknownType; } return nodeCheckFlag === NodeCheckFlags.SuperStatic ? getBaseConstructorTypeOfClass(classType) : getTypeWithThisArgument(baseClassType, classType.thisType); function isLegalUsageOfSuperExpression(container: Node): boolean { if (!container) { return false; } if (isCallExpression) { // TS 1.0 SPEC (April 2014): 4.8.1 // Super calls are only permitted in constructors of derived classes return container.kind === SyntaxKind.Constructor; } else { // TS 1.0 SPEC (April 2014) // 'super' property access is allowed // - In a constructor, instance member function, instance member accessor, or instance member variable initializer where this references a derived class instance // - In a static member function or static member accessor // topmost container must be something that is directly nested in the class declaration\object literal expression if (isClassLike(container.parent) || container.parent.kind === SyntaxKind.ObjectLiteralExpression) { if (getModifierFlags(container) & ModifierFlags.Static) { return container.kind === SyntaxKind.MethodDeclaration || container.kind === SyntaxKind.MethodSignature || container.kind === SyntaxKind.GetAccessor || container.kind === SyntaxKind.SetAccessor; } else { return container.kind === SyntaxKind.MethodDeclaration || container.kind === SyntaxKind.MethodSignature || container.kind === SyntaxKind.GetAccessor || container.kind === SyntaxKind.SetAccessor || container.kind === SyntaxKind.PropertyDeclaration || container.kind === SyntaxKind.PropertySignature || container.kind === SyntaxKind.Constructor; } } } return false; } } function getContainingObjectLiteral(func: FunctionLikeDeclaration) { return (func.kind === SyntaxKind.MethodDeclaration || func.kind === SyntaxKind.GetAccessor || func.kind === SyntaxKind.SetAccessor) && func.parent.kind === SyntaxKind.ObjectLiteralExpression ? func.parent : func.kind === SyntaxKind.FunctionExpression && func.parent.kind === SyntaxKind.PropertyAssignment ? func.parent.parent : undefined; } function getThisTypeArgument(type: Type): Type { return getObjectFlags(type) & ObjectFlags.Reference && (type).target === globalThisType ? (type).typeArguments[0] : undefined; } function getThisTypeFromContextualType(type: Type): Type { return mapType(type, t => { return t.flags & TypeFlags.Intersection ? forEach((t).types, getThisTypeArgument) : getThisTypeArgument(t); }); } function getContextualThisParameterType(func: FunctionLikeDeclaration): Type { if (func.kind === SyntaxKind.ArrowFunction) { return undefined; } if (isContextSensitiveFunctionOrObjectLiteralMethod(func)) { const contextualSignature = getContextualSignature(func); if (contextualSignature) { const thisParameter = contextualSignature.thisParameter; if (thisParameter) { return getTypeOfSymbol(thisParameter); } } } if (noImplicitThis) { const containingLiteral = getContainingObjectLiteral(func); if (containingLiteral) { // We have an object literal method. Check if the containing object literal has a contextual type // that includes a ThisType. If so, T is the contextual type for 'this'. We continue looking in // any directly enclosing object literals. const contextualType = getApparentTypeOfContextualType(containingLiteral); let literal = containingLiteral; let type = contextualType; while (type) { const thisType = getThisTypeFromContextualType(type); if (thisType) { return instantiateType(thisType, getContextualMapper(containingLiteral)); } if (literal.parent.kind !== SyntaxKind.PropertyAssignment) { break; } literal = literal.parent.parent; type = getApparentTypeOfContextualType(literal); } // There was no contextual ThisType for the containing object literal, so the contextual type // for 'this' is the non-null form of the contextual type for the containing object literal or // the type of the object literal itself. return contextualType ? getNonNullableType(contextualType) : checkExpressionCached(containingLiteral); } // In an assignment of the form 'obj.xxx = function(...)' or 'obj[xxx] = function(...)', the // contextual type for 'this' is 'obj'. if (func.parent.kind === SyntaxKind.BinaryExpression && (func.parent).operatorToken.kind === SyntaxKind.EqualsToken) { const target = (func.parent).left; if (target.kind === SyntaxKind.PropertyAccessExpression || target.kind === SyntaxKind.ElementAccessExpression) { return checkExpressionCached((target).expression); } } } return undefined; } // Return contextual type of parameter or undefined if no contextual type is available function getContextuallyTypedParameterType(parameter: ParameterDeclaration): Type { const func = parameter.parent; if (isContextSensitiveFunctionOrObjectLiteralMethod(func)) { const iife = getImmediatelyInvokedFunctionExpression(func); if (iife && iife.arguments) { const indexOfParameter = indexOf(func.parameters, parameter); if (parameter.dotDotDotToken) { const restTypes: Type[] = []; for (let i = indexOfParameter; i < iife.arguments.length; i++) { restTypes.push(getWidenedLiteralType(checkExpression(iife.arguments[i]))); } return restTypes.length ? createArrayType(getUnionType(restTypes)) : undefined; } const links = getNodeLinks(iife); const cached = links.resolvedSignature; links.resolvedSignature = anySignature; const type = indexOfParameter < iife.arguments.length ? getWidenedLiteralType(checkExpression(iife.arguments[indexOfParameter])) : parameter.initializer ? undefined : undefinedWideningType; links.resolvedSignature = cached; return type; } const contextualSignature = getContextualSignature(func); if (contextualSignature) { const funcHasRestParameters = hasRestParameter(func); const len = func.parameters.length - (funcHasRestParameters ? 1 : 0); const indexOfParameter = indexOf(func.parameters, parameter); if (indexOfParameter < len) { return getTypeAtPosition(contextualSignature, indexOfParameter); } // If last parameter is contextually rest parameter get its type if (funcHasRestParameters && indexOfParameter === (func.parameters.length - 1) && isRestParameterIndex(contextualSignature, func.parameters.length - 1)) { return getTypeOfSymbol(lastOrUndefined(contextualSignature.parameters)); } } } return undefined; } // In a variable, parameter or property declaration with a type annotation, // the contextual type of an initializer expression is the type of the variable, parameter or property. // Otherwise, in a parameter declaration of a contextually typed function expression, // the contextual type of an initializer expression is the contextual type of the parameter. // Otherwise, in a variable or parameter declaration with a binding pattern name, // the contextual type of an initializer expression is the type implied by the binding pattern. // Otherwise, in a binding pattern inside a variable or parameter declaration, // the contextual type of an initializer expression is the type annotation of the containing declaration, if present. function getContextualTypeForInitializerExpression(node: Expression): Type { const declaration = node.parent; if (node === declaration.initializer) { if (declaration.type) { return getTypeFromTypeNode(declaration.type); } if (declaration.kind === SyntaxKind.Parameter) { const type = getContextuallyTypedParameterType(declaration); if (type) { return type; } } if (isBindingPattern(declaration.name)) { return getTypeFromBindingPattern(declaration.name, /*includePatternInType*/ true, /*reportErrors*/ false); } if (isBindingPattern(declaration.parent)) { const parentDeclaration = declaration.parent.parent; const name = declaration.propertyName || declaration.name; if (parentDeclaration.kind !== SyntaxKind.BindingElement && parentDeclaration.type && !isBindingPattern(name)) { const text = getTextOfPropertyName(name); if (text) { return getTypeOfPropertyOfType(getTypeFromTypeNode(parentDeclaration.type), text); } } } } return undefined; } function getContextualTypeForReturnExpression(node: Expression): Type { const func = getContainingFunction(node); if (func) { const functionFlags = getFunctionFlags(func); if (functionFlags & FunctionFlags.Generator) { // AsyncGenerator function or Generator function return undefined; } const contextualReturnType = getContextualReturnType(func); return functionFlags & FunctionFlags.Async ? contextualReturnType && getAwaitedTypeOfPromise(contextualReturnType) // Async function : contextualReturnType; // Regular function } return undefined; } function getContextualTypeForYieldOperand(node: YieldExpression): Type { const func = getContainingFunction(node); if (func) { const functionFlags = getFunctionFlags(func); const contextualReturnType = getContextualReturnType(func); if (contextualReturnType) { return node.asteriskToken ? contextualReturnType : getIteratedTypeOfGenerator(contextualReturnType, (functionFlags & FunctionFlags.Async) !== 0); } } return undefined; } function isInParameterInitializerBeforeContainingFunction(node: Node) { while (node.parent && !isFunctionLike(node.parent)) { if (node.parent.kind === SyntaxKind.Parameter && (node.parent).initializer === node) { return true; } node = node.parent; } return false; } function getContextualReturnType(functionDecl: FunctionLikeDeclaration): Type { // If the containing function has a return type annotation, is a constructor, or is a get accessor whose // corresponding set accessor has a type annotation, return statements in the function are contextually typed if (functionDecl.type || functionDecl.kind === SyntaxKind.Constructor || functionDecl.kind === SyntaxKind.GetAccessor && getSetAccessorTypeAnnotationNode(getDeclarationOfKind(functionDecl.symbol, SyntaxKind.SetAccessor))) { return getReturnTypeOfSignature(getSignatureFromDeclaration(functionDecl)); } // Otherwise, if the containing function is contextually typed by a function type with exactly one call signature // and that call signature is non-generic, return statements are contextually typed by the return type of the signature const signature = getContextualSignatureForFunctionLikeDeclaration(functionDecl); if (signature) { return getReturnTypeOfSignature(signature); } return undefined; } // In a typed function call, an argument or substitution expression is contextually typed by the type of the corresponding parameter. function getContextualTypeForArgument(callTarget: CallLikeExpression, arg: Expression): Type { const args = getEffectiveCallArguments(callTarget); const argIndex = indexOf(args, arg); if (argIndex >= 0) { const signature = getResolvedOrAnySignature(callTarget); return getTypeAtPosition(signature, argIndex); } return undefined; } function getContextualTypeForSubstitutionExpression(template: TemplateExpression, substitutionExpression: Expression) { if (template.parent.kind === SyntaxKind.TaggedTemplateExpression) { return getContextualTypeForArgument(template.parent, substitutionExpression); } return undefined; } function getContextualTypeForBinaryOperand(node: Expression): Type { const binaryExpression = node.parent; const operator = binaryExpression.operatorToken.kind; if (operator >= SyntaxKind.FirstAssignment && operator <= SyntaxKind.LastAssignment) { // Don't do this for special property assignments to avoid circularity if (getSpecialPropertyAssignmentKind(binaryExpression) !== SpecialPropertyAssignmentKind.None) { return undefined; } // In an assignment expression, the right operand is contextually typed by the type of the left operand. if (node === binaryExpression.right) { return getTypeOfExpression(binaryExpression.left); } } else if (operator === SyntaxKind.BarBarToken) { // When an || expression has a contextual type, the operands are contextually typed by that type. When an || // expression has no contextual type, the right operand is contextually typed by the type of the left operand. let type = getContextualType(binaryExpression); if (!type && node === binaryExpression.right) { type = getTypeOfExpression(binaryExpression.left); } return type; } else if (operator === SyntaxKind.AmpersandAmpersandToken || operator === SyntaxKind.CommaToken) { if (node === binaryExpression.right) { return getContextualType(binaryExpression); } } return undefined; } function getTypeOfPropertyOfContextualType(type: Type, name: string) { return mapType(type, t => { const prop = t.flags & TypeFlags.StructuredType ? getPropertyOfType(t, name) : undefined; return prop ? getTypeOfSymbol(prop) : undefined; }); } function getIndexTypeOfContextualType(type: Type, kind: IndexKind) { return mapType(type, t => getIndexTypeOfStructuredType(t, kind)); } // Return true if the given contextual type is a tuple-like type function contextualTypeIsTupleLikeType(type: Type): boolean { return !!(type.flags & TypeFlags.Union ? forEach((type).types, isTupleLikeType) : isTupleLikeType(type)); } // In an object literal contextually typed by a type T, the contextual type of a property assignment is the type of // the matching property in T, if one exists. Otherwise, it is the type of the numeric index signature in T, if one // exists. Otherwise, it is the type of the string index signature in T, if one exists. function getContextualTypeForObjectLiteralMethod(node: MethodDeclaration): Type { Debug.assert(isObjectLiteralMethod(node)); if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return undefined; } return getContextualTypeForObjectLiteralElement(node); } function getContextualTypeForObjectLiteralElement(element: ObjectLiteralElementLike) { const objectLiteral = element.parent; const type = getApparentTypeOfContextualType(objectLiteral); if (type) { if (!hasDynamicName(element)) { // For a (non-symbol) computed property, there is no reason to look up the name // in the type. It will just be "__computed", which does not appear in any // SymbolTable. const symbolName = getSymbolOfNode(element).name; const propertyType = getTypeOfPropertyOfContextualType(type, symbolName); if (propertyType) { return propertyType; } } return isNumericName(element.name) && getIndexTypeOfContextualType(type, IndexKind.Number) || getIndexTypeOfContextualType(type, IndexKind.String); } return undefined; } // In an array literal contextually typed by a type T, the contextual type of an element expression at index N is // the type of the property with the numeric name N in T, if one exists. Otherwise, if T has a numeric index signature, // it is the type of the numeric index signature in T. Otherwise, in ES6 and higher, the contextual type is the iterated // type of T. function getContextualTypeForElementExpression(node: Expression): Type { const arrayLiteral = node.parent; const type = getApparentTypeOfContextualType(arrayLiteral); if (type) { const index = indexOf(arrayLiteral.elements, node); return getTypeOfPropertyOfContextualType(type, "" + index) || getIndexTypeOfContextualType(type, IndexKind.Number) || getIteratedTypeOrElementType(type, /*errorNode*/ undefined, /*allowStringInput*/ false, /*allowAsyncIterable*/ false, /*checkAssignability*/ false); } return undefined; } // In a contextually typed conditional expression, the true/false expressions are contextually typed by the same type. function getContextualTypeForConditionalOperand(node: Expression): Type { const conditional = node.parent; return node === conditional.whenTrue || node === conditional.whenFalse ? getContextualType(conditional) : undefined; } function getContextualTypeForJsxExpression(node: JsxExpression): Type { // JSX expression can appear in two position : JSX Element's children or JSX attribute const jsxAttributes = isJsxAttributeLike(node.parent) ? node.parent.parent : node.parent.openingElement.attributes; // node.parent is JsxElement // When we trying to resolve JsxOpeningLikeElement as a stateless function element, we will already give its attributes a contextual type // which is a type of the parameter of the signature we are trying out. // If there is no contextual type (e.g. we are trying to resolve stateful component), get attributes type from resolving element's tagName const attributesType = getContextualType(jsxAttributes); if (!attributesType || isTypeAny(attributesType)) { return undefined; } if (isJsxAttribute(node.parent)) { // JSX expression is in JSX attribute return getTypeOfPropertyOfType(attributesType, (node.parent as JsxAttribute).name.text); } else if (node.parent.kind === SyntaxKind.JsxElement) { // JSX expression is in children of JSX Element, we will look for an "children" atttribute (we get the name from JSX.ElementAttributesProperty) const jsxChildrenPropertyName = getJsxElementChildrenPropertyname(); return jsxChildrenPropertyName && jsxChildrenPropertyName !== "" ? getTypeOfPropertyOfType(attributesType, jsxChildrenPropertyName) : anyType; } else { // JSX expression is in JSX spread attribute return attributesType; } } function getContextualTypeForJsxAttribute(attribute: JsxAttribute | JsxSpreadAttribute) { // When we trying to resolve JsxOpeningLikeElement as a stateless function element, we will already give its attributes a contextual type // which is a type of the parameter of the signature we are trying out. // If there is no contextual type (e.g. we are trying to resolve stateful component), get attributes type from resolving element's tagName const attributesType = getContextualType(attribute.parent); if (isJsxAttribute(attribute)) { if (!attributesType || isTypeAny(attributesType)) { return undefined; } return getTypeOfPropertyOfType(attributesType, (attribute as JsxAttribute).name.text); } else { return attributesType; } } // Return the contextual type for a given expression node. During overload resolution, a contextual type may temporarily // be "pushed" onto a node using the contextualType property. function getApparentTypeOfContextualType(node: Expression): Type { const type = getContextualType(node); return type && getApparentType(type); } /** * Woah! Do you really want to use this function? * * Unless you're trying to get the *non-apparent* type for a * value-literal type or you're authoring relevant portions of this algorithm, * you probably meant to use 'getApparentTypeOfContextualType'. * Otherwise this may not be very useful. * * In cases where you *are* working on this function, you should understand * when it is appropriate to use 'getContextualType' and 'getApparentTypeOfContextualType'. * * - Use 'getContextualType' when you are simply going to propagate the result to the expression. * - Use 'getApparentTypeOfContextualType' when you're going to need the members of the type. * * @param node the expression whose contextual type will be returned. * @returns the contextual type of an expression. */ function getContextualType(node: Expression): Type | undefined { if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return undefined; } if (node.contextualType) { return node.contextualType; } const parent = node.parent; switch (parent.kind) { case SyntaxKind.VariableDeclaration: case SyntaxKind.Parameter: case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.BindingElement: return getContextualTypeForInitializerExpression(node); case SyntaxKind.ArrowFunction: case SyntaxKind.ReturnStatement: return getContextualTypeForReturnExpression(node); case SyntaxKind.YieldExpression: return getContextualTypeForYieldOperand(parent); case SyntaxKind.CallExpression: case SyntaxKind.NewExpression: return getContextualTypeForArgument(parent, node); case SyntaxKind.TypeAssertionExpression: case SyntaxKind.AsExpression: return getTypeFromTypeNode((parent).type); case SyntaxKind.BinaryExpression: return getContextualTypeForBinaryOperand(node); case SyntaxKind.PropertyAssignment: case SyntaxKind.ShorthandPropertyAssignment: return getContextualTypeForObjectLiteralElement(parent); case SyntaxKind.SpreadAssignment: return getApparentTypeOfContextualType(parent.parent as ObjectLiteralExpression); case SyntaxKind.ArrayLiteralExpression: return getContextualTypeForElementExpression(node); case SyntaxKind.ConditionalExpression: return getContextualTypeForConditionalOperand(node); case SyntaxKind.TemplateSpan: Debug.assert(parent.parent.kind === SyntaxKind.TemplateExpression); return getContextualTypeForSubstitutionExpression(parent.parent, node); case SyntaxKind.ParenthesizedExpression: return getContextualType(parent); case SyntaxKind.JsxExpression: return getContextualTypeForJsxExpression(parent); case SyntaxKind.JsxAttribute: case SyntaxKind.JsxSpreadAttribute: return getContextualTypeForJsxAttribute(parent); case SyntaxKind.JsxOpeningElement: case SyntaxKind.JsxSelfClosingElement: return getAttributesTypeFromJsxOpeningLikeElement(parent); } return undefined; } function getContextualMapper(node: Node) { node = findAncestor(node, n => !!n.contextualMapper); return node ? node.contextualMapper : identityMapper; } // If the given type is an object or union type, if that type has a single signature, and if // that signature is non-generic, return the signature. Otherwise return undefined. function getNonGenericSignature(type: Type, node: FunctionExpression | ArrowFunction | MethodDeclaration): Signature { const signatures = getSignaturesOfStructuredType(type, SignatureKind.Call); if (signatures.length === 1) { const signature = signatures[0]; if (!signature.typeParameters && !isAritySmaller(signature, node)) { return signature; } } } /** If the contextual signature has fewer parameters than the function expression, do not use it */ function isAritySmaller(signature: Signature, target: FunctionExpression | ArrowFunction | MethodDeclaration) { let targetParameterCount = 0; for (; targetParameterCount < target.parameters.length; targetParameterCount++) { const param = target.parameters[targetParameterCount]; if (param.initializer || param.questionToken || param.dotDotDotToken || isJSDocOptionalParameter(param)) { break; } } if (target.parameters.length && parameterIsThisKeyword(target.parameters[0])) { targetParameterCount--; } const sourceLength = signature.hasRestParameter ? Number.MAX_VALUE : signature.parameters.length; return sourceLength < targetParameterCount; } function isFunctionExpressionOrArrowFunction(node: Node): node is FunctionExpression | ArrowFunction { return node.kind === SyntaxKind.FunctionExpression || node.kind === SyntaxKind.ArrowFunction; } function getContextualSignatureForFunctionLikeDeclaration(node: FunctionLikeDeclaration): Signature { // Only function expressions, arrow functions, and object literal methods are contextually typed. return isFunctionExpressionOrArrowFunction(node) || isObjectLiteralMethod(node) ? getContextualSignature(node) : undefined; } function getContextualTypeForFunctionLikeDeclaration(node: FunctionExpression | ArrowFunction | MethodDeclaration) { return isObjectLiteralMethod(node) ? getContextualTypeForObjectLiteralMethod(node) : getApparentTypeOfContextualType(node); } // Return the contextual signature for a given expression node. A contextual type provides a // contextual signature if it has a single call signature and if that call signature is non-generic. // If the contextual type is a union type, get the signature from each type possible and if they are // all identical ignoring their return type, the result is same signature but with return type as // union type of return types from these signatures function getContextualSignature(node: FunctionExpression | ArrowFunction | MethodDeclaration): Signature { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); const type = getContextualTypeForFunctionLikeDeclaration(node); if (!type) { return undefined; } if (!(type.flags & TypeFlags.Union)) { return getNonGenericSignature(type, node); } let signatureList: Signature[]; const types = (type).types; for (const current of types) { const signature = getNonGenericSignature(current, node); if (signature) { if (!signatureList) { // This signature will contribute to contextual union signature signatureList = [signature]; } else if (!compareSignaturesIdentical(signatureList[0], signature, /*partialMatch*/ false, /*ignoreThisTypes*/ true, /*ignoreReturnTypes*/ true, compareTypesIdentical)) { // Signatures aren't identical, do not use return undefined; } else { // Use this signature for contextual union signature signatureList.push(signature); } } } // Result is union of signatures collected (return type is union of return types of this signature set) let result: Signature; if (signatureList) { result = cloneSignature(signatureList[0]); // Clear resolved return type we possibly got from cloneSignature result.resolvedReturnType = undefined; result.unionSignatures = signatureList; } return result; } function checkSpreadExpression(node: SpreadElement, checkMode?: CheckMode): Type { if (languageVersion < ScriptTarget.ES2015 && compilerOptions.downlevelIteration) { checkExternalEmitHelpers(node, ExternalEmitHelpers.SpreadIncludes); } const arrayOrIterableType = checkExpression(node.expression, checkMode); return checkIteratedTypeOrElementType(arrayOrIterableType, node.expression, /*allowStringInput*/ false, /*allowAsyncIterable*/ false); } function hasDefaultValue(node: BindingElement | Expression): boolean { return (node.kind === SyntaxKind.BindingElement && !!(node).initializer) || (node.kind === SyntaxKind.BinaryExpression && (node).operatorToken.kind === SyntaxKind.EqualsToken); } function checkArrayLiteral(node: ArrayLiteralExpression, checkMode?: CheckMode): Type { const elements = node.elements; let hasSpreadElement = false; const elementTypes: Type[] = []; const inDestructuringPattern = isAssignmentTarget(node); for (const e of elements) { if (inDestructuringPattern && e.kind === SyntaxKind.SpreadElement) { // Given the following situation: // var c: {}; // [...c] = ["", 0]; // // c is represented in the tree as a spread element in an array literal. // But c really functions as a rest element, and its purpose is to provide // a contextual type for the right hand side of the assignment. Therefore, // instead of calling checkExpression on "...c", which will give an error // if c is not iterable/array-like, we need to act as if we are trying to // get the contextual element type from it. So we do something similar to // getContextualTypeForElementExpression, which will crucially not error // if there is no index type / iterated type. const restArrayType = checkExpression((e).expression, checkMode); const restElementType = getIndexTypeOfType(restArrayType, IndexKind.Number) || getIteratedTypeOrElementType(restArrayType, /*errorNode*/ undefined, /*allowStringInput*/ false, /*allowAsyncIterable*/ false, /*checkAssignability*/ false); if (restElementType) { elementTypes.push(restElementType); } } else { const type = checkExpressionForMutableLocation(e, checkMode); elementTypes.push(type); } hasSpreadElement = hasSpreadElement || e.kind === SyntaxKind.SpreadElement; } if (!hasSpreadElement) { // If array literal is actually a destructuring pattern, mark it as an implied type. We do this such // that we get the same behavior for "var [x, y] = []" and "[x, y] = []". if (inDestructuringPattern && elementTypes.length) { const type = cloneTypeReference(createTupleType(elementTypes)); type.pattern = node; return type; } const contextualType = getApparentTypeOfContextualType(node); if (contextualType && contextualTypeIsTupleLikeType(contextualType)) { const pattern = contextualType.pattern; // If array literal is contextually typed by a binding pattern or an assignment pattern, pad the resulting // tuple type with the corresponding binding or assignment element types to make the lengths equal. if (pattern && (pattern.kind === SyntaxKind.ArrayBindingPattern || pattern.kind === SyntaxKind.ArrayLiteralExpression)) { const patternElements = (pattern).elements; for (let i = elementTypes.length; i < patternElements.length; i++) { const patternElement = patternElements[i]; if (hasDefaultValue(patternElement)) { elementTypes.push((contextualType).typeArguments[i]); } else { if (patternElement.kind !== SyntaxKind.OmittedExpression) { error(patternElement, Diagnostics.Initializer_provides_no_value_for_this_binding_element_and_the_binding_element_has_no_default_value); } elementTypes.push(unknownType); } } } if (elementTypes.length) { return createTupleType(elementTypes); } } } return createArrayType(elementTypes.length ? getUnionType(elementTypes, /*subtypeReduction*/ true) : strictNullChecks ? neverType : undefinedWideningType); } function isNumericName(name: DeclarationName): boolean { return name.kind === SyntaxKind.ComputedPropertyName ? isNumericComputedName(name) : isNumericLiteralName((name).text); } function isNumericComputedName(name: ComputedPropertyName): boolean { // It seems odd to consider an expression of type Any to result in a numeric name, // but this behavior is consistent with checkIndexedAccess return isTypeAnyOrAllConstituentTypesHaveKind(checkComputedPropertyName(name), TypeFlags.NumberLike); } function isTypeAnyOrAllConstituentTypesHaveKind(type: Type, kind: TypeFlags): boolean { return isTypeAny(type) || isTypeOfKind(type, kind); } function isInfinityOrNaNString(name: string): boolean { return name === "Infinity" || name === "-Infinity" || name === "NaN"; } function isNumericLiteralName(name: string) { // The intent of numeric names is that // - they are names with text in a numeric form, and that // - setting properties/indexing with them is always equivalent to doing so with the numeric literal 'numLit', // acquired by applying the abstract 'ToNumber' operation on the name's text. // // The subtlety is in the latter portion, as we cannot reliably say that anything that looks like a numeric literal is a numeric name. // In fact, it is the case that the text of the name must be equal to 'ToString(numLit)' for this to hold. // // Consider the property name '"0xF00D"'. When one indexes with '0xF00D', they are actually indexing with the value of 'ToString(0xF00D)' // according to the ECMAScript specification, so it is actually as if the user indexed with the string '"61453"'. // Thus, the text of all numeric literals equivalent to '61543' such as '0xF00D', '0xf00D', '0170015', etc. are not valid numeric names // because their 'ToString' representation is not equal to their original text. // This is motivated by ECMA-262 sections 9.3.1, 9.8.1, 11.1.5, and 11.2.1. // // Here, we test whether 'ToString(ToNumber(name))' is exactly equal to 'name'. // The '+' prefix operator is equivalent here to applying the abstract ToNumber operation. // Applying the 'toString()' method on a number gives us the abstract ToString operation on a number. // // Note that this accepts the values 'Infinity', '-Infinity', and 'NaN', and that this is intentional. // This is desired behavior, because when indexing with them as numeric entities, you are indexing // with the strings '"Infinity"', '"-Infinity"', and '"NaN"' respectively. return (+name).toString() === name; } function checkComputedPropertyName(node: ComputedPropertyName): Type { const links = getNodeLinks(node.expression); if (!links.resolvedType) { links.resolvedType = checkExpression(node.expression); // This will allow types number, string, symbol or any. It will also allow enums, the unknown // type, and any union of these types (like string | number). if (!isTypeAnyOrAllConstituentTypesHaveKind(links.resolvedType, TypeFlags.NumberLike | TypeFlags.StringLike | TypeFlags.ESSymbol)) { error(node, Diagnostics.A_computed_property_name_must_be_of_type_string_number_symbol_or_any); } else { checkThatExpressionIsProperSymbolReference(node.expression, links.resolvedType, /*reportError*/ true); } } return links.resolvedType; } function getObjectLiteralIndexInfo(propertyNodes: NodeArray, offset: number, properties: Symbol[], kind: IndexKind): IndexInfo { const propTypes: Type[] = []; for (let i = 0; i < properties.length; i++) { if (kind === IndexKind.String || isNumericName(propertyNodes[i + offset].name)) { propTypes.push(getTypeOfSymbol(properties[i])); } } const unionType = propTypes.length ? getUnionType(propTypes, /*subtypeReduction*/ true) : undefinedType; return createIndexInfo(unionType, /*isReadonly*/ false); } function checkObjectLiteral(node: ObjectLiteralExpression, checkMode?: CheckMode): Type { const inDestructuringPattern = isAssignmentTarget(node); // Grammar checking checkGrammarObjectLiteralExpression(node, inDestructuringPattern); let propertiesTable = createMap(); let propertiesArray: Symbol[] = []; let spread: Type = emptyObjectType; let propagatedFlags: TypeFlags = 0; const contextualType = getApparentTypeOfContextualType(node); const contextualTypeHasPattern = contextualType && contextualType.pattern && (contextualType.pattern.kind === SyntaxKind.ObjectBindingPattern || contextualType.pattern.kind === SyntaxKind.ObjectLiteralExpression); const isJSObjectLiteral = !contextualType && isInJavaScriptFile(node); let typeFlags: TypeFlags = 0; let patternWithComputedProperties = false; let hasComputedStringProperty = false; let hasComputedNumberProperty = false; let offset = 0; for (let i = 0; i < node.properties.length; i++) { const memberDecl = node.properties[i]; let member = memberDecl.symbol; if (memberDecl.kind === SyntaxKind.PropertyAssignment || memberDecl.kind === SyntaxKind.ShorthandPropertyAssignment || isObjectLiteralMethod(memberDecl)) { let type: Type; if (memberDecl.kind === SyntaxKind.PropertyAssignment) { type = checkPropertyAssignment(memberDecl, checkMode); } else if (memberDecl.kind === SyntaxKind.MethodDeclaration) { type = checkObjectLiteralMethod(memberDecl, checkMode); } else { Debug.assert(memberDecl.kind === SyntaxKind.ShorthandPropertyAssignment); type = checkExpressionForMutableLocation((memberDecl).name, checkMode); } typeFlags |= type.flags; const prop = createSymbol(SymbolFlags.Property | member.flags, member.name); if (inDestructuringPattern) { // If object literal is an assignment pattern and if the assignment pattern specifies a default value // for the property, make the property optional. const isOptional = (memberDecl.kind === SyntaxKind.PropertyAssignment && hasDefaultValue((memberDecl).initializer)) || (memberDecl.kind === SyntaxKind.ShorthandPropertyAssignment && (memberDecl).objectAssignmentInitializer); if (isOptional) { prop.flags |= SymbolFlags.Optional; } if (hasDynamicName(memberDecl)) { patternWithComputedProperties = true; } } else if (contextualTypeHasPattern && !(getObjectFlags(contextualType) & ObjectFlags.ObjectLiteralPatternWithComputedProperties)) { // If object literal is contextually typed by the implied type of a binding pattern, and if the // binding pattern specifies a default value for the property, make the property optional. const impliedProp = getPropertyOfType(contextualType, member.name); if (impliedProp) { prop.flags |= impliedProp.flags & SymbolFlags.Optional; } else if (!compilerOptions.suppressExcessPropertyErrors && !getIndexInfoOfType(contextualType, IndexKind.String)) { error(memberDecl.name, Diagnostics.Object_literal_may_only_specify_known_properties_and_0_does_not_exist_in_type_1, symbolToString(member), typeToString(contextualType)); } } prop.declarations = member.declarations; prop.parent = member.parent; if (member.valueDeclaration) { prop.valueDeclaration = member.valueDeclaration; } prop.type = type; prop.target = member; member = prop; } else if (memberDecl.kind === SyntaxKind.SpreadAssignment) { if (languageVersion < ScriptTarget.ES2015) { checkExternalEmitHelpers(memberDecl, ExternalEmitHelpers.Assign); } if (propertiesArray.length > 0) { spread = getSpreadType(spread, createObjectLiteralType()); propertiesArray = []; propertiesTable = createMap(); hasComputedStringProperty = false; hasComputedNumberProperty = false; typeFlags = 0; } const type = checkExpression((memberDecl as SpreadAssignment).expression); if (!isValidSpreadType(type)) { error(memberDecl, Diagnostics.Spread_types_may_only_be_created_from_object_types); return unknownType; } spread = getSpreadType(spread, type); offset = i + 1; continue; } else { // TypeScript 1.0 spec (April 2014) // A get accessor declaration is processed in the same manner as // an ordinary function declaration(section 6.1) with no parameters. // A set accessor declaration is processed in the same manner // as an ordinary function declaration with a single parameter and a Void return type. Debug.assert(memberDecl.kind === SyntaxKind.GetAccessor || memberDecl.kind === SyntaxKind.SetAccessor); checkNodeDeferred(memberDecl); } if (hasDynamicName(memberDecl)) { if (isNumericName(memberDecl.name)) { hasComputedNumberProperty = true; } else { hasComputedStringProperty = true; } } else { propertiesTable.set(member.name, member); } propertiesArray.push(member); } // If object literal is contextually typed by the implied type of a binding pattern, augment the result // type with those properties for which the binding pattern specifies a default value. if (contextualTypeHasPattern) { for (const prop of getPropertiesOfType(contextualType)) { if (!propertiesTable.get(prop.name)) { if (!(prop.flags & SymbolFlags.Optional)) { error(prop.valueDeclaration || (prop).bindingElement, Diagnostics.Initializer_provides_no_value_for_this_binding_element_and_the_binding_element_has_no_default_value); } propertiesTable.set(prop.name, prop); propertiesArray.push(prop); } } } if (spread !== emptyObjectType) { if (propertiesArray.length > 0) { spread = getSpreadType(spread, createObjectLiteralType()); } if (spread.flags & TypeFlags.Object) { // only set the symbol and flags if this is a (fresh) object type spread.flags |= propagatedFlags; spread.symbol = node.symbol; } return spread; } return createObjectLiteralType(); function createObjectLiteralType() { const stringIndexInfo = isJSObjectLiteral ? jsObjectLiteralIndexInfo : hasComputedStringProperty ? getObjectLiteralIndexInfo(node.properties, offset, propertiesArray, IndexKind.String) : undefined; const numberIndexInfo = hasComputedNumberProperty && !isJSObjectLiteral ? getObjectLiteralIndexInfo(node.properties, offset, propertiesArray, IndexKind.Number) : undefined; const result = createAnonymousType(node.symbol, propertiesTable, emptyArray, emptyArray, stringIndexInfo, numberIndexInfo); const freshObjectLiteralFlag = compilerOptions.suppressExcessPropertyErrors ? 0 : TypeFlags.FreshLiteral; result.flags |= TypeFlags.ContainsObjectLiteral | freshObjectLiteralFlag | (typeFlags & TypeFlags.PropagatingFlags); result.objectFlags |= ObjectFlags.ObjectLiteral; if (patternWithComputedProperties) { result.objectFlags |= ObjectFlags.ObjectLiteralPatternWithComputedProperties; } if (inDestructuringPattern) { result.pattern = node; } if (!(result.flags & TypeFlags.Nullable)) { propagatedFlags |= (result.flags & TypeFlags.PropagatingFlags); } return result; } } function isValidSpreadType(type: Type): boolean { return !!(type.flags & (TypeFlags.Any | TypeFlags.Null | TypeFlags.Undefined | TypeFlags.NonPrimitive) || type.flags & TypeFlags.Object && !isGenericMappedType(type) || type.flags & TypeFlags.UnionOrIntersection && !forEach((type).types, t => !isValidSpreadType(t))); } function checkJsxSelfClosingElement(node: JsxSelfClosingElement): Type { checkJsxOpeningLikeElement(node); return getJsxGlobalElementType() || anyType; } function checkJsxElement(node: JsxElement): Type { // Check attributes checkJsxOpeningLikeElement(node.openingElement); // Perform resolution on the closing tag so that rename/go to definition/etc work if (isJsxIntrinsicIdentifier(node.closingElement.tagName)) { getIntrinsicTagSymbol(node.closingElement); } else { checkExpression(node.closingElement.tagName); } return getJsxGlobalElementType() || anyType; } /** * Returns true iff the JSX element name would be a valid JS identifier, ignoring restrictions about keywords not being identifiers */ function isUnhyphenatedJsxName(name: string) { // - is the only character supported in JSX attribute names that isn't valid in JavaScript identifiers return name.indexOf("-") < 0; } /** * Returns true iff React would emit this tag name as a string rather than an identifier or qualified name */ function isJsxIntrinsicIdentifier(tagName: JsxTagNameExpression) { // TODO (yuisu): comment if (tagName.kind === SyntaxKind.PropertyAccessExpression || tagName.kind === SyntaxKind.ThisKeyword) { return false; } else { return isIntrinsicJsxName((tagName).text); } } /** * Get attributes type of the JSX opening-like element. The result is from resolving "attributes" property of the opening-like element. * * @param openingLikeElement a JSX opening-like element * @param filter a function to remove attributes that will not participate in checking whether attributes are assignable * @return an anonymous type (similar to the one returned by checkObjectLiteral) in which its properties are attributes property. * @remarks Because this function calls getSpreadType, it needs to use the same checks as checkObjectLiteral, * which also calls getSpreadType. */ function createJsxAttributesTypeFromAttributesProperty(openingLikeElement: JsxOpeningLikeElement, filter?: (symbol: Symbol) => boolean, checkMode?: CheckMode) { const attributes = openingLikeElement.attributes; let attributesTable = createMap(); let spread: Type = emptyObjectType; let attributesArray: Symbol[] = []; let hasSpreadAnyType = false; let typeToIntersect: Type; let explicitlySpecifyChildrenAttribute = false; const jsxChildrenPropertyName = getJsxElementChildrenPropertyname(); for (const attributeDecl of attributes.properties) { const member = attributeDecl.symbol; if (isJsxAttribute(attributeDecl)) { const exprType = attributeDecl.initializer ? checkExpression(attributeDecl.initializer, checkMode) : trueType; // is sugar for const attributeSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Transient | member.flags, member.name); attributeSymbol.declarations = member.declarations; attributeSymbol.parent = member.parent; if (member.valueDeclaration) { attributeSymbol.valueDeclaration = member.valueDeclaration; } attributeSymbol.type = exprType; attributeSymbol.target = member; attributesTable.set(attributeSymbol.name, attributeSymbol); attributesArray.push(attributeSymbol); if (attributeDecl.name.text === jsxChildrenPropertyName) { explicitlySpecifyChildrenAttribute = true; } } else { Debug.assert(attributeDecl.kind === SyntaxKind.JsxSpreadAttribute); if (attributesArray.length > 0) { spread = getSpreadType(spread, createJsxAttributesType(attributes.symbol, attributesTable)); attributesArray = []; attributesTable = createMap(); } const exprType = checkExpression(attributeDecl.expression); if (isTypeAny(exprType)) { hasSpreadAnyType = true; } if (isValidSpreadType(exprType)) { spread = getSpreadType(spread, exprType); } else { typeToIntersect = typeToIntersect ? getIntersectionType([typeToIntersect, exprType]) : exprType; } } } if (!hasSpreadAnyType) { if (spread !== emptyObjectType) { if (attributesArray.length > 0) { spread = getSpreadType(spread, createJsxAttributesType(attributes.symbol, attributesTable)); } attributesArray = getPropertiesOfType(spread); } attributesTable = createMap(); for (const attr of attributesArray) { if (!filter || filter(attr)) { attributesTable.set(attr.name, attr); } } } // Handle children attribute const parent = openingLikeElement.parent.kind === SyntaxKind.JsxElement ? openingLikeElement.parent as JsxElement : undefined; // We have to check that openingElement of the parent is the one we are visiting as this may not be true for selfClosingElement if (parent && parent.openingElement === openingLikeElement && parent.children.length > 0) { const childrenTypes: Type[] = []; for (const child of (parent as JsxElement).children) { // In React, JSX text that contains only whitespaces will be ignored so we don't want to type-check that // because then type of children property will have constituent of string type. if (child.kind === SyntaxKind.JsxText) { if (!child.containsOnlyWhiteSpaces) { childrenTypes.push(stringType); } } else { childrenTypes.push(checkExpression(child, checkMode)); } } if (!hasSpreadAnyType && jsxChildrenPropertyName && jsxChildrenPropertyName !== "") { // Error if there is a attribute named "children" explicitly specified and children element. // This is because children element will overwrite the value from attributes. // Note: we will not warn "children" attribute overwritten if "children" attribute is specified in object spread. if (explicitlySpecifyChildrenAttribute) { error(attributes, Diagnostics._0_are_specified_twice_The_attribute_named_0_will_be_overwritten, jsxChildrenPropertyName); } // If there are children in the body of JSX element, create dummy attribute "children" with anyType so that it will pass the attribute checking process const childrenPropSymbol = createSymbol(SymbolFlags.Property | SymbolFlags.Transient, jsxChildrenPropertyName); childrenPropSymbol.type = childrenTypes.length === 1 ? childrenTypes[0] : createArrayType(getUnionType(childrenTypes, /*subtypeReduction*/ false)); attributesTable.set(jsxChildrenPropertyName, childrenPropSymbol); } } if (hasSpreadAnyType) { return anyType; } const attributeType = createJsxAttributesType(attributes.symbol, attributesTable); return typeToIntersect && attributesTable.size ? getIntersectionType([typeToIntersect, attributeType]) : typeToIntersect ? typeToIntersect : attributeType; /** * Create anonymous type from given attributes symbol table. * @param symbol a symbol of JsxAttributes containing attributes corresponding to attributesTable * @param attributesTable a symbol table of attributes property */ function createJsxAttributesType(symbol: Symbol, attributesTable: Map) { const result = createAnonymousType(symbol, attributesTable, emptyArray, emptyArray, /*stringIndexInfo*/ undefined, /*numberIndexInfo*/ undefined); result.flags |= TypeFlags.JsxAttributes | TypeFlags.ContainsObjectLiteral; result.objectFlags |= ObjectFlags.ObjectLiteral; return result; } } /** * Check attributes property of opening-like element. This function is called during chooseOverload to get call signature of a JSX opening-like element. * (See "checkApplicableSignatureForJsxOpeningLikeElement" for how the function is used) * @param node a JSXAttributes to be resolved of its type */ function checkJsxAttributes(node: JsxAttributes, checkMode?: CheckMode) { return createJsxAttributesTypeFromAttributesProperty(node.parent as JsxOpeningLikeElement, /*filter*/ undefined, checkMode); } function getJsxType(name: string) { let jsxType = jsxTypes.get(name); if (jsxType === undefined) { jsxTypes.set(name, jsxType = getExportedTypeFromNamespace(JsxNames.JSX, name) || unknownType); } return jsxType; } /** * Looks up an intrinsic tag name and returns a symbol that either points to an intrinsic * property (in which case nodeLinks.jsxFlags will be IntrinsicNamedElement) or an intrinsic * string index signature (in which case nodeLinks.jsxFlags will be IntrinsicIndexedElement). * May also return unknownSymbol if both of these lookups fail. */ function getIntrinsicTagSymbol(node: JsxOpeningLikeElement | JsxClosingElement): Symbol { const links = getNodeLinks(node); if (!links.resolvedSymbol) { const intrinsicElementsType = getJsxType(JsxNames.IntrinsicElements); if (intrinsicElementsType !== unknownType) { // Property case const intrinsicProp = getPropertyOfType(intrinsicElementsType, (node.tagName).text); if (intrinsicProp) { links.jsxFlags |= JsxFlags.IntrinsicNamedElement; return links.resolvedSymbol = intrinsicProp; } // Intrinsic string indexer case const indexSignatureType = getIndexTypeOfType(intrinsicElementsType, IndexKind.String); if (indexSignatureType) { links.jsxFlags |= JsxFlags.IntrinsicIndexedElement; return links.resolvedSymbol = intrinsicElementsType.symbol; } // Wasn't found error(node, Diagnostics.Property_0_does_not_exist_on_type_1, (node.tagName).text, "JSX." + JsxNames.IntrinsicElements); return links.resolvedSymbol = unknownSymbol; } else { if (noImplicitAny) { error(node, Diagnostics.JSX_element_implicitly_has_type_any_because_no_interface_JSX_0_exists, JsxNames.IntrinsicElements); } return links.resolvedSymbol = unknownSymbol; } } return links.resolvedSymbol; } /** * Given a JSX element that is a class element, finds the Element Instance Type. If the * element is not a class element, or the class element type cannot be determined, returns 'undefined'. * For example, in the element , the element instance type is `MyClass` (not `typeof MyClass`). */ function getJsxElementInstanceType(node: JsxOpeningLikeElement, valueType: Type) { Debug.assert(!(valueType.flags & TypeFlags.Union)); if (isTypeAny(valueType)) { // Short-circuit if the class tag is using an element type 'any' return anyType; } // Resolve the signatures, preferring constructor let signatures = getSignaturesOfType(valueType, SignatureKind.Construct); if (signatures.length === 0) { // No construct signatures, try call signatures signatures = getSignaturesOfType(valueType, SignatureKind.Call); if (signatures.length === 0) { // We found no signatures at all, which is an error error(node.tagName, Diagnostics.JSX_element_type_0_does_not_have_any_construct_or_call_signatures, getTextOfNode(node.tagName)); return unknownType; } } const instantiatedSignatures = []; for (const signature of signatures) { if (signature.typeParameters) { const typeArguments = fillMissingTypeArguments(/*typeArguments*/ undefined, signature.typeParameters, /*minTypeArgumentCount*/ 0); instantiatedSignatures.push(getSignatureInstantiation(signature, typeArguments)); } else { instantiatedSignatures.push(signature); } } return getUnionType(map(instantiatedSignatures, getReturnTypeOfSignature), /*subtypeReduction*/ true); } /** * Look into JSX namespace and then look for container with matching name as nameOfAttribPropContainer. * Get a single property from that container if existed. Report an error if there are more than one property. * * @param nameOfAttribPropContainer a string of value JsxNames.ElementAttributesPropertyNameContainer or JsxNames.ElementChildrenAttributeNameContainer * if other string is given or the container doesn't exist, return undefined. */ function getNameFromJsxElementAttributesContainer(nameOfAttribPropContainer: string): string { // JSX const jsxNamespace = getGlobalSymbol(JsxNames.JSX, SymbolFlags.Namespace, /*diagnosticMessage*/ undefined); // JSX.ElementAttributesProperty | JSX.ElementChildrenAttribute [symbol] const jsxElementAttribPropInterfaceSym = jsxNamespace && getSymbol(jsxNamespace.exports, nameOfAttribPropContainer, SymbolFlags.Type); // JSX.ElementAttributesProperty | JSX.ElementChildrenAttribute [type] const jsxElementAttribPropInterfaceType = jsxElementAttribPropInterfaceSym && getDeclaredTypeOfSymbol(jsxElementAttribPropInterfaceSym); // The properties of JSX.ElementAttributesProperty | JSX.ElementChildrenAttribute const propertiesOfJsxElementAttribPropInterface = jsxElementAttribPropInterfaceType && getPropertiesOfType(jsxElementAttribPropInterfaceType); if (propertiesOfJsxElementAttribPropInterface) { // Element Attributes has zero properties, so the element attributes type will be the class instance type if (propertiesOfJsxElementAttribPropInterface.length === 0) { return ""; } // Element Attributes has one property, so the element attributes type will be the type of the corresponding // property of the class instance type else if (propertiesOfJsxElementAttribPropInterface.length === 1) { return propertiesOfJsxElementAttribPropInterface[0].name; } else if (propertiesOfJsxElementAttribPropInterface.length > 1) { // More than one property on ElementAttributesProperty is an error error(jsxElementAttribPropInterfaceSym.declarations[0], Diagnostics.The_global_type_JSX_0_may_not_have_more_than_one_property, nameOfAttribPropContainer); } } return undefined; } /// e.g. "props" for React.d.ts, /// or 'undefined' if ElementAttributesProperty doesn't exist (which means all /// non-intrinsic elements' attributes type is 'any'), /// or '' if it has 0 properties (which means every /// non-intrinsic elements' attributes type is the element instance type) function getJsxElementPropertiesName() { if (!_hasComputedJsxElementPropertiesName) { _hasComputedJsxElementPropertiesName = true; _jsxElementPropertiesName = getNameFromJsxElementAttributesContainer(JsxNames.ElementAttributesPropertyNameContainer); } return _jsxElementPropertiesName; } function getJsxElementChildrenPropertyname(): string { if (!_hasComputedJsxElementChildrenPropertyName) { _hasComputedJsxElementChildrenPropertyName = true; _jsxElementChildrenPropertyName = getNameFromJsxElementAttributesContainer(JsxNames.ElementChildrenAttributeNameContainer); } return _jsxElementChildrenPropertyName; } function getApparentTypeOfJsxPropsType(propsType: Type): Type { if (!propsType) { return undefined; } if (propsType.flags & TypeFlags.Intersection) { const propsApparentType: Type[] = []; for (const t of (propsType).types) { propsApparentType.push(getApparentType(t)); } return getIntersectionType(propsApparentType); } return getApparentType(propsType); } /** * Get JSX attributes type by trying to resolve openingLikeElement as a stateless function component. * Return only attributes type of successfully resolved call signature. * This function assumes that the caller handled other possible element type of the JSX element (e.g. stateful component) * Unlike tryGetAllJsxStatelessFunctionAttributesType, this function is a default behavior of type-checkers. * @param openingLikeElement a JSX opening-like element to find attributes type * @param elementType a type of the opening-like element. This elementType can't be an union type * @param elemInstanceType an element instance type (the result of newing or invoking this tag) * @param elementClassType a JSX-ElementClass type. This is a result of looking up ElementClass interface in the JSX global */ function defaultTryGetJsxStatelessFunctionAttributesType(openingLikeElement: JsxOpeningLikeElement, elementType: Type, elemInstanceType: Type, elementClassType?: Type): Type { Debug.assert(!(elementType.flags & TypeFlags.Union)); if (!elementClassType || !isTypeAssignableTo(elemInstanceType, elementClassType)) { const jsxStatelessElementType = getJsxGlobalStatelessElementType(); if (jsxStatelessElementType) { // We don't call getResolvedSignature here because we have already resolve the type of JSX Element. const callSignature = getResolvedJsxStatelessFunctionSignature(openingLikeElement, elementType, /*candidatesOutArray*/ undefined); if (callSignature !== unknownSignature) { const callReturnType = callSignature && getReturnTypeOfSignature(callSignature); let paramType = callReturnType && (callSignature.parameters.length === 0 ? emptyObjectType : getTypeOfSymbol(callSignature.parameters[0])); paramType = getApparentTypeOfJsxPropsType(paramType); if (callReturnType && isTypeAssignableTo(callReturnType, jsxStatelessElementType)) { // Intersect in JSX.IntrinsicAttributes if it exists const intrinsicAttributes = getJsxType(JsxNames.IntrinsicAttributes); if (intrinsicAttributes !== unknownType) { paramType = intersectTypes(intrinsicAttributes, paramType); } return paramType; } } } } return undefined; } /** * Get JSX attributes type by trying to resolve openingLikeElement as a stateless function component. * Return all attributes type of resolved call signature including candidate signatures. * This function assumes that the caller handled other possible element type of the JSX element. * This function is a behavior used by language service when looking up completion in JSX element. * @param openingLikeElement a JSX opening-like element to find attributes type * @param elementType a type of the opening-like element. This elementType can't be an union type * @param elemInstanceType an element instance type (the result of newing or invoking this tag) * @param elementClassType a JSX-ElementClass type. This is a result of looking up ElementClass interface in the JSX global */ function tryGetAllJsxStatelessFunctionAttributesType(openingLikeElement: JsxOpeningLikeElement, elementType: Type, elemInstanceType: Type, elementClassType?: Type): Type { Debug.assert(!(elementType.flags & TypeFlags.Union)); if (!elementClassType || !isTypeAssignableTo(elemInstanceType, elementClassType)) { // Is this is a stateless function component? See if its single signature's return type is assignable to the JSX Element Type const jsxStatelessElementType = getJsxGlobalStatelessElementType(); if (jsxStatelessElementType) { // We don't call getResolvedSignature because here we have already resolve the type of JSX Element. const candidatesOutArray: Signature[] = []; getResolvedJsxStatelessFunctionSignature(openingLikeElement, elementType, candidatesOutArray); let result: Type; let allMatchingAttributesType: Type; for (const candidate of candidatesOutArray) { const callReturnType = getReturnTypeOfSignature(candidate); let paramType = callReturnType && (candidate.parameters.length === 0 ? emptyObjectType : getTypeOfSymbol(candidate.parameters[0])); paramType = getApparentTypeOfJsxPropsType(paramType); if (callReturnType && isTypeAssignableTo(callReturnType, jsxStatelessElementType)) { let shouldBeCandidate = true; for (const attribute of openingLikeElement.attributes.properties) { if (isJsxAttribute(attribute) && isUnhyphenatedJsxName(attribute.name.text) && !getPropertyOfType(paramType, attribute.name.text)) { shouldBeCandidate = false; break; } } if (shouldBeCandidate) { result = intersectTypes(result, paramType); } allMatchingAttributesType = intersectTypes(allMatchingAttributesType, paramType); } } // If we can't find any matching, just return everything. if (!result) { result = allMatchingAttributesType; } // Intersect in JSX.IntrinsicAttributes if it exists const intrinsicAttributes = getJsxType(JsxNames.IntrinsicAttributes); if (intrinsicAttributes !== unknownType) { result = intersectTypes(intrinsicAttributes, result); } return result; } } return undefined; } /** * Resolve attributes type of the given opening-like element. The attributes type is a type of attributes associated with the given elementType. * For instance: * declare function Foo(attr: { p1: string}): JSX.Element; * ; // This function will try resolve "Foo" and return an attributes type of "Foo" which is "{ p1: string }" * * The function is intended to initially be called from getAttributesTypeFromJsxOpeningLikeElement which already handle JSX-intrinsic-element.. * This function will try to resolve custom JSX attributes type in following order: string literal, stateless function, and stateful component * * @param openingLikeElement a non-intrinsic JSXOPeningLikeElement * @param shouldIncludeAllStatelessAttributesType a boolean indicating whether to include all attributes types from all stateless function signature * @param elementType an instance type of the given opening-like element. If undefined, the function will check type openinglikeElement's tagname. * @param elementClassType a JSX-ElementClass type. This is a result of looking up ElementClass interface in the JSX global (imported from react.d.ts) * @return attributes type if able to resolve the type of node * anyType if there is no type ElementAttributesProperty or there is an error * emptyObjectType if there is no "prop" in the element instance type */ function resolveCustomJsxElementAttributesType(openingLikeElement: JsxOpeningLikeElement, shouldIncludeAllStatelessAttributesType: boolean, elementType?: Type, elementClassType?: Type): Type { if (!elementType) { elementType = checkExpression(openingLikeElement.tagName); } if (elementType.flags & TypeFlags.Union) { const types = (elementType as UnionType).types; return getUnionType(types.map(type => { return resolveCustomJsxElementAttributesType(openingLikeElement, shouldIncludeAllStatelessAttributesType, type, elementClassType); }), /*subtypeReduction*/ true); } // If the elemType is a string type, we have to return anyType to prevent an error downstream as we will try to find construct or call signature of the type if (elementType.flags & TypeFlags.String) { return anyType; } else if (elementType.flags & TypeFlags.StringLiteral) { // If the elemType is a stringLiteral type, we can then provide a check to make sure that the string literal type is one of the Jsx intrinsic element type // For example: // var CustomTag: "h1" = "h1"; // Hello World const intrinsicElementsType = getJsxType(JsxNames.IntrinsicElements); if (intrinsicElementsType !== unknownType) { const stringLiteralTypeName = (elementType).text; const intrinsicProp = getPropertyOfType(intrinsicElementsType, stringLiteralTypeName); if (intrinsicProp) { return getTypeOfSymbol(intrinsicProp); } const indexSignatureType = getIndexTypeOfType(intrinsicElementsType, IndexKind.String); if (indexSignatureType) { return indexSignatureType; } error(openingLikeElement, Diagnostics.Property_0_does_not_exist_on_type_1, stringLiteralTypeName, "JSX." + JsxNames.IntrinsicElements); } // If we need to report an error, we already done so here. So just return any to prevent any more error downstream return anyType; } // Get the element instance type (the result of newing or invoking this tag) const elemInstanceType = getJsxElementInstanceType(openingLikeElement, elementType); // If we should include all stateless attributes type, then get all attributes type from all stateless function signature. // Otherwise get only attributes type from the signature picked by choose-overload logic. const statelessAttributesType = shouldIncludeAllStatelessAttributesType ? tryGetAllJsxStatelessFunctionAttributesType(openingLikeElement, elementType, elemInstanceType, elementClassType) : defaultTryGetJsxStatelessFunctionAttributesType(openingLikeElement, elementType, elemInstanceType, elementClassType); if (statelessAttributesType) { return statelessAttributesType; } // Issue an error if this return type isn't assignable to JSX.ElementClass if (elementClassType) { checkTypeRelatedTo(elemInstanceType, elementClassType, assignableRelation, openingLikeElement, Diagnostics.JSX_element_type_0_is_not_a_constructor_function_for_JSX_elements); } if (isTypeAny(elemInstanceType)) { return elemInstanceType; } const propsName = getJsxElementPropertiesName(); if (propsName === undefined) { // There is no type ElementAttributesProperty, return 'any' return anyType; } else if (propsName === "") { // If there is no e.g. 'props' member in ElementAttributesProperty, use the element class type instead return elemInstanceType; } else { const attributesType = getTypeOfPropertyOfType(elemInstanceType, propsName); if (!attributesType) { // There is no property named 'props' on this instance type return emptyObjectType; } else if (isTypeAny(attributesType) || (attributesType === unknownType)) { // Props is of type 'any' or unknown return attributesType; } else { // Normal case -- add in IntrinsicClassElements and IntrinsicElements let apparentAttributesType = attributesType; const intrinsicClassAttribs = getJsxType(JsxNames.IntrinsicClassAttributes); if (intrinsicClassAttribs !== unknownType) { const typeParams = getLocalTypeParametersOfClassOrInterfaceOrTypeAlias(intrinsicClassAttribs.symbol); if (typeParams) { if (typeParams.length === 1) { apparentAttributesType = intersectTypes(createTypeReference(intrinsicClassAttribs, [elemInstanceType]), apparentAttributesType); } } else { apparentAttributesType = intersectTypes(attributesType, intrinsicClassAttribs); } } const intrinsicAttribs = getJsxType(JsxNames.IntrinsicAttributes); if (intrinsicAttribs !== unknownType) { apparentAttributesType = intersectTypes(intrinsicAttribs, apparentAttributesType); } return apparentAttributesType; } } } /** * Get attributes type of the given intrinsic opening-like Jsx element by resolving the tag name. * The function is intended to be called from a function which has checked that the opening element is an intrinsic element. * @param node an intrinsic JSX opening-like element */ function getIntrinsicAttributesTypeFromJsxOpeningLikeElement(node: JsxOpeningLikeElement): Type { Debug.assert(isJsxIntrinsicIdentifier(node.tagName)); const links = getNodeLinks(node); if (!links.resolvedJsxElementAttributesType) { const symbol = getIntrinsicTagSymbol(node); if (links.jsxFlags & JsxFlags.IntrinsicNamedElement) { return links.resolvedJsxElementAttributesType = getTypeOfSymbol(symbol); } else if (links.jsxFlags & JsxFlags.IntrinsicIndexedElement) { return links.resolvedJsxElementAttributesType = getIndexInfoOfSymbol(symbol, IndexKind.String).type; } else { return links.resolvedJsxElementAttributesType = unknownType; } } return links.resolvedJsxElementAttributesType; } /** * Get attributes type of the given custom opening-like JSX element. * This function is intended to be called from a caller that handles intrinsic JSX element already. * @param node a custom JSX opening-like element * @param shouldIncludeAllStatelessAttributesType a boolean value used by language service to get all possible attributes type from an overload stateless function component */ function getCustomJsxElementAttributesType(node: JsxOpeningLikeElement, shouldIncludeAllStatelessAttributesType: boolean): Type { const links = getNodeLinks(node); if (!links.resolvedJsxElementAttributesType) { const elemClassType = getJsxGlobalElementClassType(); return links.resolvedJsxElementAttributesType = resolveCustomJsxElementAttributesType(node, shouldIncludeAllStatelessAttributesType, /*elementType*/ undefined, elemClassType); } return links.resolvedJsxElementAttributesType; } /** * Get all possible attributes type, especially from an overload stateless function component, of the given JSX opening-like element. * This function is called by language service (see: completions-tryGetGlobalSymbols). * @param node a JSX opening-like element to get attributes type for */ function getAllAttributesTypeFromJsxOpeningLikeElement(node: JsxOpeningLikeElement): Type { if (isJsxIntrinsicIdentifier(node.tagName)) { return getIntrinsicAttributesTypeFromJsxOpeningLikeElement(node); } else { // Because in language service, the given JSX opening-like element may be incomplete and therefore, // we can't resolve to exact signature if the element is a stateless function component so the best thing to do is return all attributes type from all overloads. return getCustomJsxElementAttributesType(node, /*shouldIncludeAllStatelessAttributesType*/ true); } } /** * Get the attributes type, which indicates the attributes that are valid on the given JSXOpeningLikeElement. * @param node a JSXOpeningLikeElement node * @return an attributes type of the given node */ function getAttributesTypeFromJsxOpeningLikeElement(node: JsxOpeningLikeElement): Type { if (isJsxIntrinsicIdentifier(node.tagName)) { return getIntrinsicAttributesTypeFromJsxOpeningLikeElement(node); } else { return getCustomJsxElementAttributesType(node, /*shouldIncludeAllStatelessAttributesType*/ false); } } /** * Given a JSX attribute, returns the symbol for the corresponds property * of the element attributes type. Will return unknownSymbol for attributes * that have no matching element attributes type property. */ function getJsxAttributePropertySymbol(attrib: JsxAttribute): Symbol { const attributesType = getAttributesTypeFromJsxOpeningLikeElement(attrib.parent.parent as JsxOpeningElement); const prop = getPropertyOfType(attributesType, attrib.name.text); return prop || unknownSymbol; } function getJsxGlobalElementClassType(): Type { if (!deferredJsxElementClassType) { deferredJsxElementClassType = getExportedTypeFromNamespace(JsxNames.JSX, JsxNames.ElementClass); } return deferredJsxElementClassType; } function getJsxGlobalElementType(): Type { if (!deferredJsxElementType) { deferredJsxElementType = getExportedTypeFromNamespace(JsxNames.JSX, JsxNames.Element); } return deferredJsxElementType; } function getJsxGlobalStatelessElementType(): Type { if (!deferredJsxStatelessElementType) { const jsxElementType = getJsxGlobalElementType(); if (jsxElementType) { deferredJsxStatelessElementType = getUnionType([jsxElementType, nullType]); } } return deferredJsxStatelessElementType; } /** * Returns all the properties of the Jsx.IntrinsicElements interface */ function getJsxIntrinsicTagNames(): Symbol[] { const intrinsics = getJsxType(JsxNames.IntrinsicElements); return intrinsics ? getPropertiesOfType(intrinsics) : emptyArray; } function checkJsxPreconditions(errorNode: Node) { // Preconditions for using JSX if ((compilerOptions.jsx || JsxEmit.None) === JsxEmit.None) { error(errorNode, Diagnostics.Cannot_use_JSX_unless_the_jsx_flag_is_provided); } if (getJsxGlobalElementType() === undefined) { if (noImplicitAny) { error(errorNode, Diagnostics.JSX_element_implicitly_has_type_any_because_the_global_type_JSX_Element_does_not_exist); } } } function checkJsxOpeningLikeElement(node: JsxOpeningLikeElement) { checkGrammarJsxElement(node); checkJsxPreconditions(node); // The reactNamespace/jsxFactory's root symbol should be marked as 'used' so we don't incorrectly elide its import. // And if there is no reactNamespace/jsxFactory's symbol in scope when targeting React emit, we should issue an error. const reactRefErr = compilerOptions.jsx === JsxEmit.React ? Diagnostics.Cannot_find_name_0 : undefined; const reactNamespace = getJsxNamespace(); const reactSym = resolveName(node.tagName, reactNamespace, SymbolFlags.Value, reactRefErr, reactNamespace); if (reactSym) { // Mark local symbol as referenced here because it might not have been marked // if jsx emit was not react as there wont be error being emitted reactSym.isReferenced = true; // If react symbol is alias, mark it as refereced if (reactSym.flags & SymbolFlags.Alias && !isConstEnumOrConstEnumOnlyModule(resolveAlias(reactSym))) { markAliasSymbolAsReferenced(reactSym); } } checkJsxAttributesAssignableToTagNameAttributes(node); } /** * Check if a property with the given name is known anywhere in the given type. In an object type, a property * is considered known if the object type is empty and the check is for assignability, if the object type has * index signatures, or if the property is actually declared in the object type. In a union or intersection * type, a property is considered known if it is known in any constituent type. * @param targetType a type to search a given name in * @param name a property name to search * @param isComparingJsxAttributes a boolean flag indicating whether we are searching in JsxAttributesType */ function isKnownProperty(targetType: Type, name: string, isComparingJsxAttributes: boolean): boolean { if (targetType.flags & TypeFlags.Object) { const resolved = resolveStructuredTypeMembers(targetType); if (resolved.stringIndexInfo || resolved.numberIndexInfo && isNumericLiteralName(name) || getPropertyOfType(targetType, name) || isComparingJsxAttributes && !isUnhyphenatedJsxName(name)) { // For JSXAttributes, if the attribute has a hyphenated name, consider that the attribute to be known. return true; } } else if (targetType.flags & TypeFlags.UnionOrIntersection) { for (const t of (targetType).types) { if (isKnownProperty(t, name, isComparingJsxAttributes)) { return true; } } } return false; } /** * Check whether the given attributes of JSX opening-like element is assignable to the tagName attributes. * Get the attributes type of the opening-like element through resolving the tagName, "target attributes" * Check assignablity between given attributes property, "source attributes", and the "target attributes" * @param openingLikeElement an opening-like JSX element to check its JSXAttributes */ function checkJsxAttributesAssignableToTagNameAttributes(openingLikeElement: JsxOpeningLikeElement) { // The function involves following steps: // 1. Figure out expected attributes type by resolving tagName of the JSX opening-like element, targetAttributesType. // During these steps, we will try to resolve the tagName as intrinsic name, stateless function, stateful component (in the order) // 2. Solved JSX attributes type given by users, sourceAttributesType, which is by resolving "attributes" property of the JSX opening-like element. // 3. Check if the two are assignable to each other // targetAttributesType is a type of an attributes from resolving tagName of an opening-like JSX element. const targetAttributesType = isJsxIntrinsicIdentifier(openingLikeElement.tagName) ? getIntrinsicAttributesTypeFromJsxOpeningLikeElement(openingLikeElement) : getCustomJsxElementAttributesType(openingLikeElement, /*shouldIncludeAllStatelessAttributesType*/ false); // sourceAttributesType is a type of an attributes properties. // i.e
// attr1 and attr2 are treated as JSXAttributes attached in the JsxOpeningLikeElement as "attributes". const sourceAttributesType = createJsxAttributesTypeFromAttributesProperty(openingLikeElement, attribute => { return isUnhyphenatedJsxName(attribute.name) || !!(getPropertyOfType(targetAttributesType, attribute.name)); }); // If the targetAttributesType is an emptyObjectType, indicating that there is no property named 'props' on this instance type. // but there exists a sourceAttributesType, we need to explicitly give an error as normal assignability check allow excess properties and will pass. if (targetAttributesType === emptyObjectType && (isTypeAny(sourceAttributesType) || (sourceAttributesType).properties.length > 0)) { error(openingLikeElement, Diagnostics.JSX_element_class_does_not_support_attributes_because_it_does_not_have_a_0_property, getJsxElementPropertiesName()); } else { // Check if sourceAttributesType assignable to targetAttributesType though this check will allow excess properties const isSourceAttributeTypeAssignableToTarget = checkTypeAssignableTo(sourceAttributesType, targetAttributesType, openingLikeElement.attributes.properties.length > 0 ? openingLikeElement.attributes : openingLikeElement); // After we check for assignability, we will do another pass to check that all explicitly specified attributes have correct name corresponding in targetAttributeType. // This will allow excess properties in spread type as it is very common pattern to spread outter attributes into React component in its render method. if (isSourceAttributeTypeAssignableToTarget && !isTypeAny(sourceAttributesType) && !isTypeAny(targetAttributesType)) { for (const attribute of openingLikeElement.attributes.properties) { if (isJsxAttribute(attribute) && !isKnownProperty(targetAttributesType, attribute.name.text, /*isComparingJsxAttributes*/ true)) { error(attribute, Diagnostics.Property_0_does_not_exist_on_type_1, attribute.name.text, typeToString(targetAttributesType)); // We break here so that errors won't be cascading break; } } } } } function checkJsxExpression(node: JsxExpression, checkMode?: CheckMode) { if (node.expression) { const type = checkExpression(node.expression, checkMode); if (node.dotDotDotToken && type !== anyType && !isArrayType(type)) { error(node, Diagnostics.JSX_spread_child_must_be_an_array_type, node.toString(), typeToString(type)); } return type; } else { return unknownType; } } // If a symbol is a synthesized symbol with no value declaration, we assume it is a property. Example of this are the synthesized // '.prototype' property as well as synthesized tuple index properties. function getDeclarationKindFromSymbol(s: Symbol) { return s.valueDeclaration ? s.valueDeclaration.kind : SyntaxKind.PropertyDeclaration; } function getDeclarationNodeFlagsFromSymbol(s: Symbol): NodeFlags { return s.valueDeclaration ? getCombinedNodeFlags(s.valueDeclaration) : 0; } function isMethodLike(symbol: Symbol) { return !!(symbol.flags & SymbolFlags.Method || getCheckFlags(symbol) & CheckFlags.SyntheticMethod); } /** * Check whether the requested property access is valid. * Returns true if node is a valid property access, and false otherwise. * @param node The node to be checked. * @param left The left hand side of the property access (e.g.: the super in `super.foo`). * @param type The type of left. * @param prop The symbol for the right hand side of the property access. */ function checkPropertyAccessibility(node: PropertyAccessExpression | QualifiedName | VariableLikeDeclaration, left: Expression | QualifiedName, type: Type, prop: Symbol): boolean { const flags = getDeclarationModifierFlagsFromSymbol(prop); const errorNode = node.kind === SyntaxKind.PropertyAccessExpression || node.kind === SyntaxKind.VariableDeclaration ? (node).name : (node).right; if (getCheckFlags(prop) & CheckFlags.ContainsPrivate) { // Synthetic property with private constituent property error(errorNode, Diagnostics.Property_0_has_conflicting_declarations_and_is_inaccessible_in_type_1, symbolToString(prop), typeToString(type)); return false; } if (left.kind === SyntaxKind.SuperKeyword) { // TS 1.0 spec (April 2014): 4.8.2 // - In a constructor, instance member function, instance member accessor, or // instance member variable initializer where this references a derived class instance, // a super property access is permitted and must specify a public instance member function of the base class. // - In a static member function or static member accessor // where this references the constructor function object of a derived class, // a super property access is permitted and must specify a public static member function of the base class. if (languageVersion < ScriptTarget.ES2015) { const hasNonMethodDeclaration = forEachProperty(prop, p => { const propKind = getDeclarationKindFromSymbol(p); return propKind !== SyntaxKind.MethodDeclaration && propKind !== SyntaxKind.MethodSignature; }); if (hasNonMethodDeclaration) { error(errorNode, Diagnostics.Only_public_and_protected_methods_of_the_base_class_are_accessible_via_the_super_keyword); return false; } } if (flags & ModifierFlags.Abstract) { // A method cannot be accessed in a super property access if the method is abstract. // This error could mask a private property access error. But, a member // cannot simultaneously be private and abstract, so this will trigger an // additional error elsewhere. error(errorNode, Diagnostics.Abstract_method_0_in_class_1_cannot_be_accessed_via_super_expression, symbolToString(prop), typeToString(getDeclaringClass(prop))); return false; } } // Public properties are otherwise accessible. if (!(flags & ModifierFlags.NonPublicAccessibilityModifier)) { return true; } // Property is known to be private or protected at this point // Private property is accessible if the property is within the declaring class if (flags & ModifierFlags.Private) { const declaringClassDeclaration = getClassLikeDeclarationOfSymbol(getParentOfSymbol(prop)); if (!isNodeWithinClass(node, declaringClassDeclaration)) { error(errorNode, Diagnostics.Property_0_is_private_and_only_accessible_within_class_1, symbolToString(prop), typeToString(getDeclaringClass(prop))); return false; } return true; } // Property is known to be protected at this point // All protected properties of a supertype are accessible in a super access if (left.kind === SyntaxKind.SuperKeyword) { return true; } // Find the first enclosing class that has the declaring classes of the protected constituents // of the property as base classes const enclosingClass = forEachEnclosingClass(node, enclosingDeclaration => { const enclosingClass = getDeclaredTypeOfSymbol(getSymbolOfNode(enclosingDeclaration)); return isClassDerivedFromDeclaringClasses(enclosingClass, prop) ? enclosingClass : undefined; }); // A protected property is accessible if the property is within the declaring class or classes derived from it if (!enclosingClass) { error(errorNode, Diagnostics.Property_0_is_protected_and_only_accessible_within_class_1_and_its_subclasses, symbolToString(prop), typeToString(getDeclaringClass(prop) || type)); return false; } // No further restrictions for static properties if (flags & ModifierFlags.Static) { return true; } // An instance property must be accessed through an instance of the enclosing class if (type.flags & TypeFlags.TypeParameter && (type as TypeParameter).isThisType) { // get the original type -- represented as the type constraint of the 'this' type type = getConstraintOfTypeParameter(type); } if (!(getObjectFlags(getTargetType(type)) & ObjectFlags.ClassOrInterface && hasBaseType(type, enclosingClass))) { error(errorNode, Diagnostics.Property_0_is_protected_and_only_accessible_through_an_instance_of_class_1, symbolToString(prop), typeToString(enclosingClass)); return false; } return true; } function checkNonNullExpression(node: Expression | QualifiedName) { return checkNonNullType(checkExpression(node), node); } function checkNonNullType(type: Type, errorNode: Node): Type { const kind = (strictNullChecks ? getFalsyFlags(type) : type.flags) & TypeFlags.Nullable; if (kind) { error(errorNode, kind & TypeFlags.Undefined ? kind & TypeFlags.Null ? Diagnostics.Object_is_possibly_null_or_undefined : Diagnostics.Object_is_possibly_undefined : Diagnostics.Object_is_possibly_null); const t = getNonNullableType(type); return t.flags & (TypeFlags.Nullable | TypeFlags.Never) ? unknownType : t; } return type; } function checkPropertyAccessExpression(node: PropertyAccessExpression) { return checkPropertyAccessExpressionOrQualifiedName(node, node.expression, node.name); } function checkQualifiedName(node: QualifiedName) { return checkPropertyAccessExpressionOrQualifiedName(node, node.left, node.right); } function checkPropertyAccessExpressionOrQualifiedName(node: PropertyAccessExpression | QualifiedName, left: Expression | QualifiedName, right: Identifier) { const type = checkNonNullExpression(left); if (isTypeAny(type) || type === silentNeverType) { return type; } const apparentType = getApparentType(getWidenedType(type)); if (apparentType === unknownType || (type.flags & TypeFlags.TypeParameter && isTypeAny(apparentType))) { // handle cases when type is Type parameter with invalid or any constraint return apparentType; } const prop = getPropertyOfType(apparentType, right.text); if (!prop) { const stringIndexType = getIndexTypeOfType(apparentType, IndexKind.String); if (stringIndexType) { return stringIndexType; } if (right.text && !checkAndReportErrorForExtendingInterface(node)) { reportNonexistentProperty(right, type.flags & TypeFlags.TypeParameter && (type as TypeParameter).isThisType ? apparentType : type); } return unknownType; } if (prop.valueDeclaration) { if (isInPropertyInitializer(node) && !isBlockScopedNameDeclaredBeforeUse(prop.valueDeclaration, right)) { error(right, Diagnostics.Block_scoped_variable_0_used_before_its_declaration, right.text); } if (prop.valueDeclaration.kind === SyntaxKind.ClassDeclaration && node.parent && node.parent.kind !== SyntaxKind.TypeReference && !isInAmbientContext(prop.valueDeclaration) && !isBlockScopedNameDeclaredBeforeUse(prop.valueDeclaration, right)) { error(right, Diagnostics.Class_0_used_before_its_declaration, right.text); } } markPropertyAsReferenced(prop); getNodeLinks(node).resolvedSymbol = prop; checkPropertyAccessibility(node, left, apparentType, prop); const propType = getDeclaredOrApparentType(prop, node); const assignmentKind = getAssignmentTargetKind(node); if (assignmentKind) { if (isReferenceToReadonlyEntity(node, prop) || isReferenceThroughNamespaceImport(node)) { error(right, Diagnostics.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, right.text); return unknownType; } } // Only compute control flow type if this is a property access expression that isn't an // assignment target, and the referenced property was declared as a variable, property, // accessor, or optional method. if (node.kind !== SyntaxKind.PropertyAccessExpression || assignmentKind === AssignmentKind.Definite || !(prop.flags & (SymbolFlags.Variable | SymbolFlags.Property | SymbolFlags.Accessor)) && !(prop.flags & SymbolFlags.Method && propType.flags & TypeFlags.Union)) { return propType; } const flowType = getFlowTypeOfReference(node, propType); return assignmentKind ? getBaseTypeOfLiteralType(flowType) : flowType; } function reportNonexistentProperty(propNode: Identifier, containingType: Type) { let errorInfo: DiagnosticMessageChain; if (containingType.flags & TypeFlags.Union && !(containingType.flags & TypeFlags.Primitive)) { for (const subtype of (containingType as UnionType).types) { if (!getPropertyOfType(subtype, propNode.text)) { errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Property_0_does_not_exist_on_type_1, declarationNameToString(propNode), typeToString(subtype)); break; } } } const suggestion = getSuggestionForNonexistentProperty(propNode, containingType); if (suggestion) { errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Property_0_does_not_exist_on_type_1_Did_you_mean_2, declarationNameToString(propNode), typeToString(containingType), suggestion); } else { errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Property_0_does_not_exist_on_type_1, declarationNameToString(propNode), typeToString(containingType)); } diagnostics.add(createDiagnosticForNodeFromMessageChain(propNode, errorInfo)); } function getSuggestionForNonexistentProperty(node: Identifier, containingType: Type): string | undefined { const suggestion = getSpellingSuggestionForName(node.text, getPropertiesOfObjectType(containingType), SymbolFlags.Value); return suggestion && suggestion.name; } function getSuggestionForNonexistentSymbol(location: Node, name: string, meaning: SymbolFlags): string { const result = resolveNameHelper(location, name, meaning, /*nameNotFoundMessage*/ undefined, name, (symbols, name, meaning) => { const symbol = getSymbol(symbols, name, meaning); if (symbol) { // Sometimes the symbol is found when location is a return type of a function: `typeof x` and `x` is declared in the body of the function // So the table *contains* `x` but `x` isn't actually in scope. // However, resolveNameHelper will continue and call this callback again, so we'll eventually get a correct suggestion. return symbol; } return getSpellingSuggestionForName(name, arrayFrom(symbols.values()), meaning); }); if (result) { return result.name; } } /** * Given a name and a list of symbols whose names are *not* equal to the name, return a spelling suggestion if there is one that is close enough. * Names less than length 3 only check for case-insensitive equality, not levenshtein distance. * * If there is a candidate that's the same except for case, return that. * If there is a candidate that's within one edit of the name, return that. * Otherwise, return the candidate with the smallest Levenshtein distance, * except for candidates: * * With no name * * Whose meaning doesn't match the `meaning` parameter. * * Whose length differs from the target name by more than 0.3 of the length of the name. * * Whose levenshtein distance is more than 0.4 of the length of the name * (0.4 allows 1 substitution/transposition for every 5 characters, * and 1 insertion/deletion at 3 characters) * Names longer than 30 characters don't get suggestions because Levenshtein distance is an n**2 algorithm. */ function getSpellingSuggestionForName(name: string, symbols: Symbol[], meaning: SymbolFlags): Symbol | undefined { const worstDistance = name.length * 0.4; const maximumLengthDifference = Math.min(3, name.length * 0.34); let bestDistance = Number.MAX_VALUE; let bestCandidate = undefined; if (name.length > 30) { return undefined; } name = name.toLowerCase(); for (const candidate of symbols) { if (candidate.flags & meaning && candidate.name && Math.abs(candidate.name.length - name.length) < maximumLengthDifference) { const candidateName = candidate.name.toLowerCase(); if (candidateName === name) { return candidate; } if (candidateName.length < 3 || name.length < 3 || candidateName === "eval" || candidateName === "intl" || candidateName === "undefined" || candidateName === "map" || candidateName === "nan" || candidateName === "set") { continue; } const distance = levenshtein(name, candidateName); if (distance > worstDistance) { continue; } if (distance < 3) { return candidate; } else if (distance < bestDistance) { bestDistance = distance; bestCandidate = candidate; } } } return bestCandidate; } function markPropertyAsReferenced(prop: Symbol) { if (prop && noUnusedIdentifiers && (prop.flags & SymbolFlags.ClassMember) && prop.valueDeclaration && (getModifierFlags(prop.valueDeclaration) & ModifierFlags.Private)) { if (getCheckFlags(prop) & CheckFlags.Instantiated) { getSymbolLinks(prop).target.isReferenced = true; } else { prop.isReferenced = true; } } } function isInPropertyInitializer(node: Node): boolean { while (node) { if (node.parent && node.parent.kind === SyntaxKind.PropertyDeclaration && (node.parent as PropertyDeclaration).initializer === node) { return true; } node = node.parent; } return false; } function isValidPropertyAccess(node: PropertyAccessExpression | QualifiedName, propertyName: string): boolean { const left = node.kind === SyntaxKind.PropertyAccessExpression ? (node).expression : (node).left; const type = checkExpression(left); if (type !== unknownType && !isTypeAny(type)) { const prop = getPropertyOfType(getWidenedType(type), propertyName); if (prop) { return checkPropertyAccessibility(node, left, type, prop); } } return true; } /** * Return the symbol of the for-in variable declared or referenced by the given for-in statement. */ function getForInVariableSymbol(node: ForInStatement): Symbol { const initializer = node.initializer; if (initializer.kind === SyntaxKind.VariableDeclarationList) { const variable = (initializer).declarations[0]; if (variable && !isBindingPattern(variable.name)) { return getSymbolOfNode(variable); } } else if (initializer.kind === SyntaxKind.Identifier) { return getResolvedSymbol(initializer); } return undefined; } /** * Return true if the given type is considered to have numeric property names. */ function hasNumericPropertyNames(type: Type) { return getIndexTypeOfType(type, IndexKind.Number) && !getIndexTypeOfType(type, IndexKind.String); } /** * Return true if given node is an expression consisting of an identifier (possibly parenthesized) * that references a for-in variable for an object with numeric property names. */ function isForInVariableForNumericPropertyNames(expr: Expression) { const e = skipParentheses(expr); if (e.kind === SyntaxKind.Identifier) { const symbol = getResolvedSymbol(e); if (symbol.flags & SymbolFlags.Variable) { let child: Node = expr; let node = expr.parent; while (node) { if (node.kind === SyntaxKind.ForInStatement && child === (node).statement && getForInVariableSymbol(node) === symbol && hasNumericPropertyNames(getTypeOfExpression((node).expression))) { return true; } child = node; node = node.parent; } } } return false; } function checkIndexedAccess(node: ElementAccessExpression): Type { const objectType = checkNonNullExpression(node.expression); const indexExpression = node.argumentExpression; if (!indexExpression) { const sourceFile = getSourceFileOfNode(node); if (node.parent.kind === SyntaxKind.NewExpression && (node.parent).expression === node) { const start = skipTrivia(sourceFile.text, node.expression.end); const end = node.end; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.new_T_cannot_be_used_to_create_an_array_Use_new_Array_T_instead); } else { const start = node.end - "]".length; const end = node.end; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.Expression_expected); } return unknownType; } const indexType = isForInVariableForNumericPropertyNames(indexExpression) ? numberType : checkExpression(indexExpression); if (objectType === unknownType || objectType === silentNeverType) { return objectType; } if (isConstEnumObjectType(objectType) && indexExpression.kind !== SyntaxKind.StringLiteral) { error(indexExpression, Diagnostics.A_const_enum_member_can_only_be_accessed_using_a_string_literal); return unknownType; } return checkIndexedAccessIndexType(getIndexedAccessType(objectType, indexType, node), node); } function checkThatExpressionIsProperSymbolReference(expression: Expression, expressionType: Type, reportError: boolean): boolean { if (expressionType === unknownType) { // There is already an error, so no need to report one. return false; } if (!isWellKnownSymbolSyntactically(expression)) { return false; } // Make sure the property type is the primitive symbol type if ((expressionType.flags & TypeFlags.ESSymbol) === 0) { if (reportError) { error(expression, Diagnostics.A_computed_property_name_of_the_form_0_must_be_of_type_symbol, getTextOfNode(expression)); } return false; } // The name is Symbol., so make sure Symbol actually resolves to the // global Symbol object const leftHandSide = (expression).expression; const leftHandSideSymbol = getResolvedSymbol(leftHandSide); if (!leftHandSideSymbol) { return false; } const globalESSymbol = getGlobalESSymbolConstructorSymbol(/*reportErrors*/ true); if (!globalESSymbol) { // Already errored when we tried to look up the symbol return false; } if (leftHandSideSymbol !== globalESSymbol) { if (reportError) { error(leftHandSide, Diagnostics.Symbol_reference_does_not_refer_to_the_global_Symbol_constructor_object); } return false; } return true; } function callLikeExpressionMayHaveTypeArguments(node: CallLikeExpression): node is CallExpression | NewExpression { // TODO: Also include tagged templates (https://github.com/Microsoft/TypeScript/issues/11947) return isCallOrNewExpression(node); } function resolveUntypedCall(node: CallLikeExpression): Signature { if (callLikeExpressionMayHaveTypeArguments(node)) { // Check type arguments even though we will give an error that untyped calls may not accept type arguments. // This gets us diagnostics for the type arguments and marks them as referenced. forEach(node.typeArguments, checkSourceElement); } if (node.kind === SyntaxKind.TaggedTemplateExpression) { checkExpression((node).template); } else if (node.kind !== SyntaxKind.Decorator) { forEach((node).arguments, argument => { checkExpression(argument); }); } return anySignature; } function resolveErrorCall(node: CallLikeExpression): Signature { resolveUntypedCall(node); return unknownSignature; } // Re-order candidate signatures into the result array. Assumes the result array to be empty. // The candidate list orders groups in reverse, but within a group signatures are kept in declaration order // A nit here is that we reorder only signatures that belong to the same symbol, // so order how inherited signatures are processed is still preserved. // interface A { (x: string): void } // interface B extends A { (x: 'foo'): string } // const b: B; // b('foo') // <- here overloads should be processed as [(x:'foo'): string, (x: string): void] function reorderCandidates(signatures: Signature[], result: Signature[]): void { let lastParent: Node; let lastSymbol: Symbol; let cutoffIndex = 0; let index: number; let specializedIndex = -1; let spliceIndex: number; Debug.assert(!result.length); for (const signature of signatures) { const symbol = signature.declaration && getSymbolOfNode(signature.declaration); const parent = signature.declaration && signature.declaration.parent; if (!lastSymbol || symbol === lastSymbol) { if (lastParent && parent === lastParent) { index++; } else { lastParent = parent; index = cutoffIndex; } } else { // current declaration belongs to a different symbol // set cutoffIndex so re-orderings in the future won't change result set from 0 to cutoffIndex index = cutoffIndex = result.length; lastParent = parent; } lastSymbol = symbol; // specialized signatures always need to be placed before non-specialized signatures regardless // of the cutoff position; see GH#1133 if (signature.hasLiteralTypes) { specializedIndex++; spliceIndex = specializedIndex; // The cutoff index always needs to be greater than or equal to the specialized signature index // in order to prevent non-specialized signatures from being added before a specialized // signature. cutoffIndex++; } else { spliceIndex = index; } result.splice(spliceIndex, 0, signature); } } function getSpreadArgumentIndex(args: Expression[]): number { for (let i = 0; i < args.length; i++) { const arg = args[i]; if (arg && arg.kind === SyntaxKind.SpreadElement) { return i; } } return -1; } function hasCorrectArity(node: CallLikeExpression, args: Expression[], signature: Signature, signatureHelpTrailingComma = false) { let argCount: number; // Apparent number of arguments we will have in this call let typeArguments: NodeArray; // Type arguments (undefined if none) let callIsIncomplete: boolean; // In incomplete call we want to be lenient when we have too few arguments let isDecorator: boolean; let spreadArgIndex = -1; if (isJsxOpeningLikeElement(node)) { // The arity check will be done in "checkApplicableSignatureForJsxOpeningLikeElement". return true; } if (node.kind === SyntaxKind.TaggedTemplateExpression) { const tagExpression = node; // Even if the call is incomplete, we'll have a missing expression as our last argument, // so we can say the count is just the arg list length argCount = args.length; typeArguments = undefined; if (tagExpression.template.kind === SyntaxKind.TemplateExpression) { // If a tagged template expression lacks a tail literal, the call is incomplete. // Specifically, a template only can end in a TemplateTail or a Missing literal. const templateExpression = tagExpression.template; const lastSpan = lastOrUndefined(templateExpression.templateSpans); Debug.assert(lastSpan !== undefined); // we should always have at least one span. callIsIncomplete = nodeIsMissing(lastSpan.literal) || !!lastSpan.literal.isUnterminated; } else { // If the template didn't end in a backtick, or its beginning occurred right prior to EOF, // then this might actually turn out to be a TemplateHead in the future; // so we consider the call to be incomplete. const templateLiteral = tagExpression.template; Debug.assert(templateLiteral.kind === SyntaxKind.NoSubstitutionTemplateLiteral); callIsIncomplete = !!templateLiteral.isUnterminated; } } else if (node.kind === SyntaxKind.Decorator) { isDecorator = true; typeArguments = undefined; argCount = getEffectiveArgumentCount(node, /*args*/ undefined, signature); } else { const callExpression = node; if (!callExpression.arguments) { // This only happens when we have something of the form: 'new C' Debug.assert(callExpression.kind === SyntaxKind.NewExpression); return signature.minArgumentCount === 0; } argCount = signatureHelpTrailingComma ? args.length + 1 : args.length; // If we are missing the close parenthesis, the call is incomplete. callIsIncomplete = callExpression.arguments.end === callExpression.end; typeArguments = callExpression.typeArguments; spreadArgIndex = getSpreadArgumentIndex(args); } // If the user supplied type arguments, but the number of type arguments does not match // the declared number of type parameters, the call has an incorrect arity. const numTypeParameters = length(signature.typeParameters); const minTypeArgumentCount = getMinTypeArgumentCount(signature.typeParameters); const hasRightNumberOfTypeArgs = !typeArguments || (typeArguments.length >= minTypeArgumentCount && typeArguments.length <= numTypeParameters); if (!hasRightNumberOfTypeArgs) { return false; } // If spread arguments are present, check that they correspond to a rest parameter. If so, no // further checking is necessary. if (spreadArgIndex >= 0) { return isRestParameterIndex(signature, spreadArgIndex); } // Too many arguments implies incorrect arity. if (!signature.hasRestParameter && argCount > signature.parameters.length) { return false; } // If the call is incomplete, we should skip the lower bound check. const hasEnoughArguments = argCount >= signature.minArgumentCount; return callIsIncomplete || hasEnoughArguments; } // If type has a single call signature and no other members, return that signature. Otherwise, return undefined. function getSingleCallSignature(type: Type): Signature { if (type.flags & TypeFlags.Object) { const resolved = resolveStructuredTypeMembers(type); if (resolved.callSignatures.length === 1 && resolved.constructSignatures.length === 0 && resolved.properties.length === 0 && !resolved.stringIndexInfo && !resolved.numberIndexInfo) { return resolved.callSignatures[0]; } } return undefined; } // Instantiate a generic signature in the context of a non-generic signature (section 3.8.5 in TypeScript spec) function instantiateSignatureInContextOf(signature: Signature, contextualSignature: Signature, contextualMapper: TypeMapper): Signature { const context = createInferenceContext(signature, /*inferUnionTypes*/ true, /*useAnyForNoInferences*/ false); forEachMatchingParameterType(contextualSignature, signature, (source, target) => { // Type parameters from outer context referenced by source type are fixed by instantiation of the source type inferTypesWithContext(context, instantiateType(source, contextualMapper), target); }); return getSignatureInstantiation(signature, getInferredTypes(context)); } function inferTypeArguments(node: CallLikeExpression, signature: Signature, args: Expression[], excludeArgument: boolean[], context: InferenceContext): void { const typeParameters = signature.typeParameters; const inferenceMapper = getInferenceMapper(context); // Clear out all the inference results from the last time inferTypeArguments was called on this context for (let i = 0; i < typeParameters.length; i++) { // As an optimization, we don't have to clear (and later recompute) inferred types // for type parameters that have already been fixed on the previous call to inferTypeArguments. // It would be just as correct to reset all of them. But then we'd be repeating the same work // for the type parameters that were fixed, namely the work done by getInferredType. if (!context.inferences[i].isFixed) { context.inferredTypes[i] = undefined; } } // On this call to inferTypeArguments, we may get more inferences for certain type parameters that were not // fixed last time. This means that a type parameter that failed inference last time may succeed this time, // or vice versa. Therefore, the failedTypeParameterIndex is useless if it points to an unfixed type parameter, // because it may change. So here we reset it. However, getInferredType will not revisit any type parameters // that were previously fixed. So if a fixed type parameter failed previously, it will fail again because // it will contain the exact same set of inferences. So if we reset the index from a fixed type parameter, // we will lose information that we won't recover this time around. if (context.failedTypeParameterIndex !== undefined && !context.inferences[context.failedTypeParameterIndex].isFixed) { context.failedTypeParameterIndex = undefined; } const thisType = getThisTypeOfSignature(signature); if (thisType) { const thisArgumentNode = getThisArgumentOfCall(node); const thisArgumentType = thisArgumentNode ? checkExpression(thisArgumentNode) : voidType; inferTypesWithContext(context, thisArgumentType, thisType); } // We perform two passes over the arguments. In the first pass we infer from all arguments, but use // wildcards for all context sensitive function expressions. const argCount = getEffectiveArgumentCount(node, args, signature); for (let i = 0; i < argCount; i++) { const arg = getEffectiveArgument(node, args, i); // If the effective argument is 'undefined', then it is an argument that is present but is synthetic. if (arg === undefined || arg.kind !== SyntaxKind.OmittedExpression) { const paramType = getTypeAtPosition(signature, i); let argType = getEffectiveArgumentType(node, i); // If the effective argument type is 'undefined', there is no synthetic type // for the argument. In that case, we should check the argument. if (argType === undefined) { // For context sensitive arguments we pass the identityMapper, which is a signal to treat all // context sensitive function expressions as wildcards const mapper = excludeArgument && excludeArgument[i] !== undefined ? identityMapper : inferenceMapper; argType = checkExpressionWithContextualType(arg, paramType, mapper); } inferTypesWithContext(context, argType, paramType); } } // In the second pass we visit only context sensitive arguments, and only those that aren't excluded, this // time treating function expressions normally (which may cause previously inferred type arguments to be fixed // as we construct types for contextually typed parameters) // Decorators will not have `excludeArgument`, as their arguments cannot be contextually typed. // Tagged template expressions will always have `undefined` for `excludeArgument[0]`. if (excludeArgument) { for (let i = 0; i < argCount; i++) { // No need to check for omitted args and template expressions, their exclusion value is always undefined if (excludeArgument[i] === false) { const arg = args[i]; const paramType = getTypeAtPosition(signature, i); inferTypesWithContext(context, checkExpressionWithContextualType(arg, paramType, inferenceMapper), paramType); } } } getInferredTypes(context); } function checkTypeArguments(signature: Signature, typeArgumentNodes: TypeNode[], typeArgumentTypes: Type[], reportErrors: boolean, headMessage?: DiagnosticMessage): boolean { const typeParameters = signature.typeParameters; let typeArgumentsAreAssignable = true; let mapper: TypeMapper; for (let i = 0; i < typeArgumentNodes.length; i++) { if (typeArgumentsAreAssignable /* so far */) { const constraint = getConstraintOfTypeParameter(typeParameters[i]); if (constraint) { let errorInfo: DiagnosticMessageChain; let typeArgumentHeadMessage = Diagnostics.Type_0_does_not_satisfy_the_constraint_1; if (reportErrors && headMessage) { errorInfo = chainDiagnosticMessages(errorInfo, typeArgumentHeadMessage); typeArgumentHeadMessage = headMessage; } if (!mapper) { mapper = createTypeMapper(typeParameters, typeArgumentTypes); } const typeArgument = typeArgumentTypes[i]; typeArgumentsAreAssignable = checkTypeAssignableTo( typeArgument, getTypeWithThisArgument(instantiateType(constraint, mapper), typeArgument), reportErrors ? typeArgumentNodes[i] : undefined, typeArgumentHeadMessage, errorInfo); } } } return typeArgumentsAreAssignable; } /** * Check if the given signature can possibly be a signature called by the JSX opening-like element. * @param node a JSX opening-like element we are trying to figure its call signature * @param signature a candidate signature we are trying whether it is a call signature * @param relation a relationship to check parameter and argument type * @param excludeArgument */ function checkApplicableSignatureForJsxOpeningLikeElement(node: JsxOpeningLikeElement, signature: Signature, relation: Map) { // JSX opening-like element has correct arity for stateless-function component if the one of the following condition is true: // 1. callIsIncomplete // 2. attributes property has same number of properties as the parameter object type. // We can figure that out by resolving attributes property and check number of properties in the resolved type // If the call has correct arity, we will then check if the argument type and parameter type is assignable const callIsIncomplete = node.attributes.end === node.end; // If we are missing the close "/>", the call is incomplete if (callIsIncomplete) { return true; } const headMessage = Diagnostics.Argument_of_type_0_is_not_assignable_to_parameter_of_type_1; // Stateless function components can have maximum of three arguments: "props", "context", and "updater". // However "context" and "updater" are implicit and can't be specify by users. Only the first parameter, props, // can be specified by users through attributes property. const paramType = getTypeAtPosition(signature, 0); const attributesType = checkExpressionWithContextualType(node.attributes, paramType, /*contextualMapper*/ undefined); const argProperties = getPropertiesOfType(attributesType); for (const arg of argProperties) { if (!getPropertyOfType(paramType, arg.name) && isUnhyphenatedJsxName(arg.name)) { return false; } } return checkTypeRelatedTo(attributesType, paramType, relation, /*errorNode*/ undefined, headMessage); } function checkApplicableSignature(node: CallLikeExpression, args: Expression[], signature: Signature, relation: Map, excludeArgument: boolean[], reportErrors: boolean) { if (isJsxOpeningLikeElement(node)) { return checkApplicableSignatureForJsxOpeningLikeElement(node, signature, relation); } const thisType = getThisTypeOfSignature(signature); if (thisType && thisType !== voidType && node.kind !== SyntaxKind.NewExpression) { // If the called expression is not of the form `x.f` or `x["f"]`, then sourceType = voidType // If the signature's 'this' type is voidType, then the check is skipped -- anything is compatible. // If the expression is a new expression, then the check is skipped. const thisArgumentNode = getThisArgumentOfCall(node); const thisArgumentType = thisArgumentNode ? checkExpression(thisArgumentNode) : voidType; const errorNode = reportErrors ? (thisArgumentNode || node) : undefined; const headMessage = Diagnostics.The_this_context_of_type_0_is_not_assignable_to_method_s_this_of_type_1; if (!checkTypeRelatedTo(thisArgumentType, getThisTypeOfSignature(signature), relation, errorNode, headMessage)) { return false; } } const headMessage = Diagnostics.Argument_of_type_0_is_not_assignable_to_parameter_of_type_1; const argCount = getEffectiveArgumentCount(node, args, signature); for (let i = 0; i < argCount; i++) { const arg = getEffectiveArgument(node, args, i); // If the effective argument is 'undefined', then it is an argument that is present but is synthetic. if (arg === undefined || arg.kind !== SyntaxKind.OmittedExpression) { // Check spread elements against rest type (from arity check we know spread argument corresponds to a rest parameter) const paramType = getTypeAtPosition(signature, i); let argType = getEffectiveArgumentType(node, i); // If the effective argument type is 'undefined', there is no synthetic type // for the argument. In that case, we should check the argument. if (argType === undefined) { argType = checkExpressionWithContextualType(arg, paramType, excludeArgument && excludeArgument[i] ? identityMapper : undefined); } // Use argument expression as error location when reporting errors const errorNode = reportErrors ? getEffectiveArgumentErrorNode(node, i, arg) : undefined; if (!checkTypeRelatedTo(argType, paramType, relation, errorNode, headMessage)) { return false; } } } return true; } /** * Returns the this argument in calls like x.f(...) and x[f](...). Undefined otherwise. */ function getThisArgumentOfCall(node: CallLikeExpression): LeftHandSideExpression { if (node.kind === SyntaxKind.CallExpression) { const callee = (node).expression; if (callee.kind === SyntaxKind.PropertyAccessExpression) { return (callee as PropertyAccessExpression).expression; } else if (callee.kind === SyntaxKind.ElementAccessExpression) { return (callee as ElementAccessExpression).expression; } } } /** * Returns the effective arguments for an expression that works like a function invocation. * * If 'node' is a CallExpression or a NewExpression, then its argument list is returned. * If 'node' is a TaggedTemplateExpression, a new argument list is constructed from the substitution * expressions, where the first element of the list is `undefined`. * If 'node' is a Decorator, the argument list will be `undefined`, and its arguments and types * will be supplied from calls to `getEffectiveArgumentCount` and `getEffectiveArgumentType`. */ function getEffectiveCallArguments(node: CallLikeExpression): Expression[] { let args: Expression[]; if (node.kind === SyntaxKind.TaggedTemplateExpression) { const template = (node).template; args = [undefined]; if (template.kind === SyntaxKind.TemplateExpression) { forEach((template).templateSpans, span => { args.push(span.expression); }); } } else if (node.kind === SyntaxKind.Decorator) { // For a decorator, we return undefined as we will determine // the number and types of arguments for a decorator using // `getEffectiveArgumentCount` and `getEffectiveArgumentType` below. return undefined; } else if (isJsxOpeningLikeElement(node)) { args = node.attributes.properties.length > 0 ? [node.attributes] : emptyArray; } else { args = node.arguments || emptyArray; } return args; } /** * Returns the effective argument count for a node that works like a function invocation. * If 'node' is a Decorator, the number of arguments is derived from the decoration * target and the signature: * If 'node.target' is a class declaration or class expression, the effective argument * count is 1. * If 'node.target' is a parameter declaration, the effective argument count is 3. * If 'node.target' is a property declaration, the effective argument count is 2. * If 'node.target' is a method or accessor declaration, the effective argument count * is 3, although it can be 2 if the signature only accepts two arguments, allowing * us to match a property decorator. * Otherwise, the argument count is the length of the 'args' array. */ function getEffectiveArgumentCount(node: CallLikeExpression, args: Expression[], signature: Signature) { if (node.kind === SyntaxKind.Decorator) { switch (node.parent.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: // A class decorator will have one argument (see `ClassDecorator` in core.d.ts) return 1; case SyntaxKind.PropertyDeclaration: // A property declaration decorator will have two arguments (see // `PropertyDecorator` in core.d.ts) return 2; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: // A method or accessor declaration decorator will have two or three arguments (see // `PropertyDecorator` and `MethodDecorator` in core.d.ts) // If we are emitting decorators for ES3, we will only pass two arguments. if (languageVersion === ScriptTarget.ES3) { return 2; } // If the method decorator signature only accepts a target and a key, we will only // type check those arguments. return signature.parameters.length >= 3 ? 3 : 2; case SyntaxKind.Parameter: // A parameter declaration decorator will have three arguments (see // `ParameterDecorator` in core.d.ts) return 3; } } else { return args.length; } } /** * Returns the effective type of the first argument to a decorator. * If 'node' is a class declaration or class expression, the effective argument type * is the type of the static side of the class. * If 'node' is a parameter declaration, the effective argument type is either the type * of the static or instance side of the class for the parameter's parent method, * depending on whether the method is declared static. * For a constructor, the type is always the type of the static side of the class. * If 'node' is a property, method, or accessor declaration, the effective argument * type is the type of the static or instance side of the parent class for class * element, depending on whether the element is declared static. */ function getEffectiveDecoratorFirstArgumentType(node: Node): Type { // The first argument to a decorator is its `target`. if (node.kind === SyntaxKind.ClassDeclaration) { // For a class decorator, the `target` is the type of the class (e.g. the // "static" or "constructor" side of the class) const classSymbol = getSymbolOfNode(node); return getTypeOfSymbol(classSymbol); } if (node.kind === SyntaxKind.Parameter) { // For a parameter decorator, the `target` is the parent type of the // parameter's containing method. node = node.parent; if (node.kind === SyntaxKind.Constructor) { const classSymbol = getSymbolOfNode(node); return getTypeOfSymbol(classSymbol); } } if (node.kind === SyntaxKind.PropertyDeclaration || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { // For a property or method decorator, the `target` is the // "static"-side type of the parent of the member if the member is // declared "static"; otherwise, it is the "instance"-side type of the // parent of the member. return getParentTypeOfClassElement(node); } Debug.fail("Unsupported decorator target."); return unknownType; } /** * Returns the effective type for the second argument to a decorator. * If 'node' is a parameter, its effective argument type is one of the following: * If 'node.parent' is a constructor, the effective argument type is 'any', as we * will emit `undefined`. * If 'node.parent' is a member with an identifier, numeric, or string literal name, * the effective argument type will be a string literal type for the member name. * If 'node.parent' is a computed property name, the effective argument type will * either be a symbol type or the string type. * If 'node' is a member with an identifier, numeric, or string literal name, the * effective argument type will be a string literal type for the member name. * If 'node' is a computed property name, the effective argument type will either * be a symbol type or the string type. * A class decorator does not have a second argument type. */ function getEffectiveDecoratorSecondArgumentType(node: Node) { // The second argument to a decorator is its `propertyKey` if (node.kind === SyntaxKind.ClassDeclaration) { Debug.fail("Class decorators should not have a second synthetic argument."); return unknownType; } if (node.kind === SyntaxKind.Parameter) { node = node.parent; if (node.kind === SyntaxKind.Constructor) { // For a constructor parameter decorator, the `propertyKey` will be `undefined`. return anyType; } // For a non-constructor parameter decorator, the `propertyKey` will be either // a string or a symbol, based on the name of the parameter's containing method. } if (node.kind === SyntaxKind.PropertyDeclaration || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { // The `propertyKey` for a property or method decorator will be a // string literal type if the member name is an identifier, number, or string; // otherwise, if the member name is a computed property name it will // be either string or symbol. const element = node; switch (element.name.kind) { case SyntaxKind.Identifier: case SyntaxKind.NumericLiteral: case SyntaxKind.StringLiteral: return getLiteralTypeForText(TypeFlags.StringLiteral, (element.name).text); case SyntaxKind.ComputedPropertyName: const nameType = checkComputedPropertyName(element.name); if (isTypeOfKind(nameType, TypeFlags.ESSymbol)) { return nameType; } else { return stringType; } default: Debug.fail("Unsupported property name."); return unknownType; } } Debug.fail("Unsupported decorator target."); return unknownType; } /** * Returns the effective argument type for the third argument to a decorator. * If 'node' is a parameter, the effective argument type is the number type. * If 'node' is a method or accessor, the effective argument type is a * `TypedPropertyDescriptor` instantiated with the type of the member. * Class and property decorators do not have a third effective argument. */ function getEffectiveDecoratorThirdArgumentType(node: Node) { // The third argument to a decorator is either its `descriptor` for a method decorator // or its `parameterIndex` for a parameter decorator if (node.kind === SyntaxKind.ClassDeclaration) { Debug.fail("Class decorators should not have a third synthetic argument."); return unknownType; } if (node.kind === SyntaxKind.Parameter) { // The `parameterIndex` for a parameter decorator is always a number return numberType; } if (node.kind === SyntaxKind.PropertyDeclaration) { Debug.fail("Property decorators should not have a third synthetic argument."); return unknownType; } if (node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { // The `descriptor` for a method decorator will be a `TypedPropertyDescriptor` // for the type of the member. const propertyType = getTypeOfNode(node); return createTypedPropertyDescriptorType(propertyType); } Debug.fail("Unsupported decorator target."); return unknownType; } /** * Returns the effective argument type for the provided argument to a decorator. */ function getEffectiveDecoratorArgumentType(node: Decorator, argIndex: number): Type { if (argIndex === 0) { return getEffectiveDecoratorFirstArgumentType(node.parent); } else if (argIndex === 1) { return getEffectiveDecoratorSecondArgumentType(node.parent); } else if (argIndex === 2) { return getEffectiveDecoratorThirdArgumentType(node.parent); } Debug.fail("Decorators should not have a fourth synthetic argument."); return unknownType; } /** * Gets the effective argument type for an argument in a call expression. */ function getEffectiveArgumentType(node: CallLikeExpression, argIndex: number): Type { // Decorators provide special arguments, a tagged template expression provides // a special first argument, and string literals get string literal types // unless we're reporting errors if (node.kind === SyntaxKind.Decorator) { return getEffectiveDecoratorArgumentType(node, argIndex); } else if (argIndex === 0 && node.kind === SyntaxKind.TaggedTemplateExpression) { return getGlobalTemplateStringsArrayType(); } // This is not a synthetic argument, so we return 'undefined' // to signal that the caller needs to check the argument. return undefined; } /** * Gets the effective argument expression for an argument in a call expression. */ function getEffectiveArgument(node: CallLikeExpression, args: Expression[], argIndex: number) { // For a decorator or the first argument of a tagged template expression we return undefined. if (node.kind === SyntaxKind.Decorator || (argIndex === 0 && node.kind === SyntaxKind.TaggedTemplateExpression)) { return undefined; } return args[argIndex]; } /** * Gets the error node to use when reporting errors for an effective argument. */ function getEffectiveArgumentErrorNode(node: CallLikeExpression, argIndex: number, arg: Expression) { if (node.kind === SyntaxKind.Decorator) { // For a decorator, we use the expression of the decorator for error reporting. return (node).expression; } else if (argIndex === 0 && node.kind === SyntaxKind.TaggedTemplateExpression) { // For a the first argument of a tagged template expression, we use the template of the tag for error reporting. return (node).template; } else { return arg; } } function resolveCall(node: CallLikeExpression, signatures: Signature[], candidatesOutArray: Signature[], headMessage?: DiagnosticMessage): Signature { const isTaggedTemplate = node.kind === SyntaxKind.TaggedTemplateExpression; const isDecorator = node.kind === SyntaxKind.Decorator; const isJsxOpeningOrSelfClosingElement = isJsxOpeningLikeElement(node); let typeArguments: TypeNode[]; if (!isTaggedTemplate && !isDecorator && !isJsxOpeningOrSelfClosingElement) { typeArguments = (node).typeArguments; // We already perform checking on the type arguments on the class declaration itself. if ((node).expression.kind !== SyntaxKind.SuperKeyword) { forEach(typeArguments, checkSourceElement); } } if (signatures.length === 1) { const declaration = signatures[0].declaration; if (declaration && isInJavaScriptFile(declaration) && !hasJSDocParameterTags(declaration)) { if (containsArgumentsReference(declaration)) { const signatureWithRest = cloneSignature(signatures[0]); const syntheticArgsSymbol = createSymbol(SymbolFlags.Variable, "args"); syntheticArgsSymbol.type = anyArrayType; syntheticArgsSymbol.isRestParameter = true; signatureWithRest.parameters = concatenate(signatureWithRest.parameters, [syntheticArgsSymbol]); signatureWithRest.hasRestParameter = true; signatures = [signatureWithRest]; } } } const candidates = candidatesOutArray || []; // reorderCandidates fills up the candidates array directly reorderCandidates(signatures, candidates); if (!candidates.length) { reportError(Diagnostics.Supplied_parameters_do_not_match_any_signature_of_call_target); return resolveErrorCall(node); } const args = getEffectiveCallArguments(node); // The following applies to any value of 'excludeArgument[i]': // - true: the argument at 'i' is susceptible to a one-time permanent contextual typing. // - undefined: the argument at 'i' is *not* susceptible to permanent contextual typing. // - false: the argument at 'i' *was* and *has been* permanently contextually typed. // // The idea is that we will perform type argument inference & assignability checking once // without using the susceptible parameters that are functions, and once more for each of those // parameters, contextually typing each as we go along. // // For a tagged template, then the first argument be 'undefined' if necessary // because it represents a TemplateStringsArray. // // For a decorator, no arguments are susceptible to contextual typing due to the fact // decorators are applied to a declaration by the emitter, and not to an expression. let excludeArgument: boolean[]; if (!isDecorator) { // We do not need to call `getEffectiveArgumentCount` here as it only // applies when calculating the number of arguments for a decorator. for (let i = isTaggedTemplate ? 1 : 0; i < args.length; i++) { if (isContextSensitive(args[i])) { if (!excludeArgument) { excludeArgument = new Array(args.length); } excludeArgument[i] = true; } } } // The following variables are captured and modified by calls to chooseOverload. // If overload resolution or type argument inference fails, we want to report the // best error possible. The best error is one which says that an argument was not // assignable to a parameter. This implies that everything else about the overload // was fine. So if there is any overload that is only incorrect because of an // argument, we will report an error on that one. // // function foo(s: string) {} // function foo(n: number) {} // Report argument error on this overload // function foo() {} // foo(true); // // If none of the overloads even made it that far, there are two possibilities. // There was a problem with type arguments for some overload, in which case // report an error on that. Or none of the overloads even had correct arity, // in which case give an arity error. // // function foo(x: T, y: T) {} // Report type argument inference error // function foo() {} // foo(0, true); // let candidateForArgumentError: Signature; let candidateForTypeArgumentError: Signature; let resultOfFailedInference: InferenceContext; let result: Signature; // If we are in signature help, a trailing comma indicates that we intend to provide another argument, // so we will only accept overloads with arity at least 1 higher than the current number of provided arguments. const signatureHelpTrailingComma = candidatesOutArray && node.kind === SyntaxKind.CallExpression && (node).arguments.hasTrailingComma; // Section 4.12.1: // if the candidate list contains one or more signatures for which the type of each argument // expression is a subtype of each corresponding parameter type, the return type of the first // of those signatures becomes the return type of the function call. // Otherwise, the return type of the first signature in the candidate list becomes the return // type of the function call. // // Whether the call is an error is determined by assignability of the arguments. The subtype pass // is just important for choosing the best signature. So in the case where there is only one // signature, the subtype pass is useless. So skipping it is an optimization. if (candidates.length > 1) { result = chooseOverload(candidates, subtypeRelation, signatureHelpTrailingComma); } if (!result) { // Reinitialize these pointers for round two candidateForArgumentError = undefined; candidateForTypeArgumentError = undefined; resultOfFailedInference = undefined; result = chooseOverload(candidates, assignableRelation, signatureHelpTrailingComma); } if (result) { return result; } // No signatures were applicable. Now report errors based on the last applicable signature with // no arguments excluded from assignability checks. // If candidate is undefined, it means that no candidates had a suitable arity. In that case, // skip the checkApplicableSignature check. if (candidateForArgumentError) { if (isJsxOpeningOrSelfClosingElement) { // We do not report any error here because any error will be handled in "resolveCustomJsxElementAttributesType". return candidateForArgumentError; } // excludeArgument is undefined, in this case also equivalent to [undefined, undefined, ...] // The importance of excludeArgument is to prevent us from typing function expression parameters // in arguments too early. If possible, we'd like to only type them once we know the correct // overload. However, this matters for the case where the call is correct. When the call is // an error, we don't need to exclude any arguments, although it would cause no harm to do so. checkApplicableSignature(node, args, candidateForArgumentError, assignableRelation, /*excludeArgument*/ undefined, /*reportErrors*/ true); } else if (candidateForTypeArgumentError) { if (!isTaggedTemplate && !isDecorator && typeArguments) { const typeArguments = (node).typeArguments; checkTypeArguments(candidateForTypeArgumentError, typeArguments, map(typeArguments, getTypeFromTypeNode), /*reportErrors*/ true, headMessage); } else { Debug.assert(resultOfFailedInference.failedTypeParameterIndex >= 0); const failedTypeParameter = candidateForTypeArgumentError.typeParameters[resultOfFailedInference.failedTypeParameterIndex]; const inferenceCandidates = getInferenceCandidates(resultOfFailedInference, resultOfFailedInference.failedTypeParameterIndex); let diagnosticChainHead = chainDiagnosticMessages(/*details*/ undefined, // details will be provided by call to reportNoCommonSupertypeError Diagnostics.The_type_argument_for_type_parameter_0_cannot_be_inferred_from_the_usage_Consider_specifying_the_type_arguments_explicitly, typeToString(failedTypeParameter)); if (headMessage) { diagnosticChainHead = chainDiagnosticMessages(diagnosticChainHead, headMessage); } reportNoCommonSupertypeError(inferenceCandidates, (node).tagName || (node).expression || (node).tag, diagnosticChainHead); } } else { reportError(Diagnostics.Supplied_parameters_do_not_match_any_signature_of_call_target); } // No signature was applicable. We have already reported the errors for the invalid signature. // If this is a type resolution session, e.g. Language Service, try to get better information that anySignature. // Pick the first candidate that matches the arity. This way we can get a contextual type for cases like: // declare function f(a: { xa: number; xb: number; }); // f({ | if (!produceDiagnostics) { for (let candidate of candidates) { if (hasCorrectArity(node, args, candidate)) { if (candidate.typeParameters && typeArguments) { candidate = getSignatureInstantiation(candidate, map(typeArguments, getTypeFromTypeNode)); } return candidate; } } } return resolveErrorCall(node); function reportError(message: DiagnosticMessage, arg0?: string, arg1?: string, arg2?: string): void { let errorInfo: DiagnosticMessageChain; errorInfo = chainDiagnosticMessages(errorInfo, message, arg0, arg1, arg2); if (headMessage) { errorInfo = chainDiagnosticMessages(errorInfo, headMessage); } diagnostics.add(createDiagnosticForNodeFromMessageChain(node, errorInfo)); } function chooseOverload(candidates: Signature[], relation: Map, signatureHelpTrailingComma = false) { for (const originalCandidate of candidates) { if (!hasCorrectArity(node, args, originalCandidate, signatureHelpTrailingComma)) { continue; } let candidate: Signature; let typeArgumentsAreValid: boolean; const inferenceContext = originalCandidate.typeParameters ? createInferenceContext(originalCandidate, /*inferUnionTypes*/ false, /*useAnyForNoInferences*/ isInJavaScriptFile(node)) : undefined; while (true) { candidate = originalCandidate; if (candidate.typeParameters) { let typeArgumentTypes: Type[] | undefined; if (typeArguments) { typeArgumentTypes = fillMissingTypeArguments(map(typeArguments, getTypeFromTypeNode), candidate.typeParameters, getMinTypeArgumentCount(candidate.typeParameters)); typeArgumentsAreValid = checkTypeArguments(candidate, typeArguments, typeArgumentTypes, /*reportErrors*/ false); } else { inferTypeArguments(node, candidate, args, excludeArgument, inferenceContext); typeArgumentTypes = inferenceContext.inferredTypes; typeArgumentsAreValid = inferenceContext.failedTypeParameterIndex === undefined; } if (!typeArgumentsAreValid) { break; } candidate = getSignatureInstantiation(candidate, typeArgumentTypes); } if (!checkApplicableSignature(node, args, candidate, relation, excludeArgument, /*reportErrors*/ false)) { break; } const index = excludeArgument ? indexOf(excludeArgument, /*value*/ true) : -1; if (index < 0) { return candidate; } excludeArgument[index] = false; } // A post-mortem of this iteration of the loop. The signature was not applicable, // so we want to track it as a candidate for reporting an error. If the candidate // had no type parameters, or had no issues related to type arguments, we can // report an error based on the arguments. If there was an issue with type // arguments, then we can only report an error based on the type arguments. if (originalCandidate.typeParameters) { const instantiatedCandidate = candidate; if (typeArgumentsAreValid) { candidateForArgumentError = instantiatedCandidate; } else { candidateForTypeArgumentError = originalCandidate; if (!typeArguments) { resultOfFailedInference = inferenceContext; } } } else { Debug.assert(originalCandidate === candidate); candidateForArgumentError = originalCandidate; } } return undefined; } } function resolveCallExpression(node: CallExpression, candidatesOutArray: Signature[]): Signature { if (node.expression.kind === SyntaxKind.SuperKeyword) { const superType = checkSuperExpression(node.expression); if (superType !== unknownType) { // In super call, the candidate signatures are the matching arity signatures of the base constructor function instantiated // with the type arguments specified in the extends clause. const baseTypeNode = getClassExtendsHeritageClauseElement(getContainingClass(node)); if (baseTypeNode) { const baseConstructors = getInstantiatedConstructorsForTypeArguments(superType, baseTypeNode.typeArguments, baseTypeNode); return resolveCall(node, baseConstructors, candidatesOutArray); } } return resolveUntypedCall(node); } const funcType = checkNonNullExpression(node.expression); if (funcType === silentNeverType) { return silentNeverSignature; } const apparentType = getApparentType(funcType); if (apparentType === unknownType) { // Another error has already been reported return resolveErrorCall(node); } // Technically, this signatures list may be incomplete. We are taking the apparent type, // but we are not including call signatures that may have been added to the Object or // Function interface, since they have none by default. This is a bit of a leap of faith // that the user will not add any. const callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); const constructSignatures = getSignaturesOfType(apparentType, SignatureKind.Construct); // TS 1.0 Spec: 4.12 // In an untyped function call no TypeArgs are permitted, Args can be any argument list, no contextual // types are provided for the argument expressions, and the result is always of type Any. if (isUntypedFunctionCall(funcType, apparentType, callSignatures.length, constructSignatures.length)) { // The unknownType indicates that an error already occurred (and was reported). No // need to report another error in this case. if (funcType !== unknownType && node.typeArguments) { error(node, Diagnostics.Untyped_function_calls_may_not_accept_type_arguments); } return resolveUntypedCall(node); } // If FuncExpr's apparent type(section 3.8.1) is a function type, the call is a typed function call. // TypeScript employs overload resolution in typed function calls in order to support functions // with multiple call signatures. if (!callSignatures.length) { if (constructSignatures.length) { error(node, Diagnostics.Value_of_type_0_is_not_callable_Did_you_mean_to_include_new, typeToString(funcType)); } else { error(node, Diagnostics.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature_Type_0_has_no_compatible_call_signatures, typeToString(apparentType)); } return resolveErrorCall(node); } return resolveCall(node, callSignatures, candidatesOutArray); } /** * TS 1.0 spec: 4.12 * If FuncExpr is of type Any, or of an object type that has no call or construct signatures * but is a subtype of the Function interface, the call is an untyped function call. */ function isUntypedFunctionCall(funcType: Type, apparentFuncType: Type, numCallSignatures: number, numConstructSignatures: number) { if (isTypeAny(funcType)) { return true; } if (isTypeAny(apparentFuncType) && funcType.flags & TypeFlags.TypeParameter) { return true; } if (!numCallSignatures && !numConstructSignatures) { // We exclude union types because we may have a union of function types that happen to have // no common signatures. if (funcType.flags & TypeFlags.Union) { return false; } return isTypeAssignableTo(funcType, globalFunctionType); } return false; } function resolveNewExpression(node: NewExpression, candidatesOutArray: Signature[]): Signature { if (node.arguments && languageVersion < ScriptTarget.ES5) { const spreadIndex = getSpreadArgumentIndex(node.arguments); if (spreadIndex >= 0) { error(node.arguments[spreadIndex], Diagnostics.Spread_operator_in_new_expressions_is_only_available_when_targeting_ECMAScript_5_and_higher); } } let expressionType = checkNonNullExpression(node.expression); if (expressionType === silentNeverType) { return silentNeverSignature; } // If expressionType's apparent type(section 3.8.1) is an object type with one or // more construct signatures, the expression is processed in the same manner as a // function call, but using the construct signatures as the initial set of candidate // signatures for overload resolution. The result type of the function call becomes // the result type of the operation. expressionType = getApparentType(expressionType); if (expressionType === unknownType) { // Another error has already been reported return resolveErrorCall(node); } // If the expression is a class of abstract type, then it cannot be instantiated. // Note, only class declarations can be declared abstract. // In the case of a merged class-module or class-interface declaration, // only the class declaration node will have the Abstract flag set. const valueDecl = expressionType.symbol && getClassLikeDeclarationOfSymbol(expressionType.symbol); if (valueDecl && getModifierFlags(valueDecl) & ModifierFlags.Abstract) { error(node, Diagnostics.Cannot_create_an_instance_of_the_abstract_class_0, declarationNameToString(getNameOfDeclaration(valueDecl))); return resolveErrorCall(node); } // TS 1.0 spec: 4.11 // If expressionType is of type Any, Args can be any argument // list and the result of the operation is of type Any. if (isTypeAny(expressionType)) { if (node.typeArguments) { error(node, Diagnostics.Untyped_function_calls_may_not_accept_type_arguments); } return resolveUntypedCall(node); } // Technically, this signatures list may be incomplete. We are taking the apparent type, // but we are not including construct signatures that may have been added to the Object or // Function interface, since they have none by default. This is a bit of a leap of faith // that the user will not add any. const constructSignatures = getSignaturesOfType(expressionType, SignatureKind.Construct); if (constructSignatures.length) { if (!isConstructorAccessible(node, constructSignatures[0])) { return resolveErrorCall(node); } return resolveCall(node, constructSignatures, candidatesOutArray); } // If expressionType's apparent type is an object type with no construct signatures but // one or more call signatures, the expression is processed as a function call. A compile-time // error occurs if the result of the function call is not Void. The type of the result of the // operation is Any. It is an error to have a Void this type. const callSignatures = getSignaturesOfType(expressionType, SignatureKind.Call); if (callSignatures.length) { const signature = resolveCall(node, callSignatures, candidatesOutArray); if (getReturnTypeOfSignature(signature) !== voidType) { error(node, Diagnostics.Only_a_void_function_can_be_called_with_the_new_keyword); } if (getThisTypeOfSignature(signature) === voidType) { error(node, Diagnostics.A_function_that_is_called_with_the_new_keyword_cannot_have_a_this_type_that_is_void); } return signature; } error(node, Diagnostics.Cannot_use_new_with_an_expression_whose_type_lacks_a_call_or_construct_signature); return resolveErrorCall(node); } function isConstructorAccessible(node: NewExpression, signature: Signature) { if (!signature || !signature.declaration) { return true; } const declaration = signature.declaration; const modifiers = getModifierFlags(declaration); // Public constructor is accessible. if (!(modifiers & ModifierFlags.NonPublicAccessibilityModifier)) { return true; } const declaringClassDeclaration = getClassLikeDeclarationOfSymbol(declaration.parent.symbol); const declaringClass = getDeclaredTypeOfSymbol(declaration.parent.symbol); // A private or protected constructor can only be instantiated within its own class (or a subclass, for protected) if (!isNodeWithinClass(node, declaringClassDeclaration)) { const containingClass = getContainingClass(node); if (containingClass) { const containingType = getTypeOfNode(containingClass); let baseTypes = getBaseTypes(containingType as InterfaceType); while (baseTypes.length) { const baseType = baseTypes[0]; if (modifiers & ModifierFlags.Protected && baseType.symbol === declaration.parent.symbol) { return true; } baseTypes = getBaseTypes(baseType as InterfaceType); } } if (modifiers & ModifierFlags.Private) { error(node, Diagnostics.Constructor_of_class_0_is_private_and_only_accessible_within_the_class_declaration, typeToString(declaringClass)); } if (modifiers & ModifierFlags.Protected) { error(node, Diagnostics.Constructor_of_class_0_is_protected_and_only_accessible_within_the_class_declaration, typeToString(declaringClass)); } return false; } return true; } function resolveTaggedTemplateExpression(node: TaggedTemplateExpression, candidatesOutArray: Signature[]): Signature { const tagType = checkExpression(node.tag); const apparentType = getApparentType(tagType); if (apparentType === unknownType) { // Another error has already been reported return resolveErrorCall(node); } const callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); const constructSignatures = getSignaturesOfType(apparentType, SignatureKind.Construct); if (isUntypedFunctionCall(tagType, apparentType, callSignatures.length, constructSignatures.length)) { return resolveUntypedCall(node); } if (!callSignatures.length) { error(node, Diagnostics.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature_Type_0_has_no_compatible_call_signatures, typeToString(apparentType)); return resolveErrorCall(node); } return resolveCall(node, callSignatures, candidatesOutArray); } /** * Gets the localized diagnostic head message to use for errors when resolving a decorator as a call expression. */ function getDiagnosticHeadMessageForDecoratorResolution(node: Decorator) { switch (node.parent.kind) { case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: return Diagnostics.Unable_to_resolve_signature_of_class_decorator_when_called_as_an_expression; case SyntaxKind.Parameter: return Diagnostics.Unable_to_resolve_signature_of_parameter_decorator_when_called_as_an_expression; case SyntaxKind.PropertyDeclaration: return Diagnostics.Unable_to_resolve_signature_of_property_decorator_when_called_as_an_expression; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: return Diagnostics.Unable_to_resolve_signature_of_method_decorator_when_called_as_an_expression; } } /** * Resolves a decorator as if it were a call expression. */ function resolveDecorator(node: Decorator, candidatesOutArray: Signature[]): Signature { const funcType = checkExpression(node.expression); const apparentType = getApparentType(funcType); if (apparentType === unknownType) { return resolveErrorCall(node); } const callSignatures = getSignaturesOfType(apparentType, SignatureKind.Call); const constructSignatures = getSignaturesOfType(apparentType, SignatureKind.Construct); if (isUntypedFunctionCall(funcType, apparentType, callSignatures.length, constructSignatures.length)) { return resolveUntypedCall(node); } const headMessage = getDiagnosticHeadMessageForDecoratorResolution(node); if (!callSignatures.length) { let errorInfo: DiagnosticMessageChain; errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature_Type_0_has_no_compatible_call_signatures, typeToString(apparentType)); errorInfo = chainDiagnosticMessages(errorInfo, headMessage); diagnostics.add(createDiagnosticForNodeFromMessageChain(node, errorInfo)); return resolveErrorCall(node); } return resolveCall(node, callSignatures, candidatesOutArray, headMessage); } /** * This function is similar to getResolvedSignature but is exclusively for trying to resolve JSX stateless-function component. * The main reason we have to use this function instead of getResolvedSignature because, the caller of this function will already check the type of openingLikeElement's tagName * and pass the type as elementType. The elementType can not be a union (as such case should be handled by the caller of this function) * Note: at this point, we are still not sure whether the opening-like element is a stateless function component or not. * @param openingLikeElement an opening-like JSX element to try to resolve as JSX stateless function * @param elementType an element type of the opneing-like element by checking opening-like element's tagname. * @param candidatesOutArray an array of signature to be filled in by the function. It is passed by signature help in the language service; * the function will fill it up with appropriate candidate signatures */ function getResolvedJsxStatelessFunctionSignature(openingLikeElement: JsxOpeningLikeElement, elementType: Type, candidatesOutArray: Signature[]): Signature { Debug.assert(!(elementType.flags & TypeFlags.Union)); const callSignature = resolveStatelessJsxOpeningLikeElement(openingLikeElement, elementType, candidatesOutArray); return callSignature; } /** * Try treating a given opening-like element as stateless function component and resolve a tagName to a function signature. * @param openingLikeElement an JSX opening-like element we want to try resolve its stateless function if possible * @param elementType a type of the opening-like JSX element, a result of resolving tagName in opening-like element. * @param candidatesOutArray an array of signature to be filled in by the function. It is passed by signature help in the language service; * the function will fill it up with appropriate candidate signatures * @return a resolved signature if we can find function matching function signature through resolve call or a first signature in the list of functions. * otherwise return undefined if tag-name of the opening-like element doesn't have call signatures */ function resolveStatelessJsxOpeningLikeElement(openingLikeElement: JsxOpeningLikeElement, elementType: Type, candidatesOutArray: Signature[]): Signature { // If this function is called from language service, elementType can be a union type. This is not possible if the function is called from compiler (see: resolveCustomJsxElementAttributesType) if (elementType.flags & TypeFlags.Union) { const types = (elementType as UnionType).types; let result: Signature; for (const type of types) { result = result || resolveStatelessJsxOpeningLikeElement(openingLikeElement, type, candidatesOutArray); } return result; } const callSignatures = elementType && getSignaturesOfType(elementType, SignatureKind.Call); if (callSignatures && callSignatures.length > 0) { let callSignature: Signature; callSignature = resolveCall(openingLikeElement, callSignatures, candidatesOutArray); return callSignature; } return undefined; } function resolveSignature(node: CallLikeExpression, candidatesOutArray?: Signature[]): Signature { switch (node.kind) { case SyntaxKind.CallExpression: return resolveCallExpression(node, candidatesOutArray); case SyntaxKind.NewExpression: return resolveNewExpression(node, candidatesOutArray); case SyntaxKind.TaggedTemplateExpression: return resolveTaggedTemplateExpression(node, candidatesOutArray); case SyntaxKind.Decorator: return resolveDecorator(node, candidatesOutArray); case SyntaxKind.JsxOpeningElement: case SyntaxKind.JsxSelfClosingElement: // This code-path is called by language service return resolveStatelessJsxOpeningLikeElement(node, checkExpression((node).tagName), candidatesOutArray); } Debug.fail("Branch in 'resolveSignature' should be unreachable."); } /** * Resolve a signature of a given call-like expression. * @param node a call-like expression to try resolve a signature for * @param candidatesOutArray an array of signature to be filled in by the function. It is passed by signature help in the language service; * the function will fill it up with appropriate candidate signatures * @return a signature of the call-like expression or undefined if one can't be found */ function getResolvedSignature(node: CallLikeExpression, candidatesOutArray?: Signature[]): Signature { const links = getNodeLinks(node); // If getResolvedSignature has already been called, we will have cached the resolvedSignature. // However, it is possible that either candidatesOutArray was not passed in the first time, // or that a different candidatesOutArray was passed in. Therefore, we need to redo the work // to correctly fill the candidatesOutArray. const cached = links.resolvedSignature; if (cached && cached !== resolvingSignature && !candidatesOutArray) { return cached; } links.resolvedSignature = resolvingSignature; const result = resolveSignature(node, candidatesOutArray); // If signature resolution originated in control flow type analysis (for example to compute the // assigned type in a flow assignment) we don't cache the result as it may be based on temporary // types from the control flow analysis. links.resolvedSignature = flowLoopStart === flowLoopCount ? result : cached; return result; } function getResolvedOrAnySignature(node: CallLikeExpression) { // If we're already in the process of resolving the given signature, don't resolve again as // that could cause infinite recursion. Instead, return anySignature. return getNodeLinks(node).resolvedSignature === resolvingSignature ? resolvingSignature : getResolvedSignature(node); } function getInferredClassType(symbol: Symbol) { const links = getSymbolLinks(symbol); if (!links.inferredClassType) { links.inferredClassType = createAnonymousType(symbol, symbol.members, emptyArray, emptyArray, /*stringIndexType*/ undefined, /*numberIndexType*/ undefined); } return links.inferredClassType; } /** * Syntactically and semantically checks a call or new expression. * @param node The call/new expression to be checked. * @returns On success, the expression's signature's return type. On failure, anyType. */ function checkCallExpression(node: CallExpression | NewExpression): Type { // Grammar checking; stop grammar-checking if checkGrammarTypeArguments return true checkGrammarTypeArguments(node, node.typeArguments) || checkGrammarArguments(node, node.arguments); const signature = getResolvedSignature(node); if (node.expression.kind === SyntaxKind.SuperKeyword) { return voidType; } if (node.kind === SyntaxKind.NewExpression) { const declaration = signature.declaration; if (declaration && declaration.kind !== SyntaxKind.Constructor && declaration.kind !== SyntaxKind.ConstructSignature && declaration.kind !== SyntaxKind.ConstructorType && !isJSDocConstructSignature(declaration)) { // When resolved signature is a call signature (and not a construct signature) the result type is any, unless // the declaring function had members created through 'x.prototype.y = expr' or 'this.y = expr' psuedodeclarations // in a JS file // Note:JS inferred classes might come from a variable declaration instead of a function declaration. // In this case, using getResolvedSymbol directly is required to avoid losing the members from the declaration. let funcSymbol = node.expression.kind === SyntaxKind.Identifier ? getResolvedSymbol(node.expression as Identifier) : checkExpression(node.expression).symbol; if (funcSymbol && isDeclarationOfFunctionOrClassExpression(funcSymbol)) { funcSymbol = getSymbolOfNode((funcSymbol.valueDeclaration).initializer); } if (funcSymbol && funcSymbol.members && funcSymbol.flags & SymbolFlags.Function) { return getInferredClassType(funcSymbol); } else if (noImplicitAny) { error(node, Diagnostics.new_expression_whose_target_lacks_a_construct_signature_implicitly_has_an_any_type); } return anyType; } } // In JavaScript files, calls to any identifier 'require' are treated as external module imports if (isInJavaScriptFile(node) && isCommonJsRequire(node)) { return resolveExternalModuleTypeByLiteral(node.arguments[0]); } return getReturnTypeOfSignature(signature); } function isCommonJsRequire(node: Node) { if (!isRequireCall(node, /*checkArgumentIsStringLiteral*/ true)) { return false; } // Make sure require is not a local function const resolvedRequire = resolveName(node.expression, (node.expression).text, SymbolFlags.Value, /*nameNotFoundMessage*/ undefined, /*nameArg*/ undefined); if (!resolvedRequire) { // project does not contain symbol named 'require' - assume commonjs require return true; } // project includes symbol named 'require' - make sure that it it ambient and local non-alias if (resolvedRequire.flags & SymbolFlags.Alias) { return false; } const targetDeclarationKind = resolvedRequire.flags & SymbolFlags.Function ? SyntaxKind.FunctionDeclaration : resolvedRequire.flags & SymbolFlags.Variable ? SyntaxKind.VariableDeclaration : SyntaxKind.Unknown; if (targetDeclarationKind !== SyntaxKind.Unknown) { const decl = getDeclarationOfKind(resolvedRequire, targetDeclarationKind); // function/variable declaration should be ambient return isInAmbientContext(decl); } return false; } function checkTaggedTemplateExpression(node: TaggedTemplateExpression): Type { return getReturnTypeOfSignature(getResolvedSignature(node)); } function checkAssertion(node: AssertionExpression) { const exprType = getRegularTypeOfObjectLiteral(getBaseTypeOfLiteralType(checkExpression(node.expression))); checkSourceElement(node.type); const targetType = getTypeFromTypeNode(node.type); if (produceDiagnostics && targetType !== unknownType) { const widenedType = getWidenedType(exprType); if (!isTypeComparableTo(targetType, widenedType)) { checkTypeComparableTo(exprType, targetType, node, Diagnostics.Type_0_cannot_be_converted_to_type_1); } } return targetType; } function checkNonNullAssertion(node: NonNullExpression) { return getNonNullableType(checkExpression(node.expression)); } function checkMetaProperty(node: MetaProperty) { checkGrammarMetaProperty(node); const container = getNewTargetContainer(node); if (!container) { error(node, Diagnostics.Meta_property_0_is_only_allowed_in_the_body_of_a_function_declaration_function_expression_or_constructor, "new.target"); return unknownType; } else if (container.kind === SyntaxKind.Constructor) { const symbol = getSymbolOfNode(container.parent); return getTypeOfSymbol(symbol); } else { const symbol = getSymbolOfNode(container); return getTypeOfSymbol(symbol); } } function getTypeOfParameter(symbol: Symbol) { const type = getTypeOfSymbol(symbol); if (strictNullChecks) { const declaration = symbol.valueDeclaration; if (declaration && (declaration).initializer) { return includeFalsyTypes(type, TypeFlags.Undefined); } } return type; } function getTypeAtPosition(signature: Signature, pos: number): Type { return signature.hasRestParameter ? pos < signature.parameters.length - 1 ? getTypeOfParameter(signature.parameters[pos]) : getRestTypeOfSignature(signature) : pos < signature.parameters.length ? getTypeOfParameter(signature.parameters[pos]) : anyType; } function getTypeOfFirstParameterOfSignature(signature: Signature) { return signature.parameters.length > 0 ? getTypeAtPosition(signature, 0) : neverType; } function assignContextualParameterTypes(signature: Signature, context: Signature, mapper: TypeMapper, checkMode: CheckMode) { const len = signature.parameters.length - (signature.hasRestParameter ? 1 : 0); if (checkMode === CheckMode.Inferential) { for (let i = 0; i < len; i++) { const declaration = signature.parameters[i].valueDeclaration; if (declaration.type) { inferTypesWithContext(mapper.context, getTypeFromTypeNode(declaration.type), getTypeAtPosition(context, i)); } } } if (context.thisParameter) { const parameter = signature.thisParameter; if (!parameter || parameter.valueDeclaration && !(parameter.valueDeclaration).type) { if (!parameter) { signature.thisParameter = createSymbolWithType(context.thisParameter, /*type*/ undefined); } assignTypeToParameterAndFixTypeParameters(signature.thisParameter, getTypeOfSymbol(context.thisParameter), mapper, checkMode); } } for (let i = 0; i < len; i++) { const parameter = signature.parameters[i]; if (!(parameter.valueDeclaration).type) { const contextualParameterType = getTypeAtPosition(context, i); assignTypeToParameterAndFixTypeParameters(parameter, contextualParameterType, mapper, checkMode); } } if (signature.hasRestParameter && isRestParameterIndex(context, signature.parameters.length - 1)) { const parameter = lastOrUndefined(signature.parameters); if (!(parameter.valueDeclaration).type) { const contextualParameterType = getTypeOfSymbol(lastOrUndefined(context.parameters)); assignTypeToParameterAndFixTypeParameters(parameter, contextualParameterType, mapper, checkMode); } } } // When contextual typing assigns a type to a parameter that contains a binding pattern, we also need to push // the destructured type into the contained binding elements. function assignBindingElementTypes(node: VariableLikeDeclaration) { if (isBindingPattern(node.name)) { for (const element of node.name.elements) { if (!isOmittedExpression(element)) { if (element.name.kind === SyntaxKind.Identifier) { getSymbolLinks(getSymbolOfNode(element)).type = getTypeForBindingElement(element); } assignBindingElementTypes(element); } } } } function assignTypeToParameterAndFixTypeParameters(parameter: Symbol, contextualType: Type, mapper: TypeMapper, checkMode: CheckMode) { const links = getSymbolLinks(parameter); if (!links.type) { links.type = instantiateType(contextualType, mapper); const name = getNameOfDeclaration(parameter.valueDeclaration); // if inference didn't come up with anything but {}, fall back to the binding pattern if present. if (links.type === emptyObjectType && (name.kind === SyntaxKind.ObjectBindingPattern || name.kind === SyntaxKind.ArrayBindingPattern)) { links.type = getTypeFromBindingPattern(name); } assignBindingElementTypes(parameter.valueDeclaration); } else if (checkMode === CheckMode.Inferential) { // Even if the parameter already has a type, it might be because it was given a type while // processing the function as an argument to a prior signature during overload resolution. // If this was the case, it may have caused some type parameters to be fixed. So here, // we need to ensure that type parameters at the same positions get fixed again. This is // done by calling instantiateType to attach the mapper to the contextualType, and then // calling inferTypes to force a walk of contextualType so that all the correct fixing // happens. The choice to pass in links.type may seem kind of arbitrary, but it serves // to make sure that all the correct positions in contextualType are reached by the walk. // Here is an example: // // interface Base { // baseProp; // } // interface Derived extends Base { // toBase(): Base; // } // // var derived: Derived; // // declare function foo(x: T, func: (p: T) => T): T; // declare function foo(x: T, func: (p: T) => T): T; // // var result = foo(derived, d => d.toBase()); // // We are typing d while checking the second overload. But we've already given d // a type (Derived) from the first overload. However, we still want to fix the // T in the second overload so that we do not infer Base as a candidate for T // (inferring Base would make type argument inference inconsistent between the two // overloads). inferTypesWithContext(mapper.context, links.type, instantiateType(contextualType, mapper)); } } function getReturnTypeFromJSDocComment(func: SignatureDeclaration | FunctionDeclaration): Type { const returnTag = getJSDocReturnTag(func); if (returnTag && returnTag.typeExpression) { return getTypeFromTypeNode(returnTag.typeExpression.type); } return undefined; } function createPromiseType(promisedType: Type): Type { // creates a `Promise` type where `T` is the promisedType argument const globalPromiseType = getGlobalPromiseType(/*reportErrors*/ true); if (globalPromiseType !== emptyGenericType) { // if the promised type is itself a promise, get the underlying type; otherwise, fallback to the promised type promisedType = getAwaitedType(promisedType) || emptyObjectType; return createTypeReference(globalPromiseType, [promisedType]); } return emptyObjectType; } function createPromiseReturnType(func: FunctionLikeDeclaration, promisedType: Type) { const promiseType = createPromiseType(promisedType); if (promiseType === emptyObjectType) { error(func, Diagnostics.An_async_function_or_method_must_return_a_Promise_Make_sure_you_have_a_declaration_for_Promise_or_include_ES2015_in_your_lib_option); return unknownType; } else if (!getGlobalPromiseConstructorSymbol(/*reportErrors*/ true)) { error(func, Diagnostics.An_async_function_or_method_in_ES5_SlashES3_requires_the_Promise_constructor_Make_sure_you_have_a_declaration_for_the_Promise_constructor_or_include_ES2015_in_your_lib_option); } return promiseType; } function getReturnTypeFromBody(func: FunctionLikeDeclaration, checkMode?: CheckMode): Type { const contextualSignature = getContextualSignatureForFunctionLikeDeclaration(func); if (!func.body) { return unknownType; } const functionFlags = getFunctionFlags(func); let type: Type; if (func.body.kind !== SyntaxKind.Block) { type = checkExpressionCached(func.body, checkMode); if (functionFlags & FunctionFlags.Async) { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so the // return type of the body should be unwrapped to its awaited type, which we will wrap in // the native Promise type later in this function. type = checkAwaitedType(type, /*errorNode*/ func, Diagnostics.The_return_type_of_an_async_function_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); } } else { let types: Type[]; if (functionFlags & FunctionFlags.Generator) { // Generator or AsyncGenerator function types = concatenate(checkAndAggregateYieldOperandTypes(func, checkMode), checkAndAggregateReturnExpressionTypes(func, checkMode)); if (!types || types.length === 0) { const iterableIteratorAny = functionFlags & FunctionFlags.Async ? createAsyncIterableIteratorType(anyType) // AsyncGenerator function : createIterableIteratorType(anyType); // Generator function if (noImplicitAny) { error(func.asteriskToken, Diagnostics.Generator_implicitly_has_type_0_because_it_does_not_yield_any_values_Consider_supplying_a_return_type, typeToString(iterableIteratorAny)); } return iterableIteratorAny; } } else { types = checkAndAggregateReturnExpressionTypes(func, checkMode); if (!types) { // For an async function, the return type will not be never, but rather a Promise for never. return functionFlags & FunctionFlags.Async ? createPromiseReturnType(func, neverType) // Async function : neverType; // Normal function } if (types.length === 0) { // For an async function, the return type will not be void, but rather a Promise for void. return functionFlags & FunctionFlags.Async ? createPromiseReturnType(func, voidType) // Async function : voidType; // Normal function } } // Return a union of the return expression types. type = getUnionType(types, /*subtypeReduction*/ true); if (functionFlags & FunctionFlags.Generator) { // AsyncGenerator function or Generator function type = functionFlags & FunctionFlags.Async ? createAsyncIterableIteratorType(type) // AsyncGenerator function : createIterableIteratorType(type); // Generator function } } if (!contextualSignature) { reportErrorsFromWidening(func, type); } if (isUnitType(type) && !(contextualSignature && isLiteralContextualType( contextualSignature === getSignatureFromDeclaration(func) ? type : getReturnTypeOfSignature(contextualSignature)))) { type = getWidenedLiteralType(type); } const widenedType = getWidenedType(type); // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so the // return type of the body is awaited type of the body, wrapped in a native Promise type. return (functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.Async ? createPromiseReturnType(func, widenedType) // Async function : widenedType; // Generator function, AsyncGenerator function, or normal function } function checkAndAggregateYieldOperandTypes(func: FunctionLikeDeclaration, checkMode: CheckMode): Type[] { const aggregatedTypes: Type[] = []; const functionFlags = getFunctionFlags(func); forEachYieldExpression(func.body, yieldExpression => { const expr = yieldExpression.expression; if (expr) { let type = checkExpressionCached(expr, checkMode); if (yieldExpression.asteriskToken) { // A yield* expression effectively yields everything that its operand yields type = checkIteratedTypeOrElementType(type, yieldExpression.expression, /*allowStringInput*/ false, (functionFlags & FunctionFlags.Async) !== 0); } if (functionFlags & FunctionFlags.Async) { type = checkAwaitedType(type, expr, yieldExpression.asteriskToken ? Diagnostics.Type_of_iterated_elements_of_a_yield_Asterisk_operand_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member : Diagnostics.Type_of_yield_operand_in_an_async_generator_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); } if (!contains(aggregatedTypes, type)) { aggregatedTypes.push(type); } } }); return aggregatedTypes; } function isExhaustiveSwitchStatement(node: SwitchStatement): boolean { if (!node.possiblyExhaustive) { return false; } const type = getTypeOfExpression(node.expression); if (!isLiteralType(type)) { return false; } const switchTypes = getSwitchClauseTypes(node); if (!switchTypes.length) { return false; } return eachTypeContainedIn(mapType(type, getRegularTypeOfLiteralType), switchTypes); } function functionHasImplicitReturn(func: FunctionLikeDeclaration) { if (!(func.flags & NodeFlags.HasImplicitReturn)) { return false; } const lastStatement = lastOrUndefined((func.body).statements); if (lastStatement && lastStatement.kind === SyntaxKind.SwitchStatement && isExhaustiveSwitchStatement(lastStatement)) { return false; } return true; } function checkAndAggregateReturnExpressionTypes(func: FunctionLikeDeclaration, checkMode: CheckMode): Type[] { const functionFlags = getFunctionFlags(func); const aggregatedTypes: Type[] = []; let hasReturnWithNoExpression = functionHasImplicitReturn(func); let hasReturnOfTypeNever = false; forEachReturnStatement(func.body, returnStatement => { const expr = returnStatement.expression; if (expr) { let type = checkExpressionCached(expr, checkMode); if (functionFlags & FunctionFlags.Async) { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so the // return type of the body should be unwrapped to its awaited type, which should be wrapped in // the native Promise type by the caller. type = checkAwaitedType(type, func, Diagnostics.The_return_type_of_an_async_function_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); } if (type.flags & TypeFlags.Never) { hasReturnOfTypeNever = true; } else if (!contains(aggregatedTypes, type)) { aggregatedTypes.push(type); } } else { hasReturnWithNoExpression = true; } }); if (aggregatedTypes.length === 0 && !hasReturnWithNoExpression && (hasReturnOfTypeNever || func.kind === SyntaxKind.FunctionExpression || func.kind === SyntaxKind.ArrowFunction)) { return undefined; } if (strictNullChecks && aggregatedTypes.length && hasReturnWithNoExpression) { if (!contains(aggregatedTypes, undefinedType)) { aggregatedTypes.push(undefinedType); } } return aggregatedTypes; } /** * TypeScript Specification 1.0 (6.3) - July 2014 * An explicitly typed function whose return type isn't the Void type, * the Any type, or a union type containing the Void or Any type as a constituent * must have at least one return statement somewhere in its body. * An exception to this rule is if the function implementation consists of a single 'throw' statement. * * @param returnType - return type of the function, can be undefined if return type is not explicitly specified */ function checkAllCodePathsInNonVoidFunctionReturnOrThrow(func: FunctionLikeDeclaration, returnType: Type): void { if (!produceDiagnostics) { return; } // Functions with with an explicitly specified 'void' or 'any' return type don't need any return expressions. if (returnType && maybeTypeOfKind(returnType, TypeFlags.Any | TypeFlags.Void)) { return; } // If all we have is a function signature, or an arrow function with an expression body, then there is nothing to check. // also if HasImplicitReturn flag is not set this means that all codepaths in function body end with return or throw if (nodeIsMissing(func.body) || func.body.kind !== SyntaxKind.Block || !functionHasImplicitReturn(func)) { return; } const hasExplicitReturn = func.flags & NodeFlags.HasExplicitReturn; if (returnType && returnType.flags & TypeFlags.Never) { error(func.type, Diagnostics.A_function_returning_never_cannot_have_a_reachable_end_point); } else if (returnType && !hasExplicitReturn) { // minimal check: function has syntactic return type annotation and no explicit return statements in the body // this function does not conform to the specification. // NOTE: having returnType !== undefined is a precondition for entering this branch so func.type will always be present error(func.type, Diagnostics.A_function_whose_declared_type_is_neither_void_nor_any_must_return_a_value); } else if (returnType && strictNullChecks && !isTypeAssignableTo(undefinedType, returnType)) { error(func.type, Diagnostics.Function_lacks_ending_return_statement_and_return_type_does_not_include_undefined); } else if (compilerOptions.noImplicitReturns) { if (!returnType) { // If return type annotation is omitted check if function has any explicit return statements. // If it does not have any - its inferred return type is void - don't do any checks. // Otherwise get inferred return type from function body and report error only if it is not void / anytype if (!hasExplicitReturn) { return; } const inferredReturnType = getReturnTypeOfSignature(getSignatureFromDeclaration(func)); if (isUnwrappedReturnTypeVoidOrAny(func, inferredReturnType)) { return; } } error(func.type || func, Diagnostics.Not_all_code_paths_return_a_value); } } function checkFunctionExpressionOrObjectLiteralMethod(node: FunctionExpression | MethodDeclaration, checkMode?: CheckMode): Type { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); // Grammar checking const hasGrammarError = checkGrammarFunctionLikeDeclaration(node); if (!hasGrammarError && node.kind === SyntaxKind.FunctionExpression) { checkGrammarForGenerator(node); } // The identityMapper object is used to indicate that function expressions are wildcards if (checkMode === CheckMode.SkipContextSensitive && isContextSensitive(node)) { checkNodeDeferred(node); return anyFunctionType; } const links = getNodeLinks(node); const type = getTypeOfSymbol(node.symbol); const contextSensitive = isContextSensitive(node); const mightFixTypeParameters = contextSensitive && checkMode === CheckMode.Inferential; // Check if function expression is contextually typed and assign parameter types if so. // See the comment in assignTypeToParameterAndFixTypeParameters to understand why we need to // check mightFixTypeParameters. if (mightFixTypeParameters || !(links.flags & NodeCheckFlags.ContextChecked)) { const contextualSignature = getContextualSignature(node); // If a type check is started at a function expression that is an argument of a function call, obtaining the // contextual type may recursively get back to here during overload resolution of the call. If so, we will have // already assigned contextual types. const contextChecked = !!(links.flags & NodeCheckFlags.ContextChecked); if (mightFixTypeParameters || !contextChecked) { links.flags |= NodeCheckFlags.ContextChecked; if (contextualSignature) { const signature = getSignaturesOfType(type, SignatureKind.Call)[0]; if (contextSensitive) { assignContextualParameterTypes(signature, contextualSignature, getContextualMapper(node), checkMode); } if (mightFixTypeParameters || !node.type && !signature.resolvedReturnType) { const returnType = getReturnTypeFromBody(node, checkMode); if (!signature.resolvedReturnType) { signature.resolvedReturnType = returnType; } } } if (!contextChecked) { checkSignatureDeclaration(node); checkNodeDeferred(node); } } } if (produceDiagnostics && node.kind !== SyntaxKind.MethodDeclaration) { checkCollisionWithCapturedSuperVariable(node, (node).name); checkCollisionWithCapturedThisVariable(node, (node).name); checkCollisionWithCapturedNewTargetVariable(node, (node).name); } return type; } function checkFunctionExpressionOrObjectLiteralMethodDeferred(node: ArrowFunction | FunctionExpression | MethodDeclaration) { Debug.assert(node.kind !== SyntaxKind.MethodDeclaration || isObjectLiteralMethod(node)); const functionFlags = getFunctionFlags(node); const returnOrPromisedType = node.type && ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.Async ? checkAsyncFunctionReturnType(node) : // Async function getTypeFromTypeNode(node.type)); // AsyncGenerator function, Generator function, or normal function if ((functionFlags & FunctionFlags.Generator) === 0) { // Async function or normal function // return is not necessary in the body of generators checkAllCodePathsInNonVoidFunctionReturnOrThrow(node, returnOrPromisedType); } if (node.body) { if (!node.type) { // There are some checks that are only performed in getReturnTypeFromBody, that may produce errors // we need. An example is the noImplicitAny errors resulting from widening the return expression // of a function. Because checking of function expression bodies is deferred, there was never an // appropriate time to do this during the main walk of the file (see the comment at the top of // checkFunctionExpressionBodies). So it must be done now. getReturnTypeOfSignature(getSignatureFromDeclaration(node)); } if (node.body.kind === SyntaxKind.Block) { checkSourceElement(node.body); } else { // From within an async function you can return either a non-promise value or a promise. Any // Promise/A+ compatible implementation will always assimilate any foreign promise, so we // should not be checking assignability of a promise to the return type. Instead, we need to // check assignability of the awaited type of the expression body against the promised type of // its return type annotation. const exprType = checkExpression(node.body); if (returnOrPromisedType) { if ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.Async) { // Async function const awaitedType = checkAwaitedType(exprType, node.body, Diagnostics.The_return_type_of_an_async_function_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); checkTypeAssignableTo(awaitedType, returnOrPromisedType, node.body); } else { // Normal function checkTypeAssignableTo(exprType, returnOrPromisedType, node.body); } } } registerForUnusedIdentifiersCheck(node); } } function checkArithmeticOperandType(operand: Node, type: Type, diagnostic: DiagnosticMessage): boolean { if (!isTypeAnyOrAllConstituentTypesHaveKind(type, TypeFlags.NumberLike)) { error(operand, diagnostic); return false; } return true; } function isReadonlySymbol(symbol: Symbol): boolean { // The following symbols are considered read-only: // Properties with a 'readonly' modifier // Variables declared with 'const' // Get accessors without matching set accessors // Enum members // Unions and intersections of the above (unions and intersections eagerly set isReadonly on creation) return !!(getCheckFlags(symbol) & CheckFlags.Readonly || symbol.flags & SymbolFlags.Property && getDeclarationModifierFlagsFromSymbol(symbol) & ModifierFlags.Readonly || symbol.flags & SymbolFlags.Variable && getDeclarationNodeFlagsFromSymbol(symbol) & NodeFlags.Const || symbol.flags & SymbolFlags.Accessor && !(symbol.flags & SymbolFlags.SetAccessor) || symbol.flags & SymbolFlags.EnumMember); } function isReferenceToReadonlyEntity(expr: Expression, symbol: Symbol): boolean { if (isReadonlySymbol(symbol)) { // Allow assignments to readonly properties within constructors of the same class declaration. if (symbol.flags & SymbolFlags.Property && (expr.kind === SyntaxKind.PropertyAccessExpression || expr.kind === SyntaxKind.ElementAccessExpression) && (expr as PropertyAccessExpression | ElementAccessExpression).expression.kind === SyntaxKind.ThisKeyword) { // Look for if this is the constructor for the class that `symbol` is a property of. const func = getContainingFunction(expr); if (!(func && func.kind === SyntaxKind.Constructor)) return true; // If func.parent is a class and symbol is a (readonly) property of that class, or // if func is a constructor and symbol is a (readonly) parameter property declared in it, // then symbol is writeable here. return !(func.parent === symbol.valueDeclaration.parent || func === symbol.valueDeclaration.parent); } return true; } return false; } function isReferenceThroughNamespaceImport(expr: Expression): boolean { if (expr.kind === SyntaxKind.PropertyAccessExpression || expr.kind === SyntaxKind.ElementAccessExpression) { const node = skipParentheses((expr as PropertyAccessExpression | ElementAccessExpression).expression); if (node.kind === SyntaxKind.Identifier) { const symbol = getNodeLinks(node).resolvedSymbol; if (symbol.flags & SymbolFlags.Alias) { const declaration = getDeclarationOfAliasSymbol(symbol); return declaration && declaration.kind === SyntaxKind.NamespaceImport; } } } return false; } function checkReferenceExpression(expr: Expression, invalidReferenceMessage: DiagnosticMessage): boolean { // References are combinations of identifiers, parentheses, and property accesses. const node = skipParentheses(expr); if (node.kind !== SyntaxKind.Identifier && node.kind !== SyntaxKind.PropertyAccessExpression && node.kind !== SyntaxKind.ElementAccessExpression) { error(expr, invalidReferenceMessage); return false; } return true; } function checkDeleteExpression(node: DeleteExpression): Type { checkExpression(node.expression); const expr = skipParentheses(node.expression); if (expr.kind !== SyntaxKind.PropertyAccessExpression && expr.kind !== SyntaxKind.ElementAccessExpression) { error(expr, Diagnostics.The_operand_of_a_delete_operator_must_be_a_property_reference); return booleanType; } const links = getNodeLinks(expr); const symbol = getExportSymbolOfValueSymbolIfExported(links.resolvedSymbol); if (symbol && isReadonlySymbol(symbol)) { error(expr, Diagnostics.The_operand_of_a_delete_operator_cannot_be_a_read_only_property); } return booleanType; } function checkTypeOfExpression(node: TypeOfExpression): Type { checkExpression(node.expression); return typeofType; } function checkVoidExpression(node: VoidExpression): Type { checkExpression(node.expression); return undefinedWideningType; } function checkAwaitExpression(node: AwaitExpression): Type { // Grammar checking if (produceDiagnostics) { if (!(node.flags & NodeFlags.AwaitContext)) { grammarErrorOnFirstToken(node, Diagnostics.await_expression_is_only_allowed_within_an_async_function); } if (isInParameterInitializerBeforeContainingFunction(node)) { error(node, Diagnostics.await_expressions_cannot_be_used_in_a_parameter_initializer); } } const operandType = checkExpression(node.expression); return checkAwaitedType(operandType, node, Diagnostics.Type_of_await_operand_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); } function checkPrefixUnaryExpression(node: PrefixUnaryExpression): Type { const operandType = checkExpression(node.operand); if (operandType === silentNeverType) { return silentNeverType; } if (node.operator === SyntaxKind.MinusToken && node.operand.kind === SyntaxKind.NumericLiteral) { return getFreshTypeOfLiteralType(getLiteralTypeForText(TypeFlags.NumberLiteral, "" + -(node.operand).text)); } switch (node.operator) { case SyntaxKind.PlusToken: case SyntaxKind.MinusToken: case SyntaxKind.TildeToken: checkNonNullType(operandType, node.operand); if (maybeTypeOfKind(operandType, TypeFlags.ESSymbol)) { error(node.operand, Diagnostics.The_0_operator_cannot_be_applied_to_type_symbol, tokenToString(node.operator)); } return numberType; case SyntaxKind.ExclamationToken: const facts = getTypeFacts(operandType) & (TypeFacts.Truthy | TypeFacts.Falsy); return facts === TypeFacts.Truthy ? falseType : facts === TypeFacts.Falsy ? trueType : booleanType; case SyntaxKind.PlusPlusToken: case SyntaxKind.MinusMinusToken: const ok = checkArithmeticOperandType(node.operand, checkNonNullType(operandType, node.operand), Diagnostics.An_arithmetic_operand_must_be_of_type_any_number_or_an_enum_type); if (ok) { // run check only if former checks succeeded to avoid reporting cascading errors checkReferenceExpression(node.operand, Diagnostics.The_operand_of_an_increment_or_decrement_operator_must_be_a_variable_or_a_property_access); } return numberType; } return unknownType; } function checkPostfixUnaryExpression(node: PostfixUnaryExpression): Type { const operandType = checkExpression(node.operand); if (operandType === silentNeverType) { return silentNeverType; } const ok = checkArithmeticOperandType(node.operand, checkNonNullType(operandType, node.operand), Diagnostics.An_arithmetic_operand_must_be_of_type_any_number_or_an_enum_type); if (ok) { // run check only if former checks succeeded to avoid reporting cascading errors checkReferenceExpression(node.operand, Diagnostics.The_operand_of_an_increment_or_decrement_operator_must_be_a_variable_or_a_property_access); } return numberType; } // Return true if type might be of the given kind. A union or intersection type might be of a given // kind if at least one constituent type is of the given kind. function maybeTypeOfKind(type: Type, kind: TypeFlags): boolean { if (type.flags & kind) { return true; } if (type.flags & TypeFlags.UnionOrIntersection) { const types = (type).types; for (const t of types) { if (maybeTypeOfKind(t, kind)) { return true; } } } return false; } // Return true if type is of the given kind. A union type is of a given kind if all constituent types // are of the given kind. An intersection type is of a given kind if at least one constituent type is // of the given kind. function isTypeOfKind(type: Type, kind: TypeFlags): boolean { if (type.flags & kind) { return true; } if (type.flags & TypeFlags.Union) { const types = (type).types; for (const t of types) { if (!isTypeOfKind(t, kind)) { return false; } } return true; } if (type.flags & TypeFlags.Intersection) { const types = (type).types; for (const t of types) { if (isTypeOfKind(t, kind)) { return true; } } } return false; } function isConstEnumObjectType(type: Type): boolean { return getObjectFlags(type) & ObjectFlags.Anonymous && type.symbol && isConstEnumSymbol(type.symbol); } function isConstEnumSymbol(symbol: Symbol): boolean { return (symbol.flags & SymbolFlags.ConstEnum) !== 0; } function checkInstanceOfExpression(left: Expression, right: Expression, leftType: Type, rightType: Type): Type { if (leftType === silentNeverType || rightType === silentNeverType) { return silentNeverType; } // TypeScript 1.0 spec (April 2014): 4.15.4 // The instanceof operator requires the left operand to be of type Any, an object type, or a type parameter type, // and the right operand to be of type Any, a subtype of the 'Function' interface type, or have a call or construct signature. // The result is always of the Boolean primitive type. // NOTE: do not raise error if leftType is unknown as related error was already reported if (isTypeOfKind(leftType, TypeFlags.Primitive)) { error(left, Diagnostics.The_left_hand_side_of_an_instanceof_expression_must_be_of_type_any_an_object_type_or_a_type_parameter); } // NOTE: do not raise error if right is unknown as related error was already reported if (!(isTypeAny(rightType) || getSignaturesOfType(rightType, SignatureKind.Call).length || getSignaturesOfType(rightType, SignatureKind.Construct).length || isTypeSubtypeOf(rightType, globalFunctionType))) { error(right, Diagnostics.The_right_hand_side_of_an_instanceof_expression_must_be_of_type_any_or_of_a_type_assignable_to_the_Function_interface_type); } return booleanType; } function checkInExpression(left: Expression, right: Expression, leftType: Type, rightType: Type): Type { if (leftType === silentNeverType || rightType === silentNeverType) { return silentNeverType; } leftType = checkNonNullType(leftType, left); rightType = checkNonNullType(rightType, right); // TypeScript 1.0 spec (April 2014): 4.15.5 // The in operator requires the left operand to be of type Any, the String primitive type, or the Number primitive type, // and the right operand to be of type Any, an object type, or a type parameter type. // The result is always of the Boolean primitive type. if (!(isTypeComparableTo(leftType, stringType) || isTypeOfKind(leftType, TypeFlags.NumberLike | TypeFlags.ESSymbol))) { error(left, Diagnostics.The_left_hand_side_of_an_in_expression_must_be_of_type_any_string_number_or_symbol); } if (!isTypeAnyOrAllConstituentTypesHaveKind(rightType, TypeFlags.Object | TypeFlags.TypeVariable | TypeFlags.NonPrimitive)) { error(right, Diagnostics.The_right_hand_side_of_an_in_expression_must_be_of_type_any_an_object_type_or_a_type_parameter); } return booleanType; } function checkObjectLiteralAssignment(node: ObjectLiteralExpression, sourceType: Type): Type { const properties = node.properties; for (const p of properties) { checkObjectLiteralDestructuringPropertyAssignment(sourceType, p, properties); } return sourceType; } /** Note: If property cannot be a SpreadAssignment, then allProperties does not need to be provided */ function checkObjectLiteralDestructuringPropertyAssignment(objectLiteralType: Type, property: ObjectLiteralElementLike, allProperties?: ObjectLiteralElementLike[]) { if (property.kind === SyntaxKind.PropertyAssignment || property.kind === SyntaxKind.ShorthandPropertyAssignment) { const name = (property).name; if (name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(name); } if (isComputedNonLiteralName(name)) { return undefined; } const text = getTextOfPropertyName(name); const type = isTypeAny(objectLiteralType) ? objectLiteralType : getTypeOfPropertyOfType(objectLiteralType, text) || isNumericLiteralName(text) && getIndexTypeOfType(objectLiteralType, IndexKind.Number) || getIndexTypeOfType(objectLiteralType, IndexKind.String); if (type) { if (property.kind === SyntaxKind.ShorthandPropertyAssignment) { return checkDestructuringAssignment(property, type); } else { // non-shorthand property assignments should always have initializers return checkDestructuringAssignment((property).initializer, type); } } else { error(name, Diagnostics.Type_0_has_no_property_1_and_no_string_index_signature, typeToString(objectLiteralType), declarationNameToString(name)); } } else if (property.kind === SyntaxKind.SpreadAssignment) { if (languageVersion < ScriptTarget.ESNext) { checkExternalEmitHelpers(property, ExternalEmitHelpers.Rest); } const nonRestNames: PropertyName[] = []; if (allProperties) { for (let i = 0; i < allProperties.length - 1; i++) { nonRestNames.push(allProperties[i].name); } } const type = getRestType(objectLiteralType, nonRestNames, objectLiteralType.symbol); return checkDestructuringAssignment(property.expression, type); } else { error(property, Diagnostics.Property_assignment_expected); } } function checkArrayLiteralAssignment(node: ArrayLiteralExpression, sourceType: Type, checkMode?: CheckMode): Type { if (languageVersion < ScriptTarget.ES2015 && compilerOptions.downlevelIteration) { checkExternalEmitHelpers(node, ExternalEmitHelpers.Read); } // This elementType will be used if the specific property corresponding to this index is not // present (aka the tuple element property). This call also checks that the parentType is in // fact an iterable or array (depending on target language). const elementType = checkIteratedTypeOrElementType(sourceType, node, /*allowStringInput*/ false, /*allowAsyncIterable*/ false) || unknownType; const elements = node.elements; for (let i = 0; i < elements.length; i++) { checkArrayLiteralDestructuringElementAssignment(node, sourceType, i, elementType, checkMode); } return sourceType; } function checkArrayLiteralDestructuringElementAssignment(node: ArrayLiteralExpression, sourceType: Type, elementIndex: number, elementType: Type, checkMode?: CheckMode) { const elements = node.elements; const element = elements[elementIndex]; if (element.kind !== SyntaxKind.OmittedExpression) { if (element.kind !== SyntaxKind.SpreadElement) { const propName = "" + elementIndex; const type = isTypeAny(sourceType) ? sourceType : isTupleLikeType(sourceType) ? getTypeOfPropertyOfType(sourceType, propName) : elementType; if (type) { return checkDestructuringAssignment(element, type, checkMode); } else { // We still need to check element expression here because we may need to set appropriate flag on the expression // such as NodeCheckFlags.LexicalThis on "this"expression. checkExpression(element); if (isTupleType(sourceType)) { error(element, Diagnostics.Tuple_type_0_with_length_1_cannot_be_assigned_to_tuple_with_length_2, typeToString(sourceType), getTypeReferenceArity(sourceType), elements.length); } else { error(element, Diagnostics.Type_0_has_no_property_1, typeToString(sourceType), propName); } } } else { if (elementIndex < elements.length - 1) { error(element, Diagnostics.A_rest_element_must_be_last_in_a_destructuring_pattern); } else { const restExpression = (element).expression; if (restExpression.kind === SyntaxKind.BinaryExpression && (restExpression).operatorToken.kind === SyntaxKind.EqualsToken) { error((restExpression).operatorToken, Diagnostics.A_rest_element_cannot_have_an_initializer); } else { return checkDestructuringAssignment(restExpression, createArrayType(elementType), checkMode); } } } } return undefined; } function checkDestructuringAssignment(exprOrAssignment: Expression | ShorthandPropertyAssignment, sourceType: Type, checkMode?: CheckMode): Type { let target: Expression; if (exprOrAssignment.kind === SyntaxKind.ShorthandPropertyAssignment) { const prop = exprOrAssignment; if (prop.objectAssignmentInitializer) { // In strict null checking mode, if a default value of a non-undefined type is specified, remove // undefined from the final type. if (strictNullChecks && !(getFalsyFlags(checkExpression(prop.objectAssignmentInitializer)) & TypeFlags.Undefined)) { sourceType = getTypeWithFacts(sourceType, TypeFacts.NEUndefined); } checkBinaryLikeExpression(prop.name, prop.equalsToken, prop.objectAssignmentInitializer, checkMode); } target = (exprOrAssignment).name; } else { target = exprOrAssignment; } if (target.kind === SyntaxKind.BinaryExpression && (target).operatorToken.kind === SyntaxKind.EqualsToken) { checkBinaryExpression(target, checkMode); target = (target).left; } if (target.kind === SyntaxKind.ObjectLiteralExpression) { return checkObjectLiteralAssignment(target, sourceType); } if (target.kind === SyntaxKind.ArrayLiteralExpression) { return checkArrayLiteralAssignment(target, sourceType, checkMode); } return checkReferenceAssignment(target, sourceType, checkMode); } function checkReferenceAssignment(target: Expression, sourceType: Type, checkMode?: CheckMode): Type { const targetType = checkExpression(target, checkMode); const error = target.parent.kind === SyntaxKind.SpreadAssignment ? Diagnostics.The_target_of_an_object_rest_assignment_must_be_a_variable_or_a_property_access : Diagnostics.The_left_hand_side_of_an_assignment_expression_must_be_a_variable_or_a_property_access; if (checkReferenceExpression(target, error)) { checkTypeAssignableTo(sourceType, targetType, target, /*headMessage*/ undefined); } return sourceType; } /** * This is a *shallow* check: An expression is side-effect-free if the * evaluation of the expression *itself* cannot produce side effects. * For example, x++ / 3 is side-effect free because the / operator * does not have side effects. * The intent is to "smell test" an expression for correctness in positions where * its value is discarded (e.g. the left side of the comma operator). */ function isSideEffectFree(node: Node): boolean { node = skipParentheses(node); switch (node.kind) { case SyntaxKind.Identifier: case SyntaxKind.StringLiteral: case SyntaxKind.RegularExpressionLiteral: case SyntaxKind.TaggedTemplateExpression: case SyntaxKind.TemplateExpression: case SyntaxKind.NoSubstitutionTemplateLiteral: case SyntaxKind.NumericLiteral: case SyntaxKind.TrueKeyword: case SyntaxKind.FalseKeyword: case SyntaxKind.NullKeyword: case SyntaxKind.UndefinedKeyword: case SyntaxKind.FunctionExpression: case SyntaxKind.ClassExpression: case SyntaxKind.ArrowFunction: case SyntaxKind.ArrayLiteralExpression: case SyntaxKind.ObjectLiteralExpression: case SyntaxKind.TypeOfExpression: case SyntaxKind.NonNullExpression: case SyntaxKind.JsxSelfClosingElement: case SyntaxKind.JsxElement: return true; case SyntaxKind.ConditionalExpression: return isSideEffectFree((node as ConditionalExpression).whenTrue) && isSideEffectFree((node as ConditionalExpression).whenFalse); case SyntaxKind.BinaryExpression: if (isAssignmentOperator((node as BinaryExpression).operatorToken.kind)) { return false; } return isSideEffectFree((node as BinaryExpression).left) && isSideEffectFree((node as BinaryExpression).right); case SyntaxKind.PrefixUnaryExpression: case SyntaxKind.PostfixUnaryExpression: // Unary operators ~, !, +, and - have no side effects. // The rest do. switch ((node as PrefixUnaryExpression).operator) { case SyntaxKind.ExclamationToken: case SyntaxKind.PlusToken: case SyntaxKind.MinusToken: case SyntaxKind.TildeToken: return true; } return false; // Some forms listed here for clarity case SyntaxKind.VoidExpression: // Explicit opt-out case SyntaxKind.TypeAssertionExpression: // Not SEF, but can produce useful type warnings case SyntaxKind.AsExpression: // Not SEF, but can produce useful type warnings default: return false; } } function isTypeEqualityComparableTo(source: Type, target: Type) { return (target.flags & TypeFlags.Nullable) !== 0 || isTypeComparableTo(source, target); } function getBestChoiceType(type1: Type, type2: Type): Type { const firstAssignableToSecond = isTypeAssignableTo(type1, type2); const secondAssignableToFirst = isTypeAssignableTo(type2, type1); return secondAssignableToFirst && !firstAssignableToSecond ? type1 : firstAssignableToSecond && !secondAssignableToFirst ? type2 : getUnionType([type1, type2], /*subtypeReduction*/ true); } function checkBinaryExpression(node: BinaryExpression, checkMode?: CheckMode) { return checkBinaryLikeExpression(node.left, node.operatorToken, node.right, checkMode, node); } function checkBinaryLikeExpression(left: Expression, operatorToken: Node, right: Expression, checkMode?: CheckMode, errorNode?: Node) { const operator = operatorToken.kind; if (operator === SyntaxKind.EqualsToken && (left.kind === SyntaxKind.ObjectLiteralExpression || left.kind === SyntaxKind.ArrayLiteralExpression)) { return checkDestructuringAssignment(left, checkExpression(right, checkMode), checkMode); } let leftType = checkExpression(left, checkMode); let rightType = checkExpression(right, checkMode); switch (operator) { case SyntaxKind.AsteriskToken: case SyntaxKind.AsteriskAsteriskToken: case SyntaxKind.AsteriskEqualsToken: case SyntaxKind.AsteriskAsteriskEqualsToken: case SyntaxKind.SlashToken: case SyntaxKind.SlashEqualsToken: case SyntaxKind.PercentToken: case SyntaxKind.PercentEqualsToken: case SyntaxKind.MinusToken: case SyntaxKind.MinusEqualsToken: case SyntaxKind.LessThanLessThanToken: case SyntaxKind.LessThanLessThanEqualsToken: case SyntaxKind.GreaterThanGreaterThanToken: case SyntaxKind.GreaterThanGreaterThanEqualsToken: case SyntaxKind.GreaterThanGreaterThanGreaterThanToken: case SyntaxKind.GreaterThanGreaterThanGreaterThanEqualsToken: case SyntaxKind.BarToken: case SyntaxKind.BarEqualsToken: case SyntaxKind.CaretToken: case SyntaxKind.CaretEqualsToken: case SyntaxKind.AmpersandToken: case SyntaxKind.AmpersandEqualsToken: if (leftType === silentNeverType || rightType === silentNeverType) { return silentNeverType; } leftType = checkNonNullType(leftType, left); rightType = checkNonNullType(rightType, right); let suggestedOperator: SyntaxKind; // if a user tries to apply a bitwise operator to 2 boolean operands // try and return them a helpful suggestion if ((leftType.flags & TypeFlags.BooleanLike) && (rightType.flags & TypeFlags.BooleanLike) && (suggestedOperator = getSuggestedBooleanOperator(operatorToken.kind)) !== undefined) { error(errorNode || operatorToken, Diagnostics.The_0_operator_is_not_allowed_for_boolean_types_Consider_using_1_instead, tokenToString(operatorToken.kind), tokenToString(suggestedOperator)); } else { // otherwise just check each operand separately and report errors as normal const leftOk = checkArithmeticOperandType(left, leftType, Diagnostics.The_left_hand_side_of_an_arithmetic_operation_must_be_of_type_any_number_or_an_enum_type); const rightOk = checkArithmeticOperandType(right, rightType, Diagnostics.The_right_hand_side_of_an_arithmetic_operation_must_be_of_type_any_number_or_an_enum_type); if (leftOk && rightOk) { checkAssignmentOperator(numberType); } } return numberType; case SyntaxKind.PlusToken: case SyntaxKind.PlusEqualsToken: if (leftType === silentNeverType || rightType === silentNeverType) { return silentNeverType; } if (!isTypeOfKind(leftType, TypeFlags.Any | TypeFlags.StringLike) && !isTypeOfKind(rightType, TypeFlags.Any | TypeFlags.StringLike)) { leftType = checkNonNullType(leftType, left); rightType = checkNonNullType(rightType, right); } let resultType: Type; if (isTypeOfKind(leftType, TypeFlags.NumberLike) && isTypeOfKind(rightType, TypeFlags.NumberLike)) { // Operands of an enum type are treated as having the primitive type Number. // If both operands are of the Number primitive type, the result is of the Number primitive type. resultType = numberType; } else { if (isTypeOfKind(leftType, TypeFlags.StringLike) || isTypeOfKind(rightType, TypeFlags.StringLike)) { // If one or both operands are of the String primitive type, the result is of the String primitive type. resultType = stringType; } else if (isTypeAny(leftType) || isTypeAny(rightType)) { // Otherwise, the result is of type Any. // NOTE: unknown type here denotes error type. Old compiler treated this case as any type so do we. resultType = leftType === unknownType || rightType === unknownType ? unknownType : anyType; } // Symbols are not allowed at all in arithmetic expressions if (resultType && !checkForDisallowedESSymbolOperand(operator)) { return resultType; } } if (!resultType) { reportOperatorError(); return anyType; } if (operator === SyntaxKind.PlusEqualsToken) { checkAssignmentOperator(resultType); } return resultType; case SyntaxKind.LessThanToken: case SyntaxKind.GreaterThanToken: case SyntaxKind.LessThanEqualsToken: case SyntaxKind.GreaterThanEqualsToken: if (checkForDisallowedESSymbolOperand(operator)) { leftType = getBaseTypeOfLiteralType(checkNonNullType(leftType, left)); rightType = getBaseTypeOfLiteralType(checkNonNullType(rightType, right)); if (!isTypeComparableTo(leftType, rightType) && !isTypeComparableTo(rightType, leftType)) { reportOperatorError(); } } return booleanType; case SyntaxKind.EqualsEqualsToken: case SyntaxKind.ExclamationEqualsToken: case SyntaxKind.EqualsEqualsEqualsToken: case SyntaxKind.ExclamationEqualsEqualsToken: const leftIsLiteral = isLiteralType(leftType); const rightIsLiteral = isLiteralType(rightType); if (!leftIsLiteral || !rightIsLiteral) { leftType = leftIsLiteral ? getBaseTypeOfLiteralType(leftType) : leftType; rightType = rightIsLiteral ? getBaseTypeOfLiteralType(rightType) : rightType; } if (!isTypeEqualityComparableTo(leftType, rightType) && !isTypeEqualityComparableTo(rightType, leftType)) { reportOperatorError(); } return booleanType; case SyntaxKind.InstanceOfKeyword: return checkInstanceOfExpression(left, right, leftType, rightType); case SyntaxKind.InKeyword: return checkInExpression(left, right, leftType, rightType); case SyntaxKind.AmpersandAmpersandToken: return getTypeFacts(leftType) & TypeFacts.Truthy ? includeFalsyTypes(rightType, getFalsyFlags(strictNullChecks ? leftType : getBaseTypeOfLiteralType(rightType))) : leftType; case SyntaxKind.BarBarToken: return getTypeFacts(leftType) & TypeFacts.Falsy ? getBestChoiceType(removeDefinitelyFalsyTypes(leftType), rightType) : leftType; case SyntaxKind.EqualsToken: checkAssignmentOperator(rightType); return getRegularTypeOfObjectLiteral(rightType); case SyntaxKind.CommaToken: if (!compilerOptions.allowUnreachableCode && isSideEffectFree(left) && !isEvalNode(right)) { error(left, Diagnostics.Left_side_of_comma_operator_is_unused_and_has_no_side_effects); } return rightType; } function isEvalNode(node: Expression) { return node.kind === SyntaxKind.Identifier && (node as Identifier).text === "eval"; } // Return true if there was no error, false if there was an error. function checkForDisallowedESSymbolOperand(operator: SyntaxKind): boolean { const offendingSymbolOperand = maybeTypeOfKind(leftType, TypeFlags.ESSymbol) ? left : maybeTypeOfKind(rightType, TypeFlags.ESSymbol) ? right : undefined; if (offendingSymbolOperand) { error(offendingSymbolOperand, Diagnostics.The_0_operator_cannot_be_applied_to_type_symbol, tokenToString(operator)); return false; } return true; } function getSuggestedBooleanOperator(operator: SyntaxKind): SyntaxKind { switch (operator) { case SyntaxKind.BarToken: case SyntaxKind.BarEqualsToken: return SyntaxKind.BarBarToken; case SyntaxKind.CaretToken: case SyntaxKind.CaretEqualsToken: return SyntaxKind.ExclamationEqualsEqualsToken; case SyntaxKind.AmpersandToken: case SyntaxKind.AmpersandEqualsToken: return SyntaxKind.AmpersandAmpersandToken; default: return undefined; } } function checkAssignmentOperator(valueType: Type): void { if (produceDiagnostics && operator >= SyntaxKind.FirstAssignment && operator <= SyntaxKind.LastAssignment) { // TypeScript 1.0 spec (April 2014): 4.17 // An assignment of the form // VarExpr = ValueExpr // requires VarExpr to be classified as a reference // A compound assignment furthermore requires VarExpr to be classified as a reference (section 4.1) // and the type of the non - compound operation to be assignable to the type of VarExpr. if (checkReferenceExpression(left, Diagnostics.The_left_hand_side_of_an_assignment_expression_must_be_a_variable_or_a_property_access)) { // to avoid cascading errors check assignability only if 'isReference' check succeeded and no errors were reported checkTypeAssignableTo(valueType, leftType, left, /*headMessage*/ undefined); } } } function reportOperatorError() { error(errorNode || operatorToken, Diagnostics.Operator_0_cannot_be_applied_to_types_1_and_2, tokenToString(operatorToken.kind), typeToString(leftType), typeToString(rightType)); } } function isYieldExpressionInClass(node: YieldExpression): boolean { let current: Node = node; let parent = node.parent; while (parent) { if (isFunctionLike(parent) && current === (parent).body) { return false; } else if (isClassLike(current)) { return true; } current = parent; parent = parent.parent; } return false; } function checkYieldExpression(node: YieldExpression): Type { // Grammar checking if (produceDiagnostics) { if (!(node.flags & NodeFlags.YieldContext) || isYieldExpressionInClass(node)) { grammarErrorOnFirstToken(node, Diagnostics.A_yield_expression_is_only_allowed_in_a_generator_body); } if (isInParameterInitializerBeforeContainingFunction(node)) { error(node, Diagnostics.yield_expressions_cannot_be_used_in_a_parameter_initializer); } } if (node.expression) { const func = getContainingFunction(node); // If the user's code is syntactically correct, the func should always have a star. After all, // we are in a yield context. const functionFlags = func && getFunctionFlags(func); if (node.asteriskToken) { // Async generator functions prior to ESNext require the __await, __asyncDelegator, // and __asyncValues helpers if ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.AsyncGenerator && languageVersion < ScriptTarget.ESNext) { checkExternalEmitHelpers(node, ExternalEmitHelpers.AsyncDelegatorIncludes); } // Generator functions prior to ES2015 require the __values helper if ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.Generator && languageVersion < ScriptTarget.ES2015 && compilerOptions.downlevelIteration) { checkExternalEmitHelpers(node, ExternalEmitHelpers.Values); } } if (functionFlags & FunctionFlags.Generator) { const expressionType = checkExpressionCached(node.expression, /*contextualMapper*/ undefined); let expressionElementType: Type; const nodeIsYieldStar = !!node.asteriskToken; if (nodeIsYieldStar) { expressionElementType = checkIteratedTypeOrElementType(expressionType, node.expression, /*allowStringInput*/ false, (functionFlags & FunctionFlags.Async) !== 0); } // There is no point in doing an assignability check if the function // has no explicit return type because the return type is directly computed // from the yield expressions. if (func.type) { const signatureElementType = getIteratedTypeOfGenerator(getTypeFromTypeNode(func.type), (functionFlags & FunctionFlags.Async) !== 0) || anyType; if (nodeIsYieldStar) { checkTypeAssignableTo( functionFlags & FunctionFlags.Async ? getAwaitedType(expressionElementType, node.expression, Diagnostics.Type_of_iterated_elements_of_a_yield_Asterisk_operand_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member) : expressionElementType, signatureElementType, node.expression, /*headMessage*/ undefined); } else { checkTypeAssignableTo( functionFlags & FunctionFlags.Async ? getAwaitedType(expressionType, node.expression, Diagnostics.Type_of_yield_operand_in_an_async_generator_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member) : expressionType, signatureElementType, node.expression, /*headMessage*/ undefined); } } } } // Both yield and yield* expressions have type 'any' return anyType; } function checkConditionalExpression(node: ConditionalExpression, checkMode?: CheckMode): Type { checkExpression(node.condition); const type1 = checkExpression(node.whenTrue, checkMode); const type2 = checkExpression(node.whenFalse, checkMode); return getBestChoiceType(type1, type2); } function checkLiteralExpression(node: Expression): Type { if (node.kind === SyntaxKind.NumericLiteral) { checkGrammarNumericLiteral(node); } switch (node.kind) { case SyntaxKind.StringLiteral: return getFreshTypeOfLiteralType(getLiteralTypeForText(TypeFlags.StringLiteral, (node).text)); case SyntaxKind.NumericLiteral: return getFreshTypeOfLiteralType(getLiteralTypeForText(TypeFlags.NumberLiteral, (node).text)); case SyntaxKind.TrueKeyword: return trueType; case SyntaxKind.FalseKeyword: return falseType; } } function checkTemplateExpression(node: TemplateExpression): Type { // We just want to check each expressions, but we are unconcerned with // the type of each expression, as any value may be coerced into a string. // It is worth asking whether this is what we really want though. // A place where we actually *are* concerned with the expressions' types are // in tagged templates. forEach((node).templateSpans, templateSpan => { checkExpression(templateSpan.expression); }); return stringType; } function checkExpressionWithContextualType(node: Expression, contextualType: Type, contextualMapper: TypeMapper): Type { const saveContextualType = node.contextualType; const saveContextualMapper = node.contextualMapper; node.contextualType = contextualType; node.contextualMapper = contextualMapper; const checkMode = contextualMapper === identityMapper ? CheckMode.SkipContextSensitive : contextualMapper ? CheckMode.Inferential : CheckMode.Normal; const result = checkExpression(node, checkMode); node.contextualType = saveContextualType; node.contextualMapper = saveContextualMapper; return result; } function checkExpressionCached(node: Expression, checkMode?: CheckMode): Type { const links = getNodeLinks(node); if (!links.resolvedType) { // When computing a type that we're going to cache, we need to ignore any ongoing control flow // analysis because variables may have transient types in indeterminable states. Moving flowLoopStart // to the top of the stack ensures all transient types are computed from a known point. const saveFlowLoopStart = flowLoopStart; flowLoopStart = flowLoopCount; links.resolvedType = checkExpression(node, checkMode); flowLoopStart = saveFlowLoopStart; } return links.resolvedType; } function isTypeAssertion(node: Expression) { node = skipParentheses(node); return node.kind === SyntaxKind.TypeAssertionExpression || node.kind === SyntaxKind.AsExpression; } function checkDeclarationInitializer(declaration: VariableLikeDeclaration) { const type = getTypeOfExpression(declaration.initializer, /*cache*/ true); return getCombinedNodeFlags(declaration) & NodeFlags.Const || getCombinedModifierFlags(declaration) & ModifierFlags.Readonly && !isParameterPropertyDeclaration(declaration) || isTypeAssertion(declaration.initializer) ? type : getWidenedLiteralType(type); } function isLiteralContextualType(contextualType: Type) { if (contextualType) { if (contextualType.flags & TypeFlags.TypeVariable) { const constraint = getBaseConstraintOfType(contextualType) || emptyObjectType; // If the type parameter is constrained to the base primitive type we're checking for, // consider this a literal context. For example, given a type parameter 'T extends string', // this causes us to infer string literal types for T. if (constraint.flags & (TypeFlags.String | TypeFlags.Number | TypeFlags.Boolean | TypeFlags.Enum)) { return true; } contextualType = constraint; } return maybeTypeOfKind(contextualType, (TypeFlags.Literal | TypeFlags.Index)); } return false; } function checkExpressionForMutableLocation(node: Expression, checkMode?: CheckMode): Type { const type = checkExpression(node, checkMode); return isTypeAssertion(node) || isLiteralContextualType(getContextualType(node)) ? type : getWidenedLiteralType(type); } function checkPropertyAssignment(node: PropertyAssignment, checkMode?: CheckMode): Type { // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); } return checkExpressionForMutableLocation((node).initializer, checkMode); } function checkObjectLiteralMethod(node: MethodDeclaration, checkMode?: CheckMode): Type { // Grammar checking checkGrammarMethod(node); // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); } const uninstantiatedType = checkFunctionExpressionOrObjectLiteralMethod(node, checkMode); return instantiateTypeWithSingleGenericCallSignature(node, uninstantiatedType, checkMode); } function instantiateTypeWithSingleGenericCallSignature(node: Expression | MethodDeclaration, type: Type, checkMode?: CheckMode) { if (checkMode === CheckMode.Inferential) { const signature = getSingleCallSignature(type); if (signature && signature.typeParameters) { const contextualType = getApparentTypeOfContextualType(node); if (contextualType) { const contextualSignature = getSingleCallSignature(contextualType); if (contextualSignature && !contextualSignature.typeParameters) { return getOrCreateTypeFromSignature(instantiateSignatureInContextOf(signature, contextualSignature, getContextualMapper(node))); } } } } return type; } /** * Returns the type of an expression. Unlike checkExpression, this function is simply concerned * with computing the type and may not fully check all contained sub-expressions for errors. * A cache argument of true indicates that if the function performs a full type check, it is ok * to cache the result. */ function getTypeOfExpression(node: Expression, cache?: boolean) { // Optimize for the common case of a call to a function with a single non-generic call // signature where we can just fetch the return type without checking the arguments. if (node.kind === SyntaxKind.CallExpression && (node).expression.kind !== SyntaxKind.SuperKeyword && !isRequireCall(node, /*checkArgumentIsStringLiteral*/ true)) { const funcType = checkNonNullExpression((node).expression); const signature = getSingleCallSignature(funcType); if (signature && !signature.typeParameters) { return getReturnTypeOfSignature(signature); } } // Otherwise simply call checkExpression. Ideally, the entire family of checkXXX functions // should have a parameter that indicates whether full error checking is required such that // we can perform the optimizations locally. return cache ? checkExpressionCached(node) : checkExpression(node); } /** * Returns the type of an expression. Unlike checkExpression, this function is simply concerned * with computing the type and may not fully check all contained sub-expressions for errors. * It is intended for uses where you know there is no contextual type, * and requesting the contextual type might cause a circularity or other bad behaviour. * It sets the contextual type of the node to any before calling getTypeOfExpression. */ function getContextFreeTypeOfExpression(node: Expression) { const saveContextualType = node.contextualType; node.contextualType = anyType; const type = getTypeOfExpression(node); node.contextualType = saveContextualType; return type; } // Checks an expression and returns its type. The contextualMapper parameter serves two purposes: When // contextualMapper is not undefined and not equal to the identityMapper function object it indicates that the // expression is being inferentially typed (section 4.15.2 in spec) and provides the type mapper to use in // conjunction with the generic contextual type. When contextualMapper is equal to the identityMapper function // object, it serves as an indicator that all contained function and arrow expressions should be considered to // have the wildcard function type; this form of type check is used during overload resolution to exclude // contextually typed function and arrow expressions in the initial phase. function checkExpression(node: Expression | QualifiedName, checkMode?: CheckMode): Type { let type: Type; if (node.kind === SyntaxKind.QualifiedName) { type = checkQualifiedName(node); } else { const uninstantiatedType = checkExpressionWorker(node, checkMode); type = instantiateTypeWithSingleGenericCallSignature(node, uninstantiatedType, checkMode); } if (isConstEnumObjectType(type)) { // enum object type for const enums are only permitted in: // - 'left' in property access // - 'object' in indexed access // - target in rhs of import statement const ok = (node.parent.kind === SyntaxKind.PropertyAccessExpression && (node.parent).expression === node) || (node.parent.kind === SyntaxKind.ElementAccessExpression && (node.parent).expression === node) || ((node.kind === SyntaxKind.Identifier || node.kind === SyntaxKind.QualifiedName) && isInRightSideOfImportOrExportAssignment(node)); if (!ok) { error(node, Diagnostics.const_enums_can_only_be_used_in_property_or_index_access_expressions_or_the_right_hand_side_of_an_import_declaration_or_export_assignment); } } return type; } function checkExpressionWorker(node: Expression, checkMode: CheckMode): Type { switch (node.kind) { case SyntaxKind.Identifier: return checkIdentifier(node); case SyntaxKind.ThisKeyword: return checkThisExpression(node); case SyntaxKind.SuperKeyword: return checkSuperExpression(node); case SyntaxKind.NullKeyword: return nullWideningType; case SyntaxKind.StringLiteral: case SyntaxKind.NumericLiteral: case SyntaxKind.TrueKeyword: case SyntaxKind.FalseKeyword: return checkLiteralExpression(node); case SyntaxKind.TemplateExpression: return checkTemplateExpression(node); case SyntaxKind.NoSubstitutionTemplateLiteral: return stringType; case SyntaxKind.RegularExpressionLiteral: return globalRegExpType; case SyntaxKind.ArrayLiteralExpression: return checkArrayLiteral(node, checkMode); case SyntaxKind.ObjectLiteralExpression: return checkObjectLiteral(node, checkMode); case SyntaxKind.PropertyAccessExpression: return checkPropertyAccessExpression(node); case SyntaxKind.ElementAccessExpression: return checkIndexedAccess(node); case SyntaxKind.CallExpression: case SyntaxKind.NewExpression: return checkCallExpression(node); case SyntaxKind.TaggedTemplateExpression: return checkTaggedTemplateExpression(node); case SyntaxKind.ParenthesizedExpression: return checkExpression((node).expression, checkMode); case SyntaxKind.ClassExpression: return checkClassExpression(node); case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return checkFunctionExpressionOrObjectLiteralMethod(node, checkMode); case SyntaxKind.TypeOfExpression: return checkTypeOfExpression(node); case SyntaxKind.TypeAssertionExpression: case SyntaxKind.AsExpression: return checkAssertion(node); case SyntaxKind.NonNullExpression: return checkNonNullAssertion(node); case SyntaxKind.MetaProperty: return checkMetaProperty(node); case SyntaxKind.DeleteExpression: return checkDeleteExpression(node); case SyntaxKind.VoidExpression: return checkVoidExpression(node); case SyntaxKind.AwaitExpression: return checkAwaitExpression(node); case SyntaxKind.PrefixUnaryExpression: return checkPrefixUnaryExpression(node); case SyntaxKind.PostfixUnaryExpression: return checkPostfixUnaryExpression(node); case SyntaxKind.BinaryExpression: return checkBinaryExpression(node, checkMode); case SyntaxKind.ConditionalExpression: return checkConditionalExpression(node, checkMode); case SyntaxKind.SpreadElement: return checkSpreadExpression(node, checkMode); case SyntaxKind.OmittedExpression: return undefinedWideningType; case SyntaxKind.YieldExpression: return checkYieldExpression(node); case SyntaxKind.JsxExpression: return checkJsxExpression(node, checkMode); case SyntaxKind.JsxElement: return checkJsxElement(node); case SyntaxKind.JsxSelfClosingElement: return checkJsxSelfClosingElement(node); case SyntaxKind.JsxAttributes: return checkJsxAttributes(node, checkMode); case SyntaxKind.JsxOpeningElement: Debug.fail("Shouldn't ever directly check a JsxOpeningElement"); } return unknownType; } // DECLARATION AND STATEMENT TYPE CHECKING function checkTypeParameter(node: TypeParameterDeclaration) { // Grammar Checking if (node.expression) { grammarErrorOnFirstToken(node.expression, Diagnostics.Type_expected); } checkSourceElement(node.constraint); checkSourceElement(node.default); const typeParameter = getDeclaredTypeOfTypeParameter(getSymbolOfNode(node)); if (!hasNonCircularBaseConstraint(typeParameter)) { error(node.constraint, Diagnostics.Type_parameter_0_has_a_circular_constraint, typeToString(typeParameter)); } const constraintType = getConstraintOfTypeParameter(typeParameter); const defaultType = getDefaultFromTypeParameter(typeParameter); if (constraintType && defaultType) { checkTypeAssignableTo(defaultType, getTypeWithThisArgument(constraintType, defaultType), node.default, Diagnostics.Type_0_does_not_satisfy_the_constraint_1); } if (produceDiagnostics) { checkTypeNameIsReserved(node.name, Diagnostics.Type_parameter_name_cannot_be_0); } } function checkParameter(node: ParameterDeclaration) { // Grammar checking // It is a SyntaxError if the Identifier "eval" or the Identifier "arguments" occurs as the // Identifier in a PropertySetParameterList of a PropertyAssignment that is contained in strict code // or if its FunctionBody is strict code(11.1.5). // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node); checkVariableLikeDeclaration(node); let func = getContainingFunction(node); if (getModifierFlags(node) & ModifierFlags.ParameterPropertyModifier) { func = getContainingFunction(node); if (!(func.kind === SyntaxKind.Constructor && nodeIsPresent(func.body))) { error(node, Diagnostics.A_parameter_property_is_only_allowed_in_a_constructor_implementation); } } if (node.questionToken && isBindingPattern(node.name) && func.body) { error(node, Diagnostics.A_binding_pattern_parameter_cannot_be_optional_in_an_implementation_signature); } if ((node.name).text === "this") { if (indexOf(func.parameters, node) !== 0) { error(node, Diagnostics.A_this_parameter_must_be_the_first_parameter); } if (func.kind === SyntaxKind.Constructor || func.kind === SyntaxKind.ConstructSignature || func.kind === SyntaxKind.ConstructorType) { error(node, Diagnostics.A_constructor_cannot_have_a_this_parameter); } } // Only check rest parameter type if it's not a binding pattern. Since binding patterns are // not allowed in a rest parameter, we already have an error from checkGrammarParameterList. if (node.dotDotDotToken && !isBindingPattern(node.name) && !isArrayType(getTypeOfSymbol(node.symbol))) { error(node, Diagnostics.A_rest_parameter_must_be_of_an_array_type); } } function getTypePredicateParameterIndex(parameterList: NodeArray, parameter: Identifier): number { if (parameterList) { for (let i = 0; i < parameterList.length; i++) { const param = parameterList[i]; if (param.name.kind === SyntaxKind.Identifier && (param.name).text === parameter.text) { return i; } } } return -1; } function checkTypePredicate(node: TypePredicateNode): void { const parent = getTypePredicateParent(node); if (!parent) { // The parent must not be valid. error(node, Diagnostics.A_type_predicate_is_only_allowed_in_return_type_position_for_functions_and_methods); return; } const typePredicate = getSignatureFromDeclaration(parent).typePredicate; if (!typePredicate) { return; } const { parameterName } = node; if (isThisTypePredicate(typePredicate)) { getTypeFromThisTypeNode(parameterName as ThisTypeNode); } else { if (typePredicate.parameterIndex >= 0) { if (parent.parameters[typePredicate.parameterIndex].dotDotDotToken) { error(parameterName, Diagnostics.A_type_predicate_cannot_reference_a_rest_parameter); } else { const leadingError = chainDiagnosticMessages(/*details*/ undefined, Diagnostics.A_type_predicate_s_type_must_be_assignable_to_its_parameter_s_type); checkTypeAssignableTo(typePredicate.type, getTypeOfNode(parent.parameters[typePredicate.parameterIndex]), node.type, /*headMessage*/ undefined, leadingError); } } else if (parameterName) { let hasReportedError = false; for (const { name } of parent.parameters) { if (isBindingPattern(name) && checkIfTypePredicateVariableIsDeclaredInBindingPattern(name, parameterName, typePredicate.parameterName)) { hasReportedError = true; break; } } if (!hasReportedError) { error(node.parameterName, Diagnostics.Cannot_find_parameter_0, typePredicate.parameterName); } } } } function getTypePredicateParent(node: Node): SignatureDeclaration { switch (node.parent.kind) { case SyntaxKind.ArrowFunction: case SyntaxKind.CallSignature: case SyntaxKind.FunctionDeclaration: case SyntaxKind.FunctionExpression: case SyntaxKind.FunctionType: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: const parent = node.parent; if (node === parent.type) { return parent; } } } function checkIfTypePredicateVariableIsDeclaredInBindingPattern( pattern: BindingPattern, predicateVariableNode: Node, predicateVariableName: string) { for (const element of pattern.elements) { if (isOmittedExpression(element)) { continue; } const name = element.name; if (name.kind === SyntaxKind.Identifier && (name).text === predicateVariableName) { error(predicateVariableNode, Diagnostics.A_type_predicate_cannot_reference_element_0_in_a_binding_pattern, predicateVariableName); return true; } else if (name.kind === SyntaxKind.ArrayBindingPattern || name.kind === SyntaxKind.ObjectBindingPattern) { if (checkIfTypePredicateVariableIsDeclaredInBindingPattern( name, predicateVariableNode, predicateVariableName)) { return true; } } } } function checkSignatureDeclaration(node: SignatureDeclaration) { // Grammar checking if (node.kind === SyntaxKind.IndexSignature) { checkGrammarIndexSignature(node); } // TODO (yuisu): Remove this check in else-if when SyntaxKind.Construct is moved and ambient context is handled else if (node.kind === SyntaxKind.FunctionType || node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.ConstructorType || node.kind === SyntaxKind.CallSignature || node.kind === SyntaxKind.Constructor || node.kind === SyntaxKind.ConstructSignature) { checkGrammarFunctionLikeDeclaration(node); } const functionFlags = getFunctionFlags(node); if (!(functionFlags & FunctionFlags.Invalid)) { // Async generators prior to ESNext require the __await and __asyncGenerator helpers if ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.AsyncGenerator && languageVersion < ScriptTarget.ESNext) { checkExternalEmitHelpers(node, ExternalEmitHelpers.AsyncGeneratorIncludes); } // Async functions prior to ES2017 require the __awaiter helper if ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.Async && languageVersion < ScriptTarget.ES2017) { checkExternalEmitHelpers(node, ExternalEmitHelpers.Awaiter); } // Generator functions, Async functions, and Async Generator functions prior to // ES2015 require the __generator helper if ((functionFlags & FunctionFlags.AsyncGenerator) !== FunctionFlags.Normal && languageVersion < ScriptTarget.ES2015) { checkExternalEmitHelpers(node, ExternalEmitHelpers.Generator); } } checkTypeParameters(node.typeParameters); forEach(node.parameters, checkParameter); if (node.type) { checkSourceElement(node.type); } if (produceDiagnostics) { checkCollisionWithArgumentsInGeneratedCode(node); if (noImplicitAny && !node.type) { switch (node.kind) { case SyntaxKind.ConstructSignature: error(node, Diagnostics.Construct_signature_which_lacks_return_type_annotation_implicitly_has_an_any_return_type); break; case SyntaxKind.CallSignature: error(node, Diagnostics.Call_signature_which_lacks_return_type_annotation_implicitly_has_an_any_return_type); break; } } if (node.type) { const functionFlags = getFunctionFlags(node); if ((functionFlags & (FunctionFlags.Invalid | FunctionFlags.Generator)) === FunctionFlags.Generator) { const returnType = getTypeFromTypeNode(node.type); if (returnType === voidType) { error(node.type, Diagnostics.A_generator_cannot_have_a_void_type_annotation); } else { const generatorElementType = getIteratedTypeOfGenerator(returnType, (functionFlags & FunctionFlags.Async) !== 0) || anyType; const iterableIteratorInstantiation = functionFlags & FunctionFlags.Async ? createAsyncIterableIteratorType(generatorElementType) // AsyncGenerator function : createIterableIteratorType(generatorElementType); // Generator function // Naively, one could check that IterableIterator is assignable to the return type annotation. // However, that would not catch the error in the following case. // // interface BadGenerator extends Iterable, Iterator { } // function* g(): BadGenerator { } // Iterable and Iterator have different types! // checkTypeAssignableTo(iterableIteratorInstantiation, returnType, node.type); } } else if ((functionFlags & FunctionFlags.AsyncGenerator) === FunctionFlags.Async) { checkAsyncFunctionReturnType(node); } } if (noUnusedIdentifiers && !(node).body) { checkUnusedTypeParameters(node); } } } function checkClassForDuplicateDeclarations(node: ClassLikeDeclaration) { const enum Declaration { Getter = 1, Setter = 2, Method = 4, Property = Getter | Setter } const instanceNames = createMap(); const staticNames = createMap(); for (const member of node.members) { if (member.kind === SyntaxKind.Constructor) { for (const param of (member as ConstructorDeclaration).parameters) { if (isParameterPropertyDeclaration(param)) { addName(instanceNames, param.name, (param.name as Identifier).text, Declaration.Property); } } } else { const isStatic = getModifierFlags(member) & ModifierFlags.Static; const names = isStatic ? staticNames : instanceNames; const memberName = member.name && getPropertyNameForPropertyNameNode(member.name); if (memberName) { switch (member.kind) { case SyntaxKind.GetAccessor: addName(names, member.name, memberName, Declaration.Getter); break; case SyntaxKind.SetAccessor: addName(names, member.name, memberName, Declaration.Setter); break; case SyntaxKind.PropertyDeclaration: addName(names, member.name, memberName, Declaration.Property); break; case SyntaxKind.MethodDeclaration: addName(names, member.name, memberName, Declaration.Method); break; } } } } function addName(names: Map, location: Node, name: string, meaning: Declaration) { const prev = names.get(name); if (prev) { if (prev & Declaration.Method) { if (meaning !== Declaration.Method) { error(location, Diagnostics.Duplicate_identifier_0, getTextOfNode(location)); } } else if (prev & meaning) { error(location, Diagnostics.Duplicate_identifier_0, getTextOfNode(location)); } else { names.set(name, prev | meaning); } } else { names.set(name, meaning); } } } /** * Static members being set on a constructor function may conflict with built-in properties * of Function. Esp. in ECMAScript 5 there are non-configurable and non-writable * built-in properties. This check issues a transpile error when a class has a static * member with the same name as a non-writable built-in property. * * @see http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.3 * @see http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.5 * @see http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-the-function-constructor * @see http://www.ecma-international.org/ecma-262/6.0/#sec-function-instances */ function checkClassForStaticPropertyNameConflicts(node: ClassLikeDeclaration) { for (const member of node.members) { const memberNameNode = member.name; const isStatic = getModifierFlags(member) & ModifierFlags.Static; if (isStatic && memberNameNode) { const memberName = getPropertyNameForPropertyNameNode(memberNameNode); switch (memberName) { case "name": case "length": case "caller": case "arguments": case "prototype": const message = Diagnostics.Static_property_0_conflicts_with_built_in_property_Function_0_of_constructor_function_1; const className = getNameOfSymbol(getSymbolOfNode(node)); error(memberNameNode, message, memberName, className); break; } } } } function checkObjectTypeForDuplicateDeclarations(node: TypeLiteralNode | InterfaceDeclaration) { const names = createMap(); for (const member of node.members) { if (member.kind === SyntaxKind.PropertySignature) { let memberName: string; switch (member.name.kind) { case SyntaxKind.StringLiteral: case SyntaxKind.NumericLiteral: case SyntaxKind.Identifier: memberName = (member.name as LiteralExpression | Identifier).text; break; default: continue; } if (names.get(memberName)) { error(getNameOfDeclaration(member.symbol.valueDeclaration), Diagnostics.Duplicate_identifier_0, memberName); error(member.name, Diagnostics.Duplicate_identifier_0, memberName); } else { names.set(memberName, true); } } } } function checkTypeForDuplicateIndexSignatures(node: Node) { if (node.kind === SyntaxKind.InterfaceDeclaration) { const nodeSymbol = getSymbolOfNode(node); // in case of merging interface declaration it is possible that we'll enter this check procedure several times for every declaration // to prevent this run check only for the first declaration of a given kind if (nodeSymbol.declarations.length > 0 && nodeSymbol.declarations[0] !== node) { return; } } // TypeScript 1.0 spec (April 2014) // 3.7.4: An object type can contain at most one string index signature and one numeric index signature. // 8.5: A class declaration can have at most one string index member declaration and one numeric index member declaration const indexSymbol = getIndexSymbol(getSymbolOfNode(node)); if (indexSymbol) { let seenNumericIndexer = false; let seenStringIndexer = false; for (const decl of indexSymbol.declarations) { const declaration = decl; if (declaration.parameters.length === 1 && declaration.parameters[0].type) { switch (declaration.parameters[0].type.kind) { case SyntaxKind.StringKeyword: if (!seenStringIndexer) { seenStringIndexer = true; } else { error(declaration, Diagnostics.Duplicate_string_index_signature); } break; case SyntaxKind.NumberKeyword: if (!seenNumericIndexer) { seenNumericIndexer = true; } else { error(declaration, Diagnostics.Duplicate_number_index_signature); } break; } } } } } function checkPropertyDeclaration(node: PropertyDeclaration) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarProperty(node) || checkGrammarComputedPropertyName(node.name); checkVariableLikeDeclaration(node); } function checkMethodDeclaration(node: MethodDeclaration) { // Grammar checking checkGrammarMethod(node) || checkGrammarComputedPropertyName(node.name); // Grammar checking for modifiers is done inside the function checkGrammarFunctionLikeDeclaration checkFunctionOrMethodDeclaration(node); // Abstract methods cannot have an implementation. // Extra checks are to avoid reporting multiple errors relating to the "abstractness" of the node. if (getModifierFlags(node) & ModifierFlags.Abstract && node.body) { error(node, Diagnostics.Method_0_cannot_have_an_implementation_because_it_is_marked_abstract, declarationNameToString(node.name)); } } function checkConstructorDeclaration(node: ConstructorDeclaration) { // Grammar check on signature of constructor and modifier of the constructor is done in checkSignatureDeclaration function. checkSignatureDeclaration(node); // Grammar check for checking only related to constructorDeclaration checkGrammarConstructorTypeParameters(node) || checkGrammarConstructorTypeAnnotation(node); checkSourceElement(node.body); registerForUnusedIdentifiersCheck(node); const symbol = getSymbolOfNode(node); const firstDeclaration = getDeclarationOfKind(symbol, node.kind); // Only type check the symbol once if (node === firstDeclaration) { checkFunctionOrConstructorSymbol(symbol); } // exit early in the case of signature - super checks are not relevant to them if (nodeIsMissing(node.body)) { return; } if (!produceDiagnostics) { return; } function containsSuperCallAsComputedPropertyName(n: Declaration): boolean { const name = getNameOfDeclaration(n); return name && containsSuperCall(name); } function containsSuperCall(n: Node): boolean { if (isSuperCall(n)) { return true; } else if (isFunctionLike(n)) { return false; } else if (isClassLike(n)) { return forEach((n).members, containsSuperCallAsComputedPropertyName); } return forEachChild(n, containsSuperCall); } function markThisReferencesAsErrors(n: Node): void { if (n.kind === SyntaxKind.ThisKeyword) { error(n, Diagnostics.this_cannot_be_referenced_in_current_location); } else if (n.kind !== SyntaxKind.FunctionExpression && n.kind !== SyntaxKind.FunctionDeclaration) { forEachChild(n, markThisReferencesAsErrors); } } function isInstancePropertyWithInitializer(n: Node): boolean { return n.kind === SyntaxKind.PropertyDeclaration && !(getModifierFlags(n) & ModifierFlags.Static) && !!(n).initializer; } // TS 1.0 spec (April 2014): 8.3.2 // Constructors of classes with no extends clause may not contain super calls, whereas // constructors of derived classes must contain at least one super call somewhere in their function body. const containingClassDecl = node.parent; if (getClassExtendsHeritageClauseElement(containingClassDecl)) { captureLexicalThis(node.parent, containingClassDecl); const classExtendsNull = classDeclarationExtendsNull(containingClassDecl); const superCall = getSuperCallInConstructor(node); if (superCall) { if (classExtendsNull) { error(superCall, Diagnostics.A_constructor_cannot_contain_a_super_call_when_its_class_extends_null); } // The first statement in the body of a constructor (excluding prologue directives) must be a super call // if both of the following are true: // - The containing class is a derived class. // - The constructor declares parameter properties // or the containing class declares instance member variables with initializers. const superCallShouldBeFirst = forEach((node.parent).members, isInstancePropertyWithInitializer) || forEach(node.parameters, p => getModifierFlags(p) & ModifierFlags.ParameterPropertyModifier); // Skip past any prologue directives to find the first statement // to ensure that it was a super call. if (superCallShouldBeFirst) { const statements = (node.body).statements; let superCallStatement: ExpressionStatement; for (const statement of statements) { if (statement.kind === SyntaxKind.ExpressionStatement && isSuperCall((statement).expression)) { superCallStatement = statement; break; } if (!isPrologueDirective(statement)) { break; } } if (!superCallStatement) { error(node, Diagnostics.A_super_call_must_be_the_first_statement_in_the_constructor_when_a_class_contains_initialized_properties_or_has_parameter_properties); } } } else if (!classExtendsNull) { error(node, Diagnostics.Constructors_for_derived_classes_must_contain_a_super_call); } } } function checkAccessorDeclaration(node: AccessorDeclaration) { if (produceDiagnostics) { // Grammar checking accessors checkGrammarFunctionLikeDeclaration(node) || checkGrammarAccessor(node) || checkGrammarComputedPropertyName(node.name); checkDecorators(node); checkSignatureDeclaration(node); if (node.kind === SyntaxKind.GetAccessor) { if (!isInAmbientContext(node) && nodeIsPresent(node.body) && (node.flags & NodeFlags.HasImplicitReturn)) { if (!(node.flags & NodeFlags.HasExplicitReturn)) { error(node.name, Diagnostics.A_get_accessor_must_return_a_value); } } } // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); } if (!hasDynamicName(node)) { // TypeScript 1.0 spec (April 2014): 8.4.3 // Accessors for the same member name must specify the same accessibility. const otherKind = node.kind === SyntaxKind.GetAccessor ? SyntaxKind.SetAccessor : SyntaxKind.GetAccessor; const otherAccessor = getDeclarationOfKind(node.symbol, otherKind); if (otherAccessor) { if ((getModifierFlags(node) & ModifierFlags.AccessibilityModifier) !== (getModifierFlags(otherAccessor) & ModifierFlags.AccessibilityModifier)) { error(node.name, Diagnostics.Getter_and_setter_accessors_do_not_agree_in_visibility); } if (hasModifier(node, ModifierFlags.Abstract) !== hasModifier(otherAccessor, ModifierFlags.Abstract)) { error(node.name, Diagnostics.Accessors_must_both_be_abstract_or_non_abstract); } // TypeScript 1.0 spec (April 2014): 4.5 // If both accessors include type annotations, the specified types must be identical. checkAccessorDeclarationTypesIdentical(node, otherAccessor, getAnnotatedAccessorType, Diagnostics.get_and_set_accessor_must_have_the_same_type); checkAccessorDeclarationTypesIdentical(node, otherAccessor, getThisTypeOfDeclaration, Diagnostics.get_and_set_accessor_must_have_the_same_this_type); } } const returnType = getTypeOfAccessors(getSymbolOfNode(node)); if (node.kind === SyntaxKind.GetAccessor) { checkAllCodePathsInNonVoidFunctionReturnOrThrow(node, returnType); } } checkSourceElement(node.body); registerForUnusedIdentifiersCheck(node); } function checkAccessorDeclarationTypesIdentical(first: AccessorDeclaration, second: AccessorDeclaration, getAnnotatedType: (a: AccessorDeclaration) => Type, message: DiagnosticMessage) { const firstType = getAnnotatedType(first); const secondType = getAnnotatedType(second); if (firstType && secondType && !isTypeIdenticalTo(firstType, secondType)) { error(first, message); } } function checkMissingDeclaration(node: Node) { checkDecorators(node); } function checkTypeArgumentConstraints(typeParameters: TypeParameter[], typeArgumentNodes: TypeNode[]): boolean { const minTypeArgumentCount = getMinTypeArgumentCount(typeParameters); let typeArguments: Type[]; let mapper: TypeMapper; let result = true; for (let i = 0; i < typeParameters.length; i++) { const constraint = getConstraintOfTypeParameter(typeParameters[i]); if (constraint) { if (!typeArguments) { typeArguments = fillMissingTypeArguments(map(typeArgumentNodes, getTypeFromTypeNode), typeParameters, minTypeArgumentCount); mapper = createTypeMapper(typeParameters, typeArguments); } const typeArgument = typeArguments[i]; result = result && checkTypeAssignableTo( typeArgument, getTypeWithThisArgument(instantiateType(constraint, mapper), typeArgument), typeArgumentNodes[i], Diagnostics.Type_0_does_not_satisfy_the_constraint_1); } } return result; } function checkTypeReferenceNode(node: TypeReferenceNode | ExpressionWithTypeArguments) { checkGrammarTypeArguments(node, node.typeArguments); const type = getTypeFromTypeReference(node); if (type !== unknownType) { if (node.typeArguments) { // Do type argument local checks only if referenced type is successfully resolved forEach(node.typeArguments, checkSourceElement); if (produceDiagnostics) { const symbol = getNodeLinks(node).resolvedSymbol; const typeParameters = symbol.flags & SymbolFlags.TypeAlias ? getSymbolLinks(symbol).typeParameters : (type).target.localTypeParameters; checkTypeArgumentConstraints(typeParameters, node.typeArguments); } } if (type.flags & TypeFlags.Enum && !(type).memberTypes && getNodeLinks(node).resolvedSymbol.flags & SymbolFlags.EnumMember) { error(node, Diagnostics.Enum_type_0_has_members_with_initializers_that_are_not_literals, typeToString(type)); } } } function checkTypeQuery(node: TypeQueryNode) { getTypeFromTypeQueryNode(node); } function checkTypeLiteral(node: TypeLiteralNode) { forEach(node.members, checkSourceElement); if (produceDiagnostics) { const type = getTypeFromTypeLiteralOrFunctionOrConstructorTypeNode(node); checkIndexConstraints(type); checkTypeForDuplicateIndexSignatures(node); checkObjectTypeForDuplicateDeclarations(node); } } function checkArrayType(node: ArrayTypeNode) { checkSourceElement(node.elementType); } function checkTupleType(node: TupleTypeNode) { // Grammar checking const hasErrorFromDisallowedTrailingComma = checkGrammarForDisallowedTrailingComma(node.elementTypes); if (!hasErrorFromDisallowedTrailingComma && node.elementTypes.length === 0) { grammarErrorOnNode(node, Diagnostics.A_tuple_type_element_list_cannot_be_empty); } forEach(node.elementTypes, checkSourceElement); } function checkUnionOrIntersectionType(node: UnionOrIntersectionTypeNode) { forEach(node.types, checkSourceElement); } function checkIndexedAccessIndexType(type: Type, accessNode: ElementAccessExpression | IndexedAccessTypeNode) { if (!(type.flags & TypeFlags.IndexedAccess)) { return type; } // Check if the index type is assignable to 'keyof T' for the object type. const objectType = (type).objectType; const indexType = (type).indexType; if (isTypeAssignableTo(indexType, getIndexType(objectType))) { return type; } // Check if we're indexing with a numeric type and the object type is a generic // type with a constraint that has a numeric index signature. if (maybeTypeOfKind(objectType, TypeFlags.TypeVariable) && isTypeOfKind(indexType, TypeFlags.NumberLike)) { const constraint = getBaseConstraintOfType(objectType); if (constraint && getIndexInfoOfType(constraint, IndexKind.Number)) { return type; } } error(accessNode, Diagnostics.Type_0_cannot_be_used_to_index_type_1, typeToString(indexType), typeToString(objectType)); return type; } function checkIndexedAccessType(node: IndexedAccessTypeNode) { checkIndexedAccessIndexType(getTypeFromIndexedAccessTypeNode(node), node); } function checkMappedType(node: MappedTypeNode) { checkSourceElement(node.typeParameter); checkSourceElement(node.type); const type = getTypeFromMappedTypeNode(node); const constraintType = getConstraintTypeFromMappedType(type); checkTypeAssignableTo(constraintType, stringType, node.typeParameter.constraint); } function isPrivateWithinAmbient(node: Node): boolean { return (getModifierFlags(node) & ModifierFlags.Private) && isInAmbientContext(node); } function getEffectiveDeclarationFlags(n: Node, flagsToCheck: ModifierFlags): ModifierFlags { let flags = getCombinedModifierFlags(n); // children of classes (even ambient classes) should not be marked as ambient or export // because those flags have no useful semantics there. if (n.parent.kind !== SyntaxKind.InterfaceDeclaration && n.parent.kind !== SyntaxKind.ClassDeclaration && n.parent.kind !== SyntaxKind.ClassExpression && isInAmbientContext(n)) { if (!(flags & ModifierFlags.Ambient)) { // It is nested in an ambient context, which means it is automatically exported flags |= ModifierFlags.Export; } flags |= ModifierFlags.Ambient; } return flags & flagsToCheck; } function checkFunctionOrConstructorSymbol(symbol: Symbol): void { if (!produceDiagnostics) { return; } function getCanonicalOverload(overloads: Declaration[], implementation: FunctionLikeDeclaration) { // Consider the canonical set of flags to be the flags of the bodyDeclaration or the first declaration // Error on all deviations from this canonical set of flags // The caveat is that if some overloads are defined in lib.d.ts, we don't want to // report the errors on those. To achieve this, we will say that the implementation is // the canonical signature only if it is in the same container as the first overload const implementationSharesContainerWithFirstOverload = implementation !== undefined && implementation.parent === overloads[0].parent; return implementationSharesContainerWithFirstOverload ? implementation : overloads[0]; } function checkFlagAgreementBetweenOverloads(overloads: Declaration[], implementation: FunctionLikeDeclaration, flagsToCheck: ModifierFlags, someOverloadFlags: ModifierFlags, allOverloadFlags: ModifierFlags): void { // Error if some overloads have a flag that is not shared by all overloads. To find the // deviations, we XOR someOverloadFlags with allOverloadFlags const someButNotAllOverloadFlags = someOverloadFlags ^ allOverloadFlags; if (someButNotAllOverloadFlags !== 0) { const canonicalFlags = getEffectiveDeclarationFlags(getCanonicalOverload(overloads, implementation), flagsToCheck); forEach(overloads, o => { const deviation = getEffectiveDeclarationFlags(o, flagsToCheck) ^ canonicalFlags; if (deviation & ModifierFlags.Export) { error(getNameOfDeclaration(o), Diagnostics.Overload_signatures_must_all_be_exported_or_non_exported); } else if (deviation & ModifierFlags.Ambient) { error(getNameOfDeclaration(o), Diagnostics.Overload_signatures_must_all_be_ambient_or_non_ambient); } else if (deviation & (ModifierFlags.Private | ModifierFlags.Protected)) { error(getNameOfDeclaration(o) || o, Diagnostics.Overload_signatures_must_all_be_public_private_or_protected); } else if (deviation & ModifierFlags.Abstract) { error(getNameOfDeclaration(o), Diagnostics.Overload_signatures_must_all_be_abstract_or_non_abstract); } }); } } function checkQuestionTokenAgreementBetweenOverloads(overloads: Declaration[], implementation: FunctionLikeDeclaration, someHaveQuestionToken: boolean, allHaveQuestionToken: boolean): void { if (someHaveQuestionToken !== allHaveQuestionToken) { const canonicalHasQuestionToken = hasQuestionToken(getCanonicalOverload(overloads, implementation)); forEach(overloads, o => { const deviation = hasQuestionToken(o) !== canonicalHasQuestionToken; if (deviation) { error(getNameOfDeclaration(o), Diagnostics.Overload_signatures_must_all_be_optional_or_required); } }); } } const flagsToCheck: ModifierFlags = ModifierFlags.Export | ModifierFlags.Ambient | ModifierFlags.Private | ModifierFlags.Protected | ModifierFlags.Abstract; let someNodeFlags: ModifierFlags = ModifierFlags.None; let allNodeFlags = flagsToCheck; let someHaveQuestionToken = false; let allHaveQuestionToken = true; let hasOverloads = false; let bodyDeclaration: FunctionLikeDeclaration; let lastSeenNonAmbientDeclaration: FunctionLikeDeclaration; let previousDeclaration: FunctionLikeDeclaration; const declarations = symbol.declarations; const isConstructor = (symbol.flags & SymbolFlags.Constructor) !== 0; function reportImplementationExpectedError(node: FunctionLikeDeclaration): void { if (node.name && nodeIsMissing(node.name)) { return; } let seen = false; const subsequentNode = forEachChild(node.parent, c => { if (seen) { return c; } else { seen = c === node; } }); // We may be here because of some extra nodes between overloads that could not be parsed into a valid node. // In this case the subsequent node is not really consecutive (.pos !== node.end), and we must ignore it here. if (subsequentNode && subsequentNode.pos === node.end) { if (subsequentNode.kind === node.kind) { const errorNode: Node = (subsequentNode).name || subsequentNode; // TODO(jfreeman): These are methods, so handle computed name case if (node.name && (subsequentNode).name && (node.name).text === ((subsequentNode).name).text) { const reportError = (node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.MethodSignature) && (getModifierFlags(node) & ModifierFlags.Static) !== (getModifierFlags(subsequentNode) & ModifierFlags.Static); // we can get here in two cases // 1. mixed static and instance class members // 2. something with the same name was defined before the set of overloads that prevents them from merging // here we'll report error only for the first case since for second we should already report error in binder if (reportError) { const diagnostic = getModifierFlags(node) & ModifierFlags.Static ? Diagnostics.Function_overload_must_be_static : Diagnostics.Function_overload_must_not_be_static; error(errorNode, diagnostic); } return; } else if (nodeIsPresent((subsequentNode).body)) { error(errorNode, Diagnostics.Function_implementation_name_must_be_0, declarationNameToString(node.name)); return; } } } const errorNode: Node = node.name || node; if (isConstructor) { error(errorNode, Diagnostics.Constructor_implementation_is_missing); } else { // Report different errors regarding non-consecutive blocks of declarations depending on whether // the node in question is abstract. if (getModifierFlags(node) & ModifierFlags.Abstract) { error(errorNode, Diagnostics.All_declarations_of_an_abstract_method_must_be_consecutive); } else { error(errorNode, Diagnostics.Function_implementation_is_missing_or_not_immediately_following_the_declaration); } } } let duplicateFunctionDeclaration = false; let multipleConstructorImplementation = false; for (const current of declarations) { const node = current; const inAmbientContext = isInAmbientContext(node); const inAmbientContextOrInterface = node.parent.kind === SyntaxKind.InterfaceDeclaration || node.parent.kind === SyntaxKind.TypeLiteral || inAmbientContext; if (inAmbientContextOrInterface) { // check if declarations are consecutive only if they are non-ambient // 1. ambient declarations can be interleaved // i.e. this is legal // declare function foo(); // declare function bar(); // declare function foo(); // 2. mixing ambient and non-ambient declarations is a separate error that will be reported - do not want to report an extra one previousDeclaration = undefined; } if (node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.MethodSignature || node.kind === SyntaxKind.Constructor) { const currentNodeFlags = getEffectiveDeclarationFlags(node, flagsToCheck); someNodeFlags |= currentNodeFlags; allNodeFlags &= currentNodeFlags; someHaveQuestionToken = someHaveQuestionToken || hasQuestionToken(node); allHaveQuestionToken = allHaveQuestionToken && hasQuestionToken(node); if (nodeIsPresent(node.body) && bodyDeclaration) { if (isConstructor) { multipleConstructorImplementation = true; } else { duplicateFunctionDeclaration = true; } } else if (previousDeclaration && previousDeclaration.parent === node.parent && previousDeclaration.end !== node.pos) { reportImplementationExpectedError(previousDeclaration); } if (nodeIsPresent(node.body)) { if (!bodyDeclaration) { bodyDeclaration = node; } } else { hasOverloads = true; } previousDeclaration = node; if (!inAmbientContextOrInterface) { lastSeenNonAmbientDeclaration = node; } } } if (multipleConstructorImplementation) { forEach(declarations, declaration => { error(declaration, Diagnostics.Multiple_constructor_implementations_are_not_allowed); }); } if (duplicateFunctionDeclaration) { forEach(declarations, declaration => { error(getNameOfDeclaration(declaration), Diagnostics.Duplicate_function_implementation); }); } // Abstract methods can't have an implementation -- in particular, they don't need one. if (lastSeenNonAmbientDeclaration && !lastSeenNonAmbientDeclaration.body && !(getModifierFlags(lastSeenNonAmbientDeclaration) & ModifierFlags.Abstract) && !lastSeenNonAmbientDeclaration.questionToken) { reportImplementationExpectedError(lastSeenNonAmbientDeclaration); } if (hasOverloads) { checkFlagAgreementBetweenOverloads(declarations, bodyDeclaration, flagsToCheck, someNodeFlags, allNodeFlags); checkQuestionTokenAgreementBetweenOverloads(declarations, bodyDeclaration, someHaveQuestionToken, allHaveQuestionToken); if (bodyDeclaration) { const signatures = getSignaturesOfSymbol(symbol); const bodySignature = getSignatureFromDeclaration(bodyDeclaration); for (const signature of signatures) { if (!isImplementationCompatibleWithOverload(bodySignature, signature)) { error(signature.declaration, Diagnostics.Overload_signature_is_not_compatible_with_function_implementation); break; } } } } } function checkExportsOnMergedDeclarations(node: Node): void { if (!produceDiagnostics) { return; } // if localSymbol is defined on node then node itself is exported - check is required let symbol = node.localSymbol; if (!symbol) { // local symbol is undefined => this declaration is non-exported. // however symbol might contain other declarations that are exported symbol = getSymbolOfNode(node); if (!(symbol.flags & SymbolFlags.Export)) { // this is a pure local symbol (all declarations are non-exported) - no need to check anything return; } } // run the check only for the first declaration in the list if (getDeclarationOfKind(symbol, node.kind) !== node) { return; } // we use SymbolFlags.ExportValue, SymbolFlags.ExportType and SymbolFlags.ExportNamespace // to denote disjoint declarationSpaces (without making new enum type). let exportedDeclarationSpaces = SymbolFlags.None; let nonExportedDeclarationSpaces = SymbolFlags.None; let defaultExportedDeclarationSpaces = SymbolFlags.None; for (const d of symbol.declarations) { const declarationSpaces = getDeclarationSpaces(d); const effectiveDeclarationFlags = getEffectiveDeclarationFlags(d, ModifierFlags.Export | ModifierFlags.Default); if (effectiveDeclarationFlags & ModifierFlags.Export) { if (effectiveDeclarationFlags & ModifierFlags.Default) { defaultExportedDeclarationSpaces |= declarationSpaces; } else { exportedDeclarationSpaces |= declarationSpaces; } } else { nonExportedDeclarationSpaces |= declarationSpaces; } } // Spaces for anything not declared a 'default export'. const nonDefaultExportedDeclarationSpaces = exportedDeclarationSpaces | nonExportedDeclarationSpaces; const commonDeclarationSpacesForExportsAndLocals = exportedDeclarationSpaces & nonExportedDeclarationSpaces; const commonDeclarationSpacesForDefaultAndNonDefault = defaultExportedDeclarationSpaces & nonDefaultExportedDeclarationSpaces; if (commonDeclarationSpacesForExportsAndLocals || commonDeclarationSpacesForDefaultAndNonDefault) { // declaration spaces for exported and non-exported declarations intersect for (const d of symbol.declarations) { const declarationSpaces = getDeclarationSpaces(d); const name = getNameOfDeclaration(d); // Only error on the declarations that contributed to the intersecting spaces. if (declarationSpaces & commonDeclarationSpacesForDefaultAndNonDefault) { error(name, Diagnostics.Merged_declaration_0_cannot_include_a_default_export_declaration_Consider_adding_a_separate_export_default_0_declaration_instead, declarationNameToString(name)); } else if (declarationSpaces & commonDeclarationSpacesForExportsAndLocals) { error(name, Diagnostics.Individual_declarations_in_merged_declaration_0_must_be_all_exported_or_all_local, declarationNameToString(name)); } } } function getDeclarationSpaces(d: Declaration): SymbolFlags { switch (d.kind) { case SyntaxKind.InterfaceDeclaration: return SymbolFlags.ExportType; case SyntaxKind.ModuleDeclaration: return isAmbientModule(d) || getModuleInstanceState(d) !== ModuleInstanceState.NonInstantiated ? SymbolFlags.ExportNamespace | SymbolFlags.ExportValue : SymbolFlags.ExportNamespace; case SyntaxKind.ClassDeclaration: case SyntaxKind.EnumDeclaration: return SymbolFlags.ExportType | SymbolFlags.ExportValue; case SyntaxKind.ImportEqualsDeclaration: let result: SymbolFlags = 0; const target = resolveAlias(getSymbolOfNode(d)); forEach(target.declarations, d => { result |= getDeclarationSpaces(d); }); return result; default: return SymbolFlags.ExportValue; } } } function getAwaitedTypeOfPromise(type: Type, errorNode?: Node, diagnosticMessage?: DiagnosticMessage): Type | undefined { const promisedType = getPromisedTypeOfPromise(type, errorNode); return promisedType && getAwaitedType(promisedType, errorNode, diagnosticMessage); } /** * Gets the "promised type" of a promise. * @param type The type of the promise. * @remarks The "promised type" of a type is the type of the "value" parameter of the "onfulfilled" callback. */ function getPromisedTypeOfPromise(promise: Type, errorNode?: Node): Type { // // { // promise // then( // thenFunction // onfulfilled: ( // onfulfilledParameterType // value: T // valueParameterType // ) => any // ): any; // } // if (isTypeAny(promise)) { return undefined; } const typeAsPromise = promise; if (typeAsPromise.promisedTypeOfPromise) { return typeAsPromise.promisedTypeOfPromise; } if (isReferenceToType(promise, getGlobalPromiseType(/*reportErrors*/ false))) { return typeAsPromise.promisedTypeOfPromise = (promise).typeArguments[0]; } const thenFunction = getTypeOfPropertyOfType(promise, "then"); if (isTypeAny(thenFunction)) { return undefined; } const thenSignatures = thenFunction ? getSignaturesOfType(thenFunction, SignatureKind.Call) : emptyArray; if (thenSignatures.length === 0) { if (errorNode) { error(errorNode, Diagnostics.A_promise_must_have_a_then_method); } return undefined; } const onfulfilledParameterType = getTypeWithFacts(getUnionType(map(thenSignatures, getTypeOfFirstParameterOfSignature)), TypeFacts.NEUndefinedOrNull); if (isTypeAny(onfulfilledParameterType)) { return undefined; } const onfulfilledParameterSignatures = getSignaturesOfType(onfulfilledParameterType, SignatureKind.Call); if (onfulfilledParameterSignatures.length === 0) { if (errorNode) { error(errorNode, Diagnostics.The_first_parameter_of_the_then_method_of_a_promise_must_be_a_callback); } return undefined; } return typeAsPromise.promisedTypeOfPromise = getUnionType(map(onfulfilledParameterSignatures, getTypeOfFirstParameterOfSignature), /*subtypeReduction*/ true); } /** * Gets the "awaited type" of a type. * @param type The type to await. * @remarks The "awaited type" of an expression is its "promised type" if the expression is a * Promise-like type; otherwise, it is the type of the expression. This is used to reflect * The runtime behavior of the `await` keyword. */ function checkAwaitedType(type: Type, errorNode: Node, diagnosticMessage: DiagnosticMessage): Type { return getAwaitedType(type, errorNode, diagnosticMessage) || unknownType; } function getAwaitedType(type: Type, errorNode?: Node, diagnosticMessage?: DiagnosticMessage): Type | undefined { const typeAsAwaitable = type; if (typeAsAwaitable.awaitedTypeOfType) { return typeAsAwaitable.awaitedTypeOfType; } if (isTypeAny(type)) { return typeAsAwaitable.awaitedTypeOfType = type; } if (type.flags & TypeFlags.Union) { let types: Type[]; for (const constituentType of (type).types) { types = append(types, getAwaitedType(constituentType, errorNode, diagnosticMessage)); } if (!types) { return undefined; } return typeAsAwaitable.awaitedTypeOfType = getUnionType(types, /*subtypeReduction*/ true); } const promisedType = getPromisedTypeOfPromise(type); if (promisedType) { if (type.id === promisedType.id || indexOf(awaitedTypeStack, promisedType.id) >= 0) { // Verify that we don't have a bad actor in the form of a promise whose // promised type is the same as the promise type, or a mutually recursive // promise. If so, we return undefined as we cannot guess the shape. If this // were the actual case in the JavaScript, this Promise would never resolve. // // An example of a bad actor with a singly-recursive promise type might // be: // // interface BadPromise { // then( // onfulfilled: (value: BadPromise) => any, // onrejected: (error: any) => any): BadPromise; // } // The above interface will pass the PromiseLike check, and return a // promised type of `BadPromise`. Since this is a self reference, we // don't want to keep recursing ad infinitum. // // An example of a bad actor in the form of a mutually-recursive // promise type might be: // // interface BadPromiseA { // then( // onfulfilled: (value: BadPromiseB) => any, // onrejected: (error: any) => any): BadPromiseB; // } // // interface BadPromiseB { // then( // onfulfilled: (value: BadPromiseA) => any, // onrejected: (error: any) => any): BadPromiseA; // } // if (errorNode) { error(errorNode, Diagnostics.Type_is_referenced_directly_or_indirectly_in_the_fulfillment_callback_of_its_own_then_method); } return undefined; } // Keep track of the type we're about to unwrap to avoid bad recursive promise types. // See the comments above for more information. awaitedTypeStack.push(type.id); const awaitedType = getAwaitedType(promisedType, errorNode, diagnosticMessage); awaitedTypeStack.pop(); if (!awaitedType) { return undefined; } return typeAsAwaitable.awaitedTypeOfType = awaitedType; } // The type was not a promise, so it could not be unwrapped any further. // As long as the type does not have a callable "then" property, it is // safe to return the type; otherwise, an error will be reported in // the call to getNonThenableType and we will return undefined. // // An example of a non-promise "thenable" might be: // // await { then(): void {} } // // The "thenable" does not match the minimal definition for a promise. When // a Promise/A+-compatible or ES6 promise tries to adopt this value, the promise // will never settle. We treat this as an error to help flag an early indicator // of a runtime problem. If the user wants to return this value from an async // function, they would need to wrap it in some other value. If they want it to // be treated as a promise, they can cast to . const thenFunction = getTypeOfPropertyOfType(type, "then"); if (thenFunction && getSignaturesOfType(thenFunction, SignatureKind.Call).length > 0) { if (errorNode) { Debug.assert(!!diagnosticMessage); error(errorNode, diagnosticMessage); } return undefined; } return typeAsAwaitable.awaitedTypeOfType = type; } /** * Checks the return type of an async function to ensure it is a compatible * Promise implementation. * * This checks that an async function has a valid Promise-compatible return type, * and returns the *awaited type* of the promise. An async function has a valid * Promise-compatible return type if the resolved value of the return type has a * construct signature that takes in an `initializer` function that in turn supplies * a `resolve` function as one of its arguments and results in an object with a * callable `then` signature. * * @param node The signature to check */ function checkAsyncFunctionReturnType(node: FunctionLikeDeclaration): Type { // As part of our emit for an async function, we will need to emit the entity name of // the return type annotation as an expression. To meet the necessary runtime semantics // for __awaiter, we must also check that the type of the declaration (e.g. the static // side or "constructor" of the promise type) is compatible `PromiseConstructorLike`. // // An example might be (from lib.es6.d.ts): // // interface Promise { ... } // interface PromiseConstructor { // new (...): Promise; // } // declare var Promise: PromiseConstructor; // // When an async function declares a return type annotation of `Promise`, we // need to get the type of the `Promise` variable declaration above, which would // be `PromiseConstructor`. // // The same case applies to a class: // // declare class Promise { // constructor(...); // then(...): Promise; // } // const returnType = getTypeFromTypeNode(node.type); if (languageVersion >= ScriptTarget.ES2015) { if (returnType === unknownType) { return unknownType; } const globalPromiseType = getGlobalPromiseType(/*reportErrors*/ true); if (globalPromiseType !== emptyGenericType && !isReferenceToType(returnType, globalPromiseType)) { // The promise type was not a valid type reference to the global promise type, so we // report an error and return the unknown type. error(node.type, Diagnostics.The_return_type_of_an_async_function_or_method_must_be_the_global_Promise_T_type); return unknownType; } } else { // Always mark the type node as referenced if it points to a value markTypeNodeAsReferenced(node.type); if (returnType === unknownType) { return unknownType; } const promiseConstructorName = getEntityNameFromTypeNode(node.type); if (promiseConstructorName === undefined) { error(node.type, Diagnostics.Type_0_is_not_a_valid_async_function_return_type_in_ES5_SlashES3_because_it_does_not_refer_to_a_Promise_compatible_constructor_value, typeToString(returnType)); return unknownType; } const promiseConstructorSymbol = resolveEntityName(promiseConstructorName, SymbolFlags.Value, /*ignoreErrors*/ true); const promiseConstructorType = promiseConstructorSymbol ? getTypeOfSymbol(promiseConstructorSymbol) : unknownType; if (promiseConstructorType === unknownType) { if (promiseConstructorName.kind === SyntaxKind.Identifier && promiseConstructorName.text === "Promise" && getTargetType(returnType) === getGlobalPromiseType(/*reportErrors*/ false)) { error(node.type, Diagnostics.An_async_function_or_method_in_ES5_SlashES3_requires_the_Promise_constructor_Make_sure_you_have_a_declaration_for_the_Promise_constructor_or_include_ES2015_in_your_lib_option); } else { error(node.type, Diagnostics.Type_0_is_not_a_valid_async_function_return_type_in_ES5_SlashES3_because_it_does_not_refer_to_a_Promise_compatible_constructor_value, entityNameToString(promiseConstructorName)); } return unknownType; } const globalPromiseConstructorLikeType = getGlobalPromiseConstructorLikeType(/*reportErrors*/ true); if (globalPromiseConstructorLikeType === emptyObjectType) { // If we couldn't resolve the global PromiseConstructorLike type we cannot verify // compatibility with __awaiter. error(node.type, Diagnostics.Type_0_is_not_a_valid_async_function_return_type_in_ES5_SlashES3_because_it_does_not_refer_to_a_Promise_compatible_constructor_value, entityNameToString(promiseConstructorName)); return unknownType; } if (!checkTypeAssignableTo(promiseConstructorType, globalPromiseConstructorLikeType, node.type, Diagnostics.Type_0_is_not_a_valid_async_function_return_type_in_ES5_SlashES3_because_it_does_not_refer_to_a_Promise_compatible_constructor_value)) { return unknownType; } // Verify there is no local declaration that could collide with the promise constructor. const rootName = promiseConstructorName && getFirstIdentifier(promiseConstructorName); const collidingSymbol = getSymbol(node.locals, rootName.text, SymbolFlags.Value); if (collidingSymbol) { error(collidingSymbol.valueDeclaration, Diagnostics.Duplicate_identifier_0_Compiler_uses_declaration_1_to_support_async_functions, rootName.text, entityNameToString(promiseConstructorName)); return unknownType; } } // Get and return the awaited type of the return type. return checkAwaitedType(returnType, node, Diagnostics.The_return_type_of_an_async_function_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); } /** Check a decorator */ function checkDecorator(node: Decorator): void { const signature = getResolvedSignature(node); const returnType = getReturnTypeOfSignature(signature); if (returnType.flags & TypeFlags.Any) { return; } let expectedReturnType: Type; const headMessage = getDiagnosticHeadMessageForDecoratorResolution(node); let errorInfo: DiagnosticMessageChain; switch (node.parent.kind) { case SyntaxKind.ClassDeclaration: const classSymbol = getSymbolOfNode(node.parent); const classConstructorType = getTypeOfSymbol(classSymbol); expectedReturnType = getUnionType([classConstructorType, voidType]); break; case SyntaxKind.Parameter: expectedReturnType = voidType; errorInfo = chainDiagnosticMessages( errorInfo, Diagnostics.The_return_type_of_a_parameter_decorator_function_must_be_either_void_or_any); break; case SyntaxKind.PropertyDeclaration: expectedReturnType = voidType; errorInfo = chainDiagnosticMessages( errorInfo, Diagnostics.The_return_type_of_a_property_decorator_function_must_be_either_void_or_any); break; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: const methodType = getTypeOfNode(node.parent); const descriptorType = createTypedPropertyDescriptorType(methodType); expectedReturnType = getUnionType([descriptorType, voidType]); break; } checkTypeAssignableTo( returnType, expectedReturnType, node, headMessage, errorInfo); } /** * If a TypeNode can be resolved to a value symbol imported from an external module, it is * marked as referenced to prevent import elision. */ function markTypeNodeAsReferenced(node: TypeNode) { markEntityNameOrEntityExpressionAsReference(node && getEntityNameFromTypeNode(node)); } function markEntityNameOrEntityExpressionAsReference(typeName: EntityNameOrEntityNameExpression) { const rootName = typeName && getFirstIdentifier(typeName); const rootSymbol = rootName && resolveName(rootName, rootName.text, (typeName.kind === SyntaxKind.Identifier ? SymbolFlags.Type : SymbolFlags.Namespace) | SymbolFlags.Alias, /*nameNotFoundMessage*/ undefined, /*nameArg*/ undefined); if (rootSymbol && rootSymbol.flags & SymbolFlags.Alias && symbolIsValue(rootSymbol) && !isConstEnumOrConstEnumOnlyModule(resolveAlias(rootSymbol))) { markAliasSymbolAsReferenced(rootSymbol); } } /** * This function marks the type used for metadata decorator as referenced if it is import * from external module. * This is different from markTypeNodeAsReferenced because it tries to simplify type nodes in * union and intersection type * @param node */ function markDecoratorMedataDataTypeNodeAsReferenced(node: TypeNode): void { const entityName = getEntityNameForDecoratorMetadata(node); if (entityName && isEntityName(entityName)) { markEntityNameOrEntityExpressionAsReference(entityName); } } function getEntityNameForDecoratorMetadata(node: TypeNode): EntityName { if (node) { switch (node.kind) { case SyntaxKind.IntersectionType: case SyntaxKind.UnionType: let commonEntityName: EntityName; for (const typeNode of (node).types) { const individualEntityName = getEntityNameForDecoratorMetadata(typeNode); if (!individualEntityName) { // Individual is something like string number // So it would be serialized to either that type or object // Safe to return here return undefined; } if (commonEntityName) { // Note this is in sync with the transformation that happens for type node. // Keep this in sync with serializeUnionOrIntersectionType // Verify if they refer to same entity and is identifier // return undefined if they dont match because we would emit object if (!isIdentifier(commonEntityName) || !isIdentifier(individualEntityName) || commonEntityName.text !== individualEntityName.text) { return undefined; } } else { commonEntityName = individualEntityName; } } return commonEntityName; case SyntaxKind.ParenthesizedType: return getEntityNameForDecoratorMetadata((node).type); case SyntaxKind.TypeReference: return (node).typeName; } } } function getParameterTypeNodeForDecoratorCheck(node: ParameterDeclaration): TypeNode { return node.dotDotDotToken ? getRestParameterElementType(node.type) : node.type; } /** Check the decorators of a node */ function checkDecorators(node: Node): void { if (!node.decorators) { return; } // skip this check for nodes that cannot have decorators. These should have already had an error reported by // checkGrammarDecorators. if (!nodeCanBeDecorated(node)) { return; } if (!compilerOptions.experimentalDecorators) { error(node, Diagnostics.Experimental_support_for_decorators_is_a_feature_that_is_subject_to_change_in_a_future_release_Set_the_experimentalDecorators_option_to_remove_this_warning); } const firstDecorator = node.decorators[0]; checkExternalEmitHelpers(firstDecorator, ExternalEmitHelpers.Decorate); if (node.kind === SyntaxKind.Parameter) { checkExternalEmitHelpers(firstDecorator, ExternalEmitHelpers.Param); } if (compilerOptions.emitDecoratorMetadata) { checkExternalEmitHelpers(firstDecorator, ExternalEmitHelpers.Metadata); // we only need to perform these checks if we are emitting serialized type metadata for the target of a decorator. switch (node.kind) { case SyntaxKind.ClassDeclaration: const constructor = getFirstConstructorWithBody(node); if (constructor) { for (const parameter of constructor.parameters) { markDecoratorMedataDataTypeNodeAsReferenced(getParameterTypeNodeForDecoratorCheck(parameter)); } } break; case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: for (const parameter of (node).parameters) { markDecoratorMedataDataTypeNodeAsReferenced(getParameterTypeNodeForDecoratorCheck(parameter)); } markDecoratorMedataDataTypeNodeAsReferenced((node).type); break; case SyntaxKind.PropertyDeclaration: markDecoratorMedataDataTypeNodeAsReferenced(getParameterTypeNodeForDecoratorCheck(node)); break; case SyntaxKind.Parameter: markDecoratorMedataDataTypeNodeAsReferenced((node).type); break; } } forEach(node.decorators, checkDecorator); } function checkFunctionDeclaration(node: FunctionDeclaration): void { if (produceDiagnostics) { checkFunctionOrMethodDeclaration(node) || checkGrammarForGenerator(node); checkCollisionWithCapturedSuperVariable(node, node.name); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithCapturedNewTargetVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkCollisionWithGlobalPromiseInGeneratedCode(node, node.name); } } function checkFunctionOrMethodDeclaration(node: FunctionDeclaration | MethodDeclaration): void { checkDecorators(node); checkSignatureDeclaration(node); const functionFlags = getFunctionFlags(node); // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name && node.name.kind === SyntaxKind.ComputedPropertyName) { // This check will account for methods in class/interface declarations, // as well as accessors in classes/object literals checkComputedPropertyName(node.name); } if (!hasDynamicName(node)) { // first we want to check the local symbol that contain this declaration // - if node.localSymbol !== undefined - this is current declaration is exported and localSymbol points to the local symbol // - if node.localSymbol === undefined - this node is non-exported so we can just pick the result of getSymbolOfNode const symbol = getSymbolOfNode(node); const localSymbol = node.localSymbol || symbol; // Since the javascript won't do semantic analysis like typescript, // if the javascript file comes before the typescript file and both contain same name functions, // checkFunctionOrConstructorSymbol wouldn't be called if we didnt ignore javascript function. const firstDeclaration = forEach(localSymbol.declarations, // Get first non javascript function declaration declaration => declaration.kind === node.kind && !isSourceFileJavaScript(getSourceFileOfNode(declaration)) ? declaration : undefined); // Only type check the symbol once if (node === firstDeclaration) { checkFunctionOrConstructorSymbol(localSymbol); } if (symbol.parent) { // run check once for the first declaration if (getDeclarationOfKind(symbol, node.kind) === node) { // run check on export symbol to check that modifiers agree across all exported declarations checkFunctionOrConstructorSymbol(symbol); } } } checkSourceElement(node.body); if ((functionFlags & FunctionFlags.Generator) === 0) { // Async function or normal function const returnOrPromisedType = node.type && (functionFlags & FunctionFlags.Async ? checkAsyncFunctionReturnType(node) // Async function : getTypeFromTypeNode(node.type)); // normal function checkAllCodePathsInNonVoidFunctionReturnOrThrow(node, returnOrPromisedType); } if (produceDiagnostics && !node.type) { // Report an implicit any error if there is no body, no explicit return type, and node is not a private method // in an ambient context if (noImplicitAny && nodeIsMissing(node.body) && !isPrivateWithinAmbient(node)) { reportImplicitAnyError(node, anyType); } if (functionFlags & FunctionFlags.Generator && nodeIsPresent(node.body)) { // A generator with a body and no type annotation can still cause errors. It can error if the // yielded values have no common supertype, or it can give an implicit any error if it has no // yielded values. The only way to trigger these errors is to try checking its return type. getReturnTypeOfSignature(getSignatureFromDeclaration(node)); } } registerForUnusedIdentifiersCheck(node); } function registerForUnusedIdentifiersCheck(node: Node) { if (deferredUnusedIdentifierNodes) { deferredUnusedIdentifierNodes.push(node); } } function checkUnusedIdentifiers() { if (deferredUnusedIdentifierNodes) { for (const node of deferredUnusedIdentifierNodes) { switch (node.kind) { case SyntaxKind.SourceFile: case SyntaxKind.ModuleDeclaration: checkUnusedModuleMembers(node); break; case SyntaxKind.ClassDeclaration: case SyntaxKind.ClassExpression: checkUnusedClassMembers(node); checkUnusedTypeParameters(node); break; case SyntaxKind.InterfaceDeclaration: checkUnusedTypeParameters(node); break; case SyntaxKind.Block: case SyntaxKind.CaseBlock: case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: checkUnusedLocalsAndParameters(node); break; case SyntaxKind.Constructor: case SyntaxKind.FunctionExpression: case SyntaxKind.FunctionDeclaration: case SyntaxKind.ArrowFunction: case SyntaxKind.MethodDeclaration: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: if ((node).body) { checkUnusedLocalsAndParameters(node); } checkUnusedTypeParameters(node); break; case SyntaxKind.MethodSignature: case SyntaxKind.CallSignature: case SyntaxKind.ConstructSignature: case SyntaxKind.IndexSignature: case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: checkUnusedTypeParameters(node); break; } } } } function checkUnusedLocalsAndParameters(node: Node): void { if (node.parent.kind !== SyntaxKind.InterfaceDeclaration && noUnusedIdentifiers && !isInAmbientContext(node)) { node.locals.forEach(local => { if (!local.isReferenced) { if (local.valueDeclaration && getRootDeclaration(local.valueDeclaration).kind === SyntaxKind.Parameter) { const parameter = getRootDeclaration(local.valueDeclaration); const name = getNameOfDeclaration(local.valueDeclaration); if (compilerOptions.noUnusedParameters && !isParameterPropertyDeclaration(parameter) && !parameterIsThisKeyword(parameter) && !parameterNameStartsWithUnderscore(name)) { error(name, Diagnostics._0_is_declared_but_never_used, local.name); } } else if (compilerOptions.noUnusedLocals) { forEach(local.declarations, d => errorUnusedLocal(getNameOfDeclaration(d) || d, local.name)); } } }); } } function isRemovedPropertyFromObjectSpread(node: Node) { if (isBindingElement(node) && isObjectBindingPattern(node.parent)) { const lastElement = lastOrUndefined(node.parent.elements); return lastElement !== node && !!lastElement.dotDotDotToken; } return false; } function errorUnusedLocal(node: Node, name: string) { if (isIdentifierThatStartsWithUnderScore(node)) { const declaration = getRootDeclaration(node.parent); if (declaration.kind === SyntaxKind.VariableDeclaration && (declaration.parent.parent.kind === SyntaxKind.ForInStatement || declaration.parent.parent.kind === SyntaxKind.ForOfStatement)) { return; } } if (!isRemovedPropertyFromObjectSpread(node.kind === SyntaxKind.Identifier ? node.parent : node)) { error(node, Diagnostics._0_is_declared_but_never_used, name); } } function parameterNameStartsWithUnderscore(parameterName: DeclarationName) { return parameterName && isIdentifierThatStartsWithUnderScore(parameterName); } function isIdentifierThatStartsWithUnderScore(node: Node) { return node.kind === SyntaxKind.Identifier && (node).text.charCodeAt(0) === CharacterCodes._; } function checkUnusedClassMembers(node: ClassDeclaration | ClassExpression): void { if (compilerOptions.noUnusedLocals && !isInAmbientContext(node)) { if (node.members) { for (const member of node.members) { if (member.kind === SyntaxKind.MethodDeclaration || member.kind === SyntaxKind.PropertyDeclaration) { if (!member.symbol.isReferenced && getModifierFlags(member) & ModifierFlags.Private) { error(member.name, Diagnostics._0_is_declared_but_never_used, member.symbol.name); } } else if (member.kind === SyntaxKind.Constructor) { for (const parameter of (member).parameters) { if (!parameter.symbol.isReferenced && getModifierFlags(parameter) & ModifierFlags.Private) { error(parameter.name, Diagnostics.Property_0_is_declared_but_never_used, parameter.symbol.name); } } } } } } } function checkUnusedTypeParameters(node: ClassDeclaration | ClassExpression | FunctionDeclaration | MethodDeclaration | FunctionExpression | ArrowFunction | ConstructorDeclaration | SignatureDeclaration | InterfaceDeclaration) { if (compilerOptions.noUnusedLocals && !isInAmbientContext(node)) { if (node.typeParameters) { // Only report errors on the last declaration for the type parameter container; // this ensures that all uses have been accounted for. const symbol = getSymbolOfNode(node); const lastDeclaration = symbol && symbol.declarations && lastOrUndefined(symbol.declarations); if (lastDeclaration !== node) { return; } for (const typeParameter of node.typeParameters) { if (!getMergedSymbol(typeParameter.symbol).isReferenced) { error(typeParameter.name, Diagnostics._0_is_declared_but_never_used, typeParameter.symbol.name); } } } } } function checkUnusedModuleMembers(node: ModuleDeclaration | SourceFile): void { if (compilerOptions.noUnusedLocals && !isInAmbientContext(node)) { node.locals.forEach(local => { if (!local.isReferenced && !local.exportSymbol) { for (const declaration of local.declarations) { if (!isAmbientModule(declaration)) { errorUnusedLocal(getNameOfDeclaration(declaration), local.name); } } } }); } } function checkBlock(node: Block) { // Grammar checking for SyntaxKind.Block if (node.kind === SyntaxKind.Block) { checkGrammarStatementInAmbientContext(node); } forEach(node.statements, checkSourceElement); if (node.locals) { registerForUnusedIdentifiersCheck(node); } } function checkCollisionWithArgumentsInGeneratedCode(node: SignatureDeclaration) { // no rest parameters \ declaration context \ overload - no codegen impact if (!hasDeclaredRestParameter(node) || isInAmbientContext(node) || nodeIsMissing((node).body)) { return; } forEach(node.parameters, p => { if (p.name && !isBindingPattern(p.name) && (p.name).text === argumentsSymbol.name) { error(p, Diagnostics.Duplicate_identifier_arguments_Compiler_uses_arguments_to_initialize_rest_parameters); } }); } function needCollisionCheckForIdentifier(node: Node, identifier: Identifier, name: string): boolean { if (!(identifier && identifier.text === name)) { return false; } if (node.kind === SyntaxKind.PropertyDeclaration || node.kind === SyntaxKind.PropertySignature || node.kind === SyntaxKind.MethodDeclaration || node.kind === SyntaxKind.MethodSignature || node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { // it is ok to have member named '_super' or '_this' - member access is always qualified return false; } if (isInAmbientContext(node)) { // ambient context - no codegen impact return false; } const root = getRootDeclaration(node); if (root.kind === SyntaxKind.Parameter && nodeIsMissing((root.parent).body)) { // just an overload - no codegen impact return false; } return true; } function checkCollisionWithCapturedThisVariable(node: Node, name: Identifier): void { if (needCollisionCheckForIdentifier(node, name, "_this")) { potentialThisCollisions.push(node); } } function checkCollisionWithCapturedNewTargetVariable(node: Node, name: Identifier): void { if (needCollisionCheckForIdentifier(node, name, "_newTarget")) { potentialNewTargetCollisions.push(node); } } // this function will run after checking the source file so 'CaptureThis' is correct for all nodes function checkIfThisIsCapturedInEnclosingScope(node: Node): void { findAncestor(node, current => { if (getNodeCheckFlags(current) & NodeCheckFlags.CaptureThis) { const isDeclaration = node.kind !== SyntaxKind.Identifier; if (isDeclaration) { error(getNameOfDeclaration(node), Diagnostics.Duplicate_identifier_this_Compiler_uses_variable_declaration_this_to_capture_this_reference); } else { error(node, Diagnostics.Expression_resolves_to_variable_declaration_this_that_compiler_uses_to_capture_this_reference); } return true; } }); } function checkIfNewTargetIsCapturedInEnclosingScope(node: Node): void { findAncestor(node, current => { if (getNodeCheckFlags(current) & NodeCheckFlags.CaptureNewTarget) { const isDeclaration = node.kind !== SyntaxKind.Identifier; if (isDeclaration) { error(getNameOfDeclaration(node), Diagnostics.Duplicate_identifier_newTarget_Compiler_uses_variable_declaration_newTarget_to_capture_new_target_meta_property_reference); } else { error(node, Diagnostics.Expression_resolves_to_variable_declaration_newTarget_that_compiler_uses_to_capture_new_target_meta_property_reference); } return true; } }); } function checkCollisionWithCapturedSuperVariable(node: Node, name: Identifier) { if (!needCollisionCheckForIdentifier(node, name, "_super")) { return; } // bubble up and find containing type const enclosingClass = getContainingClass(node); // if containing type was not found or it is ambient - exit (no codegen) if (!enclosingClass || isInAmbientContext(enclosingClass)) { return; } if (getClassExtendsHeritageClauseElement(enclosingClass)) { const isDeclaration = node.kind !== SyntaxKind.Identifier; if (isDeclaration) { error(node, Diagnostics.Duplicate_identifier_super_Compiler_uses_super_to_capture_base_class_reference); } else { error(node, Diagnostics.Expression_resolves_to_super_that_compiler_uses_to_capture_base_class_reference); } } } function checkCollisionWithRequireExportsInGeneratedCode(node: Node, name: Identifier) { // No need to check for require or exports for ES6 modules and later if (modulekind >= ModuleKind.ES2015) { return; } if (!needCollisionCheckForIdentifier(node, name, "require") && !needCollisionCheckForIdentifier(node, name, "exports")) { return; } // Uninstantiated modules shouldnt do this check if (node.kind === SyntaxKind.ModuleDeclaration && getModuleInstanceState(node) !== ModuleInstanceState.Instantiated) { return; } // In case of variable declaration, node.parent is variable statement so look at the variable statement's parent const parent = getDeclarationContainer(node); if (parent.kind === SyntaxKind.SourceFile && isExternalOrCommonJsModule(parent)) { // If the declaration happens to be in external module, report error that require and exports are reserved keywords error(name, Diagnostics.Duplicate_identifier_0_Compiler_reserves_name_1_in_top_level_scope_of_a_module, declarationNameToString(name), declarationNameToString(name)); } } function checkCollisionWithGlobalPromiseInGeneratedCode(node: Node, name: Identifier): void { if (languageVersion >= ScriptTarget.ES2017 || !needCollisionCheckForIdentifier(node, name, "Promise")) { return; } // Uninstantiated modules shouldnt do this check if (node.kind === SyntaxKind.ModuleDeclaration && getModuleInstanceState(node) !== ModuleInstanceState.Instantiated) { return; } // In case of variable declaration, node.parent is variable statement so look at the variable statement's parent const parent = getDeclarationContainer(node); if (parent.kind === SyntaxKind.SourceFile && isExternalOrCommonJsModule(parent) && parent.flags & NodeFlags.HasAsyncFunctions) { // If the declaration happens to be in external module, report error that Promise is a reserved identifier. error(name, Diagnostics.Duplicate_identifier_0_Compiler_reserves_name_1_in_top_level_scope_of_a_module_containing_async_functions, declarationNameToString(name), declarationNameToString(name)); } } function checkVarDeclaredNamesNotShadowed(node: VariableDeclaration | BindingElement) { // - ScriptBody : StatementList // It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList // also occurs in the VarDeclaredNames of StatementList. // - Block : { StatementList } // It is a Syntax Error if any element of the LexicallyDeclaredNames of StatementList // also occurs in the VarDeclaredNames of StatementList. // Variable declarations are hoisted to the top of their function scope. They can shadow // block scoped declarations, which bind tighter. this will not be flagged as duplicate definition // by the binder as the declaration scope is different. // A non-initialized declaration is a no-op as the block declaration will resolve before the var // declaration. the problem is if the declaration has an initializer. this will act as a write to the // block declared value. this is fine for let, but not const. // Only consider declarations with initializers, uninitialized const declarations will not // step on a let/const variable. // Do not consider const and const declarations, as duplicate block-scoped declarations // are handled by the binder. // We are only looking for const declarations that step on let\const declarations from a // different scope. e.g.: // { // const x = 0; // localDeclarationSymbol obtained after name resolution will correspond to this declaration // const x = 0; // symbol for this declaration will be 'symbol' // } // skip block-scoped variables and parameters if ((getCombinedNodeFlags(node) & NodeFlags.BlockScoped) !== 0 || isParameterDeclaration(node)) { return; } // skip variable declarations that don't have initializers // NOTE: in ES6 spec initializer is required in variable declarations where name is binding pattern // so we'll always treat binding elements as initialized if (node.kind === SyntaxKind.VariableDeclaration && !node.initializer) { return; } const symbol = getSymbolOfNode(node); if (symbol.flags & SymbolFlags.FunctionScopedVariable) { const localDeclarationSymbol = resolveName(node, (node.name).text, SymbolFlags.Variable, /*nodeNotFoundErrorMessage*/ undefined, /*nameArg*/ undefined); if (localDeclarationSymbol && localDeclarationSymbol !== symbol && localDeclarationSymbol.flags & SymbolFlags.BlockScopedVariable) { if (getDeclarationNodeFlagsFromSymbol(localDeclarationSymbol) & NodeFlags.BlockScoped) { const varDeclList = getAncestor(localDeclarationSymbol.valueDeclaration, SyntaxKind.VariableDeclarationList); const container = varDeclList.parent.kind === SyntaxKind.VariableStatement && varDeclList.parent.parent ? varDeclList.parent.parent : undefined; // names of block-scoped and function scoped variables can collide only // if block scoped variable is defined in the function\module\source file scope (because of variable hoisting) const namesShareScope = container && (container.kind === SyntaxKind.Block && isFunctionLike(container.parent) || container.kind === SyntaxKind.ModuleBlock || container.kind === SyntaxKind.ModuleDeclaration || container.kind === SyntaxKind.SourceFile); // here we know that function scoped variable is shadowed by block scoped one // if they are defined in the same scope - binder has already reported redeclaration error // otherwise if variable has an initializer - show error that initialization will fail // since LHS will be block scoped name instead of function scoped if (!namesShareScope) { const name = symbolToString(localDeclarationSymbol); error(node, Diagnostics.Cannot_initialize_outer_scoped_variable_0_in_the_same_scope_as_block_scoped_declaration_1, name, name); } } } } } // Check that a parameter initializer contains no references to parameters declared to the right of itself function checkParameterInitializer(node: VariableLikeDeclaration): void { if (getRootDeclaration(node).kind !== SyntaxKind.Parameter) { return; } const func = getContainingFunction(node); visit(node.initializer); function visit(n: Node): void { if (isTypeNode(n) || isDeclarationName(n)) { // do not dive in types // skip declaration names (i.e. in object literal expressions) return; } if (n.kind === SyntaxKind.PropertyAccessExpression) { // skip property names in property access expression return visit((n).expression); } else if (n.kind === SyntaxKind.Identifier) { // check FunctionLikeDeclaration.locals (stores parameters\function local variable) // if it contains entry with a specified name const symbol = resolveName(n, (n).text, SymbolFlags.Value | SymbolFlags.Alias, /*nameNotFoundMessage*/undefined, /*nameArg*/undefined); if (!symbol || symbol === unknownSymbol || !symbol.valueDeclaration) { return; } if (symbol.valueDeclaration === node) { error(n, Diagnostics.Parameter_0_cannot_be_referenced_in_its_initializer, declarationNameToString(node.name)); return; } // locals map for function contain both parameters and function locals // so we need to do a bit of extra work to check if reference is legal const enclosingContainer = getEnclosingBlockScopeContainer(symbol.valueDeclaration); if (enclosingContainer === func) { if (symbol.valueDeclaration.kind === SyntaxKind.Parameter || symbol.valueDeclaration.kind === SyntaxKind.BindingElement) { // it is ok to reference parameter in initializer if either // - parameter is located strictly on the left of current parameter declaration if (symbol.valueDeclaration.pos < node.pos) { return; } // - parameter is wrapped in function-like entity if (findAncestor( n, current => { if (current === node.initializer) { return "quit"; } return isFunctionLike(current.parent) || // computed property names/initializers in instance property declaration of class like entities // are executed in constructor and thus deferred (current.parent.kind === SyntaxKind.PropertyDeclaration && !(hasModifier(current.parent, ModifierFlags.Static)) && isClassLike(current.parent.parent)); })) { return; } // fall through to report error } error(n, Diagnostics.Initializer_of_parameter_0_cannot_reference_identifier_1_declared_after_it, declarationNameToString(node.name), declarationNameToString(n)); } } else { return forEachChild(n, visit); } } } function convertAutoToAny(type: Type) { return type === autoType ? anyType : type === autoArrayType ? anyArrayType : type; } // Check variable, parameter, or property declaration function checkVariableLikeDeclaration(node: VariableLikeDeclaration) { checkDecorators(node); checkSourceElement(node.type); // For a computed property, just check the initializer and exit // Do not use hasDynamicName here, because that returns false for well known symbols. // We want to perform checkComputedPropertyName for all computed properties, including // well known symbols. if (node.name.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.name); if (node.initializer) { checkExpressionCached(node.initializer); } } if (node.kind === SyntaxKind.BindingElement) { if (node.parent.kind === SyntaxKind.ObjectBindingPattern && languageVersion < ScriptTarget.ESNext) { checkExternalEmitHelpers(node, ExternalEmitHelpers.Rest); } // check computed properties inside property names of binding elements if (node.propertyName && node.propertyName.kind === SyntaxKind.ComputedPropertyName) { checkComputedPropertyName(node.propertyName); } // check private/protected variable access const parent = (node.parent).parent; const parentType = getTypeForBindingElementParent(parent); const name = node.propertyName || node.name; const property = getPropertyOfType(parentType, getTextOfPropertyName(name)); markPropertyAsReferenced(property); if (parent.initializer && property) { checkPropertyAccessibility(parent, parent.initializer, parentType, property); } } // For a binding pattern, check contained binding elements if (isBindingPattern(node.name)) { if (node.name.kind === SyntaxKind.ArrayBindingPattern && languageVersion < ScriptTarget.ES2015 && compilerOptions.downlevelIteration) { checkExternalEmitHelpers(node, ExternalEmitHelpers.Read); } forEach((node.name).elements, checkSourceElement); } // For a parameter declaration with an initializer, error and exit if the containing function doesn't have a body if (node.initializer && getRootDeclaration(node).kind === SyntaxKind.Parameter && nodeIsMissing(getContainingFunction(node).body)) { error(node, Diagnostics.A_parameter_initializer_is_only_allowed_in_a_function_or_constructor_implementation); return; } // For a binding pattern, validate the initializer and exit if (isBindingPattern(node.name)) { // Don't validate for-in initializer as it is already an error if (node.initializer && node.parent.parent.kind !== SyntaxKind.ForInStatement) { checkTypeAssignableTo(checkExpressionCached(node.initializer), getWidenedTypeForVariableLikeDeclaration(node), node, /*headMessage*/ undefined); checkParameterInitializer(node); } return; } const symbol = getSymbolOfNode(node); const type = convertAutoToAny(getTypeOfVariableOrParameterOrProperty(symbol)); if (node === symbol.valueDeclaration) { // Node is the primary declaration of the symbol, just validate the initializer // Don't validate for-in initializer as it is already an error if (node.initializer && node.parent.parent.kind !== SyntaxKind.ForInStatement) { checkTypeAssignableTo(checkExpressionCached(node.initializer), type, node, /*headMessage*/ undefined); checkParameterInitializer(node); } } else { // Node is a secondary declaration, check that type is identical to primary declaration and check that // initializer is consistent with type associated with the node const declarationType = convertAutoToAny(getWidenedTypeForVariableLikeDeclaration(node)); if (type !== unknownType && declarationType !== unknownType && !isTypeIdenticalTo(type, declarationType)) { error(node.name, Diagnostics.Subsequent_variable_declarations_must_have_the_same_type_Variable_0_must_be_of_type_1_but_here_has_type_2, declarationNameToString(node.name), typeToString(type), typeToString(declarationType)); } if (node.initializer) { checkTypeAssignableTo(checkExpressionCached(node.initializer), declarationType, node, /*headMessage*/ undefined); } if (!areDeclarationFlagsIdentical(node, symbol.valueDeclaration)) { error(getNameOfDeclaration(symbol.valueDeclaration), Diagnostics.All_declarations_of_0_must_have_identical_modifiers, declarationNameToString(node.name)); error(node.name, Diagnostics.All_declarations_of_0_must_have_identical_modifiers, declarationNameToString(node.name)); } } if (node.kind !== SyntaxKind.PropertyDeclaration && node.kind !== SyntaxKind.PropertySignature) { // We know we don't have a binding pattern or computed name here checkExportsOnMergedDeclarations(node); if (node.kind === SyntaxKind.VariableDeclaration || node.kind === SyntaxKind.BindingElement) { checkVarDeclaredNamesNotShadowed(node); } checkCollisionWithCapturedSuperVariable(node, node.name); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithCapturedNewTargetVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkCollisionWithGlobalPromiseInGeneratedCode(node, node.name); } } function areDeclarationFlagsIdentical(left: Declaration, right: Declaration) { if ((left.kind === SyntaxKind.Parameter && right.kind === SyntaxKind.VariableDeclaration) || (left.kind === SyntaxKind.VariableDeclaration && right.kind === SyntaxKind.Parameter)) { // Differences in optionality between parameters and variables are allowed. return true; } if (hasQuestionToken(left) !== hasQuestionToken(right)) { return false; } const interestingFlags = ModifierFlags.Private | ModifierFlags.Protected | ModifierFlags.Async | ModifierFlags.Abstract | ModifierFlags.Readonly | ModifierFlags.Static; return (getModifierFlags(left) & interestingFlags) === (getModifierFlags(right) & interestingFlags); } function checkVariableDeclaration(node: VariableDeclaration) { checkGrammarVariableDeclaration(node); return checkVariableLikeDeclaration(node); } function checkBindingElement(node: BindingElement) { checkGrammarBindingElement(node); return checkVariableLikeDeclaration(node); } function checkVariableStatement(node: VariableStatement) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarVariableDeclarationList(node.declarationList) || checkGrammarForDisallowedLetOrConstStatement(node); forEach(node.declarationList.declarations, checkSourceElement); } function checkGrammarDisallowedModifiersOnObjectLiteralExpressionMethod(node: MethodDeclaration) { // We only disallow modifier on a method declaration if it is a property of object-literal-expression if (node.modifiers && node.parent.kind === SyntaxKind.ObjectLiteralExpression) { if (getFunctionFlags(node) & FunctionFlags.Async) { if (node.modifiers.length > 1) { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } } else { return grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here); } } } function checkExpressionStatement(node: ExpressionStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkExpression(node.expression); } function checkIfStatement(node: IfStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkExpression(node.expression); checkSourceElement(node.thenStatement); if (node.thenStatement.kind === SyntaxKind.EmptyStatement) { error(node.thenStatement, Diagnostics.The_body_of_an_if_statement_cannot_be_the_empty_statement); } checkSourceElement(node.elseStatement); } function checkDoStatement(node: DoStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkSourceElement(node.statement); checkExpression(node.expression); } function checkWhileStatement(node: WhileStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkExpression(node.expression); checkSourceElement(node.statement); } function checkForStatement(node: ForStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { if (node.initializer && node.initializer.kind === SyntaxKind.VariableDeclarationList) { checkGrammarVariableDeclarationList(node.initializer); } } if (node.initializer) { if (node.initializer.kind === SyntaxKind.VariableDeclarationList) { forEach((node.initializer).declarations, checkVariableDeclaration); } else { checkExpression(node.initializer); } } if (node.condition) checkExpression(node.condition); if (node.incrementor) checkExpression(node.incrementor); checkSourceElement(node.statement); if (node.locals) { registerForUnusedIdentifiersCheck(node); } } function checkForOfStatement(node: ForOfStatement): void { checkGrammarForInOrForOfStatement(node); if (node.kind === SyntaxKind.ForOfStatement) { if ((node).awaitModifier) { const functionFlags = getFunctionFlags(getContainingFunction(node)); if ((functionFlags & (FunctionFlags.Invalid | FunctionFlags.Async)) === FunctionFlags.Async && languageVersion < ScriptTarget.ESNext) { // for..await..of in an async function or async generator function prior to ESNext requires the __asyncValues helper checkExternalEmitHelpers(node, ExternalEmitHelpers.ForAwaitOfIncludes); } } else if (compilerOptions.downlevelIteration && languageVersion < ScriptTarget.ES2015) { // for..of prior to ES2015 requires the __values helper when downlevelIteration is enabled checkExternalEmitHelpers(node, ExternalEmitHelpers.ForOfIncludes); } } // Check the LHS and RHS // If the LHS is a declaration, just check it as a variable declaration, which will in turn check the RHS // via checkRightHandSideOfForOf. // If the LHS is an expression, check the LHS, as a destructuring assignment or as a reference. // Then check that the RHS is assignable to it. if (node.initializer.kind === SyntaxKind.VariableDeclarationList) { checkForInOrForOfVariableDeclaration(node); } else { const varExpr = node.initializer; const iteratedType = checkRightHandSideOfForOf(node.expression, node.awaitModifier); // There may be a destructuring assignment on the left side if (varExpr.kind === SyntaxKind.ArrayLiteralExpression || varExpr.kind === SyntaxKind.ObjectLiteralExpression) { // iteratedType may be undefined. In this case, we still want to check the structure of // varExpr, in particular making sure it's a valid LeftHandSideExpression. But we'd like // to short circuit the type relation checking as much as possible, so we pass the unknownType. checkDestructuringAssignment(varExpr, iteratedType || unknownType); } else { const leftType = checkExpression(varExpr); checkReferenceExpression(varExpr, Diagnostics.The_left_hand_side_of_a_for_of_statement_must_be_a_variable_or_a_property_access); // iteratedType will be undefined if the rightType was missing properties/signatures // required to get its iteratedType (like [Symbol.iterator] or next). This may be // because we accessed properties from anyType, or it may have led to an error inside // getElementTypeOfIterable. if (iteratedType) { checkTypeAssignableTo(iteratedType, leftType, varExpr, /*headMessage*/ undefined); } } } checkSourceElement(node.statement); if (node.locals) { registerForUnusedIdentifiersCheck(node); } } function checkForInStatement(node: ForInStatement) { // Grammar checking checkGrammarForInOrForOfStatement(node); const rightType = checkNonNullExpression(node.expression); // TypeScript 1.0 spec (April 2014): 5.4 // In a 'for-in' statement of the form // for (let VarDecl in Expr) Statement // VarDecl must be a variable declaration without a type annotation that declares a variable of type Any, // and Expr must be an expression of type Any, an object type, or a type parameter type. if (node.initializer.kind === SyntaxKind.VariableDeclarationList) { const variable = (node.initializer).declarations[0]; if (variable && isBindingPattern(variable.name)) { error(variable.name, Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_be_a_destructuring_pattern); } checkForInOrForOfVariableDeclaration(node); } else { // In a 'for-in' statement of the form // for (Var in Expr) Statement // Var must be an expression classified as a reference of type Any or the String primitive type, // and Expr must be an expression of type Any, an object type, or a type parameter type. const varExpr = node.initializer; const leftType = checkExpression(varExpr); if (varExpr.kind === SyntaxKind.ArrayLiteralExpression || varExpr.kind === SyntaxKind.ObjectLiteralExpression) { error(varExpr, Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_be_a_destructuring_pattern); } else if (!isTypeAssignableTo(getIndexTypeOrString(rightType), leftType)) { error(varExpr, Diagnostics.The_left_hand_side_of_a_for_in_statement_must_be_of_type_string_or_any); } else { // run check only former check succeeded to avoid cascading errors checkReferenceExpression(varExpr, Diagnostics.The_left_hand_side_of_a_for_in_statement_must_be_a_variable_or_a_property_access); } } // unknownType is returned i.e. if node.expression is identifier whose name cannot be resolved // in this case error about missing name is already reported - do not report extra one if (!isTypeAnyOrAllConstituentTypesHaveKind(rightType, TypeFlags.Object | TypeFlags.TypeVariable | TypeFlags.NonPrimitive)) { error(node.expression, Diagnostics.The_right_hand_side_of_a_for_in_statement_must_be_of_type_any_an_object_type_or_a_type_parameter); } checkSourceElement(node.statement); if (node.locals) { registerForUnusedIdentifiersCheck(node); } } function checkForInOrForOfVariableDeclaration(iterationStatement: ForInStatement | ForOfStatement): void { const variableDeclarationList = iterationStatement.initializer; // checkGrammarForInOrForOfStatement will check that there is exactly one declaration. if (variableDeclarationList.declarations.length >= 1) { const decl = variableDeclarationList.declarations[0]; checkVariableDeclaration(decl); } } function checkRightHandSideOfForOf(rhsExpression: Expression, awaitModifier: AwaitKeywordToken | undefined): Type { const expressionType = checkNonNullExpression(rhsExpression); return checkIteratedTypeOrElementType(expressionType, rhsExpression, /*allowStringInput*/ true, awaitModifier !== undefined); } function checkIteratedTypeOrElementType(inputType: Type, errorNode: Node, allowStringInput: boolean, allowAsyncIterable: boolean): Type { if (isTypeAny(inputType)) { return inputType; } return getIteratedTypeOrElementType(inputType, errorNode, allowStringInput, allowAsyncIterable, /*checkAssignability*/ true) || anyType; } /** * When consuming an iterable type in a for..of, spread, or iterator destructuring assignment * we want to get the iterated type of an iterable for ES2015 or later, or the iterated type * of a iterable (if defined globally) or element type of an array like for ES2015 or earlier. */ function getIteratedTypeOrElementType(inputType: Type, errorNode: Node, allowStringInput: boolean, allowAsyncIterable: boolean, checkAssignability: boolean): Type { const uplevelIteration = languageVersion >= ScriptTarget.ES2015; const downlevelIteration = !uplevelIteration && compilerOptions.downlevelIteration; // Get the iterated type of an `Iterable` or `IterableIterator` only in ES2015 // or higher, when inside of an async generator or for-await-if, or when // downlevelIteration is requested. if (uplevelIteration || downlevelIteration || allowAsyncIterable) { // We only report errors for an invalid iterable type in ES2015 or higher. const iteratedType = getIteratedTypeOfIterable(inputType, uplevelIteration ? errorNode : undefined, allowAsyncIterable, allowAsyncIterable, checkAssignability); if (iteratedType || uplevelIteration) { return iteratedType; } } let arrayType = inputType; let reportedError = false; let hasStringConstituent = false; // If strings are permitted, remove any string-like constituents from the array type. // This allows us to find other non-string element types from an array unioned with // a string. if (allowStringInput) { if (arrayType.flags & TypeFlags.Union) { // After we remove all types that are StringLike, we will know if there was a string constituent // based on whether the result of filter is a new array. const arrayTypes = (inputType).types; const filteredTypes = filter(arrayTypes, t => !(t.flags & TypeFlags.StringLike)); if (filteredTypes !== arrayTypes) { arrayType = getUnionType(filteredTypes, /*subtypeReduction*/ true); } } else if (arrayType.flags & TypeFlags.StringLike) { arrayType = neverType; } hasStringConstituent = arrayType !== inputType; if (hasStringConstituent) { if (languageVersion < ScriptTarget.ES5) { if (errorNode) { error(errorNode, Diagnostics.Using_a_string_in_a_for_of_statement_is_only_supported_in_ECMAScript_5_and_higher); reportedError = true; } } // Now that we've removed all the StringLike types, if no constituents remain, then the entire // arrayOrStringType was a string. if (arrayType.flags & TypeFlags.Never) { return stringType; } } } if (!isArrayLikeType(arrayType)) { if (errorNode && !reportedError) { // Which error we report depends on whether we allow strings or if there was a // string constituent. For example, if the input type is number | string, we // want to say that number is not an array type. But if the input was just // number and string input is allowed, we want to say that number is not an // array type or a string type. const diagnostic = !allowStringInput || hasStringConstituent ? downlevelIteration ? Diagnostics.Type_0_is_not_an_array_type_or_does_not_have_a_Symbol_iterator_method_that_returns_an_iterator : Diagnostics.Type_0_is_not_an_array_type : downlevelIteration ? Diagnostics.Type_0_is_not_an_array_type_or_a_string_type_or_does_not_have_a_Symbol_iterator_method_that_returns_an_iterator : Diagnostics.Type_0_is_not_an_array_type_or_a_string_type; error(errorNode, diagnostic, typeToString(arrayType)); } return hasStringConstituent ? stringType : undefined; } const arrayElementType = getIndexTypeOfType(arrayType, IndexKind.Number); if (hasStringConstituent && arrayElementType) { // This is just an optimization for the case where arrayOrStringType is string | string[] if (arrayElementType.flags & TypeFlags.StringLike) { return stringType; } return getUnionType([arrayElementType, stringType], /*subtypeReduction*/ true); } return arrayElementType; } /** * We want to treat type as an iterable, and get the type it is an iterable of. The iterable * must have the following structure (annotated with the names of the variables below): * * { // iterable * [Symbol.iterator]: { // iteratorMethod * (): Iterator * } * } * * For an async iterable, we expect the following structure: * * { // iterable * [Symbol.asyncIterator]: { // iteratorMethod * (): AsyncIterator * } * } * * T is the type we are after. At every level that involves analyzing return types * of signatures, we union the return types of all the signatures. * * Another thing to note is that at any step of this process, we could run into a dead end, * meaning either the property is missing, or we run into the anyType. If either of these things * happens, we return undefined to signal that we could not find the iterated type. If a property * is missing, and the previous step did not result in 'any', then we also give an error if the * caller requested it. Then the caller can decide what to do in the case where there is no iterated * type. This is different from returning anyType, because that would signify that we have matched the * whole pattern and that T (above) is 'any'. * * For a **for-of** statement, `yield*` (in a normal generator), spread, array * destructuring, or normal generator we will only ever look for a `[Symbol.iterator]()` * method. * * For an async generator we will only ever look at the `[Symbol.asyncIterator]()` method. * * For a **for-await-of** statement or a `yield*` in an async generator we will look for * the `[Symbol.asyncIterator]()` method first, and then the `[Symbol.iterator]()` method. */ function getIteratedTypeOfIterable(type: Type, errorNode: Node | undefined, isAsyncIterable: boolean, allowNonAsyncIterables: boolean, checkAssignability: boolean): Type | undefined { if (isTypeAny(type)) { return undefined; } const typeAsIterable = type; if (isAsyncIterable ? typeAsIterable.iteratedTypeOfAsyncIterable : typeAsIterable.iteratedTypeOfIterable) { return isAsyncIterable ? typeAsIterable.iteratedTypeOfAsyncIterable : typeAsIterable.iteratedTypeOfIterable; } if (isAsyncIterable) { // As an optimization, if the type is an instantiation of the global `AsyncIterable` // or the global `AsyncIterableIterator` then just grab its type argument. if (isReferenceToType(type, getGlobalAsyncIterableType(/*reportErrors*/ false)) || isReferenceToType(type, getGlobalAsyncIterableIteratorType(/*reportErrors*/ false))) { return typeAsIterable.iteratedTypeOfAsyncIterable = (type).typeArguments[0]; } } if (!isAsyncIterable || allowNonAsyncIterables) { // As an optimization, if the type is an instantiation of the global `Iterable` or // `IterableIterator` then just grab its type argument. if (isReferenceToType(type, getGlobalIterableType(/*reportErrors*/ false)) || isReferenceToType(type, getGlobalIterableIteratorType(/*reportErrors*/ false))) { return isAsyncIterable ? typeAsIterable.iteratedTypeOfAsyncIterable = (type).typeArguments[0] : typeAsIterable.iteratedTypeOfIterable = (type).typeArguments[0]; } } let iteratorMethodSignatures: Signature[]; let isNonAsyncIterable = false; if (isAsyncIterable) { const iteratorMethod = getTypeOfPropertyOfType(type, getPropertyNameForKnownSymbolName("asyncIterator")); if (isTypeAny(iteratorMethod)) { return undefined; } iteratorMethodSignatures = iteratorMethod && getSignaturesOfType(iteratorMethod, SignatureKind.Call); } if (!isAsyncIterable || (allowNonAsyncIterables && !some(iteratorMethodSignatures))) { const iteratorMethod = getTypeOfPropertyOfType(type, getPropertyNameForKnownSymbolName("iterator")); if (isTypeAny(iteratorMethod)) { return undefined; } iteratorMethodSignatures = iteratorMethod && getSignaturesOfType(iteratorMethod, SignatureKind.Call); isNonAsyncIterable = true; } if (some(iteratorMethodSignatures)) { const iteratorMethodReturnType = getUnionType(map(iteratorMethodSignatures, getReturnTypeOfSignature), /*subtypeReduction*/ true); const iteratedType = getIteratedTypeOfIterator(iteratorMethodReturnType, errorNode, /*isAsyncIterator*/ !isNonAsyncIterable); if (checkAssignability && errorNode && iteratedType) { // If `checkAssignability` was specified, we were called from // `checkIteratedTypeOrElementType`. As such, we need to validate that // the type passed in is actually an Iterable. checkTypeAssignableTo(type, isNonAsyncIterable ? createIterableType(iteratedType) : createAsyncIterableType(iteratedType), errorNode); } return isAsyncIterable ? typeAsIterable.iteratedTypeOfAsyncIterable = iteratedType : typeAsIterable.iteratedTypeOfIterable = iteratedType; } if (errorNode) { error(errorNode, isAsyncIterable ? Diagnostics.Type_must_have_a_Symbol_asyncIterator_method_that_returns_an_async_iterator : Diagnostics.Type_must_have_a_Symbol_iterator_method_that_returns_an_iterator); } return undefined; } /** * This function has very similar logic as getIteratedTypeOfIterable, except that it operates on * Iterators instead of Iterables. Here is the structure: * * { // iterator * next: { // nextMethod * (): { // nextResult * value: T // nextValue * } * } * } * * For an async iterator, we expect the following structure: * * { // iterator * next: { // nextMethod * (): PromiseLike<{ // nextResult * value: T // nextValue * }> * } * } */ function getIteratedTypeOfIterator(type: Type, errorNode: Node | undefined, isAsyncIterator: boolean): Type | undefined { if (isTypeAny(type)) { return undefined; } const typeAsIterator = type; if (isAsyncIterator ? typeAsIterator.iteratedTypeOfAsyncIterator : typeAsIterator.iteratedTypeOfIterator) { return isAsyncIterator ? typeAsIterator.iteratedTypeOfAsyncIterator : typeAsIterator.iteratedTypeOfIterator; } // As an optimization, if the type is an instantiation of the global `Iterator` (for // a non-async iterator) or the global `AsyncIterator` (for an async-iterator) then // just grab its type argument. const getIteratorType = isAsyncIterator ? getGlobalAsyncIteratorType : getGlobalIteratorType; if (isReferenceToType(type, getIteratorType(/*reportErrors*/ false))) { return isAsyncIterator ? typeAsIterator.iteratedTypeOfAsyncIterator = (type).typeArguments[0] : typeAsIterator.iteratedTypeOfIterator = (type).typeArguments[0]; } // Both async and non-async iterators must have a `next` method. const nextMethod = getTypeOfPropertyOfType(type, "next"); if (isTypeAny(nextMethod)) { return undefined; } const nextMethodSignatures = nextMethod ? getSignaturesOfType(nextMethod, SignatureKind.Call) : emptyArray; if (nextMethodSignatures.length === 0) { if (errorNode) { error(errorNode, isAsyncIterator ? Diagnostics.An_async_iterator_must_have_a_next_method : Diagnostics.An_iterator_must_have_a_next_method); } return undefined; } let nextResult = getUnionType(map(nextMethodSignatures, getReturnTypeOfSignature), /*subtypeReduction*/ true); if (isTypeAny(nextResult)) { return undefined; } // For an async iterator, we must get the awaited type of the return type. if (isAsyncIterator) { nextResult = getAwaitedTypeOfPromise(nextResult, errorNode, Diagnostics.The_type_returned_by_the_next_method_of_an_async_iterator_must_be_a_promise_for_a_type_with_a_value_property); if (isTypeAny(nextResult)) { return undefined; } } const nextValue = nextResult && getTypeOfPropertyOfType(nextResult, "value"); if (!nextValue) { if (errorNode) { error(errorNode, isAsyncIterator ? Diagnostics.The_type_returned_by_the_next_method_of_an_async_iterator_must_be_a_promise_for_a_type_with_a_value_property : Diagnostics.The_type_returned_by_the_next_method_of_an_iterator_must_have_a_value_property); } return undefined; } return isAsyncIterator ? typeAsIterator.iteratedTypeOfAsyncIterator = nextValue : typeAsIterator.iteratedTypeOfIterator = nextValue; } /** * A generator may have a return type of `Iterator`, `Iterable`, or * `IterableIterator`. An async generator may have a return type of `AsyncIterator`, * `AsyncIterable`, or `AsyncIterableIterator`. This function can be used to extract * the iterated type from this return type for contextual typing and verifying signatures. */ function getIteratedTypeOfGenerator(returnType: Type, isAsyncGenerator: boolean): Type { if (isTypeAny(returnType)) { return undefined; } return getIteratedTypeOfIterable(returnType, /*errorNode*/ undefined, isAsyncGenerator, /*allowNonAsyncIterables*/ false, /*checkAssignability*/ false) || getIteratedTypeOfIterator(returnType, /*errorNode*/ undefined, isAsyncGenerator); } function checkBreakOrContinueStatement(node: BreakOrContinueStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node) || checkGrammarBreakOrContinueStatement(node); // TODO: Check that target label is valid } function isGetAccessorWithAnnotatedSetAccessor(node: FunctionLikeDeclaration) { return !!(node.kind === SyntaxKind.GetAccessor && getSetAccessorTypeAnnotationNode(getDeclarationOfKind(node.symbol, SyntaxKind.SetAccessor))); } function isUnwrappedReturnTypeVoidOrAny(func: FunctionLikeDeclaration, returnType: Type): boolean { const unwrappedReturnType = (getFunctionFlags(func) & FunctionFlags.AsyncGenerator) === FunctionFlags.Async ? getPromisedTypeOfPromise(returnType) // Async function : returnType; // AsyncGenerator function, Generator function, or normal function return unwrappedReturnType && maybeTypeOfKind(unwrappedReturnType, TypeFlags.Void | TypeFlags.Any); } function checkReturnStatement(node: ReturnStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { const functionBlock = getContainingFunction(node); if (!functionBlock) { grammarErrorOnFirstToken(node, Diagnostics.A_return_statement_can_only_be_used_within_a_function_body); } } const func = getContainingFunction(node); if (func) { const signature = getSignatureFromDeclaration(func); const returnType = getReturnTypeOfSignature(signature); if (strictNullChecks || node.expression || returnType.flags & TypeFlags.Never) { const exprType = node.expression ? checkExpressionCached(node.expression) : undefinedType; const functionFlags = getFunctionFlags(func); if (functionFlags & FunctionFlags.Generator) { // AsyncGenerator function or Generator function // A generator does not need its return expressions checked against its return type. // Instead, the yield expressions are checked against the element type. // TODO: Check return expressions of generators when return type tracking is added // for generators. return; } if (func.kind === SyntaxKind.SetAccessor) { if (node.expression) { error(node, Diagnostics.Setters_cannot_return_a_value); } } else if (func.kind === SyntaxKind.Constructor) { if (node.expression && !checkTypeAssignableTo(exprType, returnType, node)) { error(node, Diagnostics.Return_type_of_constructor_signature_must_be_assignable_to_the_instance_type_of_the_class); } } else if (func.type || isGetAccessorWithAnnotatedSetAccessor(func)) { if (functionFlags & FunctionFlags.Async) { // Async function const promisedType = getPromisedTypeOfPromise(returnType); const awaitedType = checkAwaitedType(exprType, node, Diagnostics.The_return_type_of_an_async_function_must_either_be_a_valid_promise_or_must_not_contain_a_callable_then_member); if (promisedType) { // If the function has a return type, but promisedType is // undefined, an error will be reported in checkAsyncFunctionReturnType // so we don't need to report one here. checkTypeAssignableTo(awaitedType, promisedType, node); } } else { checkTypeAssignableTo(exprType, returnType, node); } } } else if (func.kind !== SyntaxKind.Constructor && compilerOptions.noImplicitReturns && !isUnwrappedReturnTypeVoidOrAny(func, returnType)) { // The function has a return type, but the return statement doesn't have an expression. error(node, Diagnostics.Not_all_code_paths_return_a_value); } } } function checkWithStatement(node: WithStatement) { // Grammar checking for withStatement if (!checkGrammarStatementInAmbientContext(node)) { if (node.flags & NodeFlags.AwaitContext) { grammarErrorOnFirstToken(node, Diagnostics.with_statements_are_not_allowed_in_an_async_function_block); } } checkExpression(node.expression); const sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { const start = getSpanOfTokenAtPosition(sourceFile, node.pos).start; const end = node.statement.pos; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.The_with_statement_is_not_supported_All_symbols_in_a_with_block_will_have_type_any); } } function checkSwitchStatement(node: SwitchStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); let firstDefaultClause: CaseOrDefaultClause; let hasDuplicateDefaultClause = false; const expressionType = checkExpression(node.expression); const expressionIsLiteral = isLiteralType(expressionType); forEach(node.caseBlock.clauses, clause => { // Grammar check for duplicate default clauses, skip if we already report duplicate default clause if (clause.kind === SyntaxKind.DefaultClause && !hasDuplicateDefaultClause) { if (firstDefaultClause === undefined) { firstDefaultClause = clause; } else { const sourceFile = getSourceFileOfNode(node); const start = skipTrivia(sourceFile.text, clause.pos); const end = clause.statements.length > 0 ? clause.statements[0].pos : clause.end; grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.A_default_clause_cannot_appear_more_than_once_in_a_switch_statement); hasDuplicateDefaultClause = true; } } if (produceDiagnostics && clause.kind === SyntaxKind.CaseClause) { const caseClause = clause; // TypeScript 1.0 spec (April 2014): 5.9 // In a 'switch' statement, each 'case' expression must be of a type that is comparable // to or from the type of the 'switch' expression. let caseType = checkExpression(caseClause.expression); const caseIsLiteral = isLiteralType(caseType); let comparedExpressionType = expressionType; if (!caseIsLiteral || !expressionIsLiteral) { caseType = caseIsLiteral ? getBaseTypeOfLiteralType(caseType) : caseType; comparedExpressionType = getBaseTypeOfLiteralType(expressionType); } if (!isTypeEqualityComparableTo(comparedExpressionType, caseType)) { // expressionType is not comparable to caseType, try the reversed check and report errors if it fails checkTypeComparableTo(caseType, comparedExpressionType, caseClause.expression, /*headMessage*/ undefined); } } forEach(clause.statements, checkSourceElement); }); if (node.caseBlock.locals) { registerForUnusedIdentifiersCheck(node.caseBlock); } } function checkLabeledStatement(node: LabeledStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { findAncestor(node.parent, current => { if (isFunctionLike(current)) { return "quit"; } if (current.kind === SyntaxKind.LabeledStatement && (current).label.text === node.label.text) { const sourceFile = getSourceFileOfNode(node); grammarErrorOnNode(node.label, Diagnostics.Duplicate_label_0, getTextOfNodeFromSourceText(sourceFile.text, node.label)); return true; } }); } // ensure that label is unique checkSourceElement(node.statement); } function checkThrowStatement(node: ThrowStatement) { // Grammar checking if (!checkGrammarStatementInAmbientContext(node)) { if (node.expression === undefined) { grammarErrorAfterFirstToken(node, Diagnostics.Line_break_not_permitted_here); } } if (node.expression) { checkExpression(node.expression); } } function checkTryStatement(node: TryStatement) { // Grammar checking checkGrammarStatementInAmbientContext(node); checkBlock(node.tryBlock); const catchClause = node.catchClause; if (catchClause) { // Grammar checking if (catchClause.variableDeclaration) { if (catchClause.variableDeclaration.type) { grammarErrorOnFirstToken(catchClause.variableDeclaration.type, Diagnostics.Catch_clause_variable_cannot_have_a_type_annotation); } else if (catchClause.variableDeclaration.initializer) { grammarErrorOnFirstToken(catchClause.variableDeclaration.initializer, Diagnostics.Catch_clause_variable_cannot_have_an_initializer); } else { const blockLocals = catchClause.block.locals; if (blockLocals) { forEachKey(catchClause.locals, caughtName => { const blockLocal = blockLocals.get(caughtName); if (blockLocal && (blockLocal.flags & SymbolFlags.BlockScopedVariable) !== 0) { grammarErrorOnNode(blockLocal.valueDeclaration, Diagnostics.Cannot_redeclare_identifier_0_in_catch_clause, caughtName); } }); } } } checkBlock(catchClause.block); } if (node.finallyBlock) { checkBlock(node.finallyBlock); } } function checkIndexConstraints(type: Type) { const declaredNumberIndexer = getIndexDeclarationOfSymbol(type.symbol, IndexKind.Number); const declaredStringIndexer = getIndexDeclarationOfSymbol(type.symbol, IndexKind.String); const stringIndexType = getIndexTypeOfType(type, IndexKind.String); const numberIndexType = getIndexTypeOfType(type, IndexKind.Number); if (stringIndexType || numberIndexType) { forEach(getPropertiesOfObjectType(type), prop => { const propType = getTypeOfSymbol(prop); checkIndexConstraintForProperty(prop, propType, type, declaredStringIndexer, stringIndexType, IndexKind.String); checkIndexConstraintForProperty(prop, propType, type, declaredNumberIndexer, numberIndexType, IndexKind.Number); }); if (getObjectFlags(type) & ObjectFlags.Class && isClassLike(type.symbol.valueDeclaration)) { const classDeclaration = type.symbol.valueDeclaration; for (const member of classDeclaration.members) { // Only process instance properties with computed names here. // Static properties cannot be in conflict with indexers, // and properties with literal names were already checked. if (!(getModifierFlags(member) & ModifierFlags.Static) && hasDynamicName(member)) { const propType = getTypeOfSymbol(member.symbol); checkIndexConstraintForProperty(member.symbol, propType, type, declaredStringIndexer, stringIndexType, IndexKind.String); checkIndexConstraintForProperty(member.symbol, propType, type, declaredNumberIndexer, numberIndexType, IndexKind.Number); } } } } let errorNode: Node; if (stringIndexType && numberIndexType) { errorNode = declaredNumberIndexer || declaredStringIndexer; // condition 'errorNode === undefined' may appear if types does not declare nor string neither number indexer if (!errorNode && (getObjectFlags(type) & ObjectFlags.Interface)) { const someBaseTypeHasBothIndexers = forEach(getBaseTypes(type), base => getIndexTypeOfType(base, IndexKind.String) && getIndexTypeOfType(base, IndexKind.Number)); errorNode = someBaseTypeHasBothIndexers ? undefined : type.symbol.declarations[0]; } } if (errorNode && !isTypeAssignableTo(numberIndexType, stringIndexType)) { error(errorNode, Diagnostics.Numeric_index_type_0_is_not_assignable_to_string_index_type_1, typeToString(numberIndexType), typeToString(stringIndexType)); } function checkIndexConstraintForProperty( prop: Symbol, propertyType: Type, containingType: Type, indexDeclaration: Declaration, indexType: Type, indexKind: IndexKind): void { if (!indexType) { return; } const propDeclaration = prop.valueDeclaration; // index is numeric and property name is not valid numeric literal if (indexKind === IndexKind.Number && !(propDeclaration ? isNumericName(getNameOfDeclaration(propDeclaration)) : isNumericLiteralName(prop.name))) { return; } // perform property check if property or indexer is declared in 'type' // this allows us to rule out cases when both property and indexer are inherited from the base class let errorNode: Node; if (propDeclaration && (propDeclaration.kind === SyntaxKind.BinaryExpression || getNameOfDeclaration(propDeclaration).kind === SyntaxKind.ComputedPropertyName || prop.parent === containingType.symbol)) { errorNode = propDeclaration; } else if (indexDeclaration) { errorNode = indexDeclaration; } else if (getObjectFlags(containingType) & ObjectFlags.Interface) { // for interfaces property and indexer might be inherited from different bases // check if any base class already has both property and indexer. // check should be performed only if 'type' is the first type that brings property\indexer together const someBaseClassHasBothPropertyAndIndexer = forEach(getBaseTypes(containingType), base => getPropertyOfObjectType(base, prop.name) && getIndexTypeOfType(base, indexKind)); errorNode = someBaseClassHasBothPropertyAndIndexer ? undefined : containingType.symbol.declarations[0]; } if (errorNode && !isTypeAssignableTo(propertyType, indexType)) { const errorMessage = indexKind === IndexKind.String ? Diagnostics.Property_0_of_type_1_is_not_assignable_to_string_index_type_2 : Diagnostics.Property_0_of_type_1_is_not_assignable_to_numeric_index_type_2; error(errorNode, errorMessage, symbolToString(prop), typeToString(propertyType), typeToString(indexType)); } } } function checkTypeNameIsReserved(name: DeclarationName, message: DiagnosticMessage): void { // TS 1.0 spec (April 2014): 3.6.1 // The predefined type keywords are reserved and cannot be used as names of user defined types. switch ((name).text) { case "any": case "number": case "boolean": case "string": case "symbol": case "void": case "object": error(name, message, (name).text); } } /** * Check each type parameter and check that type parameters have no duplicate type parameter declarations */ function checkTypeParameters(typeParameterDeclarations: TypeParameterDeclaration[]) { if (typeParameterDeclarations) { let seenDefault = false; for (let i = 0; i < typeParameterDeclarations.length; i++) { const node = typeParameterDeclarations[i]; checkTypeParameter(node); if (produceDiagnostics) { if (node.default) { seenDefault = true; } else if (seenDefault) { error(node, Diagnostics.Required_type_parameters_may_not_follow_optional_type_parameters); } for (let j = 0; j < i; j++) { if (typeParameterDeclarations[j].symbol === node.symbol) { error(node.name, Diagnostics.Duplicate_identifier_0, declarationNameToString(node.name)); } } } } } } /** Check that type parameter lists are identical across multiple declarations */ function checkTypeParameterListsIdentical(symbol: Symbol) { if (symbol.declarations.length === 1) { return; } const links = getSymbolLinks(symbol); if (!links.typeParametersChecked) { links.typeParametersChecked = true; const declarations = getClassOrInterfaceDeclarationsOfSymbol(symbol); if (declarations.length <= 1) { return; } const type = getDeclaredTypeOfSymbol(symbol); if (!areTypeParametersIdentical(declarations, type.localTypeParameters)) { // Report an error on every conflicting declaration. const name = symbolToString(symbol); for (const declaration of declarations) { error(declaration.name, Diagnostics.All_declarations_of_0_must_have_identical_type_parameters, name); } } } } function areTypeParametersIdentical(declarations: (ClassDeclaration | InterfaceDeclaration)[], typeParameters: TypeParameter[]) { const maxTypeArgumentCount = length(typeParameters); const minTypeArgumentCount = getMinTypeArgumentCount(typeParameters); for (const declaration of declarations) { // If this declaration has too few or too many type parameters, we report an error const numTypeParameters = length(declaration.typeParameters); if (numTypeParameters < minTypeArgumentCount || numTypeParameters > maxTypeArgumentCount) { return false; } for (let i = 0; i < numTypeParameters; i++) { const source = declaration.typeParameters[i]; const target = typeParameters[i]; // If the type parameter node does not have the same as the resolved type // parameter at this position, we report an error. if (source.name.text !== target.symbol.name) { return false; } // If the type parameter node does not have an identical constraint as the resolved // type parameter at this position, we report an error. const sourceConstraint = source.constraint && getTypeFromTypeNode(source.constraint); const targetConstraint = getConstraintFromTypeParameter(target); if ((sourceConstraint || targetConstraint) && (!sourceConstraint || !targetConstraint || !isTypeIdenticalTo(sourceConstraint, targetConstraint))) { return false; } // If the type parameter node has a default and it is not identical to the default // for the type parameter at this position, we report an error. const sourceDefault = source.default && getTypeFromTypeNode(source.default); const targetDefault = getDefaultFromTypeParameter(target); if (sourceDefault && targetDefault && !isTypeIdenticalTo(sourceDefault, targetDefault)) { return false; } } } return true; } function checkClassExpression(node: ClassExpression): Type { checkClassLikeDeclaration(node); checkNodeDeferred(node); return getTypeOfSymbol(getSymbolOfNode(node)); } function checkClassExpressionDeferred(node: ClassExpression) { forEach(node.members, checkSourceElement); registerForUnusedIdentifiersCheck(node); } function checkClassDeclaration(node: ClassDeclaration) { if (!node.name && !(getModifierFlags(node) & ModifierFlags.Default)) { grammarErrorOnFirstToken(node, Diagnostics.A_class_declaration_without_the_default_modifier_must_have_a_name); } checkClassLikeDeclaration(node); forEach(node.members, checkSourceElement); registerForUnusedIdentifiersCheck(node); } function checkClassLikeDeclaration(node: ClassLikeDeclaration) { checkGrammarClassLikeDeclaration(node); checkDecorators(node); if (node.name) { checkTypeNameIsReserved(node.name, Diagnostics.Class_name_cannot_be_0); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithCapturedNewTargetVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkCollisionWithGlobalPromiseInGeneratedCode(node, node.name); } checkTypeParameters(node.typeParameters); checkExportsOnMergedDeclarations(node); const symbol = getSymbolOfNode(node); const type = getDeclaredTypeOfSymbol(symbol); const typeWithThis = getTypeWithThisArgument(type); const staticType = getTypeOfSymbol(symbol); checkTypeParameterListsIdentical(symbol); checkClassForDuplicateDeclarations(node); // Only check for reserved static identifiers on non-ambient context. if (!isInAmbientContext(node)) { checkClassForStaticPropertyNameConflicts(node); } const baseTypeNode = getClassExtendsHeritageClauseElement(node); if (baseTypeNode) { if (languageVersion < ScriptTarget.ES2015) { checkExternalEmitHelpers(baseTypeNode.parent, ExternalEmitHelpers.Extends); } const baseTypes = getBaseTypes(type); if (baseTypes.length && produceDiagnostics) { const baseType = baseTypes[0]; const baseConstructorType = getBaseConstructorTypeOfClass(type); const staticBaseType = getApparentType(baseConstructorType); checkBaseTypeAccessibility(staticBaseType, baseTypeNode); checkSourceElement(baseTypeNode.expression); if (baseTypeNode.typeArguments) { forEach(baseTypeNode.typeArguments, checkSourceElement); for (const constructor of getConstructorsForTypeArguments(staticBaseType, baseTypeNode.typeArguments, baseTypeNode)) { if (!checkTypeArgumentConstraints(constructor.typeParameters, baseTypeNode.typeArguments)) { break; } } } checkTypeAssignableTo(typeWithThis, getTypeWithThisArgument(baseType, type.thisType), node.name || node, Diagnostics.Class_0_incorrectly_extends_base_class_1); checkTypeAssignableTo(staticType, getTypeWithoutSignatures(staticBaseType), node.name || node, Diagnostics.Class_static_side_0_incorrectly_extends_base_class_static_side_1); if (baseConstructorType.flags & TypeFlags.TypeVariable && !isMixinConstructorType(staticType)) { error(node.name || node, Diagnostics.A_mixin_class_must_have_a_constructor_with_a_single_rest_parameter_of_type_any); } if (!(staticBaseType.symbol && staticBaseType.symbol.flags & SymbolFlags.Class) && !(baseConstructorType.flags & TypeFlags.TypeVariable)) { // When the static base type is a "class-like" constructor function (but not actually a class), we verify // that all instantiated base constructor signatures return the same type. We can simply compare the type // references (as opposed to checking the structure of the types) because elsewhere we have already checked // that the base type is a class or interface type (and not, for example, an anonymous object type). const constructors = getInstantiatedConstructorsForTypeArguments(staticBaseType, baseTypeNode.typeArguments, baseTypeNode); if (forEach(constructors, sig => getReturnTypeOfSignature(sig) !== baseType)) { error(baseTypeNode.expression, Diagnostics.Base_constructors_must_all_have_the_same_return_type); } } checkKindsOfPropertyMemberOverrides(type, baseType); } } const implementedTypeNodes = getClassImplementsHeritageClauseElements(node); if (implementedTypeNodes) { for (const typeRefNode of implementedTypeNodes) { if (!isEntityNameExpression(typeRefNode.expression)) { error(typeRefNode.expression, Diagnostics.A_class_can_only_implement_an_identifier_Slashqualified_name_with_optional_type_arguments); } checkTypeReferenceNode(typeRefNode); if (produceDiagnostics) { const t = getTypeFromTypeNode(typeRefNode); if (t !== unknownType) { if (isValidBaseType(t)) { checkTypeAssignableTo(typeWithThis, getTypeWithThisArgument(t, type.thisType), node.name || node, Diagnostics.Class_0_incorrectly_implements_interface_1); } else { error(typeRefNode, Diagnostics.A_class_may_only_implement_another_class_or_interface); } } } } } if (produceDiagnostics) { checkIndexConstraints(type); checkTypeForDuplicateIndexSignatures(node); } } function checkBaseTypeAccessibility(type: Type, node: ExpressionWithTypeArguments) { const signatures = getSignaturesOfType(type, SignatureKind.Construct); if (signatures.length) { const declaration = signatures[0].declaration; if (declaration && getModifierFlags(declaration) & ModifierFlags.Private) { const typeClassDeclaration = getClassLikeDeclarationOfSymbol(type.symbol); if (!isNodeWithinClass(node, typeClassDeclaration)) { error(node, Diagnostics.Cannot_extend_a_class_0_Class_constructor_is_marked_as_private, getFullyQualifiedName(type.symbol)); } } } } function getTargetSymbol(s: Symbol) { // if symbol is instantiated its flags are not copied from the 'target' // so we'll need to get back original 'target' symbol to work with correct set of flags return getCheckFlags(s) & CheckFlags.Instantiated ? (s).target : s; } function getClassLikeDeclarationOfSymbol(symbol: Symbol): Declaration { return forEach(symbol.declarations, d => isClassLike(d) ? d : undefined); } function getClassOrInterfaceDeclarationsOfSymbol(symbol: Symbol) { return filter(symbol.declarations, (d: Declaration): d is ClassDeclaration | InterfaceDeclaration => d.kind === SyntaxKind.ClassDeclaration || d.kind === SyntaxKind.InterfaceDeclaration); } function checkKindsOfPropertyMemberOverrides(type: InterfaceType, baseType: BaseType): void { // TypeScript 1.0 spec (April 2014): 8.2.3 // A derived class inherits all members from its base class it doesn't override. // Inheritance means that a derived class implicitly contains all non - overridden members of the base class. // Both public and private property members are inherited, but only public property members can be overridden. // A property member in a derived class is said to override a property member in a base class // when the derived class property member has the same name and kind(instance or static) // as the base class property member. // The type of an overriding property member must be assignable(section 3.8.4) // to the type of the overridden property member, or otherwise a compile - time error occurs. // Base class instance member functions can be overridden by derived class instance member functions, // but not by other kinds of members. // Base class instance member variables and accessors can be overridden by // derived class instance member variables and accessors, but not by other kinds of members. // NOTE: assignability is checked in checkClassDeclaration const baseProperties = getPropertiesOfType(baseType); for (const baseProperty of baseProperties) { const base = getTargetSymbol(baseProperty); if (base.flags & SymbolFlags.Prototype) { continue; } const derived = getTargetSymbol(getPropertyOfObjectType(type, base.name)); const baseDeclarationFlags = getDeclarationModifierFlagsFromSymbol(base); Debug.assert(!!derived, "derived should point to something, even if it is the base class' declaration."); if (derived) { // In order to resolve whether the inherited method was overridden in the base class or not, // we compare the Symbols obtained. Since getTargetSymbol returns the symbol on the *uninstantiated* // type declaration, derived and base resolve to the same symbol even in the case of generic classes. if (derived === base) { // derived class inherits base without override/redeclaration const derivedClassDecl = getClassLikeDeclarationOfSymbol(type.symbol); // It is an error to inherit an abstract member without implementing it or being declared abstract. // If there is no declaration for the derived class (as in the case of class expressions), // then the class cannot be declared abstract. if (baseDeclarationFlags & ModifierFlags.Abstract && (!derivedClassDecl || !(getModifierFlags(derivedClassDecl) & ModifierFlags.Abstract))) { if (derivedClassDecl.kind === SyntaxKind.ClassExpression) { error(derivedClassDecl, Diagnostics.Non_abstract_class_expression_does_not_implement_inherited_abstract_member_0_from_class_1, symbolToString(baseProperty), typeToString(baseType)); } else { error(derivedClassDecl, Diagnostics.Non_abstract_class_0_does_not_implement_inherited_abstract_member_1_from_class_2, typeToString(type), symbolToString(baseProperty), typeToString(baseType)); } } } else { // derived overrides base. const derivedDeclarationFlags = getDeclarationModifierFlagsFromSymbol(derived); if (baseDeclarationFlags & ModifierFlags.Private || derivedDeclarationFlags & ModifierFlags.Private) { // either base or derived property is private - not override, skip it continue; } if (isMethodLike(base) && isMethodLike(derived) || base.flags & SymbolFlags.PropertyOrAccessor && derived.flags & SymbolFlags.PropertyOrAccessor) { // method is overridden with method or property/accessor is overridden with property/accessor - correct case continue; } let errorMessage: DiagnosticMessage; if (isMethodLike(base)) { if (derived.flags & SymbolFlags.Accessor) { errorMessage = Diagnostics.Class_0_defines_instance_member_function_1_but_extended_class_2_defines_it_as_instance_member_accessor; } else { errorMessage = Diagnostics.Class_0_defines_instance_member_function_1_but_extended_class_2_defines_it_as_instance_member_property; } } else if (base.flags & SymbolFlags.Property) { errorMessage = Diagnostics.Class_0_defines_instance_member_property_1_but_extended_class_2_defines_it_as_instance_member_function; } else { errorMessage = Diagnostics.Class_0_defines_instance_member_accessor_1_but_extended_class_2_defines_it_as_instance_member_function; } error(getNameOfDeclaration(derived.valueDeclaration) || derived.valueDeclaration, errorMessage, typeToString(baseType), symbolToString(base), typeToString(type)); } } } } function isAccessor(kind: SyntaxKind): boolean { return kind === SyntaxKind.GetAccessor || kind === SyntaxKind.SetAccessor; } function checkInheritedPropertiesAreIdentical(type: InterfaceType, typeNode: Node): boolean { const baseTypes = getBaseTypes(type); if (baseTypes.length < 2) { return true; } const seen = createMap<{ prop: Symbol; containingType: Type }>(); forEach(resolveDeclaredMembers(type).declaredProperties, p => { seen.set(p.name, { prop: p, containingType: type }); }); let ok = true; for (const base of baseTypes) { const properties = getPropertiesOfType(getTypeWithThisArgument(base, type.thisType)); for (const prop of properties) { const existing = seen.get(prop.name); if (!existing) { seen.set(prop.name, { prop: prop, containingType: base }); } else { const isInheritedProperty = existing.containingType !== type; if (isInheritedProperty && !isPropertyIdenticalTo(existing.prop, prop)) { ok = false; const typeName1 = typeToString(existing.containingType); const typeName2 = typeToString(base); let errorInfo = chainDiagnosticMessages(/*details*/ undefined, Diagnostics.Named_property_0_of_types_1_and_2_are_not_identical, symbolToString(prop), typeName1, typeName2); errorInfo = chainDiagnosticMessages(errorInfo, Diagnostics.Interface_0_cannot_simultaneously_extend_types_1_and_2, typeToString(type), typeName1, typeName2); diagnostics.add(createDiagnosticForNodeFromMessageChain(typeNode, errorInfo)); } } } } return ok; } function checkInterfaceDeclaration(node: InterfaceDeclaration) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarInterfaceDeclaration(node); checkTypeParameters(node.typeParameters); if (produceDiagnostics) { checkTypeNameIsReserved(node.name, Diagnostics.Interface_name_cannot_be_0); checkExportsOnMergedDeclarations(node); const symbol = getSymbolOfNode(node); checkTypeParameterListsIdentical(symbol); // Only check this symbol once const firstInterfaceDecl = getDeclarationOfKind(symbol, SyntaxKind.InterfaceDeclaration); if (node === firstInterfaceDecl) { const type = getDeclaredTypeOfSymbol(symbol); const typeWithThis = getTypeWithThisArgument(type); // run subsequent checks only if first set succeeded if (checkInheritedPropertiesAreIdentical(type, node.name)) { for (const baseType of getBaseTypes(type)) { checkTypeAssignableTo(typeWithThis, getTypeWithThisArgument(baseType, type.thisType), node.name, Diagnostics.Interface_0_incorrectly_extends_interface_1); } checkIndexConstraints(type); } } checkObjectTypeForDuplicateDeclarations(node); } forEach(getInterfaceBaseTypeNodes(node), heritageElement => { if (!isEntityNameExpression(heritageElement.expression)) { error(heritageElement.expression, Diagnostics.An_interface_can_only_extend_an_identifier_Slashqualified_name_with_optional_type_arguments); } checkTypeReferenceNode(heritageElement); }); forEach(node.members, checkSourceElement); if (produceDiagnostics) { checkTypeForDuplicateIndexSignatures(node); registerForUnusedIdentifiersCheck(node); } } function checkTypeAliasDeclaration(node: TypeAliasDeclaration) { // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node); checkTypeNameIsReserved(node.name, Diagnostics.Type_alias_name_cannot_be_0); checkTypeParameters(node.typeParameters); checkSourceElement(node.type); } function computeEnumMemberValues(node: EnumDeclaration) { const nodeLinks = getNodeLinks(node); if (!(nodeLinks.flags & NodeCheckFlags.EnumValuesComputed)) { const enumSymbol = getSymbolOfNode(node); const enumType = getDeclaredTypeOfSymbol(enumSymbol); let autoValue = 0; // set to undefined when enum member is non-constant const ambient = isInAmbientContext(node); const enumIsConst = isConst(node); for (const member of node.members) { if (isComputedNonLiteralName(member.name)) { error(member.name, Diagnostics.Computed_property_names_are_not_allowed_in_enums); } else { const text = getTextOfPropertyName(member.name); if (isNumericLiteralName(text) && !isInfinityOrNaNString(text)) { error(member.name, Diagnostics.An_enum_member_cannot_have_a_numeric_name); } } const previousEnumMemberIsNonConstant = autoValue === undefined; const initializer = member.initializer; if (initializer) { autoValue = computeConstantValueForEnumMemberInitializer(initializer, enumType, enumIsConst, ambient); } else if (ambient && !enumIsConst) { // In ambient enum declarations that specify no const modifier, enum member declarations // that omit a value are considered computed members (as opposed to having auto-incremented values assigned). autoValue = undefined; } else if (previousEnumMemberIsNonConstant) { // If the member declaration specifies no value, the member is considered a constant enum member. // If the member is the first member in the enum declaration, it is assigned the value zero. // Otherwise, it is assigned the value of the immediately preceding member plus one, // and an error occurs if the immediately preceding member is not a constant enum member error(member.name, Diagnostics.Enum_member_must_have_initializer); } if (autoValue !== undefined) { getNodeLinks(member).enumMemberValue = autoValue; autoValue++; } } nodeLinks.flags |= NodeCheckFlags.EnumValuesComputed; } function computeConstantValueForEnumMemberInitializer(initializer: Expression, enumType: Type, enumIsConst: boolean, ambient: boolean): number { // Controls if error should be reported after evaluation of constant value is completed // Can be false if another more precise error was already reported during evaluation. let reportError = true; const value = evalConstant(initializer); if (reportError) { if (value === undefined) { if (enumIsConst) { error(initializer, Diagnostics.In_const_enum_declarations_member_initializer_must_be_constant_expression); } else if (ambient) { error(initializer, Diagnostics.In_ambient_enum_declarations_member_initializer_must_be_constant_expression); } else { // Only here do we need to check that the initializer is assignable to the enum type. checkTypeAssignableTo(checkExpression(initializer), enumType, initializer, /*headMessage*/ undefined); } } else if (enumIsConst) { if (isNaN(value)) { error(initializer, Diagnostics.const_enum_member_initializer_was_evaluated_to_disallowed_value_NaN); } else if (!isFinite(value)) { error(initializer, Diagnostics.const_enum_member_initializer_was_evaluated_to_a_non_finite_value); } } } return value; function evalConstant(e: Node): number { switch (e.kind) { case SyntaxKind.PrefixUnaryExpression: const value = evalConstant((e).operand); if (value === undefined) { return undefined; } switch ((e).operator) { case SyntaxKind.PlusToken: return value; case SyntaxKind.MinusToken: return -value; case SyntaxKind.TildeToken: return ~value; } return undefined; case SyntaxKind.BinaryExpression: const left = evalConstant((e).left); if (left === undefined) { return undefined; } const right = evalConstant((e).right); if (right === undefined) { return undefined; } switch ((e).operatorToken.kind) { case SyntaxKind.BarToken: return left | right; case SyntaxKind.AmpersandToken: return left & right; case SyntaxKind.GreaterThanGreaterThanToken: return left >> right; case SyntaxKind.GreaterThanGreaterThanGreaterThanToken: return left >>> right; case SyntaxKind.LessThanLessThanToken: return left << right; case SyntaxKind.CaretToken: return left ^ right; case SyntaxKind.AsteriskToken: return left * right; case SyntaxKind.SlashToken: return left / right; case SyntaxKind.PlusToken: return left + right; case SyntaxKind.MinusToken: return left - right; case SyntaxKind.PercentToken: return left % right; } return undefined; case SyntaxKind.NumericLiteral: checkGrammarNumericLiteral(e); return +(e).text; case SyntaxKind.ParenthesizedExpression: return evalConstant((e).expression); case SyntaxKind.Identifier: case SyntaxKind.ElementAccessExpression: case SyntaxKind.PropertyAccessExpression: const member = initializer.parent; const currentType = getTypeOfSymbol(getSymbolOfNode(member.parent)); let enumType: Type; let propertyName: string; if (e.kind === SyntaxKind.Identifier) { // unqualified names can refer to member that reside in different declaration of the enum so just doing name resolution won't work. // instead pick current enum type and later try to fetch member from the type enumType = currentType; propertyName = (e).text; } else { let expression: Expression; if (e.kind === SyntaxKind.ElementAccessExpression) { if ((e).argumentExpression === undefined || (e).argumentExpression.kind !== SyntaxKind.StringLiteral) { return undefined; } expression = (e).expression; propertyName = ((e).argumentExpression).text; } else { expression = (e).expression; propertyName = (e).name.text; } // expression part in ElementAccess\PropertyAccess should be either identifier or dottedName let current = expression; while (current) { if (current.kind === SyntaxKind.Identifier) { break; } else if (current.kind === SyntaxKind.PropertyAccessExpression) { current = (current).expression; } else { return undefined; } } enumType = getTypeOfExpression(expression); // allow references to constant members of other enums if (!(enumType.symbol && (enumType.symbol.flags & SymbolFlags.Enum))) { return undefined; } } if (propertyName === undefined) { return undefined; } const property = getPropertyOfObjectType(enumType, propertyName); if (!property || !(property.flags & SymbolFlags.EnumMember)) { return undefined; } const propertyDecl = property.valueDeclaration; // self references are illegal if (member === propertyDecl) { return undefined; } // illegal case: forward reference if (!isBlockScopedNameDeclaredBeforeUse(propertyDecl, member)) { reportError = false; error(e, Diagnostics.A_member_initializer_in_a_enum_declaration_cannot_reference_members_declared_after_it_including_members_defined_in_other_enums); return undefined; } return getNodeLinks(propertyDecl).enumMemberValue; } } } } function checkEnumDeclaration(node: EnumDeclaration) { if (!produceDiagnostics) { return; } // Grammar checking checkGrammarDecorators(node) || checkGrammarModifiers(node); checkTypeNameIsReserved(node.name, Diagnostics.Enum_name_cannot_be_0); checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithCapturedNewTargetVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkCollisionWithGlobalPromiseInGeneratedCode(node, node.name); checkExportsOnMergedDeclarations(node); computeEnumMemberValues(node); const enumIsConst = isConst(node); if (compilerOptions.isolatedModules && enumIsConst && isInAmbientContext(node)) { error(node.name, Diagnostics.Ambient_const_enums_are_not_allowed_when_the_isolatedModules_flag_is_provided); } // Spec 2014 - Section 9.3: // It isn't possible for one enum declaration to continue the automatic numbering sequence of another, // and when an enum type has multiple declarations, only one declaration is permitted to omit a value // for the first member. // // Only perform this check once per symbol const enumSymbol = getSymbolOfNode(node); const firstDeclaration = getDeclarationOfKind(enumSymbol, node.kind); if (node === firstDeclaration) { if (enumSymbol.declarations.length > 1) { // check that const is placed\omitted on all enum declarations forEach(enumSymbol.declarations, decl => { if (isConstEnumDeclaration(decl) !== enumIsConst) { error(getNameOfDeclaration(decl), Diagnostics.Enum_declarations_must_all_be_const_or_non_const); } }); } let seenEnumMissingInitialInitializer = false; forEach(enumSymbol.declarations, declaration => { // return true if we hit a violation of the rule, false otherwise if (declaration.kind !== SyntaxKind.EnumDeclaration) { return false; } const enumDeclaration = declaration; if (!enumDeclaration.members.length) { return false; } const firstEnumMember = enumDeclaration.members[0]; if (!firstEnumMember.initializer) { if (seenEnumMissingInitialInitializer) { error(firstEnumMember.name, Diagnostics.In_an_enum_with_multiple_declarations_only_one_declaration_can_omit_an_initializer_for_its_first_enum_element); } else { seenEnumMissingInitialInitializer = true; } } }); } } function getFirstNonAmbientClassOrFunctionDeclaration(symbol: Symbol): Declaration { const declarations = symbol.declarations; for (const declaration of declarations) { if ((declaration.kind === SyntaxKind.ClassDeclaration || (declaration.kind === SyntaxKind.FunctionDeclaration && nodeIsPresent((declaration).body))) && !isInAmbientContext(declaration)) { return declaration; } } return undefined; } function inSameLexicalScope(node1: Node, node2: Node) { const container1 = getEnclosingBlockScopeContainer(node1); const container2 = getEnclosingBlockScopeContainer(node2); if (isGlobalSourceFile(container1)) { return isGlobalSourceFile(container2); } else if (isGlobalSourceFile(container2)) { return false; } else { return container1 === container2; } } function checkModuleDeclaration(node: ModuleDeclaration) { if (produceDiagnostics) { // Grammar checking const isGlobalAugmentation = isGlobalScopeAugmentation(node); const inAmbientContext = isInAmbientContext(node); if (isGlobalAugmentation && !inAmbientContext) { error(node.name, Diagnostics.Augmentations_for_the_global_scope_should_have_declare_modifier_unless_they_appear_in_already_ambient_context); } const isAmbientExternalModule = isAmbientModule(node); const contextErrorMessage = isAmbientExternalModule ? Diagnostics.An_ambient_module_declaration_is_only_allowed_at_the_top_level_in_a_file : Diagnostics.A_namespace_declaration_is_only_allowed_in_a_namespace_or_module; if (checkGrammarModuleElementContext(node, contextErrorMessage)) { // If we hit a module declaration in an illegal context, just bail out to avoid cascading errors. return; } if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node)) { if (!inAmbientContext && node.name.kind === SyntaxKind.StringLiteral) { grammarErrorOnNode(node.name, Diagnostics.Only_ambient_modules_can_use_quoted_names); } } if (isIdentifier(node.name)) { checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkCollisionWithGlobalPromiseInGeneratedCode(node, node.name); } checkExportsOnMergedDeclarations(node); const symbol = getSymbolOfNode(node); // The following checks only apply on a non-ambient instantiated module declaration. if (symbol.flags & SymbolFlags.ValueModule && symbol.declarations.length > 1 && !inAmbientContext && isInstantiatedModule(node, compilerOptions.preserveConstEnums || compilerOptions.isolatedModules)) { const firstNonAmbientClassOrFunc = getFirstNonAmbientClassOrFunctionDeclaration(symbol); if (firstNonAmbientClassOrFunc) { if (getSourceFileOfNode(node) !== getSourceFileOfNode(firstNonAmbientClassOrFunc)) { error(node.name, Diagnostics.A_namespace_declaration_cannot_be_in_a_different_file_from_a_class_or_function_with_which_it_is_merged); } else if (node.pos < firstNonAmbientClassOrFunc.pos) { error(node.name, Diagnostics.A_namespace_declaration_cannot_be_located_prior_to_a_class_or_function_with_which_it_is_merged); } } // if the module merges with a class declaration in the same lexical scope, // we need to track this to ensure the correct emit. const mergedClass = getDeclarationOfKind(symbol, SyntaxKind.ClassDeclaration); if (mergedClass && inSameLexicalScope(node, mergedClass)) { getNodeLinks(node).flags |= NodeCheckFlags.LexicalModuleMergesWithClass; } } if (isAmbientExternalModule) { if (isExternalModuleAugmentation(node)) { // body of the augmentation should be checked for consistency only if augmentation was applied to its target (either global scope or module) // otherwise we'll be swamped in cascading errors. // We can detect if augmentation was applied using following rules: // - augmentation for a global scope is always applied // - augmentation for some external module is applied if symbol for augmentation is merged (it was combined with target module). const checkBody = isGlobalAugmentation || (getSymbolOfNode(node).flags & SymbolFlags.Transient); if (checkBody && node.body) { // body of ambient external module is always a module block for (const statement of (node.body).statements) { checkModuleAugmentationElement(statement, isGlobalAugmentation); } } } else if (isGlobalSourceFile(node.parent)) { if (isGlobalAugmentation) { error(node.name, Diagnostics.Augmentations_for_the_global_scope_can_only_be_directly_nested_in_external_modules_or_ambient_module_declarations); } else if (isExternalModuleNameRelative(node.name.text)) { error(node.name, Diagnostics.Ambient_module_declaration_cannot_specify_relative_module_name); } } else { if (isGlobalAugmentation) { error(node.name, Diagnostics.Augmentations_for_the_global_scope_can_only_be_directly_nested_in_external_modules_or_ambient_module_declarations); } else { // Node is not an augmentation and is not located on the script level. // This means that this is declaration of ambient module that is located in other module or namespace which is prohibited. error(node.name, Diagnostics.Ambient_modules_cannot_be_nested_in_other_modules_or_namespaces); } } } } if (node.body) { checkSourceElement(node.body); if (!isGlobalScopeAugmentation(node)) { registerForUnusedIdentifiersCheck(node); } } } function checkModuleAugmentationElement(node: Node, isGlobalAugmentation: boolean): void { switch (node.kind) { case SyntaxKind.VariableStatement: // error each individual name in variable statement instead of marking the entire variable statement for (const decl of (node).declarationList.declarations) { checkModuleAugmentationElement(decl, isGlobalAugmentation); } break; case SyntaxKind.ExportAssignment: case SyntaxKind.ExportDeclaration: grammarErrorOnFirstToken(node, Diagnostics.Exports_and_export_assignments_are_not_permitted_in_module_augmentations); break; case SyntaxKind.ImportEqualsDeclaration: case SyntaxKind.ImportDeclaration: grammarErrorOnFirstToken(node, Diagnostics.Imports_are_not_permitted_in_module_augmentations_Consider_moving_them_to_the_enclosing_external_module); break; case SyntaxKind.BindingElement: case SyntaxKind.VariableDeclaration: const name = (node).name; if (isBindingPattern(name)) { for (const el of name.elements) { // mark individual names in binding pattern checkModuleAugmentationElement(el, isGlobalAugmentation); } break; } // falls through case SyntaxKind.ClassDeclaration: case SyntaxKind.EnumDeclaration: case SyntaxKind.FunctionDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.ModuleDeclaration: case SyntaxKind.TypeAliasDeclaration: if (isGlobalAugmentation) { return; } const symbol = getSymbolOfNode(node); if (symbol) { // module augmentations cannot introduce new names on the top level scope of the module // this is done it two steps // 1. quick check - if symbol for node is not merged - this is local symbol to this augmentation - report error // 2. main check - report error if value declaration of the parent symbol is module augmentation) let reportError = !(symbol.flags & SymbolFlags.Transient); if (!reportError) { // symbol should not originate in augmentation reportError = isExternalModuleAugmentation(symbol.parent.declarations[0]); } } break; } } function getFirstIdentifier(node: EntityNameOrEntityNameExpression): Identifier { switch (node.kind) { case SyntaxKind.Identifier: return node; case SyntaxKind.QualifiedName: do { node = (node).left; } while (node.kind !== SyntaxKind.Identifier); return node; case SyntaxKind.PropertyAccessExpression: do { node = (node).expression; } while (node.kind !== SyntaxKind.Identifier); return node; } } function checkExternalImportOrExportDeclaration(node: ImportDeclaration | ImportEqualsDeclaration | ExportDeclaration): boolean { const moduleName = getExternalModuleName(node); if (!nodeIsMissing(moduleName) && moduleName.kind !== SyntaxKind.StringLiteral) { error(moduleName, Diagnostics.String_literal_expected); return false; } const inAmbientExternalModule = node.parent.kind === SyntaxKind.ModuleBlock && isAmbientModule(node.parent.parent); if (node.parent.kind !== SyntaxKind.SourceFile && !inAmbientExternalModule) { error(moduleName, node.kind === SyntaxKind.ExportDeclaration ? Diagnostics.Export_declarations_are_not_permitted_in_a_namespace : Diagnostics.Import_declarations_in_a_namespace_cannot_reference_a_module); return false; } if (inAmbientExternalModule && isExternalModuleNameRelative((moduleName).text)) { // we have already reported errors on top level imports\exports in external module augmentations in checkModuleDeclaration // no need to do this again. if (!isTopLevelInExternalModuleAugmentation(node)) { // TypeScript 1.0 spec (April 2013): 12.1.6 // An ExternalImportDeclaration in an AmbientExternalModuleDeclaration may reference // other external modules only through top - level external module names. // Relative external module names are not permitted. error(node, Diagnostics.Import_or_export_declaration_in_an_ambient_module_declaration_cannot_reference_module_through_relative_module_name); return false; } } return true; } function checkAliasSymbol(node: ImportEqualsDeclaration | ImportClause | NamespaceImport | ImportSpecifier | ExportSpecifier) { const symbol = getSymbolOfNode(node); const target = resolveAlias(symbol); if (target !== unknownSymbol) { // For external modules symbol represent local symbol for an alias. // This local symbol will merge any other local declarations (excluding other aliases) // and symbol.flags will contains combined representation for all merged declaration. // Based on symbol.flags we can compute a set of excluded meanings (meaning that resolved alias should not have, // otherwise it will conflict with some local declaration). Note that in addition to normal flags we include matching SymbolFlags.Export* // in order to prevent collisions with declarations that were exported from the current module (they still contribute to local names). const excludedMeanings = (symbol.flags & (SymbolFlags.Value | SymbolFlags.ExportValue) ? SymbolFlags.Value : 0) | (symbol.flags & SymbolFlags.Type ? SymbolFlags.Type : 0) | (symbol.flags & SymbolFlags.Namespace ? SymbolFlags.Namespace : 0); if (target.flags & excludedMeanings) { const message = node.kind === SyntaxKind.ExportSpecifier ? Diagnostics.Export_declaration_conflicts_with_exported_declaration_of_0 : Diagnostics.Import_declaration_conflicts_with_local_declaration_of_0; error(node, message, symbolToString(symbol)); } // Don't allow to re-export something with no value side when `--isolatedModules` is set. if (node.kind === SyntaxKind.ExportSpecifier && compilerOptions.isolatedModules && !(target.flags & SymbolFlags.Value)) { error(node, Diagnostics.Cannot_re_export_a_type_when_the_isolatedModules_flag_is_provided); } } } function checkImportBinding(node: ImportEqualsDeclaration | ImportClause | NamespaceImport | ImportSpecifier) { checkCollisionWithCapturedThisVariable(node, node.name); checkCollisionWithRequireExportsInGeneratedCode(node, node.name); checkCollisionWithGlobalPromiseInGeneratedCode(node, node.name); checkAliasSymbol(node); } function checkImportDeclaration(node: ImportDeclaration) { if (checkGrammarModuleElementContext(node, Diagnostics.An_import_declaration_can_only_be_used_in_a_namespace_or_module)) { // If we hit an import declaration in an illegal context, just bail out to avoid cascading errors. return; } if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && getModifierFlags(node) !== 0) { grammarErrorOnFirstToken(node, Diagnostics.An_import_declaration_cannot_have_modifiers); } if (checkExternalImportOrExportDeclaration(node)) { const importClause = node.importClause; if (importClause) { if (importClause.name) { checkImportBinding(importClause); } if (importClause.namedBindings) { if (importClause.namedBindings.kind === SyntaxKind.NamespaceImport) { checkImportBinding(importClause.namedBindings); } else { forEach((importClause.namedBindings).elements, checkImportBinding); } } } } } function checkImportEqualsDeclaration(node: ImportEqualsDeclaration) { if (checkGrammarModuleElementContext(node, Diagnostics.An_import_declaration_can_only_be_used_in_a_namespace_or_module)) { // If we hit an import declaration in an illegal context, just bail out to avoid cascading errors. return; } checkGrammarDecorators(node) || checkGrammarModifiers(node); if (isInternalModuleImportEqualsDeclaration(node) || checkExternalImportOrExportDeclaration(node)) { checkImportBinding(node); if (getModifierFlags(node) & ModifierFlags.Export) { markExportAsReferenced(node); } if (isInternalModuleImportEqualsDeclaration(node)) { const target = resolveAlias(getSymbolOfNode(node)); if (target !== unknownSymbol) { if (target.flags & SymbolFlags.Value) { // Target is a value symbol, check that it is not hidden by a local declaration with the same name const moduleName = getFirstIdentifier(node.moduleReference); if (!(resolveEntityName(moduleName, SymbolFlags.Value | SymbolFlags.Namespace).flags & SymbolFlags.Namespace)) { error(moduleName, Diagnostics.Module_0_is_hidden_by_a_local_declaration_with_the_same_name, declarationNameToString(moduleName)); } } if (target.flags & SymbolFlags.Type) { checkTypeNameIsReserved(node.name, Diagnostics.Import_name_cannot_be_0); } } } else { if (modulekind === ModuleKind.ES2015 && !isInAmbientContext(node)) { // Import equals declaration is deprecated in es6 or above grammarErrorOnNode(node, Diagnostics.Import_assignment_cannot_be_used_when_targeting_ECMAScript_2015_modules_Consider_using_import_Asterisk_as_ns_from_mod_import_a_from_mod_import_d_from_mod_or_another_module_format_instead); } } } } function checkExportDeclaration(node: ExportDeclaration) { if (checkGrammarModuleElementContext(node, Diagnostics.An_export_declaration_can_only_be_used_in_a_module)) { // If we hit an export in an illegal context, just bail out to avoid cascading errors. return; } if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && getModifierFlags(node) !== 0) { grammarErrorOnFirstToken(node, Diagnostics.An_export_declaration_cannot_have_modifiers); } if (!node.moduleSpecifier || checkExternalImportOrExportDeclaration(node)) { if (node.exportClause) { // export { x, y } // export { x, y } from "foo" forEach(node.exportClause.elements, checkExportSpecifier); const inAmbientExternalModule = node.parent.kind === SyntaxKind.ModuleBlock && isAmbientModule(node.parent.parent); const inAmbientNamespaceDeclaration = !inAmbientExternalModule && node.parent.kind === SyntaxKind.ModuleBlock && !node.moduleSpecifier && isInAmbientContext(node); if (node.parent.kind !== SyntaxKind.SourceFile && !inAmbientExternalModule && !inAmbientNamespaceDeclaration) { error(node, Diagnostics.Export_declarations_are_not_permitted_in_a_namespace); } } else { // export * from "foo" const moduleSymbol = resolveExternalModuleName(node, node.moduleSpecifier); if (moduleSymbol && hasExportAssignmentSymbol(moduleSymbol)) { error(node.moduleSpecifier, Diagnostics.Module_0_uses_export_and_cannot_be_used_with_export_Asterisk, symbolToString(moduleSymbol)); } } } } function checkGrammarModuleElementContext(node: Statement, errorMessage: DiagnosticMessage): boolean { const isInAppropriateContext = node.parent.kind === SyntaxKind.SourceFile || node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.ModuleDeclaration; if (!isInAppropriateContext) { grammarErrorOnFirstToken(node, errorMessage); } return !isInAppropriateContext; } function checkExportSpecifier(node: ExportSpecifier) { checkAliasSymbol(node); if (!(node.parent.parent).moduleSpecifier) { const exportedName = node.propertyName || node.name; // find immediate value referenced by exported name (SymbolFlags.Alias is set so we don't chase down aliases) const symbol = resolveName(exportedName, exportedName.text, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace | SymbolFlags.Alias, /*nameNotFoundMessage*/ undefined, /*nameArg*/ undefined); if (symbol && (symbol === undefinedSymbol || isGlobalSourceFile(getDeclarationContainer(symbol.declarations[0])))) { error(exportedName, Diagnostics.Cannot_export_0_Only_local_declarations_can_be_exported_from_a_module, exportedName.text); } else { markExportAsReferenced(node); } } } function checkExportAssignment(node: ExportAssignment) { if (checkGrammarModuleElementContext(node, Diagnostics.An_export_assignment_can_only_be_used_in_a_module)) { // If we hit an export assignment in an illegal context, just bail out to avoid cascading errors. return; } const container = node.parent.kind === SyntaxKind.SourceFile ? node.parent : node.parent.parent; if (container.kind === SyntaxKind.ModuleDeclaration && !isAmbientModule(container)) { if (node.isExportEquals) { error(node, Diagnostics.An_export_assignment_cannot_be_used_in_a_namespace); } else { error(node, Diagnostics.A_default_export_can_only_be_used_in_an_ECMAScript_style_module); } return; } // Grammar checking if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && getModifierFlags(node) !== 0) { grammarErrorOnFirstToken(node, Diagnostics.An_export_assignment_cannot_have_modifiers); } if (node.expression.kind === SyntaxKind.Identifier) { markExportAsReferenced(node); } else { checkExpressionCached(node.expression); } checkExternalModuleExports(container); if (node.isExportEquals && !isInAmbientContext(node)) { if (modulekind === ModuleKind.ES2015) { // export assignment is not supported in es6 modules grammarErrorOnNode(node, Diagnostics.Export_assignment_cannot_be_used_when_targeting_ECMAScript_2015_modules_Consider_using_export_default_or_another_module_format_instead); } else if (modulekind === ModuleKind.System) { // system modules does not support export assignment grammarErrorOnNode(node, Diagnostics.Export_assignment_is_not_supported_when_module_flag_is_system); } } } function hasExportedMembers(moduleSymbol: Symbol) { return forEachEntry(moduleSymbol.exports, (_, id) => id !== "export="); } function checkExternalModuleExports(node: SourceFile | ModuleDeclaration) { const moduleSymbol = getSymbolOfNode(node); const links = getSymbolLinks(moduleSymbol); if (!links.exportsChecked) { const exportEqualsSymbol = moduleSymbol.exports.get("export="); if (exportEqualsSymbol && hasExportedMembers(moduleSymbol)) { const declaration = getDeclarationOfAliasSymbol(exportEqualsSymbol) || exportEqualsSymbol.valueDeclaration; if (!isTopLevelInExternalModuleAugmentation(declaration)) { error(declaration, Diagnostics.An_export_assignment_cannot_be_used_in_a_module_with_other_exported_elements); } } // Checks for export * conflicts const exports = getExportsOfModule(moduleSymbol); exports && exports.forEach(({ declarations, flags }, id) => { if (id === "__export") { return; } // ECMA262: 15.2.1.1 It is a Syntax Error if the ExportedNames of ModuleItemList contains any duplicate entries. // (TS Exceptions: namespaces, function overloads, enums, and interfaces) if (flags & (SymbolFlags.Namespace | SymbolFlags.Interface | SymbolFlags.Enum)) { return; } const exportedDeclarationsCount = countWhere(declarations, isNotOverload); if (flags & SymbolFlags.TypeAlias && exportedDeclarationsCount <= 2) { // it is legal to merge type alias with other values // so count should be either 1 (just type alias) or 2 (type alias + merged value) return; } if (exportedDeclarationsCount > 1) { for (const declaration of declarations) { if (isNotOverload(declaration)) { diagnostics.add(createDiagnosticForNode(declaration, Diagnostics.Cannot_redeclare_exported_variable_0, id)); } } } }); links.exportsChecked = true; } function isNotOverload(declaration: Declaration): boolean { return (declaration.kind !== SyntaxKind.FunctionDeclaration && declaration.kind !== SyntaxKind.MethodDeclaration) || !!(declaration as FunctionDeclaration).body; } } function checkSourceElement(node: Node): void { if (!node) { return; } const kind = node.kind; if (cancellationToken) { // Only bother checking on a few construct kinds. We don't want to be excessively // hitting the cancellation token on every node we check. switch (kind) { case SyntaxKind.ModuleDeclaration: case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.FunctionDeclaration: cancellationToken.throwIfCancellationRequested(); } } switch (kind) { case SyntaxKind.TypeParameter: return checkTypeParameter(node); case SyntaxKind.Parameter: return checkParameter(node); case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: return checkPropertyDeclaration(node); case SyntaxKind.FunctionType: case SyntaxKind.ConstructorType: case SyntaxKind.CallSignature: case SyntaxKind.ConstructSignature: return checkSignatureDeclaration(node); case SyntaxKind.IndexSignature: return checkSignatureDeclaration(node); case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: return checkMethodDeclaration(node); case SyntaxKind.Constructor: return checkConstructorDeclaration(node); case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: return checkAccessorDeclaration(node); case SyntaxKind.TypeReference: return checkTypeReferenceNode(node); case SyntaxKind.TypePredicate: return checkTypePredicate(node); case SyntaxKind.TypeQuery: return checkTypeQuery(node); case SyntaxKind.TypeLiteral: return checkTypeLiteral(node); case SyntaxKind.ArrayType: return checkArrayType(node); case SyntaxKind.TupleType: return checkTupleType(node); case SyntaxKind.UnionType: case SyntaxKind.IntersectionType: return checkUnionOrIntersectionType(node); case SyntaxKind.ParenthesizedType: case SyntaxKind.TypeOperator: return checkSourceElement((node).type); case SyntaxKind.IndexedAccessType: return checkIndexedAccessType(node); case SyntaxKind.MappedType: return checkMappedType(node); case SyntaxKind.FunctionDeclaration: return checkFunctionDeclaration(node); case SyntaxKind.Block: case SyntaxKind.ModuleBlock: return checkBlock(node); case SyntaxKind.VariableStatement: return checkVariableStatement(node); case SyntaxKind.ExpressionStatement: return checkExpressionStatement(node); case SyntaxKind.IfStatement: return checkIfStatement(node); case SyntaxKind.DoStatement: return checkDoStatement(node); case SyntaxKind.WhileStatement: return checkWhileStatement(node); case SyntaxKind.ForStatement: return checkForStatement(node); case SyntaxKind.ForInStatement: return checkForInStatement(node); case SyntaxKind.ForOfStatement: return checkForOfStatement(node); case SyntaxKind.ContinueStatement: case SyntaxKind.BreakStatement: return checkBreakOrContinueStatement(node); case SyntaxKind.ReturnStatement: return checkReturnStatement(node); case SyntaxKind.WithStatement: return checkWithStatement(node); case SyntaxKind.SwitchStatement: return checkSwitchStatement(node); case SyntaxKind.LabeledStatement: return checkLabeledStatement(node); case SyntaxKind.ThrowStatement: return checkThrowStatement(node); case SyntaxKind.TryStatement: return checkTryStatement(node); case SyntaxKind.VariableDeclaration: return checkVariableDeclaration(node); case SyntaxKind.BindingElement: return checkBindingElement(node); case SyntaxKind.ClassDeclaration: return checkClassDeclaration(node); case SyntaxKind.InterfaceDeclaration: return checkInterfaceDeclaration(node); case SyntaxKind.TypeAliasDeclaration: return checkTypeAliasDeclaration(node); case SyntaxKind.EnumDeclaration: return checkEnumDeclaration(node); case SyntaxKind.ModuleDeclaration: return checkModuleDeclaration(node); case SyntaxKind.ImportDeclaration: return checkImportDeclaration(node); case SyntaxKind.ImportEqualsDeclaration: return checkImportEqualsDeclaration(node); case SyntaxKind.ExportDeclaration: return checkExportDeclaration(node); case SyntaxKind.ExportAssignment: return checkExportAssignment(node); case SyntaxKind.EmptyStatement: checkGrammarStatementInAmbientContext(node); return; case SyntaxKind.DebuggerStatement: checkGrammarStatementInAmbientContext(node); return; case SyntaxKind.MissingDeclaration: return checkMissingDeclaration(node); } } // Function and class expression bodies are checked after all statements in the enclosing body. This is // to ensure constructs like the following are permitted: // const foo = function () { // const s = foo(); // return "hello"; // } // Here, performing a full type check of the body of the function expression whilst in the process of // determining the type of foo would cause foo to be given type any because of the recursive reference. // Delaying the type check of the body ensures foo has been assigned a type. function checkNodeDeferred(node: Node) { if (deferredNodes) { deferredNodes.push(node); } } function checkDeferredNodes() { for (const node of deferredNodes) { switch (node.kind) { case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: checkFunctionExpressionOrObjectLiteralMethodDeferred(node); break; case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: checkAccessorDeclaration(node); break; case SyntaxKind.ClassExpression: checkClassExpressionDeferred(node); break; } } } function checkSourceFile(node: SourceFile) { performance.mark("beforeCheck"); checkSourceFileWorker(node); performance.mark("afterCheck"); performance.measure("Check", "beforeCheck", "afterCheck"); } // Fully type check a source file and collect the relevant diagnostics. function checkSourceFileWorker(node: SourceFile) { const links = getNodeLinks(node); if (!(links.flags & NodeCheckFlags.TypeChecked)) { // If skipLibCheck is enabled, skip type checking if file is a declaration file. // If skipDefaultLibCheck is enabled, skip type checking if file contains a // '/// ' directive. if (compilerOptions.skipLibCheck && node.isDeclarationFile || compilerOptions.skipDefaultLibCheck && node.hasNoDefaultLib) { return; } // Grammar checking checkGrammarSourceFile(node); potentialThisCollisions.length = 0; potentialNewTargetCollisions.length = 0; deferredNodes = []; deferredUnusedIdentifierNodes = produceDiagnostics && noUnusedIdentifiers ? [] : undefined; forEach(node.statements, checkSourceElement); checkDeferredNodes(); if (isExternalModule(node)) { registerForUnusedIdentifiersCheck(node); } if (!node.isDeclarationFile) { checkUnusedIdentifiers(); } deferredNodes = undefined; deferredUnusedIdentifierNodes = undefined; if (isExternalOrCommonJsModule(node)) { checkExternalModuleExports(node); } if (potentialThisCollisions.length) { forEach(potentialThisCollisions, checkIfThisIsCapturedInEnclosingScope); potentialThisCollisions.length = 0; } if (potentialNewTargetCollisions.length) { forEach(potentialNewTargetCollisions, checkIfNewTargetIsCapturedInEnclosingScope); potentialNewTargetCollisions.length = 0; } links.flags |= NodeCheckFlags.TypeChecked; } } function getDiagnostics(sourceFile: SourceFile, ct: CancellationToken): Diagnostic[] { try { // Record the cancellation token so it can be checked later on during checkSourceElement. // Do this in a finally block so we can ensure that it gets reset back to nothing after // this call is done. cancellationToken = ct; return getDiagnosticsWorker(sourceFile); } finally { cancellationToken = undefined; } } function getDiagnosticsWorker(sourceFile: SourceFile): Diagnostic[] { throwIfNonDiagnosticsProducing(); if (sourceFile) { // Some global diagnostics are deferred until they are needed and // may not be reported in the firt call to getGlobalDiagnostics. // We should catch these changes and report them. const previousGlobalDiagnostics = diagnostics.getGlobalDiagnostics(); const previousGlobalDiagnosticsSize = previousGlobalDiagnostics.length; checkSourceFile(sourceFile); const semanticDiagnostics = diagnostics.getDiagnostics(sourceFile.fileName); const currentGlobalDiagnostics = diagnostics.getGlobalDiagnostics(); if (currentGlobalDiagnostics !== previousGlobalDiagnostics) { // If the arrays are not the same reference, new diagnostics were added. const deferredGlobalDiagnostics = relativeComplement(previousGlobalDiagnostics, currentGlobalDiagnostics, compareDiagnostics); return concatenate(deferredGlobalDiagnostics, semanticDiagnostics); } else if (previousGlobalDiagnosticsSize === 0 && currentGlobalDiagnostics.length > 0) { // If the arrays are the same reference, but the length has changed, a single // new diagnostic was added as DiagnosticCollection attempts to reuse the // same array. return concatenate(currentGlobalDiagnostics, semanticDiagnostics); } return semanticDiagnostics; } // Global diagnostics are always added when a file is not provided to // getDiagnostics forEach(host.getSourceFiles(), checkSourceFile); return diagnostics.getDiagnostics(); } function getGlobalDiagnostics(): Diagnostic[] { throwIfNonDiagnosticsProducing(); return diagnostics.getGlobalDiagnostics(); } function throwIfNonDiagnosticsProducing() { if (!produceDiagnostics) { throw new Error("Trying to get diagnostics from a type checker that does not produce them."); } } // Language service support function isInsideWithStatementBody(node: Node): boolean { if (node) { while (node.parent) { if (node.parent.kind === SyntaxKind.WithStatement && (node.parent).statement === node) { return true; } node = node.parent; } } return false; } function getSymbolsInScope(location: Node, meaning: SymbolFlags): Symbol[] { if (isInsideWithStatementBody(location)) { // We cannot answer semantic questions within a with block, do not proceed any further return []; } const symbols = createMap(); let memberFlags: ModifierFlags = ModifierFlags.None; populateSymbols(); return symbolsToArray(symbols); function populateSymbols() { while (location) { if (location.locals && !isGlobalSourceFile(location)) { copySymbols(location.locals, meaning); } switch (location.kind) { case SyntaxKind.SourceFile: if (!isExternalOrCommonJsModule(location)) { break; } // falls through case SyntaxKind.ModuleDeclaration: copySymbols(getSymbolOfNode(location).exports, meaning & SymbolFlags.ModuleMember); break; case SyntaxKind.EnumDeclaration: copySymbols(getSymbolOfNode(location).exports, meaning & SymbolFlags.EnumMember); break; case SyntaxKind.ClassExpression: const className = (location).name; if (className) { copySymbol(location.symbol, meaning); } // falls through // this fall-through is necessary because we would like to handle // type parameter inside class expression similar to how we handle it in classDeclaration and interface Declaration case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: // If we didn't come from static member of class or interface, // add the type parameters into the symbol table // (type parameters of classDeclaration/classExpression and interface are in member property of the symbol. // Note: that the memberFlags come from previous iteration. if (!(memberFlags & ModifierFlags.Static)) { copySymbols(getSymbolOfNode(location).members, meaning & SymbolFlags.Type); } break; case SyntaxKind.FunctionExpression: const funcName = (location).name; if (funcName) { copySymbol(location.symbol, meaning); } break; } if (introducesArgumentsExoticObject(location)) { copySymbol(argumentsSymbol, meaning); } memberFlags = getModifierFlags(location); location = location.parent; } copySymbols(globals, meaning); } /** * Copy the given symbol into symbol tables if the symbol has the given meaning * and it doesn't already existed in the symbol table * @param key a key for storing in symbol table; if undefined, use symbol.name * @param symbol the symbol to be added into symbol table * @param meaning meaning of symbol to filter by before adding to symbol table */ function copySymbol(symbol: Symbol, meaning: SymbolFlags): void { if (symbol.flags & meaning) { const id = symbol.name; // We will copy all symbol regardless of its reserved name because // symbolsToArray will check whether the key is a reserved name and // it will not copy symbol with reserved name to the array if (!symbols.has(id)) { symbols.set(id, symbol); } } } function copySymbols(source: SymbolTable, meaning: SymbolFlags): void { if (meaning) { source.forEach(symbol => { copySymbol(symbol, meaning); }); } } } function isTypeDeclarationName(name: Node): boolean { return name.kind === SyntaxKind.Identifier && isTypeDeclaration(name.parent) && (name.parent).name === name; } function isTypeDeclaration(node: Node): boolean { switch (node.kind) { case SyntaxKind.TypeParameter: case SyntaxKind.ClassDeclaration: case SyntaxKind.InterfaceDeclaration: case SyntaxKind.TypeAliasDeclaration: case SyntaxKind.EnumDeclaration: return true; } } // True if the given identifier is part of a type reference function isTypeReferenceIdentifier(entityName: EntityName): boolean { let node: Node = entityName; while (node.parent && node.parent.kind === SyntaxKind.QualifiedName) { node = node.parent; } return node.parent && (node.parent.kind === SyntaxKind.TypeReference || node.parent.kind === SyntaxKind.JSDocTypeReference) ; } function isHeritageClauseElementIdentifier(entityName: Node): boolean { let node = entityName; while (node.parent && node.parent.kind === SyntaxKind.PropertyAccessExpression) { node = node.parent; } return node.parent && node.parent.kind === SyntaxKind.ExpressionWithTypeArguments; } function forEachEnclosingClass(node: Node, callback: (node: Node) => T): T { let result: T; while (true) { node = getContainingClass(node); if (!node) break; if (result = callback(node)) break; } return result; } function isNodeWithinClass(node: Node, classDeclaration: ClassLikeDeclaration) { return !!forEachEnclosingClass(node, n => n === classDeclaration); } function getLeftSideOfImportEqualsOrExportAssignment(nodeOnRightSide: EntityName): ImportEqualsDeclaration | ExportAssignment { while (nodeOnRightSide.parent.kind === SyntaxKind.QualifiedName) { nodeOnRightSide = nodeOnRightSide.parent; } if (nodeOnRightSide.parent.kind === SyntaxKind.ImportEqualsDeclaration) { return (nodeOnRightSide.parent).moduleReference === nodeOnRightSide && nodeOnRightSide.parent; } if (nodeOnRightSide.parent.kind === SyntaxKind.ExportAssignment) { return (nodeOnRightSide.parent).expression === nodeOnRightSide && nodeOnRightSide.parent; } return undefined; } function isInRightSideOfImportOrExportAssignment(node: EntityName) { return getLeftSideOfImportEqualsOrExportAssignment(node) !== undefined; } function getSpecialPropertyAssignmentSymbolFromEntityName(entityName: EntityName | PropertyAccessExpression) { const specialPropertyAssignmentKind = getSpecialPropertyAssignmentKind(entityName.parent.parent as BinaryExpression); switch (specialPropertyAssignmentKind) { case SpecialPropertyAssignmentKind.ExportsProperty: case SpecialPropertyAssignmentKind.PrototypeProperty: return getSymbolOfNode(entityName.parent); case SpecialPropertyAssignmentKind.ThisProperty: case SpecialPropertyAssignmentKind.ModuleExports: case SpecialPropertyAssignmentKind.Property: return getSymbolOfNode(entityName.parent.parent); } } function getSymbolOfEntityNameOrPropertyAccessExpression(entityName: EntityName | PropertyAccessExpression): Symbol | undefined { if (isDeclarationName(entityName)) { return getSymbolOfNode(entityName.parent); } if (isInJavaScriptFile(entityName) && entityName.parent.kind === SyntaxKind.PropertyAccessExpression && entityName.parent === (entityName.parent.parent as BinaryExpression).left) { // Check if this is a special property assignment const specialPropertyAssignmentSymbol = getSpecialPropertyAssignmentSymbolFromEntityName(entityName); if (specialPropertyAssignmentSymbol) { return specialPropertyAssignmentSymbol; } } if (entityName.parent.kind === SyntaxKind.ExportAssignment && isEntityNameExpression(entityName)) { return resolveEntityName(entityName, /*all meanings*/ SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace | SymbolFlags.Alias); } if (entityName.kind !== SyntaxKind.PropertyAccessExpression && isInRightSideOfImportOrExportAssignment(entityName)) { // Since we already checked for ExportAssignment, this really could only be an Import const importEqualsDeclaration = getAncestor(entityName, SyntaxKind.ImportEqualsDeclaration); Debug.assert(importEqualsDeclaration !== undefined); return getSymbolOfPartOfRightHandSideOfImportEquals(entityName, /*dontResolveAlias*/ true); } if (isRightSideOfQualifiedNameOrPropertyAccess(entityName)) { entityName = entityName.parent; } if (isHeritageClauseElementIdentifier(entityName)) { let meaning = SymbolFlags.None; // In an interface or class, we're definitely interested in a type. if (entityName.parent.kind === SyntaxKind.ExpressionWithTypeArguments) { meaning = SymbolFlags.Type; // In a class 'extends' clause we are also looking for a value. if (isExpressionWithTypeArgumentsInClassExtendsClause(entityName.parent)) { meaning |= SymbolFlags.Value; } } else { meaning = SymbolFlags.Namespace; } meaning |= SymbolFlags.Alias; const entityNameSymbol = resolveEntityName(entityName, meaning); if (entityNameSymbol) { return entityNameSymbol; } } if (isPartOfExpression(entityName)) { if (nodeIsMissing(entityName)) { // Missing entity name. return undefined; } if (entityName.kind === SyntaxKind.Identifier) { if (isJSXTagName(entityName) && isJsxIntrinsicIdentifier(entityName)) { return getIntrinsicTagSymbol(entityName.parent); } return resolveEntityName(entityName, SymbolFlags.Value, /*ignoreErrors*/ false, /*dontResolveAlias*/ true); } else if (entityName.kind === SyntaxKind.PropertyAccessExpression) { const symbol = getNodeLinks(entityName).resolvedSymbol; if (!symbol) { checkPropertyAccessExpression(entityName); } return getNodeLinks(entityName).resolvedSymbol; } else if (entityName.kind === SyntaxKind.QualifiedName) { const symbol = getNodeLinks(entityName).resolvedSymbol; if (!symbol) { checkQualifiedName(entityName); } return getNodeLinks(entityName).resolvedSymbol; } } else if (isTypeReferenceIdentifier(entityName)) { const meaning = (entityName.parent.kind === SyntaxKind.TypeReference || entityName.parent.kind === SyntaxKind.JSDocTypeReference) ? SymbolFlags.Type : SymbolFlags.Namespace; return resolveEntityName(entityName, meaning, /*ignoreErrors*/ false, /*dontResolveAlias*/ true); } else if (entityName.parent.kind === SyntaxKind.JsxAttribute) { return getJsxAttributePropertySymbol(entityName.parent); } if (entityName.parent.kind === SyntaxKind.TypePredicate) { return resolveEntityName(entityName, /*meaning*/ SymbolFlags.FunctionScopedVariable); } // Do we want to return undefined here? return undefined; } function getSymbolAtLocation(node: Node) { if (node.kind === SyntaxKind.SourceFile) { return isExternalModule(node) ? getMergedSymbol(node.symbol) : undefined; } if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return undefined; } if (isDeclarationNameOrImportPropertyName(node)) { // This is a declaration, call getSymbolOfNode return getSymbolOfNode(node.parent); } else if (isLiteralComputedPropertyDeclarationName(node)) { return getSymbolOfNode(node.parent.parent); } if (node.kind === SyntaxKind.Identifier) { if (isInRightSideOfImportOrExportAssignment(node)) { return getSymbolOfEntityNameOrPropertyAccessExpression(node); } else if (node.parent.kind === SyntaxKind.BindingElement && node.parent.parent.kind === SyntaxKind.ObjectBindingPattern && node === (node.parent).propertyName) { const typeOfPattern = getTypeOfNode(node.parent.parent); const propertyDeclaration = typeOfPattern && getPropertyOfType(typeOfPattern, (node).text); if (propertyDeclaration) { return propertyDeclaration; } } } switch (node.kind) { case SyntaxKind.Identifier: case SyntaxKind.PropertyAccessExpression: case SyntaxKind.QualifiedName: return getSymbolOfEntityNameOrPropertyAccessExpression(node); case SyntaxKind.ThisKeyword: const container = getThisContainer(node, /*includeArrowFunctions*/ false); if (isFunctionLike(container)) { const sig = getSignatureFromDeclaration(container); if (sig.thisParameter) { return sig.thisParameter; } } // falls through case SyntaxKind.SuperKeyword: const type = isPartOfExpression(node) ? getTypeOfExpression(node) : getTypeFromTypeNode(node); return type.symbol; case SyntaxKind.ThisType: return getTypeFromTypeNode(node).symbol; case SyntaxKind.ConstructorKeyword: // constructor keyword for an overload, should take us to the definition if it exist const constructorDeclaration = node.parent; if (constructorDeclaration && constructorDeclaration.kind === SyntaxKind.Constructor) { return (constructorDeclaration.parent).symbol; } return undefined; case SyntaxKind.StringLiteral: // External module name in an import declaration if ((isExternalModuleImportEqualsDeclaration(node.parent.parent) && getExternalModuleImportEqualsDeclarationExpression(node.parent.parent) === node) || ((node.parent.kind === SyntaxKind.ImportDeclaration || node.parent.kind === SyntaxKind.ExportDeclaration) && (node.parent).moduleSpecifier === node)) { return resolveExternalModuleName(node, node); } if (isInJavaScriptFile(node) && isRequireCall(node.parent, /*checkArgumentIsStringLiteral*/ false)) { return resolveExternalModuleName(node, node); } // falls through case SyntaxKind.NumericLiteral: // index access if (node.parent.kind === SyntaxKind.ElementAccessExpression && (node.parent).argumentExpression === node) { const objectType = getTypeOfExpression((node.parent).expression); if (objectType === unknownType) return undefined; const apparentType = getApparentType(objectType); if (apparentType === unknownType) return undefined; return getPropertyOfType(apparentType, (node).text); } break; } return undefined; } function getShorthandAssignmentValueSymbol(location: Node): Symbol { // The function returns a value symbol of an identifier in the short-hand property assignment. // This is necessary as an identifier in short-hand property assignment can contains two meaning: // property name and property value. if (location && location.kind === SyntaxKind.ShorthandPropertyAssignment) { return resolveEntityName((location).name, SymbolFlags.Value | SymbolFlags.Alias); } return undefined; } /** Returns the target of an export specifier without following aliases */ function getExportSpecifierLocalTargetSymbol(node: ExportSpecifier): Symbol { return (node.parent.parent).moduleSpecifier ? getExternalModuleMember(node.parent.parent, node) : resolveEntityName(node.propertyName || node.name, SymbolFlags.Value | SymbolFlags.Type | SymbolFlags.Namespace | SymbolFlags.Alias); } function getTypeOfNode(node: Node): Type { if (isInsideWithStatementBody(node)) { // We cannot answer semantic questions within a with block, do not proceed any further return unknownType; } if (isPartOfTypeNode(node)) { let typeFromTypeNode = getTypeFromTypeNode(node); if (typeFromTypeNode && isExpressionWithTypeArgumentsInClassImplementsClause(node)) { const containingClass = getContainingClass(node); const classType = getTypeOfNode(containingClass) as InterfaceType; typeFromTypeNode = getTypeWithThisArgument(typeFromTypeNode, classType.thisType); } return typeFromTypeNode; } if (isPartOfExpression(node)) { return getRegularTypeOfExpression(node); } if (isExpressionWithTypeArgumentsInClassExtendsClause(node)) { // A SyntaxKind.ExpressionWithTypeArguments is considered a type node, except when it occurs in the // extends clause of a class. We handle that case here. const classNode = getContainingClass(node); const classType = getDeclaredTypeOfSymbol(getSymbolOfNode(classNode)) as InterfaceType; const baseType = getBaseTypes(classType)[0]; return baseType && getTypeWithThisArgument(baseType, classType.thisType); } if (isTypeDeclaration(node)) { // In this case, we call getSymbolOfNode instead of getSymbolAtLocation because it is a declaration const symbol = getSymbolOfNode(node); return getDeclaredTypeOfSymbol(symbol); } if (isTypeDeclarationName(node)) { const symbol = getSymbolAtLocation(node); return symbol && getDeclaredTypeOfSymbol(symbol); } if (isDeclaration(node)) { // In this case, we call getSymbolOfNode instead of getSymbolAtLocation because it is a declaration const symbol = getSymbolOfNode(node); return getTypeOfSymbol(symbol); } if (isDeclarationNameOrImportPropertyName(node)) { const symbol = getSymbolAtLocation(node); return symbol && getTypeOfSymbol(symbol); } if (isBindingPattern(node)) { return getTypeForVariableLikeDeclaration(node.parent, /*includeOptionality*/ true); } if (isInRightSideOfImportOrExportAssignment(node)) { const symbol = getSymbolAtLocation(node); const declaredType = symbol && getDeclaredTypeOfSymbol(symbol); return declaredType !== unknownType ? declaredType : getTypeOfSymbol(symbol); } return unknownType; } // Gets the type of object literal or array literal of destructuring assignment. // { a } from // for ( { a } of elems) { // } // [ a ] from // [a] = [ some array ...] function getTypeOfArrayLiteralOrObjectLiteralDestructuringAssignment(expr: Expression): Type { Debug.assert(expr.kind === SyntaxKind.ObjectLiteralExpression || expr.kind === SyntaxKind.ArrayLiteralExpression); // If this is from "for of" // for ( { a } of elems) { // } if (expr.parent.kind === SyntaxKind.ForOfStatement) { const iteratedType = checkRightHandSideOfForOf((expr.parent).expression, (expr.parent).awaitModifier); return checkDestructuringAssignment(expr, iteratedType || unknownType); } // If this is from "for" initializer // for ({a } = elems[0];.....) { } if (expr.parent.kind === SyntaxKind.BinaryExpression) { const iteratedType = getTypeOfExpression((expr.parent).right); return checkDestructuringAssignment(expr, iteratedType || unknownType); } // If this is from nested object binding pattern // for ({ skills: { primary, secondary } } = multiRobot, i = 0; i < 1; i++) { if (expr.parent.kind === SyntaxKind.PropertyAssignment) { const typeOfParentObjectLiteral = getTypeOfArrayLiteralOrObjectLiteralDestructuringAssignment(expr.parent.parent); return checkObjectLiteralDestructuringPropertyAssignment(typeOfParentObjectLiteral || unknownType, expr.parent); } // Array literal assignment - array destructuring pattern Debug.assert(expr.parent.kind === SyntaxKind.ArrayLiteralExpression); // [{ property1: p1, property2 }] = elems; const typeOfArrayLiteral = getTypeOfArrayLiteralOrObjectLiteralDestructuringAssignment(expr.parent); const elementType = checkIteratedTypeOrElementType(typeOfArrayLiteral || unknownType, expr.parent, /*allowStringInput*/ false, /*allowAsyncIterable*/ false) || unknownType; return checkArrayLiteralDestructuringElementAssignment(expr.parent, typeOfArrayLiteral, indexOf((expr.parent).elements, expr), elementType || unknownType); } // Gets the property symbol corresponding to the property in destructuring assignment // 'property1' from // for ( { property1: a } of elems) { // } // 'property1' at location 'a' from: // [a] = [ property1, property2 ] function getPropertySymbolOfDestructuringAssignment(location: Identifier) { // Get the type of the object or array literal and then look for property of given name in the type const typeOfObjectLiteral = getTypeOfArrayLiteralOrObjectLiteralDestructuringAssignment(location.parent.parent); return typeOfObjectLiteral && getPropertyOfType(typeOfObjectLiteral, location.text); } function getRegularTypeOfExpression(expr: Expression): Type { if (isRightSideOfQualifiedNameOrPropertyAccess(expr)) { expr = expr.parent; } return getRegularTypeOfLiteralType(getTypeOfExpression(expr)); } /** * Gets either the static or instance type of a class element, based on * whether the element is declared as "static". */ function getParentTypeOfClassElement(node: ClassElement) { const classSymbol = getSymbolOfNode(node.parent); return getModifierFlags(node) & ModifierFlags.Static ? getTypeOfSymbol(classSymbol) : getDeclaredTypeOfSymbol(classSymbol); } // Return the list of properties of the given type, augmented with properties from Function // if the type has call or construct signatures function getAugmentedPropertiesOfType(type: Type): Symbol[] { type = getApparentType(type); const propsByName = createSymbolTable(getPropertiesOfType(type)); if (getSignaturesOfType(type, SignatureKind.Call).length || getSignaturesOfType(type, SignatureKind.Construct).length) { forEach(getPropertiesOfType(globalFunctionType), p => { if (!propsByName.has(p.name)) { propsByName.set(p.name, p); } }); } return getNamedMembers(propsByName); } function getRootSymbols(symbol: Symbol): Symbol[] { if (getCheckFlags(symbol) & CheckFlags.Synthetic) { const symbols: Symbol[] = []; const name = symbol.name; forEach(getSymbolLinks(symbol).containingType.types, t => { const symbol = getPropertyOfType(t, name); if (symbol) { symbols.push(symbol); } }); return symbols; } else if (symbol.flags & SymbolFlags.Transient) { if ((symbol as SymbolLinks).leftSpread) { const links = symbol as SymbolLinks; return [...getRootSymbols(links.leftSpread), ...getRootSymbols(links.rightSpread)]; } if ((symbol as SymbolLinks).syntheticOrigin) { return getRootSymbols((symbol as SymbolLinks).syntheticOrigin); } let target: Symbol; let next = symbol; while (next = getSymbolLinks(next).target) { target = next; } if (target) { return [target]; } } return [symbol]; } // Emitter support function isArgumentsLocalBinding(node: Identifier): boolean { if (!isGeneratedIdentifier(node)) { node = getParseTreeNode(node, isIdentifier); if (node) { const isPropertyName = node.parent.kind === SyntaxKind.PropertyAccessExpression && (node.parent).name === node; return !isPropertyName && getReferencedValueSymbol(node) === argumentsSymbol; } } return false; } function moduleExportsSomeValue(moduleReferenceExpression: Expression): boolean { let moduleSymbol = resolveExternalModuleName(moduleReferenceExpression.parent, moduleReferenceExpression); if (!moduleSymbol || isShorthandAmbientModuleSymbol(moduleSymbol)) { // If the module is not found or is shorthand, assume that it may export a value. return true; } const hasExportAssignment = hasExportAssignmentSymbol(moduleSymbol); // if module has export assignment then 'resolveExternalModuleSymbol' will return resolved symbol for export assignment // otherwise it will return moduleSymbol itself moduleSymbol = resolveExternalModuleSymbol(moduleSymbol); const symbolLinks = getSymbolLinks(moduleSymbol); if (symbolLinks.exportsSomeValue === undefined) { // for export assignments - check if resolved symbol for RHS is itself a value // otherwise - check if at least one export is value symbolLinks.exportsSomeValue = hasExportAssignment ? !!(moduleSymbol.flags & SymbolFlags.Value) : forEachEntry(getExportsOfModule(moduleSymbol), isValue); } return symbolLinks.exportsSomeValue; function isValue(s: Symbol): boolean { s = resolveSymbol(s); return s && !!(s.flags & SymbolFlags.Value); } } function isNameOfModuleOrEnumDeclaration(node: Identifier) { const parent = node.parent; return parent && isModuleOrEnumDeclaration(parent) && node === parent.name; } // When resolved as an expression identifier, if the given node references an exported entity, return the declaration // node of the exported entity's container. Otherwise, return undefined. function getReferencedExportContainer(node: Identifier, prefixLocals?: boolean): SourceFile | ModuleDeclaration | EnumDeclaration | undefined { node = getParseTreeNode(node, isIdentifier); if (node) { // When resolving the export container for the name of a module or enum // declaration, we need to start resolution at the declaration's container. // Otherwise, we could incorrectly resolve the export container as the // declaration if it contains an exported member with the same name. let symbol = getReferencedValueSymbol(node, /*startInDeclarationContainer*/ isNameOfModuleOrEnumDeclaration(node)); if (symbol) { if (symbol.flags & SymbolFlags.ExportValue) { // If we reference an exported entity within the same module declaration, then whether // we prefix depends on the kind of entity. SymbolFlags.ExportHasLocal encompasses all the // kinds that we do NOT prefix. const exportSymbol = getMergedSymbol(symbol.exportSymbol); if (!prefixLocals && exportSymbol.flags & SymbolFlags.ExportHasLocal) { return undefined; } symbol = exportSymbol; } const parentSymbol = getParentOfSymbol(symbol); if (parentSymbol) { if (parentSymbol.flags & SymbolFlags.ValueModule && parentSymbol.valueDeclaration.kind === SyntaxKind.SourceFile) { const symbolFile = parentSymbol.valueDeclaration; const referenceFile = getSourceFileOfNode(node); // If `node` accesses an export and that export isn't in the same file, then symbol is a namespace export, so return undefined. const symbolIsUmdExport = symbolFile !== referenceFile; return symbolIsUmdExport ? undefined : symbolFile; } return findAncestor(node.parent, n => isModuleOrEnumDeclaration(n) && getSymbolOfNode(n) === parentSymbol) as ModuleDeclaration | EnumDeclaration; } } } } // When resolved as an expression identifier, if the given node references an import, return the declaration of // that import. Otherwise, return undefined. function getReferencedImportDeclaration(node: Identifier): Declaration { node = getParseTreeNode(node, isIdentifier); if (node) { const symbol = getReferencedValueSymbol(node); if (symbol && symbol.flags & SymbolFlags.Alias) { return getDeclarationOfAliasSymbol(symbol); } } return undefined; } function isSymbolOfDeclarationWithCollidingName(symbol: Symbol): boolean { if (symbol.flags & SymbolFlags.BlockScoped) { const links = getSymbolLinks(symbol); if (links.isDeclarationWithCollidingName === undefined) { const container = getEnclosingBlockScopeContainer(symbol.valueDeclaration); if (isStatementWithLocals(container)) { const nodeLinks = getNodeLinks(symbol.valueDeclaration); if (!!resolveName(container.parent, symbol.name, SymbolFlags.Value, /*nameNotFoundMessage*/ undefined, /*nameArg*/ undefined)) { // redeclaration - always should be renamed links.isDeclarationWithCollidingName = true; } else if (nodeLinks.flags & NodeCheckFlags.CapturedBlockScopedBinding) { // binding is captured in the function // should be renamed if: // - binding is not top level - top level bindings never collide with anything // AND // - binding is not declared in loop, should be renamed to avoid name reuse across siblings // let a, b // { let x = 1; a = () => x; } // { let x = 100; b = () => x; } // console.log(a()); // should print '1' // console.log(b()); // should print '100' // OR // - binding is declared inside loop but not in inside initializer of iteration statement or directly inside loop body // * variables from initializer are passed to rewritten loop body as parameters so they are not captured directly // * variables that are declared immediately in loop body will become top level variable after loop is rewritten and thus // they will not collide with anything const isDeclaredInLoop = nodeLinks.flags & NodeCheckFlags.BlockScopedBindingInLoop; const inLoopInitializer = isIterationStatement(container, /*lookInLabeledStatements*/ false); const inLoopBodyBlock = container.kind === SyntaxKind.Block && isIterationStatement(container.parent, /*lookInLabeledStatements*/ false); links.isDeclarationWithCollidingName = !isBlockScopedContainerTopLevel(container) && (!isDeclaredInLoop || (!inLoopInitializer && !inLoopBodyBlock)); } else { links.isDeclarationWithCollidingName = false; } } } return links.isDeclarationWithCollidingName; } return false; } // When resolved as an expression identifier, if the given node references a nested block scoped entity with // a name that either hides an existing name or might hide it when compiled downlevel, // return the declaration of that entity. Otherwise, return undefined. function getReferencedDeclarationWithCollidingName(node: Identifier): Declaration { if (!isGeneratedIdentifier(node)) { node = getParseTreeNode(node, isIdentifier); if (node) { const symbol = getReferencedValueSymbol(node); if (symbol && isSymbolOfDeclarationWithCollidingName(symbol)) { return symbol.valueDeclaration; } } } return undefined; } // Return true if the given node is a declaration of a nested block scoped entity with a name that either hides an // existing name or might hide a name when compiled downlevel function isDeclarationWithCollidingName(node: Declaration): boolean { node = getParseTreeNode(node, isDeclaration); if (node) { const symbol = getSymbolOfNode(node); if (symbol) { return isSymbolOfDeclarationWithCollidingName(symbol); } } return false; } function isValueAliasDeclaration(node: Node): boolean { switch (node.kind) { case SyntaxKind.ImportEqualsDeclaration: case SyntaxKind.ImportClause: case SyntaxKind.NamespaceImport: case SyntaxKind.ImportSpecifier: case SyntaxKind.ExportSpecifier: return isAliasResolvedToValue(getSymbolOfNode(node) || unknownSymbol); case SyntaxKind.ExportDeclaration: const exportClause = (node).exportClause; return exportClause && forEach(exportClause.elements, isValueAliasDeclaration); case SyntaxKind.ExportAssignment: return (node).expression && (node).expression.kind === SyntaxKind.Identifier ? isAliasResolvedToValue(getSymbolOfNode(node) || unknownSymbol) : true; } return false; } function isTopLevelValueImportEqualsWithEntityName(node: ImportEqualsDeclaration): boolean { node = getParseTreeNode(node, isImportEqualsDeclaration); if (node === undefined || node.parent.kind !== SyntaxKind.SourceFile || !isInternalModuleImportEqualsDeclaration(node)) { // parent is not source file or it is not reference to internal module return false; } const isValue = isAliasResolvedToValue(getSymbolOfNode(node)); return isValue && node.moduleReference && !nodeIsMissing(node.moduleReference); } function isAliasResolvedToValue(symbol: Symbol): boolean { const target = resolveAlias(symbol); if (target === unknownSymbol) { return true; } // const enums and modules that contain only const enums are not considered values from the emit perspective // unless 'preserveConstEnums' option is set to true return target.flags & SymbolFlags.Value && (compilerOptions.preserveConstEnums || !isConstEnumOrConstEnumOnlyModule(target)); } function isConstEnumOrConstEnumOnlyModule(s: Symbol): boolean { return isConstEnumSymbol(s) || s.constEnumOnlyModule; } function isReferencedAliasDeclaration(node: Node, checkChildren?: boolean): boolean { if (isAliasSymbolDeclaration(node)) { const symbol = getSymbolOfNode(node); if (symbol && getSymbolLinks(symbol).referenced) { return true; } } if (checkChildren) { return forEachChild(node, node => isReferencedAliasDeclaration(node, checkChildren)); } return false; } function isImplementationOfOverload(node: FunctionLikeDeclaration) { if (nodeIsPresent(node.body)) { const symbol = getSymbolOfNode(node); const signaturesOfSymbol = getSignaturesOfSymbol(symbol); // If this function body corresponds to function with multiple signature, it is implementation of overload // e.g.: function foo(a: string): string; // function foo(a: number): number; // function foo(a: any) { // This is implementation of the overloads // return a; // } return signaturesOfSymbol.length > 1 || // If there is single signature for the symbol, it is overload if that signature isn't coming from the node // e.g.: function foo(a: string): string; // function foo(a: any) { // This is implementation of the overloads // return a; // } (signaturesOfSymbol.length === 1 && signaturesOfSymbol[0].declaration !== node); } return false; } function isRequiredInitializedParameter(parameter: ParameterDeclaration) { return strictNullChecks && !isOptionalParameter(parameter) && parameter.initializer && !(getModifierFlags(parameter) & ModifierFlags.ParameterPropertyModifier); } function getNodeCheckFlags(node: Node): NodeCheckFlags { return getNodeLinks(node).flags; } function getEnumMemberValue(node: EnumMember): number { computeEnumMemberValues(node.parent); return getNodeLinks(node).enumMemberValue; } function canHaveConstantValue(node: Node): node is EnumMember | PropertyAccessExpression | ElementAccessExpression { switch (node.kind) { case SyntaxKind.EnumMember: case SyntaxKind.PropertyAccessExpression: case SyntaxKind.ElementAccessExpression: return true; } return false; } function getConstantValue(node: EnumMember | PropertyAccessExpression | ElementAccessExpression): number { if (node.kind === SyntaxKind.EnumMember) { return getEnumMemberValue(node); } const symbol = getNodeLinks(node).resolvedSymbol; if (symbol && (symbol.flags & SymbolFlags.EnumMember)) { // inline property\index accesses only for const enums if (isConstEnumDeclaration(symbol.valueDeclaration.parent)) { return getEnumMemberValue(symbol.valueDeclaration); } } return undefined; } function isFunctionType(type: Type): boolean { return type.flags & TypeFlags.Object && getSignaturesOfType(type, SignatureKind.Call).length > 0; } function getTypeReferenceSerializationKind(typeName: EntityName, location?: Node): TypeReferenceSerializationKind { // Resolve the symbol as a value to ensure the type can be reached at runtime during emit. const valueSymbol = resolveEntityName(typeName, SymbolFlags.Value, /*ignoreErrors*/ true, /*dontResolveAlias*/ false, location); // Resolve the symbol as a type so that we can provide a more useful hint for the type serializer. const typeSymbol = resolveEntityName(typeName, SymbolFlags.Type, /*ignoreErrors*/ true, /*dontResolveAlias*/ false, location); if (valueSymbol && valueSymbol === typeSymbol) { const globalPromiseSymbol = getGlobalPromiseConstructorSymbol(/*reportErrors*/ false); if (globalPromiseSymbol && valueSymbol === globalPromiseSymbol) { return TypeReferenceSerializationKind.Promise; } const constructorType = getTypeOfSymbol(valueSymbol); if (constructorType && isConstructorType(constructorType)) { return TypeReferenceSerializationKind.TypeWithConstructSignatureAndValue; } } // We might not be able to resolve type symbol so use unknown type in that case (eg error case) if (!typeSymbol) { return TypeReferenceSerializationKind.ObjectType; } const type = getDeclaredTypeOfSymbol(typeSymbol); if (type === unknownType) { return TypeReferenceSerializationKind.Unknown; } else if (type.flags & TypeFlags.Any) { return TypeReferenceSerializationKind.ObjectType; } else if (isTypeOfKind(type, TypeFlags.Void | TypeFlags.Nullable | TypeFlags.Never)) { return TypeReferenceSerializationKind.VoidNullableOrNeverType; } else if (isTypeOfKind(type, TypeFlags.BooleanLike)) { return TypeReferenceSerializationKind.BooleanType; } else if (isTypeOfKind(type, TypeFlags.NumberLike)) { return TypeReferenceSerializationKind.NumberLikeType; } else if (isTypeOfKind(type, TypeFlags.StringLike)) { return TypeReferenceSerializationKind.StringLikeType; } else if (isTupleType(type)) { return TypeReferenceSerializationKind.ArrayLikeType; } else if (isTypeOfKind(type, TypeFlags.ESSymbol)) { return TypeReferenceSerializationKind.ESSymbolType; } else if (isFunctionType(type)) { return TypeReferenceSerializationKind.TypeWithCallSignature; } else if (isArrayType(type)) { return TypeReferenceSerializationKind.ArrayLikeType; } else { return TypeReferenceSerializationKind.ObjectType; } } function writeTypeOfDeclaration(declaration: AccessorDeclaration | VariableLikeDeclaration, enclosingDeclaration: Node, flags: TypeFormatFlags, writer: SymbolWriter) { // Get type of the symbol if this is the valid symbol otherwise get type at location const symbol = getSymbolOfNode(declaration); let type = symbol && !(symbol.flags & (SymbolFlags.TypeLiteral | SymbolFlags.Signature)) ? getWidenedLiteralType(getTypeOfSymbol(symbol)) : unknownType; if (flags & TypeFormatFlags.AddUndefined) { type = includeFalsyTypes(type, TypeFlags.Undefined); } getSymbolDisplayBuilder().buildTypeDisplay(type, writer, enclosingDeclaration, flags); } function writeReturnTypeOfSignatureDeclaration(signatureDeclaration: SignatureDeclaration, enclosingDeclaration: Node, flags: TypeFormatFlags, writer: SymbolWriter) { const signature = getSignatureFromDeclaration(signatureDeclaration); getSymbolDisplayBuilder().buildTypeDisplay(getReturnTypeOfSignature(signature), writer, enclosingDeclaration, flags); } function writeTypeOfExpression(expr: Expression, enclosingDeclaration: Node, flags: TypeFormatFlags, writer: SymbolWriter) { const type = getWidenedType(getRegularTypeOfExpression(expr)); getSymbolDisplayBuilder().buildTypeDisplay(type, writer, enclosingDeclaration, flags); } function hasGlobalName(name: string): boolean { return globals.has(name); } function getReferencedValueSymbol(reference: Identifier, startInDeclarationContainer?: boolean): Symbol { const resolvedSymbol = getNodeLinks(reference).resolvedSymbol; if (resolvedSymbol) { return resolvedSymbol; } let location: Node = reference; if (startInDeclarationContainer) { // When resolving the name of a declaration as a value, we need to start resolution // at a point outside of the declaration. const parent = reference.parent; if (isDeclaration(parent) && reference === parent.name) { location = getDeclarationContainer(parent); } } return resolveName(location, reference.text, SymbolFlags.Value | SymbolFlags.ExportValue | SymbolFlags.Alias, /*nodeNotFoundMessage*/ undefined, /*nameArg*/ undefined); } function getReferencedValueDeclaration(reference: Identifier): Declaration { if (!isGeneratedIdentifier(reference)) { reference = getParseTreeNode(reference, isIdentifier); if (reference) { const symbol = getReferencedValueSymbol(reference); if (symbol) { return getExportSymbolOfValueSymbolIfExported(symbol).valueDeclaration; } } } return undefined; } function isLiteralConstDeclaration(node: VariableDeclaration | PropertyDeclaration | PropertySignature | ParameterDeclaration): boolean { if (isConst(node)) { const type = getTypeOfSymbol(getSymbolOfNode(node)); return !!(type.flags & TypeFlags.StringOrNumberLiteral && type.flags & TypeFlags.FreshLiteral); } return false; } function writeLiteralConstValue(node: VariableDeclaration | PropertyDeclaration | PropertySignature | ParameterDeclaration, writer: SymbolWriter) { const type = getTypeOfSymbol(getSymbolOfNode(node)); writer.writeStringLiteral(literalTypeToString(type)); } function createResolver(): EmitResolver { // this variable and functions that use it are deliberately moved here from the outer scope // to avoid scope pollution const resolvedTypeReferenceDirectives = host.getResolvedTypeReferenceDirectives(); let fileToDirective: FileMap; if (resolvedTypeReferenceDirectives) { // populate reverse mapping: file path -> type reference directive that was resolved to this file fileToDirective = createFileMap(); resolvedTypeReferenceDirectives.forEach((resolvedDirective, key) => { if (!resolvedDirective) { return; } const file = host.getSourceFile(resolvedDirective.resolvedFileName); fileToDirective.set(file.path, key); }); } return { getReferencedExportContainer, getReferencedImportDeclaration, getReferencedDeclarationWithCollidingName, isDeclarationWithCollidingName, isValueAliasDeclaration: node => { node = getParseTreeNode(node); // Synthesized nodes are always treated like values. return node ? isValueAliasDeclaration(node) : true; }, hasGlobalName, isReferencedAliasDeclaration: (node, checkChildren?) => { node = getParseTreeNode(node); // Synthesized nodes are always treated as referenced. return node ? isReferencedAliasDeclaration(node, checkChildren) : true; }, getNodeCheckFlags: node => { node = getParseTreeNode(node); return node ? getNodeCheckFlags(node) : undefined; }, isTopLevelValueImportEqualsWithEntityName, isDeclarationVisible, isImplementationOfOverload, isRequiredInitializedParameter, writeTypeOfDeclaration, writeReturnTypeOfSignatureDeclaration, writeTypeOfExpression, isSymbolAccessible, isEntityNameVisible, getConstantValue: node => { node = getParseTreeNode(node, canHaveConstantValue); return node ? getConstantValue(node) : undefined; }, collectLinkedAliases, getReferencedValueDeclaration, getTypeReferenceSerializationKind, isOptionalParameter, moduleExportsSomeValue, isArgumentsLocalBinding, getExternalModuleFileFromDeclaration, getTypeReferenceDirectivesForEntityName, getTypeReferenceDirectivesForSymbol, isLiteralConstDeclaration, writeLiteralConstValue, getJsxFactoryEntity: () => _jsxFactoryEntity }; // defined here to avoid outer scope pollution function getTypeReferenceDirectivesForEntityName(node: EntityNameOrEntityNameExpression): string[] { // program does not have any files with type reference directives - bail out if (!fileToDirective) { return undefined; } // property access can only be used as values // qualified names can only be used as types\namespaces // identifiers are treated as values only if they appear in type queries const meaning = (node.kind === SyntaxKind.PropertyAccessExpression) || (node.kind === SyntaxKind.Identifier && isInTypeQuery(node)) ? SymbolFlags.Value | SymbolFlags.ExportValue : SymbolFlags.Type | SymbolFlags.Namespace; const symbol = resolveEntityName(node, meaning, /*ignoreErrors*/ true); return symbol && symbol !== unknownSymbol ? getTypeReferenceDirectivesForSymbol(symbol, meaning) : undefined; } // defined here to avoid outer scope pollution function getTypeReferenceDirectivesForSymbol(symbol: Symbol, meaning?: SymbolFlags): string[] { // program does not have any files with type reference directives - bail out if (!fileToDirective) { return undefined; } if (!isSymbolFromTypeDeclarationFile(symbol)) { return undefined; } // check what declarations in the symbol can contribute to the target meaning let typeReferenceDirectives: string[]; for (const decl of symbol.declarations) { // check meaning of the local symbol to see if declaration needs to be analyzed further if (decl.symbol && decl.symbol.flags & meaning) { const file = getSourceFileOfNode(decl); const typeReferenceDirective = fileToDirective.get(file.path); if (typeReferenceDirective) { (typeReferenceDirectives || (typeReferenceDirectives = [])).push(typeReferenceDirective); } else { // found at least one entry that does not originate from type reference directive return undefined; } } } return typeReferenceDirectives; } function isSymbolFromTypeDeclarationFile(symbol: Symbol): boolean { // bail out if symbol does not have associated declarations (i.e. this is transient symbol created for property in binding pattern) if (!symbol.declarations) { return false; } // walk the parent chain for symbols to make sure that top level parent symbol is in the global scope // external modules cannot define or contribute to type declaration files let current = symbol; while (true) { const parent = getParentOfSymbol(current); if (parent) { current = parent; } else { break; } } if (current.valueDeclaration && current.valueDeclaration.kind === SyntaxKind.SourceFile && current.flags & SymbolFlags.ValueModule) { return false; } // check that at least one declaration of top level symbol originates from type declaration file for (const decl of symbol.declarations) { const file = getSourceFileOfNode(decl); if (fileToDirective.contains(file.path)) { return true; } } return false; } } function getExternalModuleFileFromDeclaration(declaration: ImportEqualsDeclaration | ImportDeclaration | ExportDeclaration | ModuleDeclaration): SourceFile { const specifier = getExternalModuleName(declaration); const moduleSymbol = resolveExternalModuleNameWorker(specifier, specifier, /*moduleNotFoundError*/ undefined); if (!moduleSymbol) { return undefined; } return getDeclarationOfKind(moduleSymbol, SyntaxKind.SourceFile) as SourceFile; } function initializeTypeChecker() { // Bind all source files and propagate errors for (const file of host.getSourceFiles()) { bindSourceFile(file, compilerOptions); } // Initialize global symbol table let augmentations: LiteralExpression[][]; for (const file of host.getSourceFiles()) { if (!isExternalOrCommonJsModule(file)) { mergeSymbolTable(globals, file.locals); } if (file.patternAmbientModules && file.patternAmbientModules.length) { patternAmbientModules = concatenate(patternAmbientModules, file.patternAmbientModules); } if (file.moduleAugmentations.length) { (augmentations || (augmentations = [])).push(file.moduleAugmentations); } if (file.symbol && file.symbol.globalExports) { // Merge in UMD exports with first-in-wins semantics (see #9771) const source = file.symbol.globalExports; source.forEach((sourceSymbol, id) => { if (!globals.has(id)) { globals.set(id, sourceSymbol); } }); } } if (augmentations) { // merge module augmentations. // this needs to be done after global symbol table is initialized to make sure that all ambient modules are indexed for (const list of augmentations) { for (const augmentation of list) { mergeModuleAugmentation(augmentation); } } } // Setup global builtins addToSymbolTable(globals, builtinGlobals, Diagnostics.Declaration_name_conflicts_with_built_in_global_identifier_0); getSymbolLinks(undefinedSymbol).type = undefinedWideningType; getSymbolLinks(argumentsSymbol).type = getGlobalType("IArguments", /*arity*/ 0, /*reportErrors*/ true); getSymbolLinks(unknownSymbol).type = unknownType; // Initialize special types globalArrayType = getGlobalType("Array", /*arity*/ 1, /*reportErrors*/ true); globalObjectType = getGlobalType("Object", /*arity*/ 0, /*reportErrors*/ true); globalFunctionType = getGlobalType("Function", /*arity*/ 0, /*reportErrors*/ true); globalStringType = getGlobalType("String", /*arity*/ 0, /*reportErrors*/ true); globalNumberType = getGlobalType("Number", /*arity*/ 0, /*reportErrors*/ true); globalBooleanType = getGlobalType("Boolean", /*arity*/ 0, /*reportErrors*/ true); globalRegExpType = getGlobalType("RegExp", /*arity*/ 0, /*reportErrors*/ true); anyArrayType = createArrayType(anyType); autoArrayType = createArrayType(autoType); globalReadonlyArrayType = getGlobalTypeOrUndefined("ReadonlyArray", /*arity*/ 1); anyReadonlyArrayType = globalReadonlyArrayType ? createTypeFromGenericGlobalType(globalReadonlyArrayType, [anyType]) : anyArrayType; globalThisType = getGlobalTypeOrUndefined("ThisType", /*arity*/ 1); } function checkExternalEmitHelpers(location: Node, helpers: ExternalEmitHelpers) { if ((requestedExternalEmitHelpers & helpers) !== helpers && compilerOptions.importHelpers) { const sourceFile = getSourceFileOfNode(location); if (isEffectiveExternalModule(sourceFile, compilerOptions) && !isInAmbientContext(location)) { const helpersModule = resolveHelpersModule(sourceFile, location); if (helpersModule !== unknownSymbol) { const uncheckedHelpers = helpers & ~requestedExternalEmitHelpers; for (let helper = ExternalEmitHelpers.FirstEmitHelper; helper <= ExternalEmitHelpers.LastEmitHelper; helper <<= 1) { if (uncheckedHelpers & helper) { const name = getHelperName(helper); const symbol = getSymbol(helpersModule.exports, escapeIdentifier(name), SymbolFlags.Value); if (!symbol) { error(location, Diagnostics.This_syntax_requires_an_imported_helper_named_1_but_module_0_has_no_exported_member_1, externalHelpersModuleNameText, name); } } } } requestedExternalEmitHelpers |= helpers; } } } function getHelperName(helper: ExternalEmitHelpers) { switch (helper) { case ExternalEmitHelpers.Extends: return "__extends"; case ExternalEmitHelpers.Assign: return "__assign"; case ExternalEmitHelpers.Rest: return "__rest"; case ExternalEmitHelpers.Decorate: return "__decorate"; case ExternalEmitHelpers.Metadata: return "__metadata"; case ExternalEmitHelpers.Param: return "__param"; case ExternalEmitHelpers.Awaiter: return "__awaiter"; case ExternalEmitHelpers.Generator: return "__generator"; case ExternalEmitHelpers.Values: return "__values"; case ExternalEmitHelpers.Read: return "__read"; case ExternalEmitHelpers.Spread: return "__spread"; case ExternalEmitHelpers.Await: return "__await"; case ExternalEmitHelpers.AsyncGenerator: return "__asyncGenerator"; case ExternalEmitHelpers.AsyncDelegator: return "__asyncDelegator"; case ExternalEmitHelpers.AsyncValues: return "__asyncValues"; default: Debug.fail("Unrecognized helper."); } } function resolveHelpersModule(node: SourceFile, errorNode: Node) { if (!externalHelpersModule) { externalHelpersModule = resolveExternalModule(node, externalHelpersModuleNameText, Diagnostics.This_syntax_requires_an_imported_helper_but_module_0_cannot_be_found, errorNode) || unknownSymbol; } return externalHelpersModule; } // GRAMMAR CHECKING function checkGrammarDecorators(node: Node): boolean { if (!node.decorators) { return false; } if (!nodeCanBeDecorated(node)) { if (node.kind === SyntaxKind.MethodDeclaration && !ts.nodeIsPresent((node).body)) { return grammarErrorOnFirstToken(node, Diagnostics.A_decorator_can_only_decorate_a_method_implementation_not_an_overload); } else { return grammarErrorOnFirstToken(node, Diagnostics.Decorators_are_not_valid_here); } } else if (node.kind === SyntaxKind.GetAccessor || node.kind === SyntaxKind.SetAccessor) { const accessors = getAllAccessorDeclarations((node.parent).members, node); if (accessors.firstAccessor.decorators && node === accessors.secondAccessor) { return grammarErrorOnFirstToken(node, Diagnostics.Decorators_cannot_be_applied_to_multiple_get_Slashset_accessors_of_the_same_name); } } return false; } function checkGrammarModifiers(node: Node): boolean { const quickResult = reportObviousModifierErrors(node); if (quickResult !== undefined) { return quickResult; } let lastStatic: Node, lastPrivate: Node, lastProtected: Node, lastDeclare: Node, lastAsync: Node, lastReadonly: Node; let flags = ModifierFlags.None; for (const modifier of node.modifiers) { if (modifier.kind !== SyntaxKind.ReadonlyKeyword) { if (node.kind === SyntaxKind.PropertySignature || node.kind === SyntaxKind.MethodSignature) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_type_member, tokenToString(modifier.kind)); } if (node.kind === SyntaxKind.IndexSignature) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_an_index_signature, tokenToString(modifier.kind)); } } switch (modifier.kind) { case SyntaxKind.ConstKeyword: if (node.kind !== SyntaxKind.EnumDeclaration && node.parent.kind === SyntaxKind.ClassDeclaration) { return grammarErrorOnNode(node, Diagnostics.A_class_member_cannot_have_the_0_keyword, tokenToString(SyntaxKind.ConstKeyword)); } break; case SyntaxKind.PublicKeyword: case SyntaxKind.ProtectedKeyword: case SyntaxKind.PrivateKeyword: const text = visibilityToString(modifierToFlag(modifier.kind)); if (modifier.kind === SyntaxKind.ProtectedKeyword) { lastProtected = modifier; } else if (modifier.kind === SyntaxKind.PrivateKeyword) { lastPrivate = modifier; } if (flags & ModifierFlags.AccessibilityModifier) { return grammarErrorOnNode(modifier, Diagnostics.Accessibility_modifier_already_seen); } else if (flags & ModifierFlags.Static) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "static"); } else if (flags & ModifierFlags.Readonly) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "readonly"); } else if (flags & ModifierFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "async"); } else if (node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_module_or_namespace_element, text); } else if (flags & ModifierFlags.Abstract) { if (modifier.kind === SyntaxKind.PrivateKeyword) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, text, "abstract"); } else { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, text, "abstract"); } } flags |= modifierToFlag(modifier.kind); break; case SyntaxKind.StaticKeyword: if (flags & ModifierFlags.Static) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "static"); } else if (flags & ModifierFlags.Readonly) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "static", "readonly"); } else if (flags & ModifierFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "static", "async"); } else if (node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_module_or_namespace_element, "static"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "static"); } else if (flags & ModifierFlags.Abstract) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, "static", "abstract"); } flags |= ModifierFlags.Static; lastStatic = modifier; break; case SyntaxKind.ReadonlyKeyword: if (flags & ModifierFlags.Readonly) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "readonly"); } else if (node.kind !== SyntaxKind.PropertyDeclaration && node.kind !== SyntaxKind.PropertySignature && node.kind !== SyntaxKind.IndexSignature && node.kind !== SyntaxKind.Parameter) { // If node.kind === SyntaxKind.Parameter, checkParameter report an error if it's not a parameter property. return grammarErrorOnNode(modifier, Diagnostics.readonly_modifier_can_only_appear_on_a_property_declaration_or_index_signature); } flags |= ModifierFlags.Readonly; lastReadonly = modifier; break; case SyntaxKind.ExportKeyword: if (flags & ModifierFlags.Export) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "export"); } else if (flags & ModifierFlags.Ambient) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "export", "declare"); } else if (flags & ModifierFlags.Abstract) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "export", "abstract"); } else if (flags & ModifierFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_must_precede_1_modifier, "export", "async"); } else if (node.parent.kind === SyntaxKind.ClassDeclaration) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_class_element, "export"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "export"); } flags |= ModifierFlags.Export; break; case SyntaxKind.DeclareKeyword: if (flags & ModifierFlags.Ambient) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "declare"); } else if (flags & ModifierFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_in_an_ambient_context, "async"); } else if (node.parent.kind === SyntaxKind.ClassDeclaration) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_class_element, "declare"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "declare"); } else if (isInAmbientContext(node.parent) && node.parent.kind === SyntaxKind.ModuleBlock) { return grammarErrorOnNode(modifier, Diagnostics.A_declare_modifier_cannot_be_used_in_an_already_ambient_context); } flags |= ModifierFlags.Ambient; lastDeclare = modifier; break; case SyntaxKind.AbstractKeyword: if (flags & ModifierFlags.Abstract) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "abstract"); } if (node.kind !== SyntaxKind.ClassDeclaration) { if (node.kind !== SyntaxKind.MethodDeclaration && node.kind !== SyntaxKind.PropertyDeclaration && node.kind !== SyntaxKind.GetAccessor && node.kind !== SyntaxKind.SetAccessor) { return grammarErrorOnNode(modifier, Diagnostics.abstract_modifier_can_only_appear_on_a_class_method_or_property_declaration); } if (!(node.parent.kind === SyntaxKind.ClassDeclaration && getModifierFlags(node.parent) & ModifierFlags.Abstract)) { return grammarErrorOnNode(modifier, Diagnostics.Abstract_methods_can_only_appear_within_an_abstract_class); } if (flags & ModifierFlags.Static) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, "static", "abstract"); } if (flags & ModifierFlags.Private) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_with_1_modifier, "private", "abstract"); } } flags |= ModifierFlags.Abstract; break; case SyntaxKind.AsyncKeyword: if (flags & ModifierFlags.Async) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_already_seen, "async"); } else if (flags & ModifierFlags.Ambient || isInAmbientContext(node.parent)) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_be_used_in_an_ambient_context, "async"); } else if (node.kind === SyntaxKind.Parameter) { return grammarErrorOnNode(modifier, Diagnostics._0_modifier_cannot_appear_on_a_parameter, "async"); } flags |= ModifierFlags.Async; lastAsync = modifier; break; } } if (node.kind === SyntaxKind.Constructor) { if (flags & ModifierFlags.Static) { return grammarErrorOnNode(lastStatic, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "static"); } if (flags & ModifierFlags.Abstract) { return grammarErrorOnNode(lastStatic, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "abstract"); } else if (flags & ModifierFlags.Async) { return grammarErrorOnNode(lastAsync, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "async"); } else if (flags & ModifierFlags.Readonly) { return grammarErrorOnNode(lastReadonly, Diagnostics._0_modifier_cannot_appear_on_a_constructor_declaration, "readonly"); } return; } else if ((node.kind === SyntaxKind.ImportDeclaration || node.kind === SyntaxKind.ImportEqualsDeclaration) && flags & ModifierFlags.Ambient) { return grammarErrorOnNode(lastDeclare, Diagnostics.A_0_modifier_cannot_be_used_with_an_import_declaration, "declare"); } else if (node.kind === SyntaxKind.Parameter && (flags & ModifierFlags.ParameterPropertyModifier) && isBindingPattern((node).name)) { return grammarErrorOnNode(node, Diagnostics.A_parameter_property_may_not_be_declared_using_a_binding_pattern); } else if (node.kind === SyntaxKind.Parameter && (flags & ModifierFlags.ParameterPropertyModifier) && (node).dotDotDotToken) { return grammarErrorOnNode(node, Diagnostics.A_parameter_property_cannot_be_declared_using_a_rest_parameter); } if (flags & ModifierFlags.Async) { return checkGrammarAsyncModifier(node, lastAsync); } } /** * true | false: Early return this value from checkGrammarModifiers. * undefined: Need to do full checking on the modifiers. */ function reportObviousModifierErrors(node: Node): boolean | undefined { return !node.modifiers ? false : shouldReportBadModifier(node) ? grammarErrorOnFirstToken(node, Diagnostics.Modifiers_cannot_appear_here) : undefined; } function shouldReportBadModifier(node: Node): boolean { switch (node.kind) { case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.Constructor: case SyntaxKind.PropertyDeclaration: case SyntaxKind.PropertySignature: case SyntaxKind.MethodDeclaration: case SyntaxKind.MethodSignature: case SyntaxKind.IndexSignature: case SyntaxKind.ModuleDeclaration: case SyntaxKind.ImportDeclaration: case SyntaxKind.ImportEqualsDeclaration: case SyntaxKind.ExportDeclaration: case SyntaxKind.ExportAssignment: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: case SyntaxKind.Parameter: return false; default: if (node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { return false; } switch (node.kind) { case SyntaxKind.FunctionDeclaration: return nodeHasAnyModifiersExcept(node, SyntaxKind.AsyncKeyword); case SyntaxKind.ClassDeclaration: return nodeHasAnyModifiersExcept(node, SyntaxKind.AbstractKeyword); case SyntaxKind.InterfaceDeclaration: case SyntaxKind.VariableStatement: case SyntaxKind.TypeAliasDeclaration: return true; case SyntaxKind.EnumDeclaration: return nodeHasAnyModifiersExcept(node, SyntaxKind.ConstKeyword); default: Debug.fail(); return false; } } } function nodeHasAnyModifiersExcept(node: Node, allowedModifier: SyntaxKind): boolean { return node.modifiers.length > 1 || node.modifiers[0].kind !== allowedModifier; } function checkGrammarAsyncModifier(node: Node, asyncModifier: Node): boolean { switch (node.kind) { case SyntaxKind.MethodDeclaration: case SyntaxKind.FunctionDeclaration: case SyntaxKind.FunctionExpression: case SyntaxKind.ArrowFunction: return false; } return grammarErrorOnNode(asyncModifier, Diagnostics._0_modifier_cannot_be_used_here, "async"); } function checkGrammarForDisallowedTrailingComma(list: NodeArray): boolean { if (list && list.hasTrailingComma) { const start = list.end - ",".length; const end = list.end; const sourceFile = getSourceFileOfNode(list[0]); return grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.Trailing_comma_not_allowed); } } function checkGrammarTypeParameterList(typeParameters: NodeArray, file: SourceFile): boolean { if (checkGrammarForDisallowedTrailingComma(typeParameters)) { return true; } if (typeParameters && typeParameters.length === 0) { const start = typeParameters.pos - "<".length; const end = skipTrivia(file.text, typeParameters.end) + ">".length; return grammarErrorAtPos(file, start, end - start, Diagnostics.Type_parameter_list_cannot_be_empty); } } function checkGrammarParameterList(parameters: NodeArray) { let seenOptionalParameter = false; const parameterCount = parameters.length; for (let i = 0; i < parameterCount; i++) { const parameter = parameters[i]; if (parameter.dotDotDotToken) { if (i !== (parameterCount - 1)) { return grammarErrorOnNode(parameter.dotDotDotToken, Diagnostics.A_rest_parameter_must_be_last_in_a_parameter_list); } if (isBindingPattern(parameter.name)) { return grammarErrorOnNode(parameter.name, Diagnostics.A_rest_element_cannot_contain_a_binding_pattern); } if (parameter.questionToken) { return grammarErrorOnNode(parameter.questionToken, Diagnostics.A_rest_parameter_cannot_be_optional); } if (parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.A_rest_parameter_cannot_have_an_initializer); } } else if (parameter.questionToken) { seenOptionalParameter = true; if (parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.Parameter_cannot_have_question_mark_and_initializer); } } else if (seenOptionalParameter && !parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.A_required_parameter_cannot_follow_an_optional_parameter); } } } function checkGrammarFunctionLikeDeclaration(node: FunctionLikeDeclaration): boolean { // Prevent cascading error by short-circuit const file = getSourceFileOfNode(node); return checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarTypeParameterList(node.typeParameters, file) || checkGrammarParameterList(node.parameters) || checkGrammarArrowFunction(node, file); } function checkGrammarClassLikeDeclaration(node: ClassLikeDeclaration): boolean { const file = getSourceFileOfNode(node); return checkGrammarClassDeclarationHeritageClauses(node) || checkGrammarTypeParameterList(node.typeParameters, file); } function checkGrammarArrowFunction(node: FunctionLikeDeclaration, file: SourceFile): boolean { if (node.kind === SyntaxKind.ArrowFunction) { const arrowFunction = node; const startLine = getLineAndCharacterOfPosition(file, arrowFunction.equalsGreaterThanToken.pos).line; const endLine = getLineAndCharacterOfPosition(file, arrowFunction.equalsGreaterThanToken.end).line; if (startLine !== endLine) { return grammarErrorOnNode(arrowFunction.equalsGreaterThanToken, Diagnostics.Line_terminator_not_permitted_before_arrow); } } return false; } function checkGrammarIndexSignatureParameters(node: SignatureDeclaration): boolean { const parameter = node.parameters[0]; if (node.parameters.length !== 1) { if (parameter) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_must_have_exactly_one_parameter); } else { return grammarErrorOnNode(node, Diagnostics.An_index_signature_must_have_exactly_one_parameter); } } if (parameter.dotDotDotToken) { return grammarErrorOnNode(parameter.dotDotDotToken, Diagnostics.An_index_signature_cannot_have_a_rest_parameter); } if (getModifierFlags(parameter) !== 0) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_cannot_have_an_accessibility_modifier); } if (parameter.questionToken) { return grammarErrorOnNode(parameter.questionToken, Diagnostics.An_index_signature_parameter_cannot_have_a_question_mark); } if (parameter.initializer) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_cannot_have_an_initializer); } if (!parameter.type) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_must_have_a_type_annotation); } if (parameter.type.kind !== SyntaxKind.StringKeyword && parameter.type.kind !== SyntaxKind.NumberKeyword) { return grammarErrorOnNode(parameter.name, Diagnostics.An_index_signature_parameter_type_must_be_string_or_number); } if (!node.type) { return grammarErrorOnNode(node, Diagnostics.An_index_signature_must_have_a_type_annotation); } } function checkGrammarIndexSignature(node: SignatureDeclaration) { // Prevent cascading error by short-circuit return checkGrammarDecorators(node) || checkGrammarModifiers(node) || checkGrammarIndexSignatureParameters(node); } function checkGrammarForAtLeastOneTypeArgument(node: Node, typeArguments: NodeArray): boolean { if (typeArguments && typeArguments.length === 0) { const sourceFile = getSourceFileOfNode(node); const start = typeArguments.pos - "<".length; const end = skipTrivia(sourceFile.text, typeArguments.end) + ">".length; return grammarErrorAtPos(sourceFile, start, end - start, Diagnostics.Type_argument_list_cannot_be_empty); } } function checkGrammarTypeArguments(node: Node, typeArguments: NodeArray): boolean { return checkGrammarForDisallowedTrailingComma(typeArguments) || checkGrammarForAtLeastOneTypeArgument(node, typeArguments); } function checkGrammarForOmittedArgument(node: CallExpression | NewExpression, args: NodeArray): boolean { if (args) { const sourceFile = getSourceFileOfNode(node); for (const arg of args) { if (arg.kind === SyntaxKind.OmittedExpression) { return grammarErrorAtPos(sourceFile, arg.pos, 0, Diagnostics.Argument_expression_expected); } } } } function checkGrammarArguments(node: CallExpression | NewExpression, args: NodeArray): boolean { return checkGrammarForOmittedArgument(node, args); } function checkGrammarHeritageClause(node: HeritageClause): boolean { const types = node.types; if (checkGrammarForDisallowedTrailingComma(types)) { return true; } if (types && types.length === 0) { const listType = tokenToString(node.token); const sourceFile = getSourceFileOfNode(node); return grammarErrorAtPos(sourceFile, types.pos, 0, Diagnostics._0_list_cannot_be_empty, listType); } } function checkGrammarClassDeclarationHeritageClauses(node: ClassLikeDeclaration) { let seenExtendsClause = false; let seenImplementsClause = false; if (!checkGrammarDecorators(node) && !checkGrammarModifiers(node) && node.heritageClauses) { for (const heritageClause of node.heritageClauses) { if (heritageClause.token === SyntaxKind.ExtendsKeyword) { if (seenExtendsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.extends_clause_already_seen); } if (seenImplementsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.extends_clause_must_precede_implements_clause); } if (heritageClause.types.length > 1) { return grammarErrorOnFirstToken(heritageClause.types[1], Diagnostics.Classes_can_only_extend_a_single_class); } seenExtendsClause = true; } else { Debug.assert(heritageClause.token === SyntaxKind.ImplementsKeyword); if (seenImplementsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.implements_clause_already_seen); } seenImplementsClause = true; } // Grammar checking heritageClause inside class declaration checkGrammarHeritageClause(heritageClause); } } } function checkGrammarInterfaceDeclaration(node: InterfaceDeclaration) { let seenExtendsClause = false; if (node.heritageClauses) { for (const heritageClause of node.heritageClauses) { if (heritageClause.token === SyntaxKind.ExtendsKeyword) { if (seenExtendsClause) { return grammarErrorOnFirstToken(heritageClause, Diagnostics.extends_clause_already_seen); } seenExtendsClause = true; } else { Debug.assert(heritageClause.token === SyntaxKind.ImplementsKeyword); return grammarErrorOnFirstToken(heritageClause, Diagnostics.Interface_declaration_cannot_have_implements_clause); } // Grammar checking heritageClause inside class declaration checkGrammarHeritageClause(heritageClause); } } return false; } function checkGrammarComputedPropertyName(node: Node): boolean { // If node is not a computedPropertyName, just skip the grammar checking if (node.kind !== SyntaxKind.ComputedPropertyName) { return false; } const computedPropertyName = node; if (computedPropertyName.expression.kind === SyntaxKind.BinaryExpression && (computedPropertyName.expression).operatorToken.kind === SyntaxKind.CommaToken) { return grammarErrorOnNode(computedPropertyName.expression, Diagnostics.A_comma_expression_is_not_allowed_in_a_computed_property_name); } } function checkGrammarForGenerator(node: FunctionLikeDeclaration) { if (node.asteriskToken) { Debug.assert( node.kind === SyntaxKind.FunctionDeclaration || node.kind === SyntaxKind.FunctionExpression || node.kind === SyntaxKind.MethodDeclaration); if (isInAmbientContext(node)) { return grammarErrorOnNode(node.asteriskToken, Diagnostics.Generators_are_not_allowed_in_an_ambient_context); } if (!node.body) { return grammarErrorOnNode(node.asteriskToken, Diagnostics.An_overload_signature_cannot_be_declared_as_a_generator); } } } function checkGrammarForInvalidQuestionMark(questionToken: Node, message: DiagnosticMessage): boolean { if (questionToken) { return grammarErrorOnNode(questionToken, message); } } function checkGrammarObjectLiteralExpression(node: ObjectLiteralExpression, inDestructuring: boolean) { const seen = createMap(); const Property = 1; const GetAccessor = 2; const SetAccessor = 4; const GetOrSetAccessor = GetAccessor | SetAccessor; for (const prop of node.properties) { if (prop.kind === SyntaxKind.SpreadAssignment) { continue; } const name = prop.name; if (name.kind === SyntaxKind.ComputedPropertyName) { // If the name is not a ComputedPropertyName, the grammar checking will skip it checkGrammarComputedPropertyName(name); } if (prop.kind === SyntaxKind.ShorthandPropertyAssignment && !inDestructuring && (prop).objectAssignmentInitializer) { // having objectAssignmentInitializer is only valid in ObjectAssignmentPattern // outside of destructuring it is a syntax error return grammarErrorOnNode((prop).equalsToken, Diagnostics.can_only_be_used_in_an_object_literal_property_inside_a_destructuring_assignment); } // Modifiers are never allowed on properties except for 'async' on a method declaration if (prop.modifiers) { for (const mod of prop.modifiers) { if (mod.kind !== SyntaxKind.AsyncKeyword || prop.kind !== SyntaxKind.MethodDeclaration) { grammarErrorOnNode(mod, Diagnostics._0_modifier_cannot_be_used_here, getTextOfNode(mod)); } } } // ECMA-262 11.1.5 Object Initializer // If previous is not undefined then throw a SyntaxError exception if any of the following conditions are true // a.This production is contained in strict code and IsDataDescriptor(previous) is true and // IsDataDescriptor(propId.descriptor) is true. // b.IsDataDescriptor(previous) is true and IsAccessorDescriptor(propId.descriptor) is true. // c.IsAccessorDescriptor(previous) is true and IsDataDescriptor(propId.descriptor) is true. // d.IsAccessorDescriptor(previous) is true and IsAccessorDescriptor(propId.descriptor) is true // and either both previous and propId.descriptor have[[Get]] fields or both previous and propId.descriptor have[[Set]] fields let currentKind: number; if (prop.kind === SyntaxKind.PropertyAssignment || prop.kind === SyntaxKind.ShorthandPropertyAssignment) { // Grammar checking for computedPropertyName and shorthandPropertyAssignment checkGrammarForInvalidQuestionMark((prop).questionToken, Diagnostics.An_object_member_cannot_be_declared_optional); if (name.kind === SyntaxKind.NumericLiteral) { checkGrammarNumericLiteral(name); } currentKind = Property; } else if (prop.kind === SyntaxKind.MethodDeclaration) { currentKind = Property; } else if (prop.kind === SyntaxKind.GetAccessor) { currentKind = GetAccessor; } else if (prop.kind === SyntaxKind.SetAccessor) { currentKind = SetAccessor; } else { Debug.fail("Unexpected syntax kind:" + (prop).kind); } const effectiveName = getPropertyNameForPropertyNameNode(name); if (effectiveName === undefined) { continue; } const existingKind = seen.get(effectiveName); if (!existingKind) { seen.set(effectiveName, currentKind); } else { if (currentKind === Property && existingKind === Property) { grammarErrorOnNode(name, Diagnostics.Duplicate_identifier_0, getTextOfNode(name)); } else if ((currentKind & GetOrSetAccessor) && (existingKind & GetOrSetAccessor)) { if (existingKind !== GetOrSetAccessor && currentKind !== existingKind) { seen.set(effectiveName, currentKind | existingKind); } else { return grammarErrorOnNode(name, Diagnostics.An_object_literal_cannot_have_multiple_get_Slashset_accessors_with_the_same_name); } } else { return grammarErrorOnNode(name, Diagnostics.An_object_literal_cannot_have_property_and_accessor_with_the_same_name); } } } } function checkGrammarJsxElement(node: JsxOpeningLikeElement) { const seen = createMap(); for (const attr of node.attributes.properties) { if (attr.kind === SyntaxKind.JsxSpreadAttribute) { continue; } const jsxAttr = (attr); const name = jsxAttr.name; if (!seen.get(name.text)) { seen.set(name.text, true); } else { return grammarErrorOnNode(name, Diagnostics.JSX_elements_cannot_have_multiple_attributes_with_the_same_name); } const initializer = jsxAttr.initializer; if (initializer && initializer.kind === SyntaxKind.JsxExpression && !(initializer).expression) { return grammarErrorOnNode(jsxAttr.initializer, Diagnostics.JSX_attributes_must_only_be_assigned_a_non_empty_expression); } } } function checkGrammarForInOrForOfStatement(forInOrOfStatement: ForInStatement | ForOfStatement): boolean { if (checkGrammarStatementInAmbientContext(forInOrOfStatement)) { return true; } if (forInOrOfStatement.kind === SyntaxKind.ForOfStatement && forInOrOfStatement.awaitModifier) { if ((forInOrOfStatement.flags & NodeFlags.AwaitContext) === NodeFlags.None) { return grammarErrorOnNode(forInOrOfStatement.awaitModifier, Diagnostics.A_for_await_of_statement_is_only_allowed_within_an_async_function_or_async_generator); } } if (forInOrOfStatement.initializer.kind === SyntaxKind.VariableDeclarationList) { const variableList = forInOrOfStatement.initializer; if (!checkGrammarVariableDeclarationList(variableList)) { const declarations = variableList.declarations; // declarations.length can be zero if there is an error in variable declaration in for-of or for-in // See http://www.ecma-international.org/ecma-262/6.0/#sec-for-in-and-for-of-statements for details // For example: // var let = 10; // for (let of [1,2,3]) {} // this is invalid ES6 syntax // for (let in [1,2,3]) {} // this is invalid ES6 syntax // We will then want to skip on grammar checking on variableList declaration if (!declarations.length) { return false; } if (declarations.length > 1) { const diagnostic = forInOrOfStatement.kind === SyntaxKind.ForInStatement ? Diagnostics.Only_a_single_variable_declaration_is_allowed_in_a_for_in_statement : Diagnostics.Only_a_single_variable_declaration_is_allowed_in_a_for_of_statement; return grammarErrorOnFirstToken(variableList.declarations[1], diagnostic); } const firstDeclaration = declarations[0]; if (firstDeclaration.initializer) { const diagnostic = forInOrOfStatement.kind === SyntaxKind.ForInStatement ? Diagnostics.The_variable_declaration_of_a_for_in_statement_cannot_have_an_initializer : Diagnostics.The_variable_declaration_of_a_for_of_statement_cannot_have_an_initializer; return grammarErrorOnNode(firstDeclaration.name, diagnostic); } if (firstDeclaration.type) { const diagnostic = forInOrOfStatement.kind === SyntaxKind.ForInStatement ? Diagnostics.The_left_hand_side_of_a_for_in_statement_cannot_use_a_type_annotation : Diagnostics.The_left_hand_side_of_a_for_of_statement_cannot_use_a_type_annotation; return grammarErrorOnNode(firstDeclaration, diagnostic); } } } return false; } function checkGrammarAccessor(accessor: AccessorDeclaration): boolean { const kind = accessor.kind; if (languageVersion < ScriptTarget.ES5) { return grammarErrorOnNode(accessor.name, Diagnostics.Accessors_are_only_available_when_targeting_ECMAScript_5_and_higher); } else if (isInAmbientContext(accessor)) { return grammarErrorOnNode(accessor.name, Diagnostics.An_accessor_cannot_be_declared_in_an_ambient_context); } else if (accessor.body === undefined && !(getModifierFlags(accessor) & ModifierFlags.Abstract)) { return grammarErrorAtPos(getSourceFileOfNode(accessor), accessor.end - 1, ";".length, Diagnostics._0_expected, "{"); } else if (accessor.body && getModifierFlags(accessor) & ModifierFlags.Abstract) { return grammarErrorOnNode(accessor, Diagnostics.An_abstract_accessor_cannot_have_an_implementation); } else if (accessor.typeParameters) { return grammarErrorOnNode(accessor.name, Diagnostics.An_accessor_cannot_have_type_parameters); } else if (!doesAccessorHaveCorrectParameterCount(accessor)) { return grammarErrorOnNode(accessor.name, kind === SyntaxKind.GetAccessor ? Diagnostics.A_get_accessor_cannot_have_parameters : Diagnostics.A_set_accessor_must_have_exactly_one_parameter); } else if (kind === SyntaxKind.SetAccessor) { if (accessor.type) { return grammarErrorOnNode(accessor.name, Diagnostics.A_set_accessor_cannot_have_a_return_type_annotation); } else { const parameter = accessor.parameters[0]; if (parameter.dotDotDotToken) { return grammarErrorOnNode(parameter.dotDotDotToken, Diagnostics.A_set_accessor_cannot_have_rest_parameter); } else if (parameter.questionToken) { return grammarErrorOnNode(parameter.questionToken, Diagnostics.A_set_accessor_cannot_have_an_optional_parameter); } else if (parameter.initializer) { return grammarErrorOnNode(accessor.name, Diagnostics.A_set_accessor_parameter_cannot_have_an_initializer); } } } } /** Does the accessor have the right number of parameters? * A get accessor has no parameters or a single `this` parameter. * A set accessor has one parameter or a `this` parameter and one more parameter. */ function doesAccessorHaveCorrectParameterCount(accessor: AccessorDeclaration) { return getAccessorThisParameter(accessor) || accessor.parameters.length === (accessor.kind === SyntaxKind.GetAccessor ? 0 : 1); } function getAccessorThisParameter(accessor: AccessorDeclaration): ParameterDeclaration { if (accessor.parameters.length === (accessor.kind === SyntaxKind.GetAccessor ? 1 : 2)) { return getThisParameter(accessor); } } function checkGrammarForNonSymbolComputedProperty(node: DeclarationName, message: DiagnosticMessage) { if (isDynamicName(node)) { return grammarErrorOnNode(node, message); } } function checkGrammarMethod(node: MethodDeclaration) { if (checkGrammarDisallowedModifiersOnObjectLiteralExpressionMethod(node) || checkGrammarFunctionLikeDeclaration(node) || checkGrammarForGenerator(node)) { return true; } if (node.parent.kind === SyntaxKind.ObjectLiteralExpression) { if (checkGrammarForInvalidQuestionMark(node.questionToken, Diagnostics.An_object_member_cannot_be_declared_optional)) { return true; } else if (node.body === undefined) { return grammarErrorAtPos(getSourceFileOfNode(node), node.end - 1, ";".length, Diagnostics._0_expected, "{"); } } if (isClassLike(node.parent)) { // Technically, computed properties in ambient contexts is disallowed // for property declarations and accessors too, not just methods. // However, property declarations disallow computed names in general, // and accessors are not allowed in ambient contexts in general, // so this error only really matters for methods. if (isInAmbientContext(node)) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_an_ambient_context_must_directly_refer_to_a_built_in_symbol); } else if (!node.body) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_method_overload_must_directly_refer_to_a_built_in_symbol); } } else if (node.parent.kind === SyntaxKind.InterfaceDeclaration) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_an_interface_must_directly_refer_to_a_built_in_symbol); } else if (node.parent.kind === SyntaxKind.TypeLiteral) { return checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_type_literal_must_directly_refer_to_a_built_in_symbol); } } function checkGrammarBreakOrContinueStatement(node: BreakOrContinueStatement): boolean { let current: Node = node; while (current) { if (isFunctionLike(current)) { return grammarErrorOnNode(node, Diagnostics.Jump_target_cannot_cross_function_boundary); } switch (current.kind) { case SyntaxKind.LabeledStatement: if (node.label && (current).label.text === node.label.text) { // found matching label - verify that label usage is correct // continue can only target labels that are on iteration statements const isMisplacedContinueLabel = node.kind === SyntaxKind.ContinueStatement && !isIterationStatement((current).statement, /*lookInLabeledStatement*/ true); if (isMisplacedContinueLabel) { return grammarErrorOnNode(node, Diagnostics.A_continue_statement_can_only_jump_to_a_label_of_an_enclosing_iteration_statement); } return false; } break; case SyntaxKind.SwitchStatement: if (node.kind === SyntaxKind.BreakStatement && !node.label) { // unlabeled break within switch statement - ok return false; } break; default: if (isIterationStatement(current, /*lookInLabeledStatement*/ false) && !node.label) { // unlabeled break or continue within iteration statement - ok return false; } break; } current = current.parent; } if (node.label) { const message = node.kind === SyntaxKind.BreakStatement ? Diagnostics.A_break_statement_can_only_jump_to_a_label_of_an_enclosing_statement : Diagnostics.A_continue_statement_can_only_jump_to_a_label_of_an_enclosing_iteration_statement; return grammarErrorOnNode(node, message); } else { const message = node.kind === SyntaxKind.BreakStatement ? Diagnostics.A_break_statement_can_only_be_used_within_an_enclosing_iteration_or_switch_statement : Diagnostics.A_continue_statement_can_only_be_used_within_an_enclosing_iteration_statement; return grammarErrorOnNode(node, message); } } function checkGrammarBindingElement(node: BindingElement) { if (node.dotDotDotToken) { const elements = (node.parent).elements; if (node !== lastOrUndefined(elements)) { return grammarErrorOnNode(node, Diagnostics.A_rest_element_must_be_last_in_a_destructuring_pattern); } if (node.name.kind === SyntaxKind.ArrayBindingPattern || node.name.kind === SyntaxKind.ObjectBindingPattern) { return grammarErrorOnNode(node.name, Diagnostics.A_rest_element_cannot_contain_a_binding_pattern); } if (node.initializer) { // Error on equals token which immediately precedes the initializer return grammarErrorAtPos(getSourceFileOfNode(node), node.initializer.pos - 1, 1, Diagnostics.A_rest_element_cannot_have_an_initializer); } } } function isStringOrNumberLiteralExpression(expr: Expression) { return expr.kind === SyntaxKind.StringLiteral || expr.kind === SyntaxKind.NumericLiteral || expr.kind === SyntaxKind.PrefixUnaryExpression && (expr).operator === SyntaxKind.MinusToken && (expr).operand.kind === SyntaxKind.NumericLiteral; } function checkGrammarVariableDeclaration(node: VariableDeclaration) { if (node.parent.parent.kind !== SyntaxKind.ForInStatement && node.parent.parent.kind !== SyntaxKind.ForOfStatement) { if (isInAmbientContext(node)) { if (node.initializer) { if (isConst(node) && !node.type) { if (!isStringOrNumberLiteralExpression(node.initializer)) { return grammarErrorOnNode(node.initializer, Diagnostics.A_const_initializer_in_an_ambient_context_must_be_a_string_or_numeric_literal); } } else { // Error on equals token which immediate precedes the initializer const equalsTokenLength = "=".length; return grammarErrorAtPos(getSourceFileOfNode(node), node.initializer.pos - equalsTokenLength, equalsTokenLength, Diagnostics.Initializers_are_not_allowed_in_ambient_contexts); } } if (node.initializer && !(isConst(node) && isStringOrNumberLiteralExpression(node.initializer))) { // Error on equals token which immediate precedes the initializer const equalsTokenLength = "=".length; return grammarErrorAtPos(getSourceFileOfNode(node), node.initializer.pos - equalsTokenLength, equalsTokenLength, Diagnostics.Initializers_are_not_allowed_in_ambient_contexts); } } else if (!node.initializer) { if (isBindingPattern(node.name) && !isBindingPattern(node.parent)) { return grammarErrorOnNode(node, Diagnostics.A_destructuring_declaration_must_have_an_initializer); } if (isConst(node)) { return grammarErrorOnNode(node, Diagnostics.const_declarations_must_be_initialized); } } } if (compilerOptions.module !== ModuleKind.ES2015 && compilerOptions.module !== ModuleKind.System && !compilerOptions.noEmit && !isInAmbientContext(node.parent.parent) && hasModifier(node.parent.parent, ModifierFlags.Export)) { checkESModuleMarker(node.name); } const checkLetConstNames = (isLet(node) || isConst(node)); // 1. LexicalDeclaration : LetOrConst BindingList ; // It is a Syntax Error if the BoundNames of BindingList contains "let". // 2. ForDeclaration: ForDeclaration : LetOrConst ForBinding // It is a Syntax Error if the BoundNames of ForDeclaration contains "let". // It is a SyntaxError if a VariableDeclaration or VariableDeclarationNoIn occurs within strict code // and its Identifier is eval or arguments return checkLetConstNames && checkGrammarNameInLetOrConstDeclarations(node.name); } function checkESModuleMarker(name: Identifier | BindingPattern): boolean { if (name.kind === SyntaxKind.Identifier) { if (unescapeIdentifier(name.text) === "__esModule") { return grammarErrorOnNode(name, Diagnostics.Identifier_expected_esModule_is_reserved_as_an_exported_marker_when_transforming_ECMAScript_modules); } } else { const elements = (name).elements; for (const element of elements) { if (!isOmittedExpression(element)) { return checkESModuleMarker(element.name); } } } } function checkGrammarNameInLetOrConstDeclarations(name: Identifier | BindingPattern): boolean { if (name.kind === SyntaxKind.Identifier) { if ((name).originalKeywordKind === SyntaxKind.LetKeyword) { return grammarErrorOnNode(name, Diagnostics.let_is_not_allowed_to_be_used_as_a_name_in_let_or_const_declarations); } } else { const elements = (name).elements; for (const element of elements) { if (!isOmittedExpression(element)) { checkGrammarNameInLetOrConstDeclarations(element.name); } } } } function checkGrammarVariableDeclarationList(declarationList: VariableDeclarationList): boolean { const declarations = declarationList.declarations; if (checkGrammarForDisallowedTrailingComma(declarationList.declarations)) { return true; } if (!declarationList.declarations.length) { return grammarErrorAtPos(getSourceFileOfNode(declarationList), declarations.pos, declarations.end - declarations.pos, Diagnostics.Variable_declaration_list_cannot_be_empty); } } function allowLetAndConstDeclarations(parent: Node): boolean { switch (parent.kind) { case SyntaxKind.IfStatement: case SyntaxKind.DoStatement: case SyntaxKind.WhileStatement: case SyntaxKind.WithStatement: case SyntaxKind.ForStatement: case SyntaxKind.ForInStatement: case SyntaxKind.ForOfStatement: return false; case SyntaxKind.LabeledStatement: return allowLetAndConstDeclarations(parent.parent); } return true; } function checkGrammarForDisallowedLetOrConstStatement(node: VariableStatement) { if (!allowLetAndConstDeclarations(node.parent)) { if (isLet(node.declarationList)) { return grammarErrorOnNode(node, Diagnostics.let_declarations_can_only_be_declared_inside_a_block); } else if (isConst(node.declarationList)) { return grammarErrorOnNode(node, Diagnostics.const_declarations_can_only_be_declared_inside_a_block); } } } function checkGrammarMetaProperty(node: MetaProperty) { if (node.keywordToken === SyntaxKind.NewKeyword) { if (node.name.text !== "target") { return grammarErrorOnNode(node.name, Diagnostics._0_is_not_a_valid_meta_property_for_keyword_1_Did_you_mean_2, node.name.text, tokenToString(node.keywordToken), "target"); } } } function hasParseDiagnostics(sourceFile: SourceFile): boolean { return sourceFile.parseDiagnostics.length > 0; } function grammarErrorOnFirstToken(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { const sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { const span = getSpanOfTokenAtPosition(sourceFile, node.pos); diagnostics.add(createFileDiagnostic(sourceFile, span.start, span.length, message, arg0, arg1, arg2)); return true; } } function grammarErrorAtPos(sourceFile: SourceFile, start: number, length: number, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { if (!hasParseDiagnostics(sourceFile)) { diagnostics.add(createFileDiagnostic(sourceFile, start, length, message, arg0, arg1, arg2)); return true; } } function grammarErrorOnNode(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { const sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { diagnostics.add(createDiagnosticForNode(node, message, arg0, arg1, arg2)); return true; } } function checkGrammarConstructorTypeParameters(node: ConstructorDeclaration) { if (node.typeParameters) { return grammarErrorAtPos(getSourceFileOfNode(node), node.typeParameters.pos, node.typeParameters.end - node.typeParameters.pos, Diagnostics.Type_parameters_cannot_appear_on_a_constructor_declaration); } } function checkGrammarConstructorTypeAnnotation(node: ConstructorDeclaration) { if (node.type) { return grammarErrorOnNode(node.type, Diagnostics.Type_annotation_cannot_appear_on_a_constructor_declaration); } } function checkGrammarProperty(node: PropertyDeclaration) { if (isClassLike(node.parent)) { if (checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_class_property_declaration_must_directly_refer_to_a_built_in_symbol)) { return true; } } else if (node.parent.kind === SyntaxKind.InterfaceDeclaration) { if (checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_an_interface_must_directly_refer_to_a_built_in_symbol)) { return true; } if (node.initializer) { return grammarErrorOnNode(node.initializer, Diagnostics.An_interface_property_cannot_have_an_initializer); } } else if (node.parent.kind === SyntaxKind.TypeLiteral) { if (checkGrammarForNonSymbolComputedProperty(node.name, Diagnostics.A_computed_property_name_in_a_type_literal_must_directly_refer_to_a_built_in_symbol)) { return true; } if (node.initializer) { return grammarErrorOnNode(node.initializer, Diagnostics.A_type_literal_property_cannot_have_an_initializer); } } if (isInAmbientContext(node) && node.initializer) { return grammarErrorOnFirstToken(node.initializer, Diagnostics.Initializers_are_not_allowed_in_ambient_contexts); } } function checkGrammarTopLevelElementForRequiredDeclareModifier(node: Node): boolean { // A declare modifier is required for any top level .d.ts declaration except export=, export default, export as namespace // interfaces and imports categories: // // DeclarationElement: // ExportAssignment // export_opt InterfaceDeclaration // export_opt TypeAliasDeclaration // export_opt ImportDeclaration // export_opt ExternalImportDeclaration // export_opt AmbientDeclaration // // TODO: The spec needs to be amended to reflect this grammar. if (node.kind === SyntaxKind.InterfaceDeclaration || node.kind === SyntaxKind.TypeAliasDeclaration || node.kind === SyntaxKind.ImportDeclaration || node.kind === SyntaxKind.ImportEqualsDeclaration || node.kind === SyntaxKind.ExportDeclaration || node.kind === SyntaxKind.ExportAssignment || node.kind === SyntaxKind.NamespaceExportDeclaration || getModifierFlags(node) & (ModifierFlags.Ambient | ModifierFlags.Export | ModifierFlags.Default)) { return false; } return grammarErrorOnFirstToken(node, Diagnostics.A_declare_modifier_is_required_for_a_top_level_declaration_in_a_d_ts_file); } function checkGrammarTopLevelElementsForRequiredDeclareModifier(file: SourceFile): boolean { for (const decl of file.statements) { if (isDeclaration(decl) || decl.kind === SyntaxKind.VariableStatement) { if (checkGrammarTopLevelElementForRequiredDeclareModifier(decl)) { return true; } } } } function checkGrammarSourceFile(node: SourceFile): boolean { return isInAmbientContext(node) && checkGrammarTopLevelElementsForRequiredDeclareModifier(node); } function checkGrammarStatementInAmbientContext(node: Node): boolean { if (isInAmbientContext(node)) { // An accessors is already reported about the ambient context if (isAccessor(node.parent.kind)) { return getNodeLinks(node).hasReportedStatementInAmbientContext = true; } // Find containing block which is either Block, ModuleBlock, SourceFile const links = getNodeLinks(node); if (!links.hasReportedStatementInAmbientContext && isFunctionLike(node.parent)) { return getNodeLinks(node).hasReportedStatementInAmbientContext = grammarErrorOnFirstToken(node, Diagnostics.An_implementation_cannot_be_declared_in_ambient_contexts); } // We are either parented by another statement, or some sort of block. // If we're in a block, we only want to really report an error once // to prevent noisiness. So use a bit on the block to indicate if // this has already been reported, and don't report if it has. // if (node.parent.kind === SyntaxKind.Block || node.parent.kind === SyntaxKind.ModuleBlock || node.parent.kind === SyntaxKind.SourceFile) { const links = getNodeLinks(node.parent); // Check if the containing block ever report this error if (!links.hasReportedStatementInAmbientContext) { return links.hasReportedStatementInAmbientContext = grammarErrorOnFirstToken(node, Diagnostics.Statements_are_not_allowed_in_ambient_contexts); } } else { // We must be parented by a statement. If so, there's no need // to report the error as our parent will have already done it. // Debug.assert(isStatement(node.parent)); } } } function checkGrammarNumericLiteral(node: NumericLiteral): boolean { // Grammar checking if (node.numericLiteralFlags & NumericLiteralFlags.Octal) { let diagnosticMessage: DiagnosticMessage | undefined; if (languageVersion >= ScriptTarget.ES5) { diagnosticMessage = Diagnostics.Octal_literals_are_not_available_when_targeting_ECMAScript_5_and_higher_Use_the_syntax_0; } else if (isChildOfNodeWithKind(node, SyntaxKind.LiteralType)) { diagnosticMessage = Diagnostics.Octal_literal_types_must_use_ES2015_syntax_Use_the_syntax_0; } else if (isChildOfNodeWithKind(node, SyntaxKind.EnumMember)) { diagnosticMessage = Diagnostics.Octal_literals_are_not_allowed_in_enums_members_initializer_Use_the_syntax_0; } if (diagnosticMessage) { const withMinus = isPrefixUnaryExpression(node.parent) && node.parent.operator === SyntaxKind.MinusToken; const literal = `${withMinus ? "-" : ""}0o${node.text}`; return grammarErrorOnNode(withMinus ? node.parent : node, diagnosticMessage, literal); } } } function grammarErrorAfterFirstToken(node: Node, message: DiagnosticMessage, arg0?: any, arg1?: any, arg2?: any): boolean { const sourceFile = getSourceFileOfNode(node); if (!hasParseDiagnostics(sourceFile)) { const span = getSpanOfTokenAtPosition(sourceFile, node.pos); diagnostics.add(createFileDiagnostic(sourceFile, textSpanEnd(span), /*length*/ 0, message, arg0, arg1, arg2)); return true; } } function getAmbientModules(): Symbol[] { const result: Symbol[] = []; globals.forEach((global, sym) => { if (ambientModuleSymbolRegex.test(sym)) { result.push(global); } }); return result; } } /** Like 'isDeclarationName', but returns true for LHS of `import { x as y }` or `export { x as y }`. */ function isDeclarationNameOrImportPropertyName(name: Node): boolean { switch (name.parent.kind) { case SyntaxKind.ImportSpecifier: case SyntaxKind.ExportSpecifier: if ((name.parent as ImportOrExportSpecifier).propertyName) { return true; } // falls through default: return isDeclarationName(name); } } }