TypeScript

Language Specification
Version 1.3

September, 2014

Microsoft is making this Specification available under the Open Web Foundation Final Specification
Agreement Version 1.0 (“OWF 1.0") as of October 1, 2012. The OWF 1.0 is available at
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0.

TypeScript is a trademark of Microsoft Corporation.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0

Table of Contents

T INEFOAUCTION ettt e s s e85 8 8888 bbbt 1
1.1 AMDIENT DECIATATIONS ...ttt et et e 3
1.2 FUNCHION TYPES .ottt sttt sttt sttt sttt bbb bbb 3
13 ODJECE TYPES weorrrvereeererieeeeieeise e ssse s sssse st st ss s ss e ss s s £ £S5 8 5888 E bbbt st e 4
1.4 SEPUCTUIAl SUDTYPING vttt esees sttt bbb b 6
1.5 CONTEXTUAI TYPING ittt sss bbbt s bbb bbb bbb bbbt sen s s s st st nnsens 7
1.6 CLASSES vttt et e e e e e e ke 8
1.7 ENUM TYPES oottt e e e e 10
1.8 Overloading ON StriNG ParamEters......... s ssssesssasssnesess 11
1.9 GeNEriC TYPES ANA FUNCLIONS ..ottt sttt sssss s st sttt ss sttt sssssss st st ssssessseses 12
TLTO IMOTUIES oottt e s b 13

2 BaSIC CONCEPLES oottt sttt es bbbttt bbb ettt eb st sesbseetees 17
2.1 GramMIMAr CONVENTIONSouiuuueeereeieeeiseeeseeesse ettt e s ss s ookttt ettt 17
2.2 Namespaces and NAMEA TYPES ... eeseeiss st st sssssss st ss s sssessss st sssessseees 17
2.3 DIBCIAIATIONS ..c.ooveeeericeireceimceis it se ettt bR R 18
24 SCOPIES ettt ee et ea s a s AR AR AR sae bbb nen s 20

3 TYPES e e e e e e e e e e e e e 23
3.1 THE ANY TYPE ottt st sttt st ss s 55558 SRRttt 24
3.2 PRIMITIVE TYPES .ottt s s e e bbb 24

32T THE NUMDEE TYPE oottt ettt stk e et 24
322 THE BOOIEAN TYPE et s s s 25
3.2.3 THE SEING TYP it s s e e 25
324 THE VOIA TY Pttt ettt se e etk e et 25
3125 THE NUI TY Pttt ettt ettt 26
3.2.6 The UNAEfiNEA TYPE. ettt sttt sss bbbttt 26
B.2.7 ENUIM TYPES oottt et et s s et ettt 26
3.2.8 STNNG LItEral TYPES oottt ettt s ss s e et 26
33 ODJECE TYPES w.eerreereeereeiteeiteeiese s eesseeese e sss et e e e e85t 27
33T NAMEA TYPE REFEIENCES ..ottt bbbt sttt bs s ss s st 27
332 ATTAY TYPES ottt et et e et 27
3.3.3 TUPIE TYPES ettt et ee e s ek 28
3314 FUNCHION TYPES oottt e et st s s s e e e sttt e 28
335 CONSIIUCTON TYPES .ottt ettt 28
3316 IMBMDETS oot AR 28
3.4 TYPE PAraMELETS ...oueriercercer ittt e e e e e e et e 29
34T TYPE PAramMELEr LiSTS ...ttt s s bbb s bbb 29
342 TYPE ATGUMENT LISES c.oueerieieiieeeiecieeiee ettt 30
35 INGIMEA TYPES ...ereeeeereeteeeeee i ese s asseaseessse st ss s e e85ttt 31

35T INSTANCE TYPES oottt ettt ettt 32
3.6 SPPECTYING TYPES coorrierreereiterise ettt ss e ss st ss s sss e8RS 8RRt 32
3.6.T PrEEfiNEA TYPES..ouereeeeeeeeeeeeeaeseseeise ettt st sttt ss st s st et 32
3.6.2 TYPE RETEIENCES .ottt sttt bbb 33
3.6.3 ODJECE TYPE LITEIAlS .ottt ssssssss bbb s 34
3.6 4 AITAY TYPE LITEIAIS oottt sttt ss sttt 35
3.6.5 TUPIE TYPE LILEIAIS .ottt sttt ss sttt 36
3.6.6 FUNCLON TYPE LILEIAIS ..ottt bbb s 36
3.6.7 CONSLIUCLOr TYPE LItEIalS coouueeieereririeriesic sttt bbb bbb 36
3.0.8 TYPE QUUETIES ..o sssse s e sese et ettt 37
37 SPECHYING MEIMDELS ..ottt sttt sttt 38
37T PrOPEILY SIGNATUIES. ...ttt bbb s bbb 38
372 CAll SIGNATUIES oottt ettt sttt ek et 38
3.7.3 CONSEIUCTE SIGNATUIES ..ottt s s bbb 42
374 INAEX SIGNATUIES ..ottt sss st ss st st st s s S ess S s8 ek S bbb et 42
375 MEENOMA SIGNATUIES ...ttt ettt et 42
3.8 TYPE REIALIONSNIPS ..ottt sttt ss bbbt 44
38T APPAIENT TY Pttt ettt e e b et 44
3.82 Type and MemDEr IAENTILY ..ottt ettt sttt 45
3.8.3 SUDLYPES @NA SUPEIYPES ...oueeeeeeereeee ettt ettt et 46
3.84 AsSIgNMENT COMPALIDITITY c.uoveerrieeiieireiesiieiie et ss sttt ss st ss s ssns s nnsas 47
3.8.5 Contextual SIgNature INStANTIATION ...ttt sttt st ssssssssssnsssnnsas 48
3.8.6 TYPE INTOIENCE ettt e 49
3.8.7 RECUISIVE TYPES ..ooreerreereeeneeseeemeeaseessesssse s s st ss e et s e85 et 49
3.9 WIAENEA TYPES .ottt et sss s ss e e e e e e e e e et e e e 50
3,10 BeSt COMMION TYPE oottt et sttt e st ettt et 51
EXPTESSIONS .ottt eeee e ase s as st e84 88888 53
4.1 ValUES AN REFEIENCES ..ottt e bbb 53
42 THE thiS KEYWOIT ...ttt ss s e s e e 53
43 LA ONEITIEIS .ottt ettt et 54
44 LIEEIAIS oottt ettt e SRRt 54
45 ODJECE LITEIAIS ...ttt ettt sttt 54
4.6 AITAY LITEIAIS oottt ettt s e e 56
4.7 PAIENTNESES ...ttt ettt e e ekt 56
438 THE SUPET KEYWOIT....ooreenreereieaeeteeieee e e esee s s ssse st st sttt sttt 57
48T SUPEE CAIIS ettt sttt sttt R 57
4.8.2 SUPET PrOPEITY ACCESS ..couvereireeereeieeiesieeiseeeessse st ssse s s s s s s e s oo st st e st s 57
49 FUNCHION EXPIESSIONS ..ottt s s e e s s s st st e 58
4.9.1 Standard FUNCLION EXPreSSIONS. ...t ssss s s s s sssssssssssssssssssssassssssssssssssans 58
4.9.2 ArrOW FUNCLION EXPrESSIONS. ...t stesssssssssssssssssssssssssss s sssssssssssssssessssssssssssssssssssssssssssssssssssassans 59
493 Contextually Typed FUNCLION EXPr@SSIONS.......vvuureereeerreeeeeeeeeeeseessessesesssesssessssessssesssessssesssssssssssssesssnesens 60

4.10 Property Access

411 The new Operator
412 Function Calls
4.12.1 Overload Resolution
4.12.2 Type Argument Inference

4.12.3 Grammar AMDIGUITIES ...t sssse st ss st st ssssssssss sttt ss st ss s ssnsssnssns
413 Type Assertions

4.14 Unary Operators

AT47T THE +4 AN = OPEIALOIS ..ottt sttt s s ss s s e s se e bbb
4142 The +, —, and ~ operators
4143 The ! operator
4144 The delete Operator
AT45 THE VOIA OPEIALON ..ottt sttt st st st st sss st sss s s s e e sss e s s bbb
4.14.6 The typeof Operator
415 Binary Operators

4151 The*, /, %, — <<, >>,>>>, 8, ", aNd | OPEIAtOrS......ccvceveemmmmrrseeneeseeeesesssssssssssssesssssssssssssssssssssssssssesssees 69
A.15.2 TR # OPEIALON ...ttt bbbt ss s bbb e s bbb bbbt 69
4153 The <, >, <=, >=, ==, 1=, ===, aNd == OPEIrators ...ttt ss s ssssssesens 70
4154 The iNStANCEOT OPEIALON ...ttt bbb 70
4155 TRE IN OPEIALON ..ottt st st s st s s e bbb e e

4.15.6 The &8& operator
4.15.7 The || operator
416 The Conditional Operator

A7 ASSIGNMENT OPEIATOIS «..ooveereierrieeeeeeiee ittt ss sttt

418 The Comma Operator

419 Contextually TYPEA EXPreSSIONS ... iierieeeerneereeisesisses st etssesssssssnns 72
STATEMIENTS ..ottt e e s s e s ARt 75

5.1 Variable STAtEMENTS ...ttt e e e e 75

5.2 If, DO, aNd WHilE StAtEMENTS ...t ssss s sssse st sttt bs s ss s ss st s s sess s 76

53 FOI STATEMEBNTS ..ottt e s s e s s s b n e sanens

54 FOP-IN STATEMENTS ...ttt st bbb bbbt a s b banbaees
55 Continue Statements
5.6 Break Statements
57 RETUIN STATEMENTS ...ttt bbbt bbbt a st s b baes
5.8 WIH SEAEEIMENTS ..ottt s s sass st sans s sansans
59 Switch Statements
5.10 Throw Statements

S.TT THY STATEMENTS .ottt et e
FUNGEIONS et sttt b et a sttt et a st et as st et et ass st assssassasassasassasasssans 79

6.1 FUNCEION DECIATATIONS. ...ttt e s assasessaneenn 79

6.2 FUNCEION OVEIOAAS ...t eee e eee e e e s e e e s eees e ees e eeseeeesaeesseeesseensseeeesaees 79

6.3 FUNCEION IMPIEMENTALIONS ..ottt s s
6.4 Generic Functions
6.5 Code Generation

7 Interfaces

7.1 Interface Declarations

7.2 Declaration Merging

73 Interfaces Extending Classes

7.4 Dynamic Type Checks

8 Classes
8.1 Class Declarations
8.1.1 Class Heritage SPECIfICAtION ...ttt ss bbbttt st 92
8.1.2 ClASS BOGY ..cuverrierrieerireieseseesesssstses st se st ss s ss bbbt 93
8.2 IVLBIMIDEIS ..ot e e e bbb e bbb bbb 94
8.2.1 INSTANCE AaNd StatiC MEMDEIS ...ttt sttt 94
8.2.2 ACCESSIDIILY vttt sttt ettt ettt

8.2.3 Inheritance and Overriding
824 C(lass Types
8.2.5 CONSLIUCION FUNCHION TYPES .ourierriereiereeiieeieeeiseeeseeeseease st sesse e s s sttt 97

8.3 CONSTIUCTON DECIATATIONS ...ttt es s s essasessasessasessasassasesnans
8.3.1 Constructor Parameters
8.3.2 Super Calls

8.3.3 AULOMALIC CONSTIUCLONS ...o.oeoeeeeeeetce ettt st aes s s s aes s s s saes s s sassanns 100
8.4 Property Member DECIAratioNS ...t ssee st sttt et 101
8.4.1 Member Variable DECIAratioNns ... ssesss s sss st s ssssssssssssssssssansenns 102
8.4.2 Member FUNCLION DECIAratIONS ...ttt ssssas s sss st s sssssssssssss st sansenns 103
8.4.3 Member ACCESSOI DECIAIAtIONS. ...ttt 105

8.5 Index Member Declarations

8.6 Code Generation

8.6.1 Classes WithouUt EXLENAS CIAUSES..........coeurirrerrrensiereienseessssssissssss s ssssssss s s s sssssssssssssssssssssssssssssssssssans 106
8.6.2 Classes With EXENAS ClAUSES........covveerieeieeiisssiesisssesssiss s ssnssans 108

O ENUMS ottt e e bbbt 111
9.1 ENUM DECIATAtIONS ..ottt sttt sttt ss sttt sttt s st ss s 111
9.2 ENUM IMBIMDEIS ...ttt sttt sttt sttt sss st s sttt s e 111
9.3 DECIAratioN MEIGING ...ttt ee st st se st ss et se sttt se e se e se s se s seenes 113
94 COAE GENEIALION .ottt e s e e e e bbb 113
TO INEEINAI MOAUIES ..ottt bbb bbb bbb bbb bbb bbb 115
10T MOAUIE DECIAIALIONS. ...ttt ettt sttt ss st s st s sttt s st ss st se e ssnses 115
TO.2 MOAUIE BOAY oottt sttt skttt 116
10.3 IMPOIt DECIArAtIONS ..oooeeeeeeeeeeee et ce ettt ss st ss st s 117
104 EXPOIt DECIAIALIONSeeoeeeeee ettt sttt s 118

10.5 Declaration Merging
10.6 Code Generation

11 Source Files and EXEEINal MOGUIES ...ttt ass s sa s ssssassassanes

111 Source Files

11.1.1

11.2 External Modules

11.2.1
11.2.2
11.23
11.2.4
11.25
11.2.6

12 Ambients

SOUICE FIlES DEPENUENCIES......coeeeererteree it sesssts st ss sttt ssss st st sttt ss st st st st st sssssssssnses

External Module Names.........cneenecrnecrnecinecineeens
External Import Declarations
Export Declarations

Export Assignments

CommonlJS Modules
AMD Modules

121 AMNDIENT DECIAIATIONS ...t e s s s ees e s ses e eesaseeseseesesesaeeaneseasaeen

12.1.1
12.1.2
12.1.3
12.14
12.15

12.2 Ambient External Module Declarations

A Grammar

Ambient Variable DECIArations ...ttt saenan
Ambient Function Declarations
AMDIENt Class DECIATATIONS ...t
AmMDbiIeNt ENUM DECIAIATIONS ...ttt saenan

AMDIENT MOAUIE DECIATATIONS ...ttt ettt s s se s snanesnan

A TYPES ettt e e

A2 Expressions
A3 Statements

A4 FUNCEIONS <.ttt ettt et et s e e s s s s e st s eseesese e essaseseasesesestaseseaseseasestseseseseas

A5 INEEITACES ...ttt ettt e st s s e s e s e s e s ese s ese s ese s eseaseseasesesestaseseasesesestseseseeeas

A6 Classes
A7 Enums
A8 Internal Modules ...,
A9 Source Files and External Modules
A.10 Ambients

1 Introduction

JavaScript applications such as web e-mail, maps, document editing, and collaboration tools are
becoming an increasingly important part of the everyday computing. We designed TypeScript to meet the
needs of the JavaScript programming teams that build and maintain large JavaScript programs. TypeScript
helps programming teams to define interfaces between software components and to gain insight into the
behavior of existing JavaScript libraries. TypeScript also enables teams to reduce naming conflicts by
organizing their code into dynamically-loadable modules. TypeScript's optional type system enables
JavaScript programmers to use highly-productive development tools and practices: static checking,
symbol-based navigation, statement completion, and code re-factoring.

TypeScript is a syntactic sugar for JavaScript. TypeScript syntax is a superset of Ecmascript 5 (ES5) syntax.
Every JavaScript program is also a TypeScript program. The TypeScript compiler performs only file-local
transformations on TypeScript programs and does not re-order variables declared in TypeScript. This
leads to JavaScript output that closely matches the TypeScript input. TypeScript does not transform
variable names, making tractable the direct debugging of emitted JavaScript. TypeScript optionally
provides source maps, enabling source-level debugging. TypeScript tools typically emit JavaScript upon
file save, preserving the test, edit, refresh cycle commonly used in JavaScript development.

TypeScript syntax includes several proposed features of Ecmascript 6 (ES6), including classes and modules.
Classes enable programmers to express common object-oriented patterns in a standard way, making
features like inheritance more readable and interoperable. Modules enable programmers to organize their
code into components while avoiding naming conflicts. The TypeScript compiler provides module code
generation options that support either static or dynamic loading of module contents.

TypeScript also provides to JavaScript programmers a system of optional type annotations. These type
annotations are like the JSSDoc comments found in the Closure system, but in TypeScript they are
integrated directly into the language syntax. This integration makes the code more readable and reduces
the maintenance cost of synchronizing type annotations with their corresponding variables.

The TypeScript type system enables programmers to express limits on the capabilities of JavaScript
objects, and to use tools that enforce these limits. To minimize the number of annotations needed for
tools to become useful, the TypeScript type system makes extensive use of type inference. For example,
from the following statement, TypeScript will infer that the variable ‘i’ has the type number.

var i = 0;
TypeScript will infer from the following function definition that the function f has return type string.

function f() {
return "hello";

To benefit from this inference, a programmer can use the TypeScript language service. For example, a
code editor can incorporate the TypeScript language service and use the service to find the members of a
string object as in the following screen shot.

= function () {

return "hello™;

}
£().]

@ |charAt “ charat: (pos: number) => string
charCodeAt

concat

indexOf

lastindexCf

length

localeCompare
match

e @ @ we @ a &

replace -

In this example, the programmer benefits from type inference without providing type annotations. Some
beneficial tools, however, do require the programmer to provide type annotations. In TypeScript, we can
express a parameter requirement as in the following code fragment.

function f(s: string) {
return s;

}

f({}); // Error
f("hello"); // Ok

This optional type annotation on the parameter s’ lets the TypeScript type checker know that the
programmer expects parameter ‘s’ to be of type ‘string’. Within the body of function ‘'f’, tools can assume
's" is of type ‘string’ and provide operator type checking and member completion consistent with this
assumption. Tools can also signal an error on the first call to 'f', because 'f' expects a string, not an object,
as its parameter. For the function 'f’, the TypeScript compiler will emit the following JavaScript code:

function f(s) {
return s;

}

In the JavaScript output, all type annotations have been erased. In general, TypeScript erases all type
information before emiting JavaScript.

11 Ambient Declarations

An ambient declaration introduces a variable into a TypeScript scope, but has zero impact on the emitted
JavaScript program. Programmers can use ambient declarations to tell the TypeScript compiler that some
other component will supply a variable. For example, by default the TypeScript compiler will print an error
for uses of undefined variables. To add some of the common variables defined by browsers, a TypeScript
programmer can use ambient declarations. The following example declares the ‘document’ object
supplied by browsers. Because the declaration does not specify a type, the type ‘any’ is inferred. The type
‘any’ means that a tool can assume nothing about the shape or behavior of the document object. Some of
the examples below will illustrate how programmers can use types to further characterize the expected
behavior of an object.

declare var document;
document.title = "Hello"; // Ok because document has been declared

In the case of ‘"document’, the TypeScript compiler automatically supplies a declaration, because
TypeScript by default includes a file ‘lib.d.ts’ that provides interface declarations for the built-in JavaScript
library as well as the Document Object Model.

The TypeScript compiler does not include by default an interface for jQuery, so to use jQuery, a
programmer could supply a declaration such as:

declare var $;

Section 1.3 provides a more extensive example of how a programmer can add type information for jQuery
and other libraries.

1.2 Function Types

Function expressions are a powerful feature of JavaScript. They enable function definitions to create
closures: functions that capture information from the lexical scope surrounding the function’s definition.
Closures are currently JavaScript's only way of enforcing data encapsulation. By capturing and using
environment variables, a closure can retain information that cannot be accessed from outside the closure.
JavaScript programmers often use closures to express event handlers and other asynchronous callbacks,
in which another software component, such as the DOM, will call back into JavaScript through a handler
function.

TypeScript function types make it possible for programmers to express the expected signature of a
function. A function signature is a sequence of parameter types plus a return type. The following example
uses function types to express the callback signature requirements of an asynchronous voting mechanism.

function vote(candidate: string, callback: (result: string) => any) {

/] ..

vote("BigPig",
function(result: string) {
if (result === "BigPig") {
/...

)s
In this example, the second parameter to ‘vote' has the function type
(result: string) => any

which means the second parameter is a function returning type ‘any’ that has a single parameter of type
‘string’ named ‘result’.

Section 3.7.2 provides additional information about function types.

1.3 Object Types

TypeScript programmers use object types to declare their expectations of object behavior. The following
code uses an object type literal to specify the return type of the ‘MakePoint’ function.

var MakePoint: () => {
X: number; y: number;

s

Programmers can give names to object types; we call named object types interfaces. For example, in the
following code, an interface declares one required field (name) and one optional field (favoriteColor).

interface Friend {
name: string;
favoriteColor?: string;

}

function add(friend: Friend) {
var name = friend.name;

}

add({ name: "Fred" }); // Ok
add({ favoriteColor: "blue" }); // Error, name required
add({ name: "Jill", favoriteColor: "green" }); // Ok

TypeScript object types model the diversity of behaviors that a JavaScript object can exhibit. For example,
the jQuery library defines an object, ‘$’, that has methods, such as ‘get’ (which sends an Ajax message),
and fields, such as ‘browser’ (which gives browser vendor information). However, jQuery clients can also
call '$" as a function. The behavior of this function depends on the type of parameters passed to the
function.

The following code fragment captures a small subset of jQuery behavior, just enough to use jQuery in a
simple way.

interface JQuery {
text(content: string);

interface JQueryStatic {
get(url: string, callback: (data: string) => any);
(query: string): 3JQuery;

}

declare var $: JQueryStatic;

$.get("http://mysite.org/divContent"”,
function (data: string) {
$("div").text(data);

)5

The "JQueryStatic’ interface references another interface: 'JQuery'. This interface represents a collection of
one or more DOM elements. The jQuery library can perform many operations on such a collection, but in
this example the jQuery client only needs to know that it can set the text content of each jQuery element
in a collection by passing a string to the "text’ method. The ‘JQueryStatic’ interface also contains a method,
‘get’, that performs an Ajax get operation on the provided URL and arranges to invoke the provided
callback upon receipt of a response.

Finally, the 'JQueryStatic’ interface contains a bare function signature
(query: string): JQuery;

The bare signature indicates that instances of the interface are callable. This example illustrates that
TypeScript function types are just special cases of TypeScript object types. Specifically, function types are
object types that contain one or more call signatures. For this reason we can write any function type as an
object type literal. The following example uses both forms to describe the same type.

var f: { (): string; };
var sameType: () => string = f; // Ok
var nope: () => number = sameType; // Error: type mismatch

We mentioned above that the '$’ function behaves differently depending on the type of its parameter. So
far, our jQuery typing only captures one of these behaviors: return an object of type 'JQuery’ when passed
a string. To specify multiple behaviors, TypeScript supports overloading of function signatures in object
types. For example, we can add an additional call signature to the ‘JQueryStatic’ interface.

(ready: () => any): any;

This signature denotes that a function may be passed as the parameter of the ‘$’ function. When a
function is passed to '$’, the jQuery library will invoke that function when a DOM document is ready.

Because TypeScript suppo
signatures with their docu

rts overloading, tools can use TypeScript to show all available function

mentation tips and to give the correct documentation once a function has been

called with a particular signature.

A typical client would not need to add any additional typing but could just use a community-supplied

typing to discover (throug

h statement completion with documentation tips) and verify (through static

checking) correct use of the library, as in the following screen shot.

$("div").h

< 2 2 @ & @ & & &

Section 3.3 provides additi

focus -
focusin

focusout

get

has

hasClass: (classMame: string) == bool

height
hide

hover -

onal information about object types.

1.4 Structural Subtyping

Object types are compared structurally. For example, in the code fragment below, class ‘CPoint” matches

interface 'Point’ because '‘CPoint’ has all of the required members of ‘Point’. A class may optionally declare
that it implements an interface, so that the compiler will check the declaration for structural compatibility.

The example also illustrate

s that an object type can match the type inferred from an object literal, as long

as the object literal supplies all of the required members.

interface Point {

X: number;
y: number;

}

function getX(p: Point) {

return p.x;

class CPoint {
X: number;
y: number;
constructor(x: number, y: number) {
this.x = x;
this.y = vy;

}

getX(new CPoint(@, ©)); // Ok, fields match
getX({ x: 9, y: 0, color: "red" }); // Extra fields Ok

getX({ x: @ }); // Error: supplied parameter does not match

See section 3.8 for more information about type comparisons.

1.5 Contextual Typing

Ordinarily, TypeScript type inference proceeds “bottom-up”: from the leaves of an expression tree to its
root. In the following example, TypeScript infers ‘'number’ as the return type of the function ‘'mul’ by
flowing type information bottom up in the return expression.

function mul(a: number, b: number) {
return a * b;

}

For variables and parameters without a type annotation or a default value, TypeScript infers type ‘any’,
ensuring that compilers do not need non-local information about a function’s call sites to infer the
function'’s return type. Generally, this bottom-up approach provides programmers with a clear intuition
about the flow of type information.

However, in some limited contexts, inference proceeds “top-down” from the context of an expression.
Where this happens, it is called contextual typing. Contextual typing helps tools provide excellent
information when a programmer is using a type but may not know all of the details of the type. For
example, in the jQuery example, above, the programmer supplies a function expression as the second
parameter to the ‘get’ method. During typing of that expression, tools can assume that the type of the
function expression is as given in the ‘get’ signature and can provide a template that includes parameter
names and types.

$.get("http://mysite.org/divContent"”,
function (data) {
$("div").text(data); // TypeScript infers data is a string

)5

Contextual typing is also useful for writing out object literals. As the programmer types the object literal,
the contextual type provides information that enables tools to provide completion for object member
names.

Section 4.19 provides additional information about contextually typed expressions.

16 Classes

JavaScript practice has at least two common design patterns: the module pattern and the class pattern.
Roughly speaking, the module pattern uses closures to hide names and to encapsulate private data, while
the class pattern uses prototype chains to implement many variations on object-oriented inheritance
mechanisms. Libraries such as ‘prototype.js’ are typical of this practice.

This section and the module section below will show how TypeScript emits consistent, idiomatic JavaScript
code to implement classes and modules that are closely aligned with the current ES6 proposal. The goal
of TypeScript's translation is to emit exactly what a programmer would type when implementing a class or
module unaided by a tool. This section will also describe how TypeScript infers a type for each class
declaration. We'll start with a simple BankAccount class.

class BankAccount {
balance = 0;
deposit(credit: number) {
this.balance += credit;
return this.balance;

}
This class generates the following JavaScript code.

var BankAccount = (function () {
function BankAccount() {
this.balance = 9;

}
BankAccount.prototype.deposit = function(credit) {

this.balance += credit;
return this.balance;

}s
return BankAccount;

NO;

This TypeScript class declaration creates a variable named ‘BankAccount’ whose value is the constructor
function for '‘BankAccount’ instances. This declaration also creates an instance type of the same name. If
we were to write this type as an interface it would look like the following.

interface BankAccount {
balance: number;
deposit(credit: number): number;

}

If we were to write out the function type declaration for the ‘BankAccount’ constructor variable, it would
have the following form.

var BankAccount: new() => BankAccount;

The function signature is prefixed with the keyword ‘new’ indicating that the ‘BankAccount’ function must
be called as a constructor. It is possible for a function’s type to have both call and constructor signatures.
For example, the type of the built-in JavaScript Date object includes both kinds of signatures.

If we want to start our bank account with an initial balance, we can add to the ‘BankAccount’ class a
constructor declaration.

class BankAccount {
balance: number;
constructor(initially: number) {
this.balance = initially;

}

deposit(credit: number) {
this.balance += credit;
return this.balance;

}

This version of the ‘BankAccount’ class requires us to introduce a constructor parameter and then assign it
to the 'balance’ field. To simplify this common case, TypeScript accepts the following shorthand syntax.

class BankAccount {
constructor(public balance: number) {

}

deposit(credit: number) {
this.balance += credit;
return this.balance;

}

The ‘public’ keyword denotes that the constructor parameter is to be retained as a field. Public is the
default accessibility for class members, but a programmer can also specify private or protected
accessibility for a class member. Accessibility is a design-time construct; it is enforced during static type
checking but does not imply any runtime enforcement.

TypeScript classes also support inheritance, as in the following example.

class CheckingAccount extends BankAccount {
constructor(balance: number) {
super(balance);

}
writeCheck(debit: number) {

this.balance -= debit;

}

In this example, the class ‘CheckingAccount’ derives from class ‘BankAccount’. The constructor for
‘CheckingAccount’ calls the constructor for class ‘BankAccount’ using the ‘super’ keyword. In the emitted
JavaScript code, the prototype of ‘CheckingAccount’ will chain to the prototype of ‘BankingAccount'.

TypeScript classes may also specify static members. Static class members become properties of the class
constructor.

Section 8 provides additional information about classes.

1.7 Enum Types

TypeScript enables programmers to summarize a set of numeric constants as an enum type. The example
below creates an enum type to represent operators in a calculator application.

enum Operator {
ADD,
DIV,
MUL,
SUB

}

function compute(op: Operator, a: number, b: number) {
console.log("the operator is" + Operator[op]);
//

}

In this example, the compute function logs the operator ‘op’ using a feature of enum types: reverse
mapping from the enum value (‘op’) to the string corresponding to that value. For example, the
declaration of ‘Operator’ automatically assigns integers, starting from zero, to the listed enum members.
Section 9 describes how programmers can also explicitly assign integers to enum members, and can use
any string to name an enum member.

If all enum members have explicitly assigned literal integers, or if an enum has all members automatically
assigned, the TypeScript compiler will emit for an enum member a JavaScript constant corresponding to
that member’s assigned value (annotated with a comment). This improves performance on many
JavaScript engines.

For example, the ‘compute’ function could contain a switch statement like the following.

10

switch (op) {
case Operator.ADD:
// execute add
break;
case Operator.DIV:
// execute div
break;
/] .
}

For this switch statement, the compiler will generate the following code.

switch (op) {
case © /* Operator.ADD */ :
// execute add
break;
case 1 /* Operator.DIV */ :
// execute div
break;
/] ...
}

JavaScript implementations can use these explicit constants to generate efficient code for this switch
statement, for example by building a jump table indexed by case value.

1.8 Overloading on String Parameters

An important goal of TypeScript is to provide accurate and straightforward types for existing JavaScript
programming patterns. To that end, TypeScript includes generic types, discussed in the next section, and
overloading on string parameters, the topic of this section.

JavaScript programming interfaces often include functions whose behavior is discriminated by a string
constant passed to the function. The Document Object Model makes heavy use of this pattern. For
example, the following screen shot shows that the ‘createElement’ method of the ‘document’ object has
multiple signatures, some of which identify the types returned when specific strings are passed into the
method.

document.createElement("span”

A 46 of 104 ¥ createElement(tagMame: "span”); HTMLSpanElement

The following code fragment uses this feature. Because the ‘span’ variable is inferred to have the type
'HTMLSpanElement’, the code can reference without static error the ‘isMultiline’ property of 'span’.

var span = document.createElement("span");
span.isMultiline = false; // OK: HTMLSpanElement has isMultiline property

11

In the following screen shot, a programming tool combines information from overloading on string
parameters with contextual typing to infer that the type of the variable ‘e’ is ‘MouseEvent’ and that
therefore ‘e’ has a ‘clientX’ property.

span.addeventListener("mouseleave™, function (e) {
e,

& cancelable -
cancelBubble
& CAPTURING_PHASE

F A clientX (property) MouseEvent.clientX: number
& clientY

& ctrikey

currentTarget

& defaultPrevented

& detail -

Section 3.7.2.4 provides details on how to use string literals in function signatures.

1.9 Generic Types and Functions

Like overloading on string parameters, generic types make it easier for TypeScript to accurately capture
the behavior of JavaScript libraries. Because they enable type information to flow from client code,
through library code, and back into client code, generic types may do more than any other TypeScript
feature to support detailed API descriptions.

To illustrate this, let's take a look at part of the TypeScript interface for the built-in JavaScript array type.
You can find this interface in the ‘lib.d.ts’ file that accompanies a TypeScript distribution.

interface Array<T> {
reverse(): T[];
sort(compareFn?: (a: T, b: T) => number): T[];
/...

}

Interface definitions, like the one above, can have one or more type parameters. In this case the ‘Array’
interface has a single parameter, ‘T', that defines the element type for the array. The ‘reverse’ method
returns an array with the same element type. The sort method takes an optional parameter, ‘compareFn’,
whose type is a function that takes two parameters of type 'T" and returns a number. Finally, sort returns
an array with element type ‘T'.

Functions can also have generic parameters. For example, the array interface contains a ‘map’ method,
defined as follows:

map<U>(func: (value: T, index: number, array: T[]) => U, thisArg?: any): U[];

12

The map method, invoked on an array ‘a’ with element type ‘T', will apply function ‘func’ to each element
of 'a’, returning a value of type 'U'".

The TypeScript compiler can often infer generic method parameters, making it unnecessary for the
programmer to explicitly provide them. In the following example, the compiler infers that parameter ‘U’ of
the map method has type ‘string’, because the function passed to map returns a string.

function numberToString(a: number[]) {
var stringArray = a.map(v => v.toString());
return stringArray;

}

The compiler infers in this example that the ‘'numberToString’ function returns an array of strings.

In TypeScript, classes can also have type parameters. The following code declares a class that implements
a linked list of items of type ‘T". This code illustrates how programmers can constrain type parameters to
extend a specific type. In this case, the items on the list must extend the type ‘NamedItem'. This enables
the programmer to implement the ‘log’ function, which logs the name of the item.

interface NamedItem {
name: string;

}

class List<T extends NamedItem> {
next: List<T> = null;

constructor(public item: T) {

}

insertAfter(item: T) {
var temp = this.next;
this.next = new List(item);
this.next.next = temp;

}

log() {
console.log(this.item.name);

}

//

}

Section 3.5 provides further information about generic types.

110 Modules

Classes and interfaces support large-scale JavaScript development by providing a mechanism for

describing how to use a software component that can be separated from that component's

implementation. TypeScript enforces encapsulation of implementation in classes at design time (by
13

restricting use of private and protected members), but cannot enforce encapsulation at runtime because
all object properties are accessible at runtime. Future versions of JavaScript may provide private names
which would enable runtime enforcement of private and protected members.

In the current version of JavaScript, the only way to enforce encapsulation at runtime is to use the module
pattern: encapsulate private fields and methods using closure variables. The module pattern is a natural
way to provide organizational structure and dynamic loading options by drawing a boundary around a
software component. A module can also provide the ability to introduce namespaces, avoiding use of the
global namespace for most software components.

The following example illustrates the JavaScript module pattern.

(function(exports) {
var key = generateSecretKey();
function sendMessage(message) {
sendSecureMessage (message, key);

}

exports.sendMessage = sendMessage;
}) (MessageModule) ;

This example illustrates the two essential elements of the module pattern: a module closure and a module
object. The module closure is a function that encapsulates the module’s implementation, in this case the
variable 'key’ and the function ‘sendMessage’. The module object contains the exported variables and
functions of the module. Simple modules may create and return the module object. The module above
takes the module object as a parameter, 'exports’, and adds the ‘'sendMessage’ property to the module
object. This augmentation approach simplifies dynamic loading of modules and also supports separation
of module code into multiple files.

The example assumes that an outer lexical scope defines the functions ‘generateSecretKey' and
‘'sendSecureMessage’; it also assumes that the outer scope has assigned the module object to the variable
'MessageModule'.

TypeScript modules provide a mechanism for succinctly expressing the module pattern. In TypeScript,
programmers can combine the module pattern with the class pattern by nesting modules and classes
within an outer module.

The following example shows the definition and use of a simple module.

module M {
var s = "hello";
export function f() {
return s;

}

M.f();
M.s; // Error, s is not exported
14

In this example, variable ‘s’ is a private feature of the module, but function 'f' is exported from the module
and accessible to code outside of the module. If we were to describe the effect of module ‘M’ in terms of
interfaces and variables, we would write

interface M {
f(): string;
}

var M: M;

The interface ‘M’ summarizes the externally visible behavior of module ‘M'. In this example, we can use the
same name for the interface as for the initialized variable because in TypeScript type names and variable
names do not conflict: each lexical scope contains a variable declaration space and type declaration space
(see section 2.3 for more details).

Module ‘M’ is an example of an internal module, because it is nested within the global module (see
section 10 for more details). The TypeScript compiler emits the following JavaScript code for this module.

var M;
(function(M) {
var s = "hello";
function f() {
return s;

}
M.f = f;

H M M={}));

In this case, the compiler assumes that the module object resides in global variable 'M’, which may or may
not have been initialized to the desired module object.

TypeScript also supports external modules, which are files that contain top-level export and import
directives. For this type of module the TypeScript compiler will emit code whose module closure and
module object implementation vary according to the specified dynamic loading system, for example, the
Asynchronous Module Definition system.

15

2 Basic Concepts

The remainder of this document is the formal specification of the TypeScript programming language and
is intended to be read as an adjunct to the ECMAScript Language Specification (specifically, the ECMA-

262 Standard, 5" Edition). This document describes the syntactic grammar added by TypeScript along
with the compile-time processing and type checking performed by the TypeScript compiler, but it only
minimally discusses the run-time behavior of programs since that is covered by the ECMAScript
specification.

2.1 Grammar Conventions

The syntactic grammar added by TypeScript language is specified throughout this document using the
existing conventions and production names of the ECMAScript grammar. In places where TypeScript
augments an existing grammar production it is so noted. For example:

CallExpression: (Modified)

super (ArgumentListo,:)
super . IdentifierName

The '(Modified)’ annotation indicates that an existing grammar production is being replaced, and the "...’
references the contents of the original grammar production.

Similar to the ECMAScript grammar, if the phrase “[no LineTerminator here]" appears in the right-hand
side of a production of the syntactic grammar, it indicates that the production is not a match if a
LineTerminator occurs in the input stream at the indicated position.

2.2 Namespaces and Named Types

TypeScript supports named types that can be organized in hierarchical namespaces. Namespaces are
introduced by module declarations and named types are introduced by class, interface, and enum
declarations. Named types are denoted by qualified names that extend from some root module (possibly
the global module) to the point of their declaration. The example

module X {
export module Y {
export interface Z { }

}

export interface Y { }

}

declares two interface types with the qualified names 'X.Y.Z" and ‘X.Y’ relative to the root module in which
‘X" is declared.

17

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

In a qualified type name all identifiers but the last one refer to namespaces and the last identifier refers to
a named type. Named type and namespace names are in separate declaration spaces and it is therefore
possible for a named type and a namespace to have the same name, as in the example above.

The hierarchy formed by namespace and named type names partially mirrors that formed by module
instances and members. The example

module A {
export module B {
export class C { }

}

introduces a named type with the qualified name ‘A.B.C’ and also introduces a constructor function that
can be accessed using the expression ‘A.B.C". Thus, in the example

var c: A.B.C = new A.B.C();

the two occurrences of ‘A.B.C' in fact refer to different entities. It is the context of the occurrences that
determines whether ‘A.B.C' is processed as a type name or an expression.

2.3 Declarations

Declarations introduce names in the declaration spaces to which they belong. It is an error to have two
names with same spelling in the same declaration space. Declaration spaces exist as follows:

e The global module and each external or internal module has a declaration space for variables
(including functions, modules, class constructor functions, and enum objects), a declaration space
for named types (classes, interfaces, and enums), and a declaration space for namespaces
(containers of named types). Every declaration (whether local or exported) in a module
contributes to one or more of these declaration spaces.

e Each external or internal module has a declaration space for exported members, a declaration
space for exported named types, and a declaration space for exported namespaces. All export
declarations in the module contribute to these declaration spaces. Each internal module’s export
declaration spaces are shared with other internal modules that have the same root module and
the same qualified name starting from that root module.

e Each class declaration has a declaration space for instance members, a declaration space for static
members, and a declaration space for type parameters.

e Each interface declaration has a declaration space for members and a declaration space for type
parameters. An interface’s declaration space is shared with other interfaces that have the same
root module and the same qualified name starting from that root module.

e Each enum declaration has a declaration space for its enum members. An enum'’s declaration
space is shared with other enums that have the same root module and the same qualified name
starting from that root module.

18

e Each function declaration (including constructor, member function, and member accessor
declarations) and each function expression has a declaration space for variables (parameters, local
variables, and local functions) and a declaration space for type parameters.

e Each object literal has a declaration space for its properties.

e Each object type literal has a declaration space for its members.

Top-level declarations in a source file with no top-level import or export declarations belong to the
global module. Top-level declarations in a source file with one or more top-level import or export
declarations belong to the external module represented by that source file.

An internal module declaration contributes a namespace name (representing a container of types) and
possibly a member name (representing the module instance) to the containing module. A class
declaration contributes both a member name (representing the constructor function) and a type name
(representing the class type) to the containing module. An interface declaration contributes a type name
to the containing module. An enum declaration contributes both a member name (representing the enum
object) and a type name (representing the enum type) to the containing module. Any other declaration
contributes a member name to the declaration space to which it belongs.

The parent module of an entity is defined as follows:

e The parent module of an entity declared in an internal module is that internal module.
e The parent module of an entity declared in an external module is that external module.
e The parent module of an entity declared in the global module is the global module.

e The parent module of an external module is the global module.

The root module of an entity is defined as follows:

e The root module of a non-exported entity is the entity’s parent module.
e The root module of an exported entity is the root module of the entity's parent module.

Intuitively, the root module of an entity is the outermost module body from within which the entity is
reachable.

Interfaces, enums, and internal modules are “open ended,” meaning that interface, enum, and internal
module declarations with the same qualified name relative to a common root are automatically merged.
For further details, see sections 7.2, 9.3, and 10.5.

Namespace, type, and member names exist in separate declaration spaces. Furthermore, declarations of
non-instantiated modules (modules that contain only interfaces or modules at all levels of nesting) do not
introduce a member name in their containing declaration space. This means that the following is
permitted, provided module ‘X’ contains only interface or module declarations at all levels of nesting:

19

module M {

module X { ... } // Namespace
interface X { ... } // Type
var X; // Member

}

If module X" above was an instantiated module (section 10.1) it would cause a member ‘X’ to be
introduced in ‘M’. This member would conflict with the variable ‘X' and thus cause an error.

Instance and static members in a class are likewise in separate declaration spaces. Thus the following is

permitted:
class C {
X: number; // Instance member
static x: string; // Static member
}
2.4 Scopes

The scope of a name is the region of program text within which it is possible to refer to the entity
declared by that name without qualification of the name. The scope of a name depends on the context in
which the name is declared. The contexts are listed below in order from outermost to innermost:

e The scope of an entity declared in the global module is the entire program text.

e The scope of an entity declared in an external module is the source file of that external module.

e The scope of an exported entity declared in an internal module is the body of that module and
every internal module with the same root and the same qualified name relative to that root.

e The scope of a non-exported entity declared within an internal module declaration is the body of
that internal module declaration.

e The scope of a type parameter declared in a class or interface declaration is that entire
declaration, including constraints, extends clause, implements clause, and declaration body, but
not including static member declarations.

e The scope of a member declared in an enum declaration is the body of that declaration and every
enum declaration with the same root and the same qualified name relative to that root.

e The scope of a type parameter declared in a call or construct signature is that entire signature
declaration, including constraints, parameter list, and return type. If the signature is part of a
function implementation, the scope includes the function body.

e The scope of a parameter, local variable, or local function declared within a function declaration
(including a constructor, member function, or member accessor declaration) or function
expression is the body of that function declaration or function expression.

Scopes may overlap, for example through nesting of modules and functions. When the scopes of two
entities with the same name overlap, the entity with the innermost declaration takes precedence and
access to the outer entity is either not possible or only possible by qualifying its name.

20

When an identifier is resolved as a TypeName (section 3.6.2), only classes, interfaces, enums, and type
parameters are considered and other entities in scope are ignored.

When an identifier is resolved as a ModuleName (section 3.6.2), only modules are considered and other
entities in scope are ignored.

When an identifier is resolved as a PrimaryExpression (section 4.3), only instantiated modules (section
10.1), classes, enums, functions, variables, and parameters are considered and other entities in scope are
ignored.

Note that class and enum members are never directly in scope—they can only be accessed by applying
the dot (") operator to a class instance or enum object. This even includes members of the current
instance in a constructor or member function, which are accessed by applying the dot operator to this.

As the rules above imply, locally declared entities in an internal module are closer in scope than exported
entities declared in other module declarations for the same internal module. For example:

var x = 1;

module M {
export var x = 2;
console.log(x); // 2
}
module M {
console.log(x); // 2
}
module M {
var x = 3;
console.log(x); // 3
}

21

3 Types

TypeScript adds optional static types to JavaScript. Types are used to place static constraints on program
entities such as functions, variables, and properties so that compilers and development tools can offer
better verification and assistance during software development. TypeScript's static compile-time type
system closely models the dynamic run-time type system of JavaScript, allowing programmers to
accurately express the type relationships that are expected to exist when their programs run and have
those assumptions pre-validated by the TypeScript compiler. TypeScript's type analysis occurs entirely at
compile-time and adds no run-time overhead to program execution.

All types in TypeScript are subtypes of a single top type called the Any type. The any keyword references
this type. The Any type is the one type that can represent any JavaScript value with no constraints. All
other types are categorized as primitive types, object types, or type parameters. These types introduce
various static constraints on their values.

The primitive types are the Number, Boolean, String, Void, Null, and Undefined types along with user
defined enum types. The number, boolean, string, and void keywords reference the Number, Boolean,
String, and Void primitive types respectively. The Void type exists purely to indicate the absence of a
value, such as in a function with no return value. It is not possible to explicitly reference the Null and
Undefined types—only values of those types can be referenced, using the null and undefined literals.

The object types are all class, interface, array, and literal types. Class and interface types are introduced
through class and interface declarations and are referenced by the name given to them in their
declarations. Class and interface types may be generic types which have one or more type parameters.
Literal types are written as object, array, function, or constructor type literals and are used to compose
new types from other types.

Declarations of modules, classes, properties, functions, variables and other language entities associate
types with those entities. The mechanism by which a type is formed and associated with a language entity
depends on the particular kind of entity. For example, a module declaration associates the module with an
anonymous type containing a set of properties corresponding to the exported variables and functions in
the module, and a function declaration associates the function with an anonymous type containing a call
signature corresponding to the parameters and return type of the function. Types can be associated with
variables through explicit type annotations, such as

var Xx: number;
or through implicit type inference, as in
var x = 1;
which infers the type of X’ to be the Number primitive type because that is the type of the value used to

initialize 'x’.

23

3.1 The Any Type

The Any type is used to represent any JavaScript value. A value of the Any type supports the same
operations as a value in JavaScript and minimal static type checking is performed for operations on Any
values. Specifically, properties of any name can be accessed through an Any value and Any values can be
called as functions or constructors with any argument list.

The any keyword references the Any type. In general, in places where a type is not explicitly provided and
TypeScript cannot infer one, the Any type is assumed.

The Any type is a supertype of all types, and is assignable to and from all types.

Some examples:

var X: any; // Explicitly typed

var y; // Same as y: any

var z: { a; b; }; // Same as z: { a: any; b: any; }
function f(x) { // Same as f(x: any): void

console.log(x);

}

3.2 Primitive Types

The primitive types are the Number, Boolean, String, Void, Null, and Undefined types and all user defined
enum types.

3.2.1 The Number Type

The Number primitive type corresponds to the similarly named JavaScript primitive type and represents
double-precision 64-bit format IEEE 754 floating point values.

The number keyword references the Number primitive type and numeric literals may be used to write
values of the Number primitive type.

For purposes of determining type relationships (section 3.8) and accessing properties (section 4.10), the
Number primitive type behaves as an object type with the same properties as the global interface type
‘Number'.

Some examples:

var X: number; // Explicitly typed
var y = 0; // Same as y: number = 0
var z = 123.456; // Same as z: number = 123.456

var s = z.toFixed(2); // Property of Number interface

24

3.2.2 The Boolean Type

The Boolean primitive type corresponds to the similarly named JavaScript primitive type and represents
logical values that are either true or false.

The boolean keyword references the Boolean primitive type and the true and false literals reference
the two Boolean truth values.

For purposes of determining type relationships (section 3.8) and accessing properties (section 4.10), the
Boolean primitive type behaves as an object type with the same properties as the global interface type
‘Boolean’.

Some examples:

var b: boolean; // Explicitly typed
var yes = true; // Same as yes: boolean = true
var no = false; // Same as no: boolean = false

3.2.3 The String Type

The String primitive type corresponds to the similarly named JavaScript primitive type and represents
sequences of characters stored as Unicode UTF-16 code units.

The string keyword references the String primitive type and string literals may be used to write values of
the String primitive type.

For purposes of determining type relationships (section 3.8) and accessing properties (section 4.10), the
String primitive type behaves as an object type with the same properties as the global interface type
'String’.

Some examples:

var s: string; // Explicitly typed
var empty = ""; // Same as empty: string = ""
var abc = 'abc'; // Same as abc: string = "abc"

var ¢ = abc.charAt(2); // Property of String interface

3.2.4 The Void Type

The Void type, referenced by the void keyword, represents the absence of a value and is used as the
return type of functions with no return value.

The only possible values for the Void type are null and undefined. The Void type is a subtype of the Any
type and a supertype of the Null and Undefined types, but otherwise Void is unrelated to all other types.

NOTE: We might consider disallowing declaring variables of type Void as they serve no useful purpose.
However, because Void is permitted as a type argument to a generic type or function it is not feasible to
disallow Void properties or parameters.

25

3.2.5 The Null Type

The Null type corresponds to the similarly named JavaScript primitive type and is the type of the null
literal.

The null literal references the one and only value of the Null type. It is not possible to directly reference
the Null type itself.

The Null type is a subtype of all types, except the Undefined type. This means that null is considered a
valid value for all primitive types, object types, and type parameters, including even the Number and
Boolean primitive types.

Some examples:

var n: number = null; // Primitives can be null
var x = null; // Same as x: any = null
var e: Null; // Error, can't reference Null type

3.2.6 The Undefined Type

The Undefined type corresponds to the similarly named JavaScript primitive type and is the type of the
undefined literal.

The undefined literal denotes the value given to all uninitialized variables and is the one and only value
of the Undefined type. It is not possible to directly reference the Undefined type itself.

The undefined type is a subtype of all types. This means that undefined is considered a valid value for all
primitive types, object types, and type parameters.

Some examples:

var n: number; // Same as n: number = undefined
var x = undefined; // Same as x: any = undefined
var e: Undefined; // Error, can't reference Undefined type

3.2.7 Enum Types

Enum types are distinct user defined subtypes of the Number primitive type. Enum types are declared
using enum declarations (section 9.1) and referenced using type references (section 3.6.2).

Enum types are assignable to the Number primitive type, and vice versa, but different enum types are not
assignable to each other.

3.2.8 String Literal Types

Specialized signatures (section 3.7.2.4) permit string literals to be used as types in parameter type
annotations. String literal types are permitted only in that context and nowhere else.

All string literal types are subtypes of the String primitive type.

26

3.3 Object Types

Object types are composed from properties, call signatures, construct signatures, and index signatures,
collectively called members.

Class and interface type references, array types, tuple types, function types, and constructor types are all
classified as object types. Multiple constructs in the TypeScript language create object types, including:

e Object type literals (section 3.6.3).

e Array type literals (section 3.6.4).

e Tuple type literals (section 3.6.5).

e Function type literals (section 3.6.6).

e Constructor type literals (section 3.6.7).

e Object literals (section 4.5).

e Array literals (section 4.6).

e Function expressions (section 4.9) and function declarations (6.1).

e Constructor function types created by class declarations (section 8.2.5).
e Module instance types created by module declarations (section 10.3).

3.3.1 Named Type References

Type references (section 3.6.2) to class and interface types are classified as object types. Type references
to generic class and interface types include type arguments that are substituted for the type parameters
of the class or interface to produce an actual object type.

3.3.2 Array Types

Array types represent JavaScript arrays with a common element type. Array types are named type
references created from the generic interface type ‘Array’ in the global module with the array element
type as a type argument. Array type literals (section Error! Reference source not found.) provide a
horthand notation for creating such references.

The declaration of the ‘Array’ interface includes a property ‘length’ and a numeric index signature for the
element type, along with other members:

interface Array<T> {
length: number;
[x: number]: T;
// Other members
}

Array literals (section 4.6) may be used to create values of array types. For example

var a: string[] = ["hello", "world"];

27

3.3.3 Tuple Types

Tuple types represent JavaScript arrays with individually tracked element types. Tuple types are written
using tuple type literals (section 3.6.5). A tuple type combines a set of numerically named properties with
the members of an array type. Specifically, a tuple type

[To, T1, ..., Tn]

combines the set of properties

{
0: To;
1: T1;
n: Tn;
}

with the members of an array type whose element type is the best common type (section 3.10) of the
tuple element types.

Array literals (section 4.6) may be used to create values of tuple types. For example

var t: [number, string] = [1, "one"];

3.3.4 Function Types

An object type containing one or more call signatures is said to be a function type. Function types may
be written using function type literals (section 3.6.6) or by including call signatures in object type literals.

3.3.5 Constructor Types

An object type containing one or more construct signatures is said to be a constructor type. Constructor
types may be written using constructor type literals (section 3.6.7) or by including construct signatures in
object type literals.

3.3.6 Members

Every object type is composed from zero or more of the following kinds of members:

e Properties, which define the names and types of the properties of objects of the given type.
Property names are unique within their type.

e Call signatures, which define the possible parameter lists and return types associated with
applying call operations to objects of the given type.

e Construct signatures, which define the possible parameter lists and return types associated with
applying the new operator to objects of the given type.

e Index signatures, which define type constraints for properties in the given type. An object type
can have at most one string index signature and one numeric index signature.

Properties are either public, private, or protected and are either required or optional:
28

e Properties in a class declaration may be designated public, private, or protected, while properties
declared in other contexts are always considered public. Private members are only accessible
within their declaring class, as described in section 8.2.2, and private properties match only
themselves in subtype and assignment compatibility checks, as described in section 3.8. Protected
members are only accessible within their declaring class and classes derived from it, as described
in section 8.2.2, and protected properties match only themselves and overrides in subtype and
assignment compatibility checks, as described in section 3.8.

e Properties in an object type literal or interface declaration may be designated required or
optional, while properties declared in other contexts are always considered required. Properties
that are optional in the target type of an assignment may be omitted from source objects, as
described in section 3.8.4.

Call and construct signatures may be specialized (section 3.7.2.4) by including parameters with string
literal types. Specialized signatures are used to express patterns where specific string values for some
parameters cause the types of other parameters or the function result to become further specialized.

3.4 Type Parameters

A type parameter represents an actual type that the parameter is bound to in a generic type reference or
a generic function call. Type parameters have constraints that establish upper bounds for their actual type
arguments.

Since a type parameter represents a multitude of different type arguments, type parameters have certain
restrictions compared to other types. In particular, a type parameter cannot be used as a base class or
interface.

341 Type Parameter Lists

Class, interface, and function declarations may optionally include lists of type parameters enclosed in <
and > brackets. Type parameters are also permitted in call signatures of object, function, and constructor
type literals.

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter
TypeParameterList , TypeParameter

TypeParameter:
Identifier Constraint,;

Constraint:
extends Type

29

Type parameter names must be unique. A compile-time error occurs if two or more type parameters in
the same TypeParameterList have the same name.

The scope of a type parameter extends over the entire declaration with which the type parameter list is
associated, with the exception of static member declarations in classes.

Each type parameter has an associated type parameter constraint that establishes an upper bound for
type arguments. Omitting a constraint corresponds to specifying the empty object type {}. Type
parameters declared in a particular type parameter list may not be referenced in constraints in that type
parameter list.

The base constraint of a type parameter T is defined as follows:

e If T has no declared constraint, T's base constraint is the empty object type {}.
e |If T's declared constraint is a type parameter, T's base constraint is that of the type parameter.
e Otherwise, T's base constraint is T's declared constraint.

In the example

interface G<T, U extends Function> {
f<V extends U>(x: V): V;

}

the base constraint of 'T" is the empty object type, and the base constraint of ‘U’ and 'V is ‘Function’.

For purposes of determining type relationships (section 3.8), type parameters appear to be subtypes of
their base constraint. Likewise, in property accesses (section 4.10), new operations (section 4.11), and
function calls (section 4.12), type parameters appear to have the members of their base constraint, but no
other members.

3.4.2 Type Argument Lists

A type reference (section 3.6.2) to a generic type must include a list of type arguments enclosed in angle
brackets and separated by commas. Similarly, a call (section 4.12) to a generic function may explicitly
include a type argument list instead of relying on type inference.

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument
TypeArgumentlist , TypeArgument

TypeArgument:
Type

30

Type arguments correspond one-to-one with type parameters of the generic type or function being
referenced. A type argument list is required to specify exactly one type argument for each corresponding
type parameter, and each type argument is required to satisfy the constraint of its corresponding type
parameter. A type argument satisfies a type parameter constraint if the type argument is assignable to
(section 3.8.4) the constraint type once type arguments are substituted for type parameters.

Given the declaration
interface G<T, U extends Function> { }

a type reference of the form ‘G<A, B> places no requirements on ‘A’ but requires ‘B’ to be assignable to
'Function’.

The process of substituting type arguments for type parameters in a generic type or generic signature is
known as instantiating the generic type or signature. Instantiation of a generic type or signature can fail
if the supplied type arguments do not satisfy the constraints of their corresponding type parameters.

3.5 Named Types

Class, interface, and enum types are named types that are introduced through class declarations (section
8.1), interface declarations (section 7.1), and enum declarations (9.1). Class and interface types may have
type parameters and are then called generic types. Conversely, named types without type parameters are
called non-generic types.

Interface declarations only introduce named types, whereas class declarations introduce named types and
constructor functions that create instances of implementations of those named types. The named types
introduced by class and interface declarations have only minor differences (classes can’t declare optional
members and interfaces can't declare private or protected members) and are in most contexts
interchangeable. In particular, class declarations with only public members introduce named types that
function exactly like those created by interface declarations.

Named types are referenced through type references (section 3.6.2) that specify a type name and, if
applicable, the type arguments to be substituted for the type parameters of the named type.

Named types are technically not types—only references to named types are. This distinction is particularly
evident with generic types: Generic types are “templates” from which multiple actual types can be created
by writing type references that supply type arguments to substitute in place of the generic type’s type
parameters. This substitution process is known as instantiating a generic type. Only once a generic type
is instantiated does it denote an actual type.

TypeScript has a structural type system, and therefore an instantiation of a generic type is
indistinguishable from an equivalent manually written expansion. For example, given the declaration

interface Pair<T1l, T2> { first: T1; second: T2; }

the type reference

31

Pair<string, Entity>
is indistinguishable from the type

{ first: string; second: Entity; }

3.51 Instance Types

Each named type has an associated actual type known as the instance type. For a non-generic type, the
instance type is simply a type reference to the non-generic type. For a generic type, the instance type is an
instantiation of the generic type where each of the type arguments is the corresponding type parameter.
Since the instance type uses the type parameters it can be used only where the type parameters are in
scope—that is, inside the declaration of the generic type. Within the constructor and instance member
functions of a class, the type of this is the instance type of the class.

The following example illustrates the concept of an instance type:

class G<T> { // Introduce type parameter T
self: G<T>; // Use T as type argument to form instance type
fO {

this.self = this; // self and this are both of type G<T>

3.6 Specifying Types
Types are specified either by referencing their keyword or name, or by writing object type literals, array
type literals, tuple type literals, function type literals, constructor type literals, or type queries.

Type:
PredefinedType
TypeReference
ObjectType
ArrayType
TupleType
FunctionType
ConstructorType

TypeQuery

The different forms of type notations are described in the following sections.

3.6.1 Predefined Types

The any, number, boolean, string, and void keywords reference the Any type and the Number, Boolean,
String, and Void primitive types respectively.

32

PredefinedType:
any
number
boolean
string
void

The predefined type keywords are reserved and cannot be used as names of user defined types.

3.6.2 Type References

A type reference references a named type or type parameter through its name and, in the case of a
generic type, supplies a type argument list.

TypeReference:
TypeName [no LineTerminator here] TypeArgumentsg,;

TypeName:
Identifier
ModuleName . Identifier

ModuleName:
Identifier
ModuleName . Identifier

A TypeReference consists of a TypeName that a references a named type or type parameter. A reference to
a generic type must be followed by a list of TypeArguments (section 3.4.2).

Resolution of a TypeName consisting of a single identifier is described in section 2.4.

Resolution of a TypeName of the form M.N, where M is a ModuleName and N is an Identifier, proceeds by
first resolving the module name M. If the resolution of M is successful and the resulting module contains
an exported named type N, then M.N refers to that member. Otherwise, M.N is undefined.

Resolution of a ModuleName consisting of a single identifier is described in section 2.4.

Resolution of a ModuleName of the form M.N, where M is a ModuleName and N is an Identifier, proceeds
by first resolving the module name M. If the resolution of M is successful and the resulting module
contains an exported module member N, then M.N refers to that member. Otherwise, M.N is undefined.

A type reference to a generic type is required to specify exactly one type argument for each type
parameter of the referenced generic type, and each type argument must be assignable to (section 3.8.4)
the constraint of the corresponding type parameter or otherwise an error occurs. An example:

interface A { a: string; }

interface B extends A { b: string; }

33

interface C extends B { c: string; }

interface G<T, U extends B> {

x: T;
y: U;
}
var vl: G<A, C>; // Ok
var v2: G<{ a: string }, C>; // Ok, equivalent to G<A, C>
var v3: G<A, A>; // Error, A not valid argument for U
var v4: G<G<A, B>, C>; // Ok
var v5: G<any, any>; // Ok
var vé6: G<any>; // Error, wrong number of arguments
var v7: G; // Error, no arguments

A type argument is simply a Type and may itself be a type reference to a generic type, as demonstrated by
‘'v4' in the example above.

As described in section 3.5, a type reference to a generic type G designates a type wherein all occurrences
of G's type parameters have been replaced with the actual type arguments supplied in the type reference.
For example, the declaration of ‘'v1’ above is equivalent to:

var vil: {

x: { a: string; }

y: { a: string; b: string; c: string };
}s

3.6.3 Object Type Literals

An object type literal defines an object type by specifying the set of members that are statically
considered to be present in instances of the type. Object type literals can be given names using interface
declarations but are otherwise anonymous.

ObjectType:
{ TypeBodyop: }

TypeBody:
TypeMemberlList ;o

TypeMemberList:
TypeMember
TypeMemberlList ; TypeMember

34

TypeMember:
PropertySignature
CallSignature
ConstructSignature
IndexSignature
MethodSignature

The members of an object type literal are specified as a combination of property, call, construct, index,
and method signatures. Object type members are described in section 3.7.

3.6.4 Array Type Literals

An array type literal is written as an element type followed by an open and close square bracket.

ArrayType:
ElementType [no LineTerminator here] []

ElementType:
PredefinedType
TypeReference
ObjectType
ArrayType
TupleType
TypeQuery

An array type literal references an array type (section 3.3.2) with the given element type. An array type
literal is simply shorthand notation for a reference to the generic interface type ‘Array’ in the global
module with the element type as a type argument.

In order to avoid grammar ambiguities, array type literals permit only a restricted set of notations for the
element type. Specifically, an ArrayType cannot start with a FunctionType or ConstructorType. To use one
of those forms for the element type, an array type must be written using the ‘Array<T>" notation. For
example, the type

() => string[]

denotes a function returning a string array, not an array of functions returning string. The latter can be
expressed using 'Array<T>' notation

Array<() => string>
or by writing the element type as an object type literal

{ O: string }[]

35

3.6.5 Tuple Type Literals

A tuple type literal is written as a sequence of element types, separated by commas and enclosed in
square brackets.

TupleType:
[TupleElementTypes]

TupleElementTypes:
TupleElementType
TupleElementTypes , TupleElementType

TupleElementType:
Type

A tuple type literal references a tuple type (section 3.3.3).

3.6.6 Function Type Literals

A function type literal specifies the type parameters, regular parameters, and return type of a call
signature.

FunctionType:
TypeParameters,,; (ParameterlList,,;) => Type

A function type literal is shorthand for an object type containing a single call signature. Specifically, a
function type literal of the form

< T1, T2, ... > (pl, p2, ...) =>R
is exactly equivalent to the object type literal
{<T1, T2, ... > (pl, p2, ...) : R}

Note that function types with multiple call or construct signatures cannot be written as function type
literals but must instead be written as object type literals.

3.6.7 Constructor Type Literals

A constructor type literal specifies the type parameters, regular parameters, and return type of a construct
signature.

ConstructorType:
new TypeParameters,, (ParameterList,,,) => Type

A constructor type literal is shorthand for an object type containing a single construct signature.
Specifically, a constructor type literal of the form

new < T1, T2, ... > (p1, p2, ...) => R

36

is exactly equivalent to the object type literal
{ new < T1, T2, ... > (p1, p2, ...) : R}

Note that constructor types with multiple construct signatures cannot be written as constructor type
literals but must instead be written as object type literals.

3.6.8 Type Queries

A type query obtains the type of an expression.

TypeQuery:
typeof TypeQueryExpression

TypeQueryExpression:
Identifier
TypeQueryExpression . IdentifierName

A type query consists of the keyword typeof followed by an expression. The expression is restricted to a
single identifier or a sequence of identifiers separated by periods. The expression is processed as an
identifier expression (section 4.3) or property access expression (section 4.10), the widened type (section
3.9) of which becomes the result. Similar to other static typing constructs, type queries are erased from
the generated JavaScript code and add no run-time overhead.

Type queries are useful for capturing anonymous types that are generated by various constructs such as
object literals, function declarations, and module declarations. For example:

var a = { x: 10, y: 20 };
var b: typeof a;

Above, 'b’" is given the same type as ‘a’, namely ‘{ x: number; y: number; }'.

If a declaration includes a type annotation that references the entity being declared through a circular
path of type queries or type references containing type queries, the resulting type is the Any type. For
example, all of the following variables are given the type Any:

var c: typeof c;
var d: typeof e;
var e: typeof d;
var f: Array<typeof f>;

However, if a circular path of type queries includes at least one ObjectType, FunctionType or
ConstructorType, the construct denotes a recursive type:

var g: { x: typeof g; };
var h: () => typeof h;

Here, ‘g’ and 'g.x" have the same recursive type, and likewise 'h" and 'h()’ have the same recursive type.

37

3.7 Specifying Members

The members of an object type literal (section 3.6.3) are specified as a combination of property, call,
construct, index, and method signatures.

3.7.1 Property Signatures

A property signature declares the name and type of a property member.

PropertySignature:
PropertyName ?., TypeAnnotationyp

PropertyName:
IdentifierName
StringlLiteral
NumericLiteral

The PropertyName production, reproduced above from the ECMAScript grammar, permits a property
name to be any identifier (including a reserved word), a string literal, or a numeric literal. String literals can
be used to give properties names that are not valid identifiers, such as names containing blanks. Numeric
literal property names are equivalent to string literal property names with the string representation of the
numeric literal, as defined in the ECMAScript specification.

The PropertyName of a property signature must be unique within its containing type. If the property name
is followed by a question mark, the property is optional. Otherwise, the property is required.

If a property signature omits a TypeAnnotation, the Any type is assumed.

3.7.2 Call Signatures

A call signature defines the type parameters, parameter list, and return type associated with applying a
call operation (section 4.12) to an instance of the containing type. A type may overload call operations by
defining multiple different call signatures.

CallSignature:
TypeParameters,,; (ParameterlList,,;) TypeAnnotationyp

A call signature that includes TypeParameters (section 3.4.1) is called a generic call signature. Conversely,
a call signature with no TypeParameters is called a non-generic call signature.

As well as being members of object type literals, call signatures occur in method signatures (section 3.7.5),
function expressions (section 4.9), and function declarations (section 6.1).

An object type containing call signatures is said to be a function type.

38

3.7.21 Type Parameters

Type parameters (section 3.4.1) in call signatures provide a mechanism for expressing the relationships of
parameter and return types in call operations. For example, a signature might introduce a type parameter
and use it as both a parameter type and a return type, in effect describing a function that returns a value

of the same type as its argument.

Type parameters may be referenced in parameter types and return type annotations, but not in type
parameter constraints, of the call signature in which they are introduced.

Type arguments (section 3.4.2) for call signature type parameters may be explicitly specified in a call
operation or may, when possible, be inferred (section 4.12.2) from the types of the regular arguments in
the call. An instantiation of a generic call signature for a particular set of type arguments is the call
signature formed by replacing each type parameter with its corresponding type argument.

Some examples of call signatures with type parameters follow below.

A function taking an argument of any type, returning a value of that same type:
<T>(x: T): T

A function taking two values of the same type, returning an array of that type:
<T>(x: T, y: T): T[]

A function taking two arguments of different types, returning an object with properties 'x" and 'y’ of those
types:

<T, Us(x: T, y: U): { x: T; y: U; }

A function taking an array of one type and a function argument, returning an array of another type, where
the function argument takes a value of the first array element type and returns a value of the second array
element type:

<T, U>(a: T[], f: (x: T) => U): U[]

3.7.2.2 Parameter List

A signature’s parameter list consists of zero or more required parameters, followed by zero or more
optional parameters, finally followed by an optional rest parameter.

39

ParameterlList:
RequiredParameterList
OptionalParameterList
RestParameter
RequiredParameterList , OptionalParameterList
RequiredParameterList , RestParameter
OptionalParameterList , RestParameter
RequiredParameterList , OptionalParameterList

RequiredParameterList:
RequiredParameter
RequiredParameterList , RequiredParameter

RequiredParameter:
AccessibilityModlifier,,; Identifier TypeAnnotation
Identifier : StringlLiteral

AccessibilityModifier:
public
private
protected

OptionalParameterlList:
OptionalParameter
OptionalParameterList , OptionalParameter

OptionalParameter:

RestParameter

AccessibilityModifier,p: Identifier ? TypeAnnotationyp

AccessibilityModifier,,: Identifier TypeAnnotation,,: Initialiser

Identifier ? : Stringliteral

RestParameter:
Identifier TypeAnnotationp;

parameter list of a Constructorimplementation (section 8.3.1).

parameter must denote an array type.

parameter, in which case it is considered to be of type any[].

40

Parameter names must be unique. A compile-time error occurs if two or more parameters have the same

A parameter is permitted to include a public, private, or protected modifier only if it occurs in the

A parameter with a type annotation is considered to be of that type. A type annotation for a rest

A parameter with no type annotation or initializer is considered to be of type any, unless it is a rest

When a parameter type annotation specifies a string literal type, the containing signature is a specialized
signature (section 3.7.2.4). Specialized signatures are not permitted in conjunction with a function body,
i.e. the FunctionExpression, Functionlmplementation, MemberFunctionImplementation, and
Constructormplementation grammar productions do not permit parameters with string literal types.

A parameter can be marked optional by following its name with a question mark (?) or by including an
initializer. The form that includes an initializer is permitted only in conjunction with a function body, i.e.
only in a FunctionExpression, Functionlmplementation, MemberFunctionImplementation, or
Constructorlmplementation grammar production.

3.7.2.3 Return Type

If present, a call signature’s return type annotation specifies the type of the value computed and returned
by a call operation. A void return type annotation is used to indicate that a function has no return value.

When a call signature with no return type annotation occurs in a context without a function body, the
return type is assumed to be the Any type.

When a call signature with no return type annotation occurs in a context that has a function body
(specifically, a function implementation, a member function implementation, or a member accessor
declaration), the return type is inferred from the function body as described in section 6.3.

3.7.2.4 Specialized Signatures

When a parameter type annotation specifies a string literal type (section 3.2.8), the containing signature is
considered a specialized signature. Specialized signatures are used to express patterns where specific
string values for some parameters cause the types of other parameters or the function result to become
further specialized. For example, the declaration

interface Document {
createElement(tagName: "div"): HTMLDivElement;
createElement(tagName: "span"): HTMLSpanElement;
createElement(tagName: "canvas"): HTMLCanvasElement;
createElement(tagName: string): HTMLElement;

}

states that calls to ‘createElement’ with the string literals “div”, “span”, and “canvas” return values of type
'HTMLDivElement’, 'HTMLSpanElement’, and ‘"HTMLCanvasElement’ respectively, and that calls with all
other string expressions return values of type '"HTMLElement'.

When writing overloaded declarations such as the one above it is important to list the non-specialized
signature last. This is because overload resolution (section 4.12.1) processes the candidates in declaration
order and picks the first one that matches.

Every specialized call or construct signature in an object type must be assignable to at least one non-

specialized call or construct signature in the same object type (where a call signature A is considered

assignable to another call signature B if an object type containing only A would be assignable to an object
41

type containing only B). For example, the ‘createElement’ property in the example above is of a type that
contains three specialized signatures, all of which are assignable to the non-specialized signature in the

type.

3.7.3 Construct Signatures

A construct signature defines the parameter list and return type associated with applying the new
operator (section 4.11) to an instance of the containing type. A type may overload new operations by
defining multiple construct signatures with different parameter lists.

ConstructSignature:
new TypeParametersy, (ParameterList,,) TypeAnnotation,

The type parameters, parameter list, and return type of a construct signature are subject to the same rules
as a call signature.

A type containing construct signatures is said to be a constructor type.

3.7.4 Index Signatures

An index signature defines a type constraint for properties in the containing type.

IndexSignature:
[Identifier : string] TypeAnnotation
[[Identifier : number] TypeAnnotation

There are two kinds of index signatures:

e String index signatures, specified using index type string, define type constraints for all
properties and numeric index signatures in the containing type. Specifically, in a type with a string
index signature of type T, all properties and numeric index signatures must have types that are
assignable to T.

e Numeric index signatures, specified using index type number, define type constraints for all
numerically named properties in the containing type. Specifically, in a type with a numeric index
signature of type T, all numerically named properties must have types that are assignable to T.

A numerically named property is a property whose name is a valid numeric literal. Specifically, a
property with a name N for which ToNumber(N) is not NaN, where ToNumber is the abstract operation
defined in ECMAScript specification.

An object type can contain at most one string index signature and one numeric index signature.

Index signatures affect the determination of the type that results from applying a bracket notation
property access to an instance of the containing type, as described in section 4.10.

3.7.5 Method Signatures

A method signature is shorthand for declaring a property of a function type.
42

MethodSignature:
PropertyName ?,, CallSignature

If the identifier is followed by a question mark, the property is optional. Otherwise, the property is
required. Only object type literals and interfaces can declare optional properties.

A method signature of the form
f<T1, 72, ... > (pl, p2, ...) : R
is equivalent to the property declaration
f: {<T1, T2, ... > (pl, p2, ...) : R}

A literal type may overload a method by declaring multiple method signatures with the same name but
differing parameter lists. Overloads must either all be required (question mark omitted) or all be optional
(question mark included). A set of overloaded method signatures correspond to a declaration of a single
property with a type composed from an equivalent set of call signatures. Specifically

f<T1, T2, ... > (pl, p2, ...) : R ;
f<Ul, U2, ... > (91, g2, ...) : S ;

is equivalent to
f o {

< T1, T2, ... > (pl, p2, ...) : R
< U1, U2, ... > (g1, 92, ...) : S ;

Y

In the following example of an object type

{
funcl(x: number): number; // Method signature
func2: (x: number) => number; // Function type literal
func3: { (x: number): number }; // Object type literal

}

the properties ‘func?’, ‘func2’, and ‘func3’ are all of the same type, namely an object type with a single call
signature taking a number and returning a number. Likewise, in the object type

43

func4(x: number): number;
func4(s: string): string;
func5: {
(x: number): number;
(s: string): string;
}s
}

the properties ‘func4’ and ‘func5’ are of the same type, namely an object type with two call signatures
taking and returning number and string respectively.

3.8 Type Relationships

Types in TypeScript have identity, subtype, supertype, and assignment compatibility relationships as
defined in the following sections.

For purposes of determining type relationships, all object types appear to have the members of the
'‘Object’ interface unless those members are hidden by members with the same name in the object types,
and object types with one or more call or construct signatures appear to have the members of the
‘Function’ interface unless those members are hidden by members with the same name in the object
types. Apparent types (section 3.8.1) that are object types appear to have these extra members as well.

3.81 Apparent Type

In certain contexts a type appears to have the characteristics of a related type called the type's apparent
type. Specifically, a type's apparent type is used when determining subtype, supertype, and assignment
compatibility relationships, as well as in the type checking of property accesses (section 4.10), new
operations (section 4.11), and function calls (section 4.12).

The apparent type of a type T is defined as follows:

e If Tis the primitive type Number, Boolean, or String, the apparent type of T is the augmented
form (as defined below) of the global interface type ‘Number’, ‘Boolean’, or ‘String'.

e if Tis an enum type, the apparent type of T is the augmented form of the global interface type
‘Number'.

e If Tis an object type, the apparent type of T is the augmented form of T.

e If Tis a type parameter, the apparent type of T is the apparent type of T's base constraint (section
34.7).

e Otherwise, the apparent type of T is T itself.

The augmented form of an object type T adds to T those properties of the global interface type ‘Object’
that aren’t hidden by properties in T. Furthermore, if T has one or more call or construct signatures, the
augmented form of T adds to T the properties of the global interface type ‘Function’ that aren't hidden by
properties in T. Properties in T hide ‘Object’ or ‘Function’ interface properties with the same name.

44

In effect, a type’s apparent type is a subtype of the ‘Object’ or ‘Function’ interface unless the type defines
members that are incompatible with those of the ‘Object’ or ‘Function’ interface—which, for example,
occurs if the type defines a property with the same name as a property in the ‘Object’ or "Function’
interface but with a type that isn't a subtype of that in the ‘Object’ or ‘Function’ interface.

Some examples:

var o: Object = { x: 10, y: 20 }; // Ok
var f: Function = (x: number) => x * x; // Ok
var err: Object = { toString: 0 }; // Error

The last assignment is an error because the apparent type of the object literal has a ‘toString’ method that
isn't compatible with that of ‘Object’.

3.8.2 Type and Member Identity

Two types are considered identical when

e they are both the Any type,

e they are the same primitive type,

e they are the same type parameter, or

e they are object types with identical sets of members.

Two members are considered identical when

e they are public properties with identical names, optionality, and types,

e they are private or protected properties originating in the same declaration and having identical
types,

e they are identical call signatures,

e they are identical construct signatures, or

e they are index signatures of identical kind with identical types.

Two call or construct signatures are considered identical when they have the same number of type
parameters with identical type parameter constraints and, after substituting type Any for the type
parameters introduced by the signatures, identical number of parameters with identical kind (required,
optional or rest) and types, and identical return types.

Note that, except for primitive types and classes with private or protected members, it is structure, not
naming, of types that determines identity. Also, note that parameter names are not significant when
determining identity of signatures.

Private and protected properties match only if they originate in the same declaration and have identical
types. Two distinct types might contain properties that originate in the same declaration if the types are
separate parameterized references to the same generic class. In the example

class C<T> { private x: T; }

45

interface X { f(): string; }

interface Y { f(): string; }

var a: CX>;
var b: C<Y>;

the variables ‘a’ and ‘b’ are of identical types because the two type references to ‘C' create types with a

private member ‘x’ that originates in the same declaration, and because the two private 'x’ members have

types with identical sets of members once the type arguments ‘X’ and ‘Y are substituted.

3.8.3 Subtypes and Supertypes

Sis a subtype of a type T, and T is a supertype of S, if one of the following is true, where S' denotes the

apparent type (section 3.8.1) of S:

e Sand T are identical types.

e Tisthe Any type.

e Sisthe Undefined type.

e Sisthe Null type and T is not the Undefined type.

e Sisanenum type and T is the primitive type Number.

e Sisastring literal type and T is the primitive type String.

e Sand T are type parameters, and S is directly or indirectly constrained to T.

e S’and T are object types and, for each member M in T, one of the following is true:

o Mis aproperty and S’ contains a property N where

M and N have the same name,

the type of N is a subtype of that of M,

if M is a required property, N is also a required property, and

M and N are both public, M and N are both private and originate in the same
declaration, M and N are both protected and originate in the same declaration, or
M is protected and N is declared in a class derived from the class in which M is
declared.

o Mis an optional property and S’ contains no property of the same name as M.

o Mis anon-specialized call or construct signature and S’ contains a call or construct

signature N where, when M and N are instantiated using type Any as the type argument

for all type parameters declared by M and N (if any),

the signatures are of the same kind (call or construct),

M has a rest parameter or the number of non-optional parameters in N is less
than or equal to the total number of parameters in M,

for parameter positions that are present in both signatures, each parameter type
in N is a subtype or supertype of the corresponding parameter type in M, and
the result type of M is Void, or the result type of N is a subtype of that of M.

o Mis astring index signature of type U and S’ contains a string index signature of a type

that is a subtype of U.

46

o Mis a numeric index signature of type U and S’ contains a string or numeric index
signature of a type that is a subtype of U.

When comparing call or construct signatures, parameter names are ignored and rest parameters
correspond to an unbounded expansion of optional parameters of the rest parameter element type.

Note that specialized call and construct signatures (section 3.7.2.4) are not significant when determining
subtype and supertype relationships.

Also note that type parameters are not considered object types. Thus, the only subtypes of a type
parameter T are T itself and other type parameters that are directly or indirectly constrained to T.

3.8.4 Assignment Compatibility

Types are required to be assignment compatible in certain circumstances, such as expression and variable
types in assignment statements and argument and parameter types in function calls.

Sis assignable to a type T, and T is assignable from S, if one of the following is true, where S’ denotes
the apparent type (section 3.8.1) of S:

e Sand T are identical types.
e SorTisthe Any type.
e Sis the Undefined type.
e Sisthe Null type and T is not the Undefined type.
e SorTisanenum type and the other is the primitive type Number.
e Sisastring literal type and T is the primitive type String.
e Sand T are type parameters, and S is directly or indirectly constrained to T.
e S’and T are object types and, for each member M in T, one of the following is true:
o Mis a property and S’ contains a property N where
= Mand N have the same name,
» the type of N is assignable to that of M,
= if Mis a required property, N is also a required property, and
= Mand N are both public, M and N are both private and originate in the same
declaration, M and N are both protected and originate in the same declaration, or
M is protected and N is declared in a class derived from the class in which M is
declared.

o Mis an optional property and S’ contains no property of the same name as M.

o Mis anon-specialized call or construct signature and S’ contains a call or construct
signature N where, when M and N are instantiated using type Any as the type argument
for all type parameters declared by M and N (if any),

» the signatures are of the same kind (call or construct),
* M has a rest parameter or the number of non-optional parameters in N is less
than or equal to the total number of parameters in M,

47

= for parameter positions that are present in both signatures, each parameter type
in N is assignable to or from the corresponding parameter type in M, and
» the result type of M is Void, or the result type of N is assignable to that of M.
o Mis astring index signature of type U and S’ contains a string index signature of a type
that is assignable to U.
o Mis a numeric index signature of type U and S’ contains a string or numeric index
signature of a type that is assignable to U.

When comparing call or construct signatures, parameter names are ignored and rest parameters
correspond to an unbounded expansion of optional parameters of the rest parameter element type.

Note that specialized call and construct signatures (section 3.7.2.4) are not significant when determining
assignment compatibility.

The assignment compatibility and subtyping rules differ only in that

e the Any type is assignable to, but not a subtype of, all types, and
e the primitive type Number is assignable to, but not a subtype of, all enum types.

The assignment compatibility rules imply that, when assigning values or passing parameters, optional
properties must either be present and of a compatible type, or not be present at all. For example:

function foo(x: { id: number; name?: string; }) { }

foo({ id: 1234 }); // 0k

foo({ id: 1234, name: "hello" }); // Ok

foo({ id: 1234, name: false }); // Error, name of wrong type
foo({ name: "hello" }); // Error, id required but missing

3.8.5 Contextual Signature Instantiation

During type argument inference in a function call (section 4.12.2) it is in certain circumstances necessary
to instantiate a generic call signature of an argument expression in the context of a non-generic call
signature of a parameter such that further inferences can be made. A generic call signature A is
instantiated in the context of non-generic call signature B as follows:

e Using the process described in 3.8.6, inferences for A's type parameters are made from each
parameter type in B to the corresponding parameter type in A for those parameter positions that
are present in both signatures, where rest parameters correspond to an unbounded expansion of
optional parameters of the rest parameter element type.

e The inferred type argument for each type parameter is the best common type (section 3.10) of the
set of inferences made for that type parameter. However, if the best common type does not
satisfy the constraint of the type parameter, the inferred type argument is instead the constraint.

48

3.8.6 Type Inference

In certain contexts, inferences for a given set of type parameters are made from a type S, in which those
type parameters do not occur, to another type T, in which those type parameters do occur. Inferences
consist of a set of candidate type arguments collected for each of the type parameters. The inference
process recursively relates S and T to gather as many inferences as possible:

e If Tis one of the type parameters for which inferences are being made, S is added to the set of
inferences for that type parameter.
e Otherwise, if S and T are object types, then for each member Min T:

o If Mis a property and S contains a property N with the same name as M, inferences are
made from the type of N to the type of M.

o If Mis a call signature and a corresponding call signature N exists in S, N is instantiated
with the Any type as an argument for each type parameter (if any) and inferences are
made from parameter types in N to the corresponding parameter types in M for positions
that are present in both signatures, and from the return type of N to the return type of M.

o If Mis a construct signature and a corresponding construct signature N exists in S, N is
instantiated with the Any type as an argument for each type parameter (if any) and
inferences are made from parameter types in N to the corresponding parameter types in
M for positions that are present in both signatures, and from the return type of N to the
return type of M.

o If Mis a string index signature and S contains a string index signature N, inferences are
made from the type of N to the type of M.

o If Mis a numeric index signature and S contains a numeric index signature N, inferences
are made from the type of N to the type of M.

o If Mis a numeric index signature and S contains a string index signature N, inferences are
made from the type of N to the type of M.

When comparing call or construct signatures, signatures in S correspond to signatures of the same kind in
T pairwise in declaration order. If S and T have different numbers of a given kind of signature, the excess
first signatures in declaration order of the longer list are ignored.

3.8.7 Recursive Types

Classes and interfaces can reference themselves in their internal structure, in effect creating recursive
types with infinite nesting. For example, the type

interface A { next: A; }

contains an infinitely nested sequence of ‘next’ properties. Types such as this are perfectly valid but
require special treatment when determining type relationships. Specifically, when comparing types S and T
for a given relationship (identity, subtype, or assignability), the relationship in question is assumed to be
true for every directly or indirectly nested occurrence of the same S and the same T (where same means
originating in the same declaration and, if applicable, having identical type arguments). For example,
consider the identity relationship between ‘A" above and ‘B’ below:

49

interface B { next: C; }
interface C { next: D; }

interface D { next: B; }

To determine whether ‘A" and ‘B are identical, first the 'next’ properties of type ‘A" and 'C’' are compared.
That leads to comparing the ‘next’ properties of type ‘A’ and ‘D', which leads to comparing the 'next’
properties of type ‘A" and ‘B'. Since ‘A’ and ‘B’ are already being compared this relationship is by definition
true. That in turn causes the other comparisons to be true, and therefore the final result is true.

When this same technique is used to compare generic type references, two type references are
considered the same when they originate in the same declaration and have identical type arguments.

In certain circumstances, generic types that directly or indirectly reference themselves in a recursive
fashion can lead to infinite series of distinct instantiations. For example, in the type

interface List<T> {
data: T;
next: List<T>;
owner: List<List<T>>;

}

‘List<T>" has a member ‘owner’ of type 'List<List<T>>', which has a member ‘owner’ of type
‘List<List<List<T>>>", which has a member ‘owner’ of type ‘List<List<List<List<T>>>>"and so on, ad
infinitum. Since type relationships are determined structurally, possibly exploring the constituent types to
their full depth, in order to determine type relationships involving infinitely expanding generic types it
may be necessary for the compiler to terminate the recursion at some point with the assumption that no
further exploration will change the outcome.

3.9 Widened Types

In several situations TypeScript infers types from context, alleviating the need for the programmer to
explicitly specify types that appear obvious. For example

var name = "Steve";

infers the type of ‘'name’ to be the String primitive type since that is the type of the value used to initialize
it. When inferring the type of a variable, property or function result from an expression, the widened form
of the source type is used as the inferred type of the target. The widened form of a type is the type in
which all occurrences of the Null and Undefined types have been replaced with the type any.

The following example shows the results of widening types to produce inferred variable types.

var a = null; // var a: any

var b = undefined; // var b: any

var ¢ = { x: @, y: null }; // var c: { x: number, y: any }
var d = [null, undefined]; // var d: any[]

50

3.10 Best Common Type

In several situations a best common type needs to be inferred from a set of types. In particular, return
types of functions with multiple return statements and element types of array literals are found this way.
The determination of a best common type may in some cases factor in a contextual type.

Given a set of types { Ty, T, ..., T, } and a contextual type C, the best common type is determined as
follows:

If the set of types is empty, the best common type is C.

Otherwise, if C is a supertype of every T,, the best common type is C.
Otherwise, if one exists, the first T, that is a supertype of every T, is the best common type.
Otherwise, the best common type is an empty object type (the type {}).

Given a set of types { Ty, T, ..., T, } and no contextual type, the best common type is determined as

follows:

e If the set of types is empty, the best common type is an empty object type.
e Otherwise, if one exists, the first T, that is a supertype of every T, is the best common type.
e Otherwise, the best common type is an empty object type (the type {3}).

51

4 Expressions

This chapter describes the manner in which TypeScript provides type inference and type checking for
JavaScript expressions. TypeScript's type analysis occurs entirely at compile-time and adds no run-time
overhead to expression evaluation.

TypeScript's typing rules define a type for every expression construct. For example, the type of the literal
123 is the Number primitive type, and the type of the object literal { a: 10, b: "hello" } is { a: number; b:
string; }. The sections in this chapter describe these rules in detail.

In addition to type inference and type checking, TypeScript augments JavaScript expressions with the
following constructs:

e Optional parameter and return type annotations in function expressions.
e Default parameter values and rest parameters in function expressions.

e Arrow function expressions.

e Super calls and member access.

e Type assertions.

Unless otherwise noted in the sections that follow, TypeScript expressions and the JavaScript expressions
generated from them are identical.

41 Values and References

Expressions are classified as values or references. References are the subset of expressions that are
permitted as the target of an assignment. Specifically, references are combinations of identifiers (section
4.3), parentheses (section 4.7), and property accesses (section 4.10). All other expression constructs
described in this chapter are classified as values.

4.2 The this Keyword

The type of this in an expression depends on the location in which the reference takes place:

e In a constructor, instance member function, instance member accessor, or instance member
variable initializer, this is of the class instance type of the containing class.

e |n a static member function or static member accessor, the type of this is the constructor
function type of the containing class.

e In a function declaration or a standard function expression, this is of type Any.

e In the global module, this is of type Any.

In all other contexts it is a compile-time error to reference this.

In the body of an arrow function expression, references to this are rewritten in the generated JavaScript
code, as described in section 4.9.2.

53

4.3 |dentifiers

When an expression is an Identifier, the expression refers to the most nested module, class, enum,
function, variable, or parameter with that name whose scope (section 2.4) includes the location of the
reference. The type of such an expression is the type associated with the referenced entity:

e For a module, the object type associated with the module instance.

e For a class, the constructor type associated with the constructor function object.
e For an enum, the object type associated with the enum object.

e For a function, the function type associated with the function object.

e For avariable, the type of the variable.

e For a parameter, the type of the parameter.

An identifier expression that references a variable or parameter is classified as a reference. An identifier
expression that references any other kind of entity is classified as a value (and therefore cannot be the
target of an assignment).

4.4 Literals

Literals are typed as follows:

e The type of the null literal is the Null primitive type.

e The type of the literals true and false is the Boolean primitive type.

e The type of numeric literals is the Number primitive type.

e The type of string literals is the String primitive type.

e The type of regular expression literals is the global interface type ‘RegExp’.

4.5 Object Literals

Object literals are extended to support type annotations in get and set accessors.

PropertyAssignment: (Modified)
PropertyName : AssignmentExpression
PropertyName CallSignature { FunctionBody }
GetAccessor
SetAccessor

GetAccessor:
get PropertyName () TypeAnnotation,,: { FunctionBody }

SetAccessor:
set PropertyName (Identifier TypeAnnotation,,:) { FunctionBody }

54

The type of an object literal is an object type with the set of properties specified by the property
assignments in the object literal. A get and set accessor may specify the same property name, but
otherwise it is an error to specify multiple property assignments for the same property.

A property assignment of the form
f(C...){...}

is simply shorthand for
f : function (...) { ... }

Each property assignment in an object literal is processed as follows:

e If the object literal is contextually typed and the contextual type contains a property with a
matching name, the property assignment is contextually typed by the type of that property.

e Otherwise, if the object literal is contextually typed, the contextual type contains a numeric index
signature, and the property assignment specifies a numeric property name, the property
assignment is contextually typed by the type of the numeric index signature.

e Otherwise, if the object literal is contextually typed and the contextual type contains a string index
signature, the property assignment is contextually typed by the type of the string index signature.

e Otherwise, the property assignment is processed without a contextual type.

The type of a property introduced by a property assignment of the form Name : Expr is the type of Expr.

A get accessor declaration is processed in the same manner as an ordinary function declaration (section
6.1) with no parameters. A set accessor declaration is processed in the same manner as an ordinary
function declaration with a single parameter and a Void return type. When both a get and set accessor is
declared for a property:

e If both accessors include type annotations, the specified types must be identical.

e If only one accessor includes a type annotation, the other behaves as if it had the same type
annotation.

e If neither accessor includes a type annotation, the inferred return type of the get accessor
becomes the parameter type of the set accessor.

If a get accessor is declared for a property, the return type of the get accessor becomes the type of the
property. If only a set accessor is declared for a property, the parameter type (which may be type Any if no
type annotation is present) of the set accessor becomes the type of the property.

When an object literal is contextually typed by a type that includes a string index signature of type T, the
resulting type of the object literal includes a string index signature with the widened form of the best
common type of the contextual type T and the types of the properties declared in the object literal.
Likewise, when an object literal is contextually typed by a type that includes a numeric index signature of
type T, the resulting type of the object literal includes a numeric index signature with the widened form of

55

the best common type of the contextual type T and the types of the numerically named properties
(section 3.7.4) declared in the object literal.

4.6 Array Literals

An array literal

[exprl, expr2, ..., exprN]
denotes a value of an array type (section 3.3.2) or a tuple type (section 3.3.3) depending on context.
Each element expression in a non-empty array literal is processed as follows:

e If the array literal is contextually typed (section 4.19) by a type T and T has a property with the
numeric name N, where N is the index of the element expression in the array literal, the element
expression is contextually typed by the type of that property.

e Otherwise, if the array literal is contextually typed by a type T with a numeric index signature, the
element expression is contextually typed by the type of the numeric index signature.

e Otherwise, the element expression is not contextually typed.

The resulting type of a non-empty array literal expression is determined as follows:

e If the array literal is contextually typed by a type T and T has at least one property with a numeric
name that matches the index of an element expression in the array literal, the resulting type is a
tuple type constructed from the types of the element expressions.

e Otherwise, if the array literal is contextually typed by a type T with a numeric index signature of
type S, the resulting type is an array type where the element type is the best common type of the
contextual type S and the types of the element expressions.

e Otherwise, if the array literal is not contextually typed, the resulting type is an array type where
the element type is the best common type of the types of the element expressions.

The resulting type of an empty array literal expression is determined as follows:

o If the array literal is contextually typed by a type T with a numeric index signature of type S, the
resulting type is an array type with element type S.
e Otherwise, the resulting type is an array type with the element type Undefined.

The rules above mean that an array literal is always of an array type, unless it is contextually typed by a
type with numerically named properties (such as a tuple type). For example

var a = [1, 2]; // number[]
var b ["hello", true]; /7 {}[]
var c: [number, string] = [3, "three"]; // [number, string]

4.7 Parentheses

A parenthesized expression
56

(expr)

has the same type and classification as the contained expression itself. Specifically, if the contained
expression is classified as a reference, so is the parenthesized expression.

4.8 The super Keyword

The super keyword can be used in expressions to reference base class properties and the base class
constructor.

CallExpression: (Modified)

super (ArgumentList,,:)
super . IdentifierName

481 Super Calls

Super calls consist of the keyword super followed by an argument list enclosed in parentheses. Super
calls are only permitted in constructors of derived classes, as described in section 8.3.2.

A super call invokes the constructor of the base class on the instance referenced by this. A super call is
processed as a function call (section 4.12) using the construct signatures of the base class constructor
function type as the initial set of candidate signatures for overload resolution. Type arguments cannot be
explicitly specified in a super call. If the base class is a generic class, the type arguments used to process a
super call are always those specified in the extends clause that references the base class.

The type of a super call expression is Void.

The JavaScript code generated for a super call is specified in section 8.6.2.

4.8.2 Super Property Access

A super property access consists of the keyword super followed by a dot and an identifier. Super property
accesses are used to access base class member functions from derived classes and are permitted in
contexts where this (section 4.2) references a derived class instance or a derived class constructor
function. Specifically:

e Ina constructor, instance member function, instance member accessor, or instance member
variable initializer where this references a derived class instance, a super property access is
permitted and must specify a public instance member function of the base class.

e In a static member function or static member accessor where this references the constructor
function object of a derived class, a super property access is permitted and must specify a public
static member function of the base class.

Super property accesses are not permitted in other contexts, and it is not possible to access other kinds of
base class members in a super property access. Note that super property accesses are not permitted

57

inside standard function expressions nested in the above constructs because this is of type Any in such

function expressions.

Super property accesses are typically used to access overridden base class member functions from

derived class member functions. For an example of this, see section 8.4.2.

The JavaScript code generated for a super property access is specified in section 8.6.2.

4.9 Function Expressions

Function expressions are extended from JavaScript to optionally include parameter and return type

annotations, and a new compact form, called arrow function expressions, is introduced.

FunctionExpression: (Modified)
function Identifier,,, CallSignature { FunctionBody }

AssignmentExpression: (Modified)

ArrowFunctionExpression

ArrowFunctionExpression:
ArrowFormalParameters => Block
ArrowFormalParameters => AssignmentExpression

ArrowFormalParameters:
CallSignature
Identifier

The terms standard function expression and arrow function expression are used to refer to the

FunctionExpression and ArrowFunctionExpression forms respectively. When referring to either, the generic

term function expression is used.

The type of a function expression is an object type containing a single call signature with parameter and

return types inferred from the function expression’s signature and body.

The descriptions of function declarations provided in section 6.1 apply to function expressions as well,

except that function expressions do not support overloading.

4.9

Standard Function Expressions

Standard function expressions are function expressions written with the function keyword. The type of

this in a standard function expression is the Any type.

Standard function expressions are transformed to JavaScript in the same manner as function declarations

(see section 6.5).

58

4.9.2 Arrow Function Expressions

TypeScript supports arrow function expressions, a new feature planned for ECMAScript 6. Arrow
function expressions are a compact form of function expressions that omit the function keyword and
have lexical scoping of this.

An arrow function expression of the form

(...) => expr
is exactly equivalent to

(...) =>{ return expr ; }
Furthermore, arrow function expressions of the forms

id => { ...}
id => expr

are exactly equivalent to

(id) =>{ ... }
(id) => expr

Thus, the following examples are all equivalent:

(x) => { return Math.sin(x); }
(x) => Math.sin(x)

x => { return Math.sin(x); }

X => Math.sin(x)

A function expression using the function keyword introduces a new dynamically bound this, whereas
an arrow function expression preserves the this of its enclosing context. Arrow function expressions are
particularly useful for writing callbacks, which otherwise often have an undefined or unexpected this.

In the example

class Messenger {
message = "Hello World";
start() {
setTimeout(() => alert(this.message), 3000);

}s

var messenger = new Messenger();
messenger.start();

the use of an arrow function expression causes the callback to have the same this as the surrounding
‘start’ method. Writing the callback as a standard function expression it becomes necessary to manually
arrange access to the surrounding this, for example by copying it into a local variable:

59

class Messenger {
message = "Hello World";
start() {
var _this = this;
setTimeout(function() { alert(_this.message); }, 3000);

}s
var messenger = new Messenger();

messenger.start();

The TypeScript compiler applies this type of transformation to rewrite arrow function expressions into
standard function expressions.

A construct of the form
<T> (.)y=>{ ...}

could be parsed as an arrow function expression with a type parameter or a type assertion applied to an
arrow function with no type parameter. It is resolved as the former, but parentheses can be used to select
the latter meaning:

<T>(C(C...)y=>9{...3})

4.9.3 Contextually Typed Function Expressions

Function expressions with no type parameters and no parameter type annotations (but possibly with
optional parameters and default parameter values) are contextually typed in certain circumstances, as
described in section 4.19.

When a function expression is contextually typed by a function type T, the function expression is
processed as if it had explicitly specified parameter type annotations as they exist in T. Parameters are
matched by position and need not have matching names. If the function expression has fewer parameters
than T, the additional parameters in T are ignored. If the function expression has more parameters than T,
the additional parameters are all considered to have type Any.

Furthermore, when a function expression has no return type annotation and is contextually typed by a
function type T, expressions in contained return statements (section 5.7) are contextually typed by T's
return type.

4.10 Property Access

A property access uses either dot notation or bracket notation. A property access expression is always
classified as a reference.

60

A property access uses an object’s apparent type (section 3.8.1) to determine its properties. Furthermore,
in a property access, an object’s apparent type includes the properties that originate in the ‘Object’ or
‘Function’ global interface types, as described in section 3.3.

A dot notation property access of the form
object . name

where object is an expression and name is an identifier (including, possibly, a reserved word), is used to
access the property with the given name on the given object. A dot notation property access is processed
as follows at compile-time:

e If object is of type Any, any name is permitted and the property access is of type Any.

e Otherwise, if name denotes an accessible property member in the apparent type of object, the
property access is of the type of that property. Public members are always accessible, but private
and protected members of a class have restricted accessibility, as described in 8.2.2.

e Otherwise, the property access is invalid and a compile-time error occurs.

A bracket notation property access of the form
object [index]

where object and index are expressions, is used to access the property with the name computed by the
index expression on the given object. A bracket notation property access is processed as follows at
compile-time:

e |If index is a string literal or a numeric literal and object's apparent type has a property with the
name given by that literal (converted to its string representation in the case of a numeric literal),
the property access is of the type of that property.

e Otherwise, if object's apparent type has a numeric index signature and index is of type Any, the
Number primitive type, or an enum type, the property access is of the type of that index
signature.

e Otherwise, if object's apparent type has a string index signature and index is of type Any, the
String or Number primitive type, or an enum type, the property access is of the type of that index
signature.

e Otherwise, if index is of type Any, the String or Number primitive type, or an enum type, the
property access is of type Any.

e Otherwise, the property access is invalid and a compile-time error occurs.

The rules above mean that properties are strongly typed when accessed using bracket notation with the
literal representation of their name. For example:

var type = {
name: "boolean",
primitive: true
}s
61

var s
var b

type["name"]; // string
type["primitive"]; // boolean

Tuple types assign numeric names to each of their elements and elements are therefore strongly typed
when accessed using bracket notation with a numeric literal:

var data: [string, number] = ["five", 5];
var s = data[@]; // string
var n = data[l]; // number

411 The new Operator

A new operation has one of the following forms:

new C
new C (...)
new C < ... > (...)

where C is an expression. The first form is equivalent to supplying an empty argument list. C must be of
type Any or of an object type with one or more construct or call signatures. The operation is processed as
follows at compile-time:

e If Cis of type Any, any argument list is permitted and the result of the operation is of type Any.

o If C's apparent type (section 3.8.1) is an object type with one or more construct signatures, the
expression is processed in the same manner as a function call, but using the construct signatures
as the initial set of candidate signatures for overload resolution. The result type of the function
call becomes the result type of the operation.

e If C's apparent type is an object type with no construct signatures but one or more call signatures,
the expression is processed as a function call. A compile-time error occurs if the result of the
function call is not Void. The type of the result of the operation is Any.

412 Function Calls

Function calls are extended from JavaScript to optionally include type arguments.

Arguments: (Modified)
TypeArguments,,; (ArgumentList,,:)

A function call takes one of the forms

func (...)
func < ... > (...)

where func is an expression of a function type or of type Any. The function expression is followed by an
optional type argument list (section 3.4.2) and an argument list.

62

If func is of type Any, or of an object type that has no call or construct signatures but is a subtype of the
Function interface, the call is an untyped function call. In an untyped function call no type arguments are
permitted, argument expressions can be of any type and number, no contextual types are provided for
the argument expressions, and the result is always of type Any.

If func's apparent type (section 3.8.1) is a function type, the call is a typed function call. TypeScript
employs overload resolution in typed function calls in order to support functions with multiple call
signatures. Furthermore, TypeScript may perform type argument inference to automatically determine
type arguments in generic function calls.

4121 Overload Resolution

The purpose of overload resolution in a function call is to ensure that at least one signature is applicable,
to provide contextual types for the arguments, and to determine the result type of the function call, which
could differ between the multiple applicable signatures. Overload resolution has no impact on the run-
time behavior of a function call. Since JavaScript doesn’t support function overloading, all that matters at
run-time is the name of the function.

The compile-time processing of a typed function call consists of the following steps:

e First, a list of candidate signatures is constructed from the call signatures in the function type in
declaration order. For classes and interfaces, inherited signatures are considered to follow
explicitly declared signatures in extends clause order.

o A non-generic signature is a candidate when
= the function call has no type arguments, and
» the signature is applicable with respect to the argument list of the function call.
o A generic signature is a candidate in a function call without type arguments when
» type inference (section 4.12.2) succeeds in inferring a list of type arguments,
= the inferred type arguments satisfy their constraints, and
» once the inferred type arguments are substituted for their associated type
parameters, the signature is applicable with respect to the argument list of the
function call.
o A generic signature is a candidate in a function call with type arguments when
* The signature has the same number of type parameters as were supplied in the
type argument list,
= the type arguments satisfy their constraints, and
= once the type arguments are substituted for their associated type parameters, the
signature is applicable with respect to the argument list of the function call.

e If the list of candidate signatures is empty, the function call is an error.

e Otherwise, if the candidate list contains one or more signatures for which the type of each
argument expression is a subtype of each corresponding parameter type, the return type of the
first of those signatures becomes the return type of the function call.

e Otherwise, the return type of the first signature in the candidate list becomes the return type of
the function call.

63

A signature is said to be an applicable signature with respect to an argument list when

e the number of arguments is not less than the number of required parameters,

e the number of arguments is not greater than the number of parameters, and

e for each argument expression e and its corresponding parameter P, when e is contextually typed
(section 4.19) by the type of P, no errors ensue and the type of e is assignable to (section 3.8.4)
the type of P.

4.12.2 Type Argument Inference

Given asignature < Ty, To, ..., Tp > (p1:P1,p2: P2, ..., pm: Pm), where each parameter type P references
zero or more of the type parameters T, and an argument list (e;, e;, ..., e,), the task of type argument
inference is to find a set of type arguments A;...A, to substitute for T;...T,, such that the argument list
becomes an applicable signature.

The inferred type argument for a particular type parameter is determined from a set of candidate types.
Given a type parameter T, let C denote the widened form (section 3.9) of the best common type (section
3.10) of the set of candidate types T. Then,

e If Csatisfies T's constraint, the inferred type argument for T is C.
e Otherwise, the inferred type argument for T is T's constraint.

In order to compute candidate types, the argument list is processed as follows:

e Initially all inferred type arguments are considered unfixed with an empty set of candidate types.

e Proceeding from left to right, each argument expression e is inferentially typed by its
corresponding parameter type P, possibly causing some inferred type arguments to become
fixed, and candidate type inferences (section 3.8.6) are made for unfixed inferred type arguments
from the type computed for e to P.

The process of inferentially typing an expression e by a type T is the same as that of contextually typing e
by T, with the following exceptions:

e Where expressions contained within e would be contextually typed, they are instead inferentially
typed.

e Where a contextual type would be included in a best common type determination (such as when
inferentially typing an object or array literal), an inferential type is not.

e When a function expression is inferentially typed (section 4.9.3) and a type assigned to a
parameter in that expression references type parameters for which inferences are being made, the
corresponding inferred type arguments to become fixed and no further candidate inferences are
made for them.

e If eis an expression of a function type that contains exactly one generic call signature and no
other members, and T is a function type with exactly one non-generic call signature and no other
members, then any inferences made for type parameters referenced by the parameters of T's call

64

signature are fixed, and e's type is changed to a function type with e's call signature instantiated
in the context of T's call signature (section 3.8.5).

In the example

function choose<T>(x: T, y: T): T {
return Math.random() < 0.5 ? x : y;

}

var x = choose("Five", 5);

inferences for ‘T" in the call to ‘choose’ are made as follows: For the first parameter, an inference is made
from type ‘string’ to ‘T'. For the second parameter, an inference is made from type ‘'number’ to ‘T'. Since
the best common type (section 3.10) of ‘string’ and ‘'number’ is the empty object type, the call to ‘choose’
is equivalent to

var x = choose<{}>("Five", 5);

and the resulting type of 'x" is therefore the empty object type. Note that had both arguments been of

ol

type ‘string’ or ‘'number’, ‘x’ would have been of that type.

In the example

function map<T, U>(a: T[], f: (x: T) => U): U[] {
var result: U[] = [];
for (var 1 = 9; i < a.length; i++) result.push(f(a[i]));
return result;

}

var names = ["Peter", "Paul", "Mary"];
var lengths = map(names, s => s.length);

inferences for ‘'T" and ‘U’ in the call to ‘'map’ are made as follows: For the first parameter, inferences are
made from the type ‘string[]’' (the type of 'names’) to the type ‘T[]', inferring 'string’ for ‘T". For the second
parameter, inferential typing of the arrow expression ‘s => s.length’ causes ‘T’ to become fixed such that
the inferred type ‘string’ can be used for the parameter ‘s'. The return type of the arrow expression can
then be determined, and inferences are made from the type ‘(s: string) => number’ to the type '(x: T) =>
U’, inferring ‘number’ for 'U’. Thus the call to ‘'map’ is equivalent to

var lengths = map<string, number>(names, s => s.length);
and the resulting type of ‘lengths’ is therefore ‘numberf[]'.

In the example

65

function zip<S, T, U>(x: S[], y: T[], combine: (x: S) => (y: T) => U): U[] {
var len = Math.max(x.length, y.length);
var result: U[] = [];
for (var i = ©9; i < len; i++) result.push(combine(x[i])(y[i]));
return result;

var names = ["Peter", "Paul", "Mary"];
var ages = [7, 9, 12];
var pairs = zip(names, ages, s => n => ({ name: s, age: n }));

inferences for 'S, ‘T" and U’ in the call to ‘zip’ are made as follows: Using the first two parameters,
inferences of ‘string’ for ‘'S" and ‘'number’ for ‘T’ are made. For the third parameter, inferential typing of the
outer arrow expression causes ‘'S’ to become fixed such that the inferred type ‘string’ can be used for the
parameter ‘s’. When a function expression is inferentially typed, its return expression(s) are also
inferentially typed. Thus, the inner arrow function is inferentially typed, causing ‘T’ to become fixed such
that the inferred type 'number’ can be used for the parameter ‘'n’. The return type of the inner arrow
function can then be determined, which in turn determines the return type of the function returned from
the outer arrow function, and inferences are made from the type ‘(s: string) => (n: number) => { name:
string; age: number }' to the type '(x: S) => (y: T) => R’, inferring '{ name: string; age: number }' for 'R".
Thus the call to ‘zip’ is equivalent to

var pairs = zip<string, number, { name: string; age: number }>(
names, ages, s => n => ({ name: s, age: n }));

and the resulting type of ‘pairs’ is therefore ‘{ name: string; age: number }[]".

4.12.3 Grammar Ambiguities

The inclusion of type arguments in the Arguments production (section 4.12) gives rise to certain
ambiguities in the grammar for expressions. For example, the statement

f(g<A, B>(7));

could be interpreted as a call to ‘f’ with two arguments, ‘g < A" and ‘B > (7)". Alternatively, it could be
interpreted as a call to ‘f' with one argument, which is a call to a generic function ‘g’ with two type
arguments and one regular argument.

The grammar ambiguity is resolved as follows: In a context where one possible interpretation of a
sequence of tokens is an Arguments production, if the initial sequence of tokens forms a syntactically
correct TypeArguments production and is followed by a ‘(' token, then the sequence of tokens is
processed an Arguments production, and any other possible interpretation is discarded. Otherwise, the
sequence of tokens is not considered an Arguments production.

This rule means that the call to ‘f" above is interpreted as a call with one argument, which is a call to a
generic function ‘g’ with two type arguments and one regular argument. However, the statements

66

f(g < A, B> 7);
f(g < A, B> +(7));

are both interpreted as calls to 'f' with two arguments.

413 Type Assertions

TypeScript extends the JavaScript expression grammar with the ability to assert a type for an expression:

UnaryExpression: (Modified)

< Type > UnaryExpression

A type assertion expression consists of a type enclosed in < and > followed by a unary expression. Type
assertion expressions are purely a compile-time construct. Type assertions are not checked at run-time
and have no impact on the emitted JavaScript (and therefore no run-time cost). The type and the
enclosing < and > are simply removed from the generated code.

In a type assertion expression of the form < T > ¢, e is contextually typed (section 4.19) by T and the
resulting type of e is required to be assignable to T, or T is required to be assignable to the widened form
of the resulting type of e, or otherwise a compile-time error occurs. The type of the result is T.

Type assertions check for assignment compatibility in both directions. Thus, type assertions allow type
conversions that might be correct, but aren't known to be correct. In the example

class Shape { ... }
class Circle extends Shape { ... }

function createShape(kind: string): Shape {
if (kind === "circle") return new Circle();

}

var circle = <Circle> createShape("circle");

the type annotations indicate that the ‘createShape’ function might return a ‘Circle’ (because 'Circle’ is a
subtype of ‘Shape’), but isn't known to do so (because its return type is ‘Shape’). Therefore, a type
assertion is needed to treat the result as a ‘Circle’.

As mentioned above, type assertions are not checked at run-time and it is up to the programmer to guard
against errors, for example using the instanceof operator:

var shape = createShape(shapeKind);
if (shape instanceof Circle) {
var circle = <Circle> shape;

67

414 Unary Operators

The subsections that follow specify the compile-time processing rules of the unary operators. In general, if
the operand of a unary operator does not meet the stated requirements, a compile-time error occurs and
the result of the operation defaults to type Any in further processing.

4141 The ++ and -- operators

These operators, in prefix or postfix form, require their operand to be of type Any, the Number primitive
type, or an enum type, and classified as a reference (section 4.1). They produce a result of the Number
primitive type.

414.2 The +, —, and ~ operators

These operators permit their operand to be of any type and produce a result of the Number primitive
type.

The unary + operator can conveniently be used to convert a value of any type to the Number primitive
type:

function getValue() { ... }

var n = +getValue();

The example above converts the result of ‘getValue()’ to a number if it isn't a number already. The type
inferred for 'n" is the Number primitive type regardless of the return type of ‘getValue'.

4.14.3 The ! operator

The ! operator permits its operand to be of any type and produces a result of the Boolean primitive type.

Two unary ! operators in sequence can conveniently be used to convert a value of any type to the Boolean
primitive type:

function getvalue() { ... }
var b = !lgetValue();

The example above converts the result of ‘getValue()’ to a Boolean if it isn't a Boolean already. The type
inferred for ‘b’ is the Boolean primitive type regardless of the return type of ‘getValue'.

414.4 The delete Operator

The 'delete’ operator takes an operand of any type and produces a result of the Boolean primitive type.

4.14.5 The void Operator

The 'void’ operator takes an operand of any type and produces the value ‘undefined’. The type of the
result is the Undefined type (3.2.6).

68

414.6 The typeof Operator

The "typeof’ operator takes an operand of any type and produces a value of the String primitive type. In
positions where a type is expected, ‘typeof’ can also be used in a type query (section 3.6.8) to produce the
type of an expression.

var x = 5;
var y = typeof x; // Use in an expression
var z: typeof x; // Use in a type query

In the example above, ‘X' is of type ‘'number’, 'y’ is of type 'string’ because when used in an expression,
‘typeof' produces a value of type string (in this case the string “number”), and 'z’ is of type ‘number’
because when used in a type query, ‘typeof' obtains the type of an expression.

4.15 Binary Operators

The subsections that follow specify the compile-time processing rules of the binary operators. In general,
if the operands of a binary operator do not meet the stated requirements, a compile-time error occurs
and the result of the operation defaults to type any in further processing. Tables that summarize the
compile-time processing rules for operands of the Any type, the Boolean, Number, and String primitive
types, and all object types and type parameters (the Object column in the tables) are provided.

4151 The* /, %, - <<, >>,>>>, & ", and | operators

These operators require their operands to be of type Any, the Number primitive type, or an enum type.
Operands of an enum type are treated as having the primitive type Number. If one operand is the null or
undefined value, it is treated as having the type of the other operand. The result is always of the Number
primitive type.

Any Boolean | Number String Object
Any Number Number
Boolean
Number | Number Number
String
Object

415.2 The + operator

The binary + operator requires both operands to be of the Number primitive type or an enum type, or at
least one of the operands to be of type Any or the String primitive type. Operands of an enum type are

treated as having the primitive type Number. If one operand is the null or undefined value, it is treated
as having the type of the other operand. If both operands are of the Number primitive type, the result is

69

String primitive type. Otherwise, the result is of type Any.

of the Number primitive type. If one or both operands are of the String primitive type, the result is of the

Any Boolean | Number String Object
Any Any Any Any String Any
Boolean Any String
Number Any Number String
String String String String String String
Object Any String

A value of any type can converted to the String primitive type by adding an empty string:

function getvalue() { ... }

var s = getValue() + ;

The example above converts the result of ‘getValue()’ to a string if it isn't a string already. The type
inferred for ‘s’ is the String primitive type regardless of the return type of ‘getValue'.

4153 The <, >, <=, >=, ==, =, ===, and !== operators
These operators require one operand type to be identical to or a subtype of the other operand type. The
result is always of the Boolean primitive type.

Any Boolean | Number String Object
Any Boolean Boolean Boolean Boolean Boolean
Boolean Boolean Boolean
Number | Boolean Boolean
String Boolean Boolean
Object Boolean Boolean

4.15.4 The instanceof operator

The instanceof operator requires the left operand to be of type Any, an object type, or a type parameter
type, and the right operand to be of type Any or a subtype of the ‘Function’ interface type. The result is
always of the Boolean primitive type.

Note that object types containing one or more call or construct signatures are automatically subtypes of
the 'Function’ interface type, as described in section 3.3.

70

4155 The in operator

The in operator requires the left operand to be of type Any, the String primitive type, or the Number
primitive type, and the right operand to be of type Any, an object type, or a type parameter type. The
result is always of the Boolean primitive type.

415.6 The && operator

The && operator permits the operands to be of any type and produces a result of the same type as the
second operand.

Any Boolean | Number String Object

Any Any Boolean | Number String Object
Boolean Any Boolean | Number String Object
Number Any Boolean | Number String Object
String Any Boolean | Number String Object
Object Any Boolean | Number String Object

4.15.7 The || operator

The || operator permits the operands to be of any type.

If the || expression is contextually typed (section 4.19), the operands are contextually typed by the same
type and the result is of the best common type (section 3.10) of the contextual type and the two operand

types.

If the || expression is not contextually typed, the right operand is contextually typed by the type of the left

operand and the result is of the best common type of the two operand types.

Any Boolean | Number String Object
Any Any Any Any Any Any
Boolean Any Boolean {} {} {}
Number Any {} Number {} {1
String Any {1} {1} String {}
Object Any {} {} {} Object

4.16 The Conditional Operator

In a conditional expression of the form

71

test ? exprl : expr2
the test expression may be of any type.

If the conditional expression is contextually typed (section 4.19), expr1 and expr2 are contextually typed by
the same type and the result is of the best common type (section 3.10) of the contextual type and the
types of expr1 and expr2. An error occurs if the best common type is not identical to at least one of the
three candidate types.

If the conditional expression is not contextually typed, the result is of the best common type of the types
of Expr1 and Expr2. An error occurs if the best common type is not identical to at least one of the two
candidate types.

417 Assignment Operators

An assignment of the form
v = expr

requires v to be classified as a reference (section 4.1). The expr expression is contextually typed (section
4.19) by the type of v, and the type of expr must be assignable to (section 3.8.4) the type of v, or otherwise
a compile-time error occurs. The result is a value with the type of expr.

A compound assignment of the form
v ??= expr
where ??= is one of the compound assignment operators
¥= /= %= 4= -= <K= >>= >¥>= &= "= |=

is subject to the same requirements, and produces a value of the same type, as the corresponding non-
compound operation. A compound assignment furthermore requires v to be classified as a reference
(section 4.1) and the type of the non-compound operation to be assignable to the type of v.

418 The Comma Operator

The comma operator permits the operands to be of any type and produces a result that is of the same
type as the second operand.

419 Contextually Typed Expressions

In certain situations, parameter and return types of function expressions are automatically inferred from
the contexts in which the function expressions occur. For example, given the declaration

var f: (s: string) => string;

the assignment
72

f = function(s) { return s.toLowerCase(); }

infers the type of the ‘s’ parameter to be the String primitive type even though there is no type annotation
to that effect. The function expression is said to be contextually typed by the variable to which it is being
assigned. Contextual typing occurs in the following situations:

e Invariable, parameter, and member declarations with a type annotation and an initializer, the
initializer expression is contextually typed by the type of the variable, parameter, or property.

e In return statements, if the containing function includes a return type annotation, return
expressions are contextually typed by that return type. Otherwise, if the containing function is
contextually typed by a type T, return expressions are contextually typed by T's return type.

¢ In typed function calls, argument expressions are contextually typed by their parameter types.

e In type assertions, the expression is contextually typed by the indicated type.

e In|| operator expressions without a contextual type, the right hand expression is contextually
typed by the type of the left hand expression.

e In assignment expressions, the right hand expression is contextually typed by the type of the left
hand expression.

e In contextually typed object literals, property assignments are contextually typed by their property
types.

e In contextually typed array literals, element expressions are contextually typed by the array
element type.

e In contextually typed || operator expressions, the operands are contextually typed as well.

¢ In contextually typed conditional operator expressions, the operands are contextually typed as
well.

Contextual typing of an expression e by a type T proceeds as follows:

e If eis an ObjectLiteral and T is an object type, e is processed with the contextual type T, as
described in section 4.5.

e Ifeisan Arrayliteral and T is an object type with a numeric index signature, e is processed with
the contextual type T, as described in section 4.6.

o If eis a FunctionExpression or ArrowFunctionExpression with no type parameters and no parameter
type annotations, T is a function type with exactly one call signature and T's call signature is non-
generic, then any inferences made for type parameters referenced by the parameters of T's call
signature are fixed (section 4.12.2) and e is processed with the contextual type T, as described in
section 4.9.3.

e Ifeisa|| operator expression and T is an object type, e is processed with the contextual type T, as
described in section 4.15.7.

o If eis a conditional operator expression and T is an object type, e is processed with the contextual
type T, as described in section 4.16.

e Otherwise, e is processed without a contextual type.

The rules above require expressions be of the exact syntactic forms specified in order to be processed as
contextually typed constructs. For example, given the declaration of the variable ‘f' above, the assignment
73

f = s => s.toLowerCase();

causes the function expression to be contextually typed, inferring the String primitive type for ’s'.
However, simply enclosing the construct in parentheses

f = (s => s.toLowerCase());

causes the function expression to be processed without a contextual type, now inferring ‘s’ and the result
of the function to be of type Any as no type annotations are present.

In the following example

interface EventObject {
X: number;
y: number;

}

interface EventHandlers {
mousedown?: (event: EventObject) => void;
mouseup?: (event: EventObject) => void;
mousemove?: (event: EventObject) => void;

}
function setEventHandlers(handlers: EventHandlers) { ... }

setEventHandlers ({
mousedown: e => { startTracking(e.x, e.y); },
mouseup: e => { endTracking(); }

})s

the object literal passed to ‘setEventHandlers’ is contextually typed to the ‘EventHandlers’ type. This
causes the two property assignments to be contextually typed to the unnamed function type ‘(event:
EventObject) => void’, which in turn causes the ‘e’ parameters in the arrow function expressions to
automatically be typed as ‘EventObject’.

74

5 Statements

This chapter describes the static type checking TypeScript provides for JavaScript statements. TypeScript
itself does not introduce any new statement constructs.

5.1 Variable Statements

Variable statements are extended to include optional type annotations.

VariableDeclaration: (Modified)
Identifier TypeAnnotation,; Initialiser,p;

VariableDeclarationNoln: (Modified)
Identifier TypeAnnotation,,: InitialiserNoln,

TypeAnnotation:
Type

A variable declaration introduces a variable with the given name in the containing declaration space. The
type associated with a variable is determined as follows:

e If the declaration includes a type annotation, the stated type becomes the type of the variable. If
an initializer is present, the initializer expression is contextually typed (section 4.19) by the stated
type and must be assignable to the stated type, or otherwise a compile-time error occurs.

e If the declaration includes an initializer but no type annotation, and if the initializer doesn't
directly or indirectly reference the variable, the widened type (section 3.9) of the initializer
expression becomes the type of the variable. If the initializer directly or indirectly references the
variable, the type of the variable becomes the Any type.

e If the declaration includes neither a type annotation nor an initializer, the type of the variable
becomes the Any type.

Multiple declarations for the same variable name in the same declaration space are permitted, provided
that each declaration associates the same type with the variable.

Below are some examples of variable declarations and their associated types.

var a; // any

var b: number; // number

var ¢ = 1; // number

var d = { x: 1, y: "hello" }; // { X: number; y: string; }
var e: any = "test"; // any

The following is permitted because all declarations of the single variable ‘x’ associate the same type
(Number) with 'x'.

75

var x = 1;

var Xx: number;

if (x == 1) {
var x = 2;

}

1

In the following example, all five variables are of the same type, ‘{ x: number; y: number; }'.

interface Point { x: number; y: number; }

var a = { x: 9, y: <number> undefined };

var b: Point = { x: 0@, y: undefined };

var ¢ = <Point> { x: 90, y: undefined };

var d: { x: number; y: number; } = { x: 0, y: undefined };
var e = <{ x: number; y: number; }> { x: 0, y: undefined };

5.2 If, Do, and While Statements

Expressions controlling ‘if, ‘do’, and ‘while’ statements can be of any type (and not just type Boolean).

5.3 For Statements

Variable declarations in ‘for’ statements are extended in the same manner as variable declarations in
variable statements (section 5.1).

54 For-In Statements

In a ‘for-in' statement of the form
for (v in expr) statement

v must be an expression classified as a reference of type Any or the String primitive type, and expr must
be an expression of type Any, an object type, or a type parameter type.

In a ‘for-in’ statement of the form
for (var v in expr) statement

v must be a variable declaration without a type annotation that declares a variable of type Any, and expr
must be an expression of type Any, an object type, or a type parameter type.

5.5 Continue Statements

A ‘continue’ statement is required to be nested, directly or indirectly (but not crossing function
boundaries), within an iteration (‘do’, ‘while’, ‘for’, or ‘for-in’) statement. When a ‘continue’ statement
includes a target label, that target label must appear in the label set of an enclosing (but not crossing
function boundaries) iteration statement.

76

5.6 Break Statements

A 'break’ statement is required to be nested, directly or indirectly (but not crossing function boundaries),
within an iteration (‘do’, ‘while’, ‘for’, or ‘for-in’) or ‘switch’ statement. When a ‘break’ statement includes a
target label, that target label must appear in the label set of an enclosing (but not crossing function
boundaries) statement.

5.7 Return Statements

It is an error for a ‘return’ statement to occur outside a function body. Specifically, ‘return’ statements are
not permitted at the global level or in module bodies.

A ‘return’ statement without an expression returns the value ‘undefined’ and is permitted in the body of
any function, regardless of the return type of the function.

When a ‘return’ statement includes an expression, if the containing function includes a return type
annotation, the return expression is contextually typed (section 4.19) by that return type and must be of a
type that is assignable to the return type. Otherwise, if the containing function is contextually typed by a
type T, Expr is contextually typed by T's return type.

In a function implementation without a return type annotation, the return type is inferred from the ‘return’
statements in the function body, as described in section 6.3.

In the example

function f(): (x: string) => number {
return s => s.length;

}

the arrow expression in the ‘return’ statement is contextually typed by the return type of ‘f', thus giving
type 'string’ to 's'.

5.8 With Statements

Use of the 'with’ statement in TypeScript is an error, as is the case in ECMAScript 5's strict mode.
Furthermore, within the body of a ‘with’ statement, TypeScript considers every identifier occurring in an
expression (section 4.3) to be of the Any type regardless of its declared type. Because the ‘'with’ statement
puts a statically unknown set of identifiers in scope in front of those that are statically known, it is not
possible to meaningfully assign a static type to any identifier.

5.9 Switch Statements

In a ‘switch’ statement, each ‘case’ expression must be of a type that is assignable to or from (section
3.8.4) the type of the ‘switch’ expression.

77

5.10 Throw Statements

The expression specified in a ‘throw’ statement can be of any type.
511 Try Statements

The variable introduced by a ‘catch’ clause of a ‘try’ statement is always of type Any. It is not possible to

include a type annotation in a 'catch’ clause.

78

o6 Functions

TypeScript extends JavaScript functions to include type parameters, parameter and return type
annotations, overloads, default parameter values, and rest parameters.

6.1 Function Declarations

Function declarations consist of an optional set of function overloads followed by an actual function
implementation.

FunctionDeclaration: (Modified)
FunctionOverloads,,: Functionlmplementation

FunctionOverloads:
FunctionOverload
FunctionOverloads FunctionOverload

FunctionOverload:
function Identifier CallSignature ;

Functionlmplementation:
function Identifier CallSignature { FunctionBody }

A function declaration introduces a function with the given name in the containing declaration space.
Function overloads, if present, must specify the same name as the function implementation. If a function
declaration includes overloads, the overloads determine the call signatures of the type given to the
function object and the function implementation signature must be assignable to that type. Otherwise,
the function implementation itself determines the call signature. Function overloads have no other effect
on a function declaration.

6.2 Function Overloads

Function overloads allow a more accurate specification of the patterns of invocation supported by a
function than is possible with a single signature. The compile-time processing of a call to an overloaded
function chooses the best candidate overload for the particular arguments and the return type of that
overload becomes the result type the function call expression. Thus, using overloads it is possible to
statically describe the manner in which a function’s return type varies based on its arguments. Overload
resolution in function calls is described further in section 4.12.

Function overloads are purely a compile-time construct. They have no impact on the emitted JavaScript
and thus no run-time cost.

The parameter list of a function overload cannot specify default values for parameters. In other words, an
overload may use only the ? form when specifying optional parameters.

79

The following is an example of a function with overloads.

function attr(name: string): string;
function attr(name: string, value: string): Accessor;
function attr(map: any): Accessor;
function attr(nameOrMap: any, value?: string): any {
if (nameOrMap && typeof nameOrMap === "string") {
// handle string case

}
else {

// handle map case
}

}

Note that each overload and the final implementation specify the same identifier. The type of the local
variable ‘attr’ introduced by this declaration is

var attr: {
(name: string): string;
(name: string, value: string): Accessor;
(map: any): Accessor;

s

Note that the signature of the actual function implementation is not included in the type.

6.3 Function Implementations

A function implementation without a return type annotation is said to be an implicitly typed function.
The return type of an implicitly typed function fis inferred from its function body as follows:

e If there are no return statements with expressions in f's function body, the inferred return type is
Void.

e Otherwise, if fs function body directly references f or references any implicitly typed functions
that through this same analysis reference f, the inferred return type is Any.

e Otherwise, the inferred return type is the widened form (section 3.9) of the best common type
(section 3.10) of the types of the return statement expression in the function body, ignoring
return statements with no expressions. A compile-time error occurs if the best common type isn't
one of the return statement expression types (i.e. if the best common type is an empty type).

In the example

function f(x: number) {
if (x <= @) return x;
return g(x);

80

function g(x: number) {
return f(x - 1);

}

the inferred return type for ‘f and ‘g’ is Any because the functions reference themselves through a cycle
with no return type annotations. Adding an explicit return type ‘'number’ to either breaks the cycle and
causes the return type ‘'number’ to be inferred for the other.

An explicitly typed function whose return type isn’t the Void or the Any type must have at least one return
statement somewhere in its body. An exception to this rule is if the function implementation consists of a
single ‘throw’ statement.

The type of ‘this’ in a function implementation is the Any type.

In the signature of a function implementation, a parameter can be marked optional by following it with an
initializer. When a parameter declaration includes both a type annotation and an initializer, the initializer
expression is contextually typed (section 4.19) by the stated type and must be assignable to the stated
type, or otherwise a compile-time error occurs. When a parameter declaration has no type annotation but
includes an initializer, the type of the parameter is the widened form (section 3.9) of the type of the
initializer expression.

Initializer expressions are evaluated in the scope of the function body but are not permitted to reference
local variables and are only permitted to access parameters that are declared to the left of the parameter
they initialize, unless the parameter reference occurs in a nested function expression.

For each parameter with an initializer, a statement that substitutes the default value for an omitted
argument is included in the generated JavaScript, as described in section 6.5. The example

function strange(x: number, y
return z;

X *¥2, z=x+y){

}

generates JavaScript that is equivalent to

function strange(x, y, z) {

if (y === void @) { y =x * 2; }
if (z === void @) { z = x + y; }
return z;

}
In the example

var x = 1;
function f(a = x) {
var x = "hello";

81

the local variable x’ is in scope in the parameter initializer (thus hiding the outer 'x’), but it is an error to
reference it because it will always be uninitialized at the time the parameter initializer is evaluated.

6.4 Generic Functions

A function implementation may include type parameters in its signature (section 3.7.2.1) and is then called
a generic function. Type parameters provide a mechanism for expressing relationships between
parameter and return types in call operations. Type parameters have no run-time representation—they
are purely a compile-time construct.

Type parameters declared in the signature of a function implementation are in scope in the signature and
body of that function implementation.

The following is an example of a generic function:

interface Comparable {
localeCompare(other: any): number;

}

function compare<T extends Comparable>(x: T, y: T): number {
if (x == null) return y == null ? @ : -1;
if (y == null) return 1;
return x.localeCompare(y);

}

Note that the 'x" and 'y’ parameters are known to be subtypes of the constraint ‘Comparable’ and
therefore have a ‘compareTo’ member. This is described further in section 3.4.1.

The type arguments of a call to a generic function may be explicitly specified in a call operation or may,
when possible, be inferred (section 4.12.2) from the types of the regular arguments in the call. In the

example

class Person {
name: string;
localeCompare(other: Person) {
return compare(this.name, other.name);

}

the type argument to ‘compare’ is automatically inferred to be the String type because the two arguments

are strings.

6.5 Code Generation

A function declaration generates JavaScript code that is equivalent to:

82

function <FunctionName>(<FunctionParameters>) {
<DefaultValueAssignments>
<FunctionStatements>

}

FunctionName is the name of the function (or nothing in the case of a function expression).
FunctionParameters is a comma separated list of the function’s parameter names.

DefaultValueAssignments is a sequence of default property value assignments, one for each parameter
with a default value, in the order they are declared, of the form

if (<Parameter> === void @) { <Parameter> = <Default>; }
where Parameter is the parameter name and Default is the default value expression.

FunctionStatements is the code generated for the statements specified in the function body.

83

7/ Interfaces

Interfaces provide the ability to name and parameterize object types and to compose existing named
object types into new ones.

Interfaces have no run-time representation—they are purely a compile-time construct. Interfaces are
particularly useful for documenting and validating the required shape of properties, objects passed as
parameters, and objects returned from functions.

Because TypeScript has a structural type system, an interface type with a particular set of members is
considered identical to, and can be substituted for, another interface type or object type literal with an
identical set of members (see section 3.8.2).

Class declarations may reference interfaces in their implements clause to validate that they provide an
implementation of the interfaces.

7.1 Interface Declarations

An interface declaration declares a new named type (section 3.5) by introducing a type name in the
containing module.

InterfaceDeclaration:
interface Identifier TypeParameters,, InterfaceExtendsClause., ObjectType

InterfaceExtendsClause:
extends ClassOrinterfaceTypelist

ClassOrinterfaceTypelist:
ClassOrlnterfaceType
ClassOrinterfaceTypelist , ClassOrinterfaceType

ClassOrinterfaceType:
TypeReference

The Identifier of an interface declaration may not be one of the predefined type names (section 3.6.1).

An interface may optionally have type parameters (section 3.4.1) that serve as placeholders for actual
types to be provided when the interface is referenced in type references. An interface with type
parameters is called a generic interface. The type parameters of a generic interface declaration are in
scope in the entire declaration and may be referenced in the InterfaceExtendsClause and ObjectType body.

An interface can inherit from zero or more base types which are specified in the InterfaceExtendsClause.
The base types must be type references to class or interface types.

85

An interface has the members specified in the ObjectType of its declaration and furthermore inherits all
base type members that aren’t hidden by declarations in the interface:

e A property declaration hides a public base type property with the same name.
e A string index signature declaration hides a base type string index signature.
e A numeric index signature declaration hides a base type numeric index signature.

The following constraints must be satisfied by an interface declaration or otherwise a compile-time error
occurs:

e Aninterface declaration may not, directly or indirectly, specify a base type that originates in the
same declaration. In other words an interface cannot, directly or indirectly, be a base type of itself,
regardless of type arguments.

e Aninterface cannot declare a property with the same name as an inherited private or protected
property.

e Inherited properties with the same name must be identical (section 3.8.2).

e All properties of the interface must satisfy the constraints implied by the index signatures of the
interface as specified in section 3.7.4.

e The instance type (section 3.5.1) of the declared interface must be assignable (section 3.8.4) to
each of the base type references.

An interface is permitted to inherit identical members from multiple base types and will in that case only
contain one occurrence of each particular member.

Below is an example of two interfaces that contain properties with the same name but different types:

interface Mover {

move(): void;

getStatus(): { speed: number; };
}

interface Shaker {

shake(): void;

getStatus(): { frequency: number; };
}

An interface that extends ‘Mover’ and 'Shaker’ must declare a new ‘getStatus’ property as it would
otherwise inherit two ‘getStatus’ properties with different types. The new ‘getStatus’ property must be
declared such that the resulting ‘MoverShaker" is a subtype of both ‘Mover' and ‘Shaker”:

interface MoverShaker extends Mover, Shaker {
getStatus(): { speed: number; frequency: number; };

}

Since function and constructor types are just object types containing call and construct signatures,
interfaces can be used to declare named function and constructor types. For example:

86

interface StringComparer { (a: string, b: string): number; }

This declares type ‘StringComparer’ to be a function type taking two strings and returning a number.

7.2 Declaration Merging

Interfaces are “open-ended” and interface declarations with the same qualified name relative to a
common root (as defined in section 2.3) contribute to a single interface.

When a generic interface has multiple declarations, all declarations must have identical type parameter
lists, i.e. identical type parameter names with identical constraints in identical order.

In an interface with multiple declarations, the extends clauses are merged into a single set of base types
and the bodies of the interface declarations are merged into a single object type. Declaration merging
produces a declaration order that corresponds to prepending the members of each interface declaration,
in the order the members are written, to the combined list of members in the order of the interface
declarations. Thus, members declared in the last interface declaration will appear first in the declaration
order of the merged type.

For example, a sequence of declarations in this order:

interface Document {
createElement(tagName: any): Element;

}

interface Document {
createElement(tagName: string): HTMLElement;

}

interface Document {
createElement(tagName: "div"): HTMLDivElement;
createElement(tagName: "span"): HTMLSpanElement;
createElement(tagName: "canvas"): HTMLCanvasElement;

}
is equivalent to the following single declaration:

interface Document {
createElement(tagName: "div"): HTMLDivElement;
createElement(tagName: "span"): HTMLSpanElement;
createElement(tagName: "canvas"): HTMLCanvasElement;
createElement(tagName: string): HTMLElement;
createElement(tagName: any): Element;

}

Note that the members of the last interface declaration appear first in the merged declaration. Also note
that the relative order of members declared in the same interface body is preserved.

87

7.3 Interfaces Extending Classes

When an interface type extends a class type it inherits the members of the class but not their
implementations. It is as if the interface had declared all of the members of the class without providing an
implementation. Interfaces inherit even the private and protected members of a base class. When a class
containing private or protected members is the base type of an interface type, that interface type can only
be implemented by that class or a descendant class. For example:

class Control {
private state: any;

}

interface SelectableControl extends Control {
select(): void;

}

class Button extends Control {
select() { }

}

class TextBox extends Control {
select() { }

}

class Image extends Control {

}

class Location {
select() { }

}

In the above example, ‘SelectableControl’ contains all of the members of ‘Control’, including the private
‘state’ property. Since ‘state’ is a private member it is only possible for descendants of ‘Control’ to
implement 'SelectableControl'. This is because only descendants of ‘Control’ will have a ‘state’ private
member that originates in the same declaration, which is a requirement for private members to be
compatible (section 3.8).

Within the ‘Control’ class it is possible to access the ‘state’ private member through an instance of
‘SelectableControl'. Effectively, a ‘SelectableControl’ acts like a ‘Control’ that is known to have a 'select’
method. The ‘Button’ and ‘TextBox’ classes are subtypes of ‘SelectableControl’ (because they both inherit
from ‘Control’ and have a ‘select’ method), but the ‘Image’ and ‘Location’ classes are not.

7.4 Dynamic Type Checks

TypeScript does not provide a direct mechanism for dynamically testing whether an object implements a
particular interface. Instead, TypeScript code can use the JavaScript technique of checking whether an

88

appropriate set of members are present on the object. For example, given the declarations in section 7.1,
the following is a dynamic check for the ‘MoverShaker’ interface:

var obj: any = getSomeObject();
if (obj && obj.move && obj.shake && obj.getStatus) {
var moverShaker = <MoverShaker> obj;

}
If such a check is used often it can be abstracted into a function:

function asMoverShaker(obj: any): MoverShaker {
return obj &% obj.move && obj.shake && obj.getStatus ? obj : null;

89

8 Classes

TypeScript supports classes that are closely aligned with those proposed for ECMAScript 6, and includes
extensions for instance and static member declarations and properties declared and initialized from
constructor parameters.

NOTE: TypeScript currently doesn't support class expressions or nested class declarations from the
ECMAScript 6 proposal.

8.1 Class Declarations

Class declarations introduce named types and provide implementations of those types. Classes support
inheritance, allowing derived classes to extend and specialize base classes.

ClassDeclaration:
class Identifier TypeParameters,, ClassHeritage { ClassBody }

A ClassDeclaration declares a class type and a constructor function, both with the name given by
Identifier, in the containing module. The class type is created from the instance members declared in the
class body and the instance members inherited from the base class. The constructor function is created
from the constructor declaration, the static member declarations in the class body, and the static
members inherited from the base class. The constructor function initializes and returns an instance of the
class type.

The Identifier of a class declaration may not be one of the predefined type names (section 3.6.1).

A class may optionally have type parameters (section 3.4.1) that serve as placeholders for actual types to
be provided when the class is referenced in type references. A class with type parameters is called a
generic class. The type parameters of a generic class declaration are in scope in the entire declaration
and may be referenced in the ClassHeritage and ClassBody.

The following example introduces both a named type called ‘Point’ (the class type) and a member called
‘Point’ (the constructor function) in the containing module.

class Point {
constructor(public x: number, public y: number) { }
public length() { return Math.sqgrt(this.x * this.x + this.y * this.y); }
static origin = new Point(@, 0);

}

The "Point’ type is exactly equivalent to

91

interface Point {
X: number;
y: number;
length(): number;
}

The "Point’ member is a constructor function whose type corresponds to the declaration

var Point: {
new(x: number, y: number): Point;
origin: Point;

};

The context in which a class is referenced distinguishes between the class instance type and the
constructor function. For example, in the assignment statement

var p: Point = new Point(10, 20);

the identifier 'Point’ in the type annotation refers to the class instance type, whereas the identifier ‘Point’
in the new expression refers to the constructor function object.

8.1.1 Class Heritage Specification

The heritage specification of a class consists of optional extends and implements clauses. The extends
clause specifies the base class of the class and the implements clause specifies a set of interfaces for
which to validate the class provides an implementation.

ClassHeritage:
ClassExtendsClause,: ImplementsClause,p;

ClassExtendsClause:
extends ClassType

ClassType:
TypeReference

ImplementsClause:
implements ClassOrinterfaceTypelist

A class that includes an extends clause is called a derived class, and the class specified in the extends
clause is called the base class of the derived class. When a class heritage specification omits the extends
clause, the class does not have a base class. However, as is the case with every object type, type
references (section 3.3.1) to the class will appear to have the members of the global interface type named
'‘Object’ unless those members are hidden by members with the same name in the class.

The following constraints must be satisfied by the class heritage specification or otherwise a compile-time
error occurs:

92

e If present, the type reference specified in the extends clause must denote a class type.
Furthermore, the TypeName part of the type reference is required to be a reference to the class
constructor function when evaluated as an expression.

e Aclass declaration may not, directly or indirectly, specify a base class that originates in the same
declaration. In other words a class cannot, directly or indirectly, be a base class of itself, regardless
of type arguments.

e The instance type (section 3.5.1) of the declared class must be assignable (section 3.8.4) to the
base type reference and each of the type references listed in the implements clause.

e The constructor function type created by the class declaration must be assignable to the base
class constructor function type, ignoring construct signatures.

The following example illustrates a situation in which the first rule above would be violated:

class A { a: number; }

module Foo {

var A = 1;

class B extends A { b: string; }
}

When evaluated as an expression, the type reference ‘A’ in the extends clause doesn't reference the class
constructor function of ‘A’ (instead it references the local variable ‘A’).

The only situation in which the last two constraints above are violated is when a class overrides one or
more base class members with incompatible new members.

Note that because TypeScript has a structural type system, a class doesn’t need to explicitly state that it
implements an interface—it suffices for the class to simply contain the appropriate set of instance
members. The implements clause of a class provides a mechanism to assert and validate that the class
contains the appropriate sets of instance members, but otherwise it has no effect on the class type.

8.1.2 Class Body

The class body consists of zero or more constructor or member declarations. Statements are not allowed
in the body of a class—they must be placed in the constructor or in members.

ClassBody:
ClassElements;

ClassElements:
ClassElement
ClassElements ClassElement

93

ClassElement:
ConstructorDeclaration
PropertyMemberDeclaration
IndexMemberDeclaration

The body of class may optionally contain a single constructor declaration. Constructor declarations are
described in section 8.3.

Member declarations are used to declare instance and static members of the class. Property member
declarations are described in section 8.4 and index member declarations are described in section 8.5.

8.2 Members

The members of a class consist of the members introduced through member declarations in the class
body and the members inherited from the base class.

8.2.1 Instance and Static Members

Members are either instance members or static members.

Instance members are members of the class type (section 8.2.4) and its associated instance type. Within
constructors, instance member functions, and instance member accessors, the type of this is the instance
type (section 3.5.1) of the class.

Static members are declared using the static modifier and are members of the constructor function type
(section 8.2.5). Within static member functions and static member accessors, the type of this is the
constructor function type.

Class type parameters cannot be referenced in static member declarations.

8.2.2 Accessibility

Property members have either public, private, or protected accessibility. The default is public
accessibility, but property member declarations may include a public, private, or protected modifier
to explicitly specify the desired accessibility.

Public property members can be accessed everywhere without restrictions.

Private property members can be accessed only within their declaring class. Specifically, a private member
M declared in a class C can be accessed only within the class body of C.

Protected property members can be accessed only within their declaring class and classes derived from
their declaring class, and a protected instance property member must be accessed through an instance of
the enclosing class. Specifically, a protected member M declared in a class C can be accessed only within
the class body of C or the class body of a class derived from C. Furthermore, when a protected instance
member M is accessed in a property access £. M within the body of a class D, the type of E is required to
be D or a type that directly or indirectly has D as a base type, regardless of type arguments.

94

Private and protected accessibility is enforced only at compile-time and serves as no more than an
indication of intent. Since JavaScript provides no mechanism to create private and protected properties on
an object, it is not possible to enforce the private and protected modifiers in dynamic code at run-time.
For example, private and protected accessibility can be defeated by changing an object’s static type to
Any and accessing the member dynamically.

The following example demonstrates private and protected accessibility:

class A {
private x: number;
protected y: number;
static f(a: A, b: B) {

a.x =1; // Ok
b.x = 1; // Ok
a.y =1; // 0Ok
b.y =1; // Ok

}

class B extends A {
static f(a: A, b: B) {
a.x = 1; // Error, x only accessible within A
b.x = 1; // Error, x only accessible within A
a.y =1; // Error, y must be accessed through instance of B
b.y =1; // 0Ok

}

In class ‘A", the accesses to 'x’ are permitted because 'x' is declared in 'A’, and the accesses to 'y’ are
permitted because both take place through an instance of ‘A’ or a type derived from ‘A’. In class ‘B, access
to ‘X" is not permitted, and the first access to 'y’ is an error because it takes place through an instance of
'A’, which is not derived from the enclosing class ‘B'.

8.2.3 Inheritance and Overriding

A derived class inherits all members from its base class it doesn’t override. Inheritance means that a
derived class implicitly contains all non-overridden members of the base class. Only public and protected
property members can be overridden.

A property member in a derived class is said to override a property member in a base class when the
derived class property member has the same name and kind (instance or static) as the base class property
member. The type of an overriding property member must be assignable (section 3.8.4) to the type of the
overridden property member, or otherwise a compile-time error occurs.

Base class instance member functions can be overridden by derived class instance member functions, but
not by other kinds of members.

95

Base class instance member variables and accessors can be overridden by derived class instance member
variables and accessors, but not by other kinds of members.

Base class static property members can be overridden by derived class static property members of any
kind as long as the types are compatible, as described above.

An index member in a derived class is said to override an index member in a base class when the derived
class index member is of the same index kind (string or numeric) as the base class index member. The
type of an overriding index member must be assignable (section 3.8.4) to the type of the overridden index
member, or otherwise a compile-time error occurs.

8.2.4 Class Types

A class declaration declares a new named type (section 3.5) called a class type. Within the constructor and
member functions of a class, the type of this is the instance type (section 3.5.1) of this class type. The
class type has the following members:

e A property for each instance member variable declaration in the class body.

e A property of a function type for each instance member function declaration in the class body.

e A property for each uniquely named instance member accessor declaration in the class body.

e A property for each constructor parameter declared with a public, private, or protected
modifier.

e Anindex signature for each instance index member declaration in the class body.

e All base class instance type property or index members that are not overridden in the class.

All instance property members (including those that are private or protected) of a class must satisfy the
constraints implied by the index members of the class as specified in section 3.7.4.

In the example

class A {
public x: number;
public f() { }
public g(a: any) { return undefined; }
static s: string;

}

class B extends A {

public y: number;

public g(b: boolean) { return false; }
}

the instance type of ‘A’ is

96

interface A {

X: number;

f: () => void;

g: (a: any) => any;
}

and the instance type of ‘B’ is

interface B {
X: number;
y: number;
f: () => void;
g: (b: boolean) => boolean;

}

Note that static declarations in a class do not contribute to the class type and its instance type—rather,
static declarations introduce properties on the constructor function object. Also note that the declaration
of ‘g’ in ‘B’ overrides the member inherited from ‘A’.

8.2.5 Constructor Function Types

The type of the constructor function introduced by a class declaration is called the constructor function
type. The constructor function type has the following members:

e If the class contains no constructor declaration and has no base class, a single construct signature
with no parameters, having the same type parameters as the class and returning the instance type
of the class.

e If the class contains no constructor declaration and has a base class, a set of construct signatures
with the same parameters as those of the base class constructor function type following
substitution of type parameters with the type arguments specified in the base class type
reference, all having the same type parameters as the class and returning the instance type of the
class.

o If the class contains a constructor declaration with no overloads, a construct signature with the
parameter list of the constructor implementation, having the same type parameters as the class
and returning the instance type of the class.

o If the class contains a constructor declaration with overloads, a set of construct signatures with
the parameter lists of the overloads, all having the same type parameters as the class and
returning the instance type of the class.

e A property for each static member variable declaration in the class body.

e A property of a function type for each static member function declaration in the class body.

e A property for each uniquely named static member accessor declaration in the class body.

e A property named ‘prototype’, the type of which is an instantiation of the class type with type Any
supplied as a type argument for each type parameter.

e All base class constructor function type properties that are not overridden in the class.

97

Every class automatically contains a static property member named ‘prototype’, the type of which is the
containing class with type Any substituted for each type parameter.

The example

class Pair<T1l, T2> {
constructor(public iteml: T1, public item2: T2) { }

}

class TwoArrays<T> extends Pair<T[], T[]> { }

introduces two named types corresponding to

interface Pair<T1, T2> {

iteml: T1;
item2: T2;
}
interface TwoArrays<T> {
iteml: T[];
item2: T[];
}

and two constructor functions corresponding to

var Pair: {
new <T1, T2>(iteml: T1, item2: T2): Pair<T1l, T2>;

}

var TwoArrays: {
new <T>(iteml: T[], item2: T[]): TwoArrays<T>;

}

Note that the construct signatures in the constructor function types have the same type parameters as
their class and return the instance type of their class. Also note that when a derived class doesn't declare a
constructor, type arguments from the base class reference are substituted before construct signatures are
propagated from the base constructor function type to the derived constructor function type.

8.3 Constructor Declarations

A constructor declaration declares the constructor function of a class.

ConstructorDeclaration:
ConstructorOverloads,,: Constructorimplementation

ConstructorOverloads:
ConstructorOverload
ConstructorOverloads ConstructorOverload

98

ConstructorOverload:
AccessibilityModifier,,: constructor (ParameterlList,,:) ;

Constructorlmplementation:
AccessibilityModifier,,: constructor (Parameterlist,,,) { FunctionBody }

A class may contain at most one constructor declaration. If a class contains no constructor declaration, an
automatic constructor is provided, as described in section 8.3.3.

Overloads and the implementation of a constructor may include an accessibility modifier, but only public
constructors are supported and private or protected constructors result in an error.

If a constructor declaration includes overloads, the overloads determine the construct signatures of the
type given to the constructor function object, and the constructor implementation signature must be
assignable to that type. Otherwise, the constructor implementation itself determines the construct
signature. This exactly parallels the way overloads are processed in a function declaration (section 6.2).

The function body of a constructor is permitted to contain return statements. If return statements specify
expressions, those expressions must be of types that are assignable to the instance type of the class.

The type parameters of a generic class are in scope and accessible in a constructor declaration.

8.3.1 Constructor Parameters

Similar to functions, only the constructor implementation (and not constructor overloads) can specify
default value expressions for optional parameters. It is a compile-time error for such default value
expressions to reference this. For each parameter with a default value, a statement that substitutes the
default value for an omitted argument is included in the JavaScript generated for the constructor function.

A parameter of a ConstructorImplementation may be prefixed with a public, private, or protected
modifier. This is called a parameter property declaration and is shorthand for declaring a property with
the same name as the parameter and initializing it with the value of the parameter. For example, the
declaration

class Point {
constructor(public x: number, public y: number) {
// Constructor body

}

is equivalent to writing

99

class Point {
public x: number;
public y: number;
constructor(x: number, y: number) {
this.x = x;
this.y = vy;
// Constructor body

8.3.2 Super Calls
Super calls (section 4.8.1) are used to call the constructor of the base class. A super call consists of the

keyword super followed by an argument list enclosed in parentheses. For example:

class ColoredPoint extends Point {
constructor(x: number, y: number, public color: string) {

super(x, ¥);

}

Constructors of classes with no extends clause may not contain super calls, whereas constructors of
derived classes must contain at least one super call somewhere in their function body. Super calls are not
permitted outside constructors or in local functions inside constructors.

The first statement in the body of a constructor must be a super call if both of the following are true:

e The containing class is a derived class.
e The constructor declares parameter properties or the containing class declares instance member
variables with initializers.

In such a required super call, it is a compile-time error for argument expressions to reference this.

Initialization of parameter properties and instance member variables with initializers takes place
immediately at the beginning of the constructor body if the class has no base class, or immediately
following the super call if the class is a derived class.

8.3.3 Automatic Constructors

If a class omits a constructor declaration, an automatic constructor is provided.

In a class with no extends clause, the automatic constructor has no parameters and performs no action
other than executing the instance member variable initializers (section 8.4.1), if any.

In a derived class, the automatic constructor has the same parameter list (and possibly overloads) as the
base class constructor. The automatically provided constructor first forwards the call to the base class
constructor using a call equivalent to

100

BaseClass.apply(this, arguments);

and then executes the instance member variable initializers, if any.

8.4 Property Member Declarations

Property member declarations can be member variable declarations, member function declarations, or
member accessor declarations.

PropertyMemberDeclaration:
MemberVariableDeclaration
MemberFunctionDeclaration
MemberAccessorDeclaration

Member declarations without a static modifier are called instance member declarations. Instance
property member declarations declare properties in the class instance type (section 8.2.4), and must
specify names that are unique among all instance property member and parameter property declarations
in the containing class, with the exception that instance get and set accessor declarations may pairwise
specify the same name.

Member declarations with a static modifier are called static member declarations. Static property
member declarations declare properties in the constructor function type (section 8.2.5), and must specify
names that are unique among all static property member declarations in the containing class, with the
exception that static get and set accessor declarations may pairwise specify the same name.

Note that the declaration spaces of instance and static property members are separate. Thus, it is possible
to have instance and static property members with the same name.

Except for overrides, as described in section 8.2.3, it is an error for a derived class to declare a property
member with the same name and kind (instance or static) as a base class member.

Every class automatically contains a static property member named ‘prototype’, the type of which is an
instantiation of the class type with type Any supplied as a type argument for each type parameter. It is an
error to explicitly declare a static property member with the name ‘prototype’.

Below is an example of a class containing both instance and static property member declarations:

class Point {
constructor(public x: number, public y: number) { }
public distance(p: Point) {
var dx = this.x - p.x;
var dy = this.y - p.y;
return Math.sqrt(dx * dx + dy * dy);
}
static origin = new Point(@, 0);
static distance(pl: Point, p2: Point) { return pl.distance(p2); }

101

The class instance type 'Point’ has the members:

interface Point {
X: number;
y: number;
distance(p: Point);

}

and the constructor function ‘Point’ has a type corresponding to the declaration:

var Point: {
new(x: number, y: number): Point;
origin: Point;
distance(pl: Point, p2: Point): number;

8.4.1 Member Variable Declarations

A member variable declaration declares an instance member variable or a static member variable.

MemberVariableDeclaration:
AccessibilityModifier,,: staticq, PropertyName TypeAnnotation,, Initialiser,, ;

The type associated with a member variable declaration is determined in the same manner as an ordinary
variable declaration (see section 5.1).

An instance member variable declaration introduces a member in the class instance type and optionally
initializes a property on instances of the class. Initializers in instance member variable declarations are
executed once for every new instance of the class and are equivalent to assignments to properties of this
in the constructor. In an initializer expression for an instance member variable, this is of the class
instance type.

A static member variable declaration introduces a property in the constructor function type and optionally
initializes a property on the constructor function object. Initializers in static member variable declarations
are executed once when the containing program or module is loaded.

Initializer expressions for instance member variables are evaluated in the scope of the class constructor
body but are not permitted to reference parameters or local variables of the constructor. This effectively
means that entities from outer scopes by the same name as a constructor parameter or local variable are
inaccessible in initializer expressions for instance member variables.

Since instance member variable initializers are equivalent to assignments to properties of this in the
constructor, the example

102

class Employee {
public name: string;
public address: string;
public retired = false;
public manager: Employee = null;
public reports: Employee[] = [];
}

is equivalent to

class Employee {
public name: string;
public address: string;
public retired: boolean;
public manager: Employee;
public reports: Employee[];
constructor() {

this.retired = false;
this.manager = null;
this.reports = [];

842 Member Function Declarations

A member function declaration declares an instance member function or a static member function.

MemberFunctionDeclaration:
MemberFunctionOverloads,,: MemberFunctionlmplementation

MemberFunctionOverloads:
MemberFunctionOverload
MemberFunctionOverloads MemberFunctionOverload

MemberFunctionOverload:
AccessibilityModifier,,: staticq, PropertyName CallSignature ;

MemberFunctioniImplementation:
AccessibilityModifier,,: staticq, PropertyName CallSignature { FunctionBody }

A member function declaration is processed in the same manner as an ordinary function declaration
(section 6), except that in a member function this has a known type.

All overloads of a member function must have the same accessibility (public, private, or protected) and
kind (instance or static).

103

An instance member function declaration declares a property in the class instance type and assigns a
function object to a property on the prototype object of the class. In the body of an instance member
function declaration, this is of the class instance type.

A static member function declaration declares a property in the constructor function type and assigns a
function object to a property on the constructor function object. In the body of a static member function
declaration, the type of this is the constructor function type.

A member function can access overridden base class members using a super property access (section
4.8.2). For example

class Point {
constructor(public x: number, public y: number) { }
public toString() {

return "x=

+ this.x + " y=" + this.y;

}

class ColoredPoint extends Point {
constructor(x: number, y: number, public color: string) {
super(x, y);
}
public toString() {
return super.toString() +

color=" + this.color;

}

In a static member function, this represents the constructor function object on which the static member
function was invoked. Thus, a call to 'new this()’ may actually invoke a derived class constructor:

class A {
a =1;
static create() {
return new this();

}
}
class B extends A {
b = 2;
}
var x = A.create(); // new A()
var y = B.create(); // new B()

Note that TypeScript doesn't require or verify that derived constructor functions are subtypes of base
constructor functions. In other words, changing the declaration of ‘B’ to

104

class B extends A {
constructor(public b: number) {

super();

}

does not cause errors in the example, even though the call to the constructor from the ‘create’ function
doesn’t specify an argument (thus giving the value ‘undefined’ to 'b’).

8.43 Member Accessor Declarations

A member accessor declaration declares an instance member accessor or a static member accessor.

MemberAccessorDeclaration:
AccessibilityModifier,p,: staticq, GetAccessor
AccessibilityModifier,,: staticq, SetAccessor

Get and set accessors are processed in the same manner as in an object literal (section 4.5), except that a
contextual type is never available in a member accessor declaration.

Accessors for the same member name must specify the same accessibility.

An instance member accessor declaration declares a property in the class instance type and defines a
property on the prototype object of the class with a get or set accessor. In the body of an instance
member accessor declaration, this is of the class instance type.

A static member accessor declaration declares a property in the constructor function type and defines a
property on the constructor function object of the class with a get or set accessor. In the body of a static
member accessor declaration, the type of this is the constructor function type.

Get and set accessors are emitted as calls to ‘Object.defineProperty’ in the generated JavaScript, as

described in section 8.6.1.

8.5 Index Member Declarations

An index member declaration introduces an index signature (section 3.7.4) in the class instance type.

IndexMemberDeclaration:
IndexSignature

Index member declarations have no body and cannot specify an accessibility modifier.

A class declaration can have at most one string index member declaration and one numeric index
member declaration. All instance property members of a class must satisfy the constraints implied by the
index members of the class as specified in section 3.7.4.

It is not possible to declare index members for the static side of a class.

105

Note that it is seldom meaningful to include a string index signature in a class because it constrains all
instance properties of the class. However, numeric index signatures can be useful to control the element
type when a class is used in an array-like manner.

8.6 Code Generation

This section describes the structure of the JavaScript code generated from TypeScript classes.

8.6.1 Classes Without Extends Clauses

A class with no extends clause generates JavaScript equivalent to the following:

var <ClassName> = (function () {
function <ClassName>(<ConstructorParameters>) {
<DefaultValueAssignments>
<ParameterPropertyAssignments>
<MemberVariableAssignments>
<ConstructorStatements>

}

<MemberFunctionStatements>
<StaticVariableAssignments>
return <ClassName>;

NO;

ClassName is the name of the class.
ConstructorParameters is a comma separated list of the constructor’'s parameter names.

DefaultValueAssignments is a sequence of default property value assignments corresponding to those
generated for a regular function declaration, as described in section 6.5.

ParameterPropertyAssignments is a sequence of assignments, one for each parameter property declaration
in the constructor, in order they are declared, of the form

this.<ParameterName> = <ParameterName>;
where ParameterName is the name of a parameter property.

MemberVariableAssignments is a sequence of assignments, one for each instance member variable
declaration with an initializer, in the order they are declared, of the form

this.<MemberName> = <InitializerExpression>;

where MemberName is the name of the member variable and /nitializerExpression is the code generated

for the initializer expression.

ConstructorStatements is the code generated for the statements specified in the constructor body.

106

MemberFunctionStatements is a sequence of statements, one for each member function declaration or
member accessor declaration, in the order they are declared.

An instance member function declaration generates a statement of the form

<ClassName>.prototype.<MemberName> = function (<FunctionParameters>) {
<DefaultValueAssignments>
<FunctionStatements>

}
and static member function declaration generates a statement of the form

<ClassName>.<MemberName> = function (<FunctionParameters>) {
<DefaultValueAssignments>
<FunctionStatements>

}

where MemberName is the name of the member function, and FunctionParameters,
DefaultValueAssignments, and FunctionStatements correspond to those generated for a regular function
declaration, as described in section 6.5.

A get or set instance member accessor declaration, or a pair of get and set instance member accessor
declarations with the same name, generates a statement of the form

Object.defineProperty(<ClassName>.prototype, "<MemberName>", {
get: function () {
<GetAccessorStatements>
}J
set: function (<ParameterName>) {
<SetAccessorStatements>
}J
enumerable: true,
configurable: true

}s

and a get or set static member accessor declaration, or a pair of get and set static member accessor
declarations with the same name, generates a statement of the form

Object.defineProperty(<ClassName>, "<MemberName>", {

get: function () {
<GetAccessorStatements>

}J

set: function (<ParameterName>) {
<SetAccessorStatements>

}J

enumerable: true,

configurable: true

}s

107

where MemberName is the name of the member accessor, GetAccessorStatements is the code generated
for the statements in the get acessor’s function body, ParameterName is the name of the set accessor
parameter, and SetAccessorStatements is the code generated for the statements in the set accessor’s
function body. The ‘get’ property is included only if a get accessor is declared and the ‘set’ property is
included only if a set accessor is declared.

StaticVariableAssignments is a sequence of statements, one for each static member variable declaration
with an initializer, in the order they are declared, of the form

<ClassName>.<MemberName> = <InitializerExpression>;

where MemberName is the name of the static variable, and InitializerExpression is the code generated for
the initializer expression.

8.6.2 Classes With Extends Clauses

A class with an extends clause generates JavaScript equivalent to the following:

var <ClassName> = (function (_super) {
__extends(<ClassName>, _super);
function <ClassName>(<ConstructorParameters>) {
<DefaultValueAssignments>
<SuperCallStatement>
<ParameterPropertyAssignments>
<MemberVariableAssignments>
<ConstructorStatements>
}
<MemberFunctionStatements>
<StaticVariableAssignments>
return <ClassName>;
}) (<BaseClassName>);

In addition, the '__extends’ function below is emitted at the beginning of the JavaScript source file. It
copies all properties from the base constructor function object to the derived constructor function object
(in order to inherit static members), and appropriately establishes the ‘prototype’ property of the derived
constructor function object.

var _ extends = this. extends || function(d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
function f() { this.constructor = d; }
f.prototype b.prototype;
d.prototype = new f();

}

BaseClassName is the class name specified in the extends clause.

If the class has no explicitly declared constructor, the SuperCallStatement takes the form

108

_super.apply(this, arguments);

Otherwise the SuperCallStatement is present if the constructor function is required to start with a super
call, as discussed in section 8.3.2, and takes the form

_super.call(this, <SuperCallArguments>)

where SuperCallArguments is the argument list specified in the super call. Note that this call precedes the
code generated for parameter properties and member variables with initializers. Super calls elsewhere in
the constructor generate similar code, but the code generated for such calls will be part of the
ConstructorStatements section.

A super property access in the constructor, an instance member function, or an instance member accessor
generates JavaScript equivalent to

_super.prototype.<PropertyName>

where PropertyName is the name of the referenced base class property. When the super property access
appears in a function call, the generated JavaScript is equivalent to

_super.prototype.<PropertyName>.call(this, <Arguments>)
where Arguments is the code generated for the argument list specified in the function call.

A super property access in a static member function or a static member accessor generates JavaScript
equivalent to

_super.<PropertyName>

where PropertyName is the name of the referenced base class property. When the super property access
appears in a function call, the generated JavaScript is equivalent to

_super.<PropertyName>.call(this, <Arguments>)

where Arguments is the code generated for the argument list specified in the function call.

109

9 Enums

An enum type is a distinct subtype of the Number primitive type with an associated set of named
constants that define the possible values of the enum type.

91 Enum Declarations

An enum declaration declares an enum type and an enum object in the containing module.

EnumDeclaration:
enum [dentifier { EnumBody., }

The enum type and enum object declared by an EnumDeclaration both have the name given by the
Identtifier of the declaration. The enum type is a distinct subtype of the Number primitive type. The enum
object is a variable of an anonymous object type containing a set of properties, all of the enum type,
corresponding to the values declared for the enum type in the body of the declaration. The enum object’s
type furthermore includes a numeric index signature with the signature ‘[x: number]: string'.

The Identifier of an enum declaration may not be one of the predefined type names (section 3.6.1).

The example

enum Color { Red, Green, Blue }

declares a subtype of the Number primitive type called ‘Color’ and introduces a variable ‘Color’ with a
type that corresponds to the declaration

var Color: {
[x: number]: string;
Red: Color;
Green: Color;
Blue: Color;

}s

The numeric index signature reflects a “reverse mapping” that is automatically generated in every enum
object, as described in section 9.4. The reverse mapping provides a convenient way to obtain the string
representation of an enum value. For example

var ¢ = Color.Red;
console.log(Color[c]); // Outputs "Red"

9.2 Enum Members

The body of an enum declaration defines zero or more enum members which are the named values of the
enum type. Each enum member has an associated numeric value of the primitive type introduced by the
enum declaration.

111

EnumBody:
ConstantEnumMembers , o
ConstantEnumMembers , EnumMemberSections , ot
EnumMemberSections , oy

ConstantEnumMembers:
PropertyName
ConstantEnumMembers , PropertyName

EnumMemberSections:
EnumMemberSection
EnumMemberSections , EnumMemberSection

EnumMemberSection:
ConstantEnumMemberSection
ComputedEnumMember

ConstantEnumMemberSection:

PropertyName = ConstantEnumValue

PropertyName = ConstantEnumValue , ConstantEnumMembers
ConstantEnumValue:

Signedinteger

HexintegerLiteral

ComputedEnumMember:
PropertyName = AssignmentExpression

Enum members are either constant members or computed members. Constant members have known
constant values that are substituted in place of references to the members in the generated JavaScript

code. Computed members have values that are computed at run-time and not known at compile-time.
No substitution is performed for references to computed members.

The body of an enum declaration consists of an optional ConstantEnumMembers production followed by
any number of ConstantEnumMemberSection or ComputedEnumMember productions.

o If present, the initial ConstantEnumMembers production introduces a series of constant members
with consecutive integral values starting at the value zero.

e A ConstantEnumMemberSection introduces one or more constant members with consecutive
integral values starting at the specified constant value.

e A ComputedEnumMember introduces a computed member with a value computed by an
expression.

Expressions specified for computed members must produce values of type Any, the Number primitive

type, or the enum type itself.

112

In the example

enum Test {

B

B

= Math.floor(Math.random() * 1000),
= 10,

m o N ® ™ >

}

‘A, 'B’, ‘D', and 'E" are constant members with values O, 1, 10, and 11 respectively, and 'C’ is a computed
member.

In the example

enum Style {
None = 0,
Bold = 1,
Italic = 2,

Underline = 4,

Emphasis = Bold | Italic,

Hyperlink = Bold | Underline
}

the first four members are constant members and the last two are computed members. Note that
computed member declarations can reference other enum members without qualification. Also, because
enums are subtypes of the Number primitive type, numeric operators, such as the bitwise OR operator,
can be used to compute enum values.

9.3 Declaration Merging

Enums are “open-ended” and enum declarations with the same qualified name relative to a common root
(as defined in section 2.3) define a single enum type and contribute to a single enum object.

It isn't possible for one enum declaration to continue the automatic numbering sequence of another, and
when an enum type has multiple declarations, only one declaration is permitted to omit a value for the
first member.

9.4 Code Generation

An enum declaration generates JavaScript equivalent to the following:

var <EnumName>;

(function (<EnumName>) {
<EnumMemberAssignments>

}) (<EnumName>| | (<EnumName>={1}));

EnumName is the name of the enum.
113

EnumMemberAssignments is a sequence of assignments, one for each enum member, in order they are
declared, of the form

<EnumName>[<EnumName> ["<MemberName>"] = <Value>] = "<MemberName>";

where MemberName is the name of the enum member and Value is the assigned constant value or the
code generated for the computed value expression.

For example, the ‘Color’ enum example from section 9.1 generates the following JavaScript:

var Color;

(function (Color) {
Color[Color["Red"] = @] = "Red";
Color[Color["Green"] = 1] = "Green";
Color[Color["Blue"] = 2] = "Blue";

})(Color||(Color={}));

114

10 Internal Modules

An internal module is a named container of statements and declarations. An internal module represents
both a namespace and a singleton module instance. The namespace contains named types and other
namespaces, and the singleton module instance contains properties for the module’s exported members.
The body of an internal module corresponds to a function that is executed once, thereby providing a
mechanism for maintaining local state with assured isolation.

10.1 Module Declarations

An internal module declaration declares a namespace name and, in the case of an instantiated module, a
member name in the containing module.

ModuleDeclaration:
module IdentifierPath { ModuleBody }

IdentifierPath:
Identifier
IdentifierPath . Identifier

Internal modules are either instantiated or non-instantiated. A non-instantiated module is an internal
module containing only interface types and other non-instantiated modules. An instantiated module is an
internal module that doesn’'t meet this definition. In intuitive terms, an instantiated module is one for
which a module object instance is created, whereas a non-instantiated module is one for which no code is

generated.

When a module identifier is referenced as a ModuleName (section 3.6.2) it denotes a container of module
and type names, and when a module identifier is referenced as a PrimaryExpression (section 4.3) it
denotes the singleton module instance. For example:

module M {
export interface P { x: number; y: number; }
export var a = 1;

}

var p: M.P; // M used as ModuleName

var m = M; // M used as PrimaryExpression
var x1 = M.a; // M used as PrimaryExpression
var x2 = m.a; // Same as M.a

var q: m.P; // Error

Above, when ‘M’ is used as a PrimaryExpression it denotes an object instance with a single member ‘a’ and
when ‘M’ is used as a ModuleName it denotes a container with a single type member 'P". The final line in
the example is an error because ‘m’ is a variable which cannot be referenced in a type name.

115

If the declaration of ‘M’ above had excluded the exported variable ‘a’, ‘M’ would be a non-instantiated
module and it would be an error to reference ‘M’ as a PrimaryExpression.

An internal module declaration that specifies an IdentifierPath with more than one identifier is equivalent
to a series of nested single-identifier internal module declarations where all but the outermost are
automatically exported. For example:

module A.B.C {
export var x = 1;

}

corresponds to

module A {
export module B {
export module C {
export var x = 1;

10.2 Module Body

The body of an internal module corresponds to a function that is executed once to initialize the module
instance.

ModuleBody:
ModuleElements,;

ModuleElements:
ModuleElement
ModuleElements ModuleElement

ModuleElement:
Statement
export,, VariableDeclaration
export,, FunctionDeclaration
export,, ClassDeclaration
export,, InterfaceDeclaration
export,,: EnumDeclaration
exporty,: ModuleDeclaration
exporty, ImportDeclaration
export,,: AmbientDeclaration

Each module body has a declaration space for local variables (including functions, modules, class
constructor functions, and enum objects), a declaration space for local named types (classes, interfaces,

116

and enums), and a declaration space for local namespaces (containers of named types). Every declaration
(whether local or exported) in a module contributes to one or more of these declaration spaces.

10.3 Import Declarations

Import declarations are used to create local aliases for entities in other modules.

ImportDeclaration:
import Identifier = EntityName ;

EntityName:
ModuleName
ModuleName . Identifier

An EntityName consisting of a single identifier is resolved as a ModuleName and is thus required to
reference an internal module. The resulting local alias references the given internal module and is itself
classified as an internal module.

An EntityName consisting of more than one identifier is resolved as a ModuleName followed by an
identifier that names one or more exported entities in the given module. The resulting local alias has all
the meanings and classifications of the referenced entity or entities. (As many as three distinct meanings
are possible for an entity name—namespace, type, and member.) In effect, it is as if the imported entity or
entities were declared locally with the local alias name.

In the example

module A {
export interface X { s: string }
export var X: X;

}
module B {
interface A { n: number }
import Y = A; // Alias only for module A
import Z = A.X; // Alias for both type and member A.X
var v: Z = Z;
}

within ‘B’, "Y' is an alias only for module ‘A" and not the local interface ‘A, whereas 'Z' is an alias for all
exported meanings of ‘A.X, thus denoting both an interface type and a variable.

If the ModuleName portion of an EntityName references an instantiated module, the ModuleName is
required to reference the module instance when evaluated as an expression. In the example

module A {
export interface X { s: string }

117

module B {
var A = 1;
import Y = A;
}

'Y is a local alias for the non-instantiated module ‘A’". If the declaration of ‘A’ is changed such that ‘A’
becomes an instantiated module, for example by including a variable declaration in ‘A’, the import
statement in ‘B’ above would be an error because the expression ‘A’ doesn't reference the module
instance of module ‘A’

When an import statement includes an export modifier, all meanings of the local alias are exported.

10.4 Export Declarations

An export declaration declares an externally accessible module member. An export declaration is simply a
regular declaration prefixed with the keyword export.

Exported class, interface, and enum types can be accessed as a TypeName (section 3.6.2) of the form M.T,
where M is a reference to the containing module and T is the exported type name. Likewise, as part of a
TypeName, exported modules can be accessed as a ModuleName of the form M.N, where M is a reference
to the containing module and N is the exported module.

Exported variable, function, class, enum, module, and import alias declarations become properties on the
module instance and together establish the module’s instance type. This unnamed type has the following
members:

e A property for each exported variable declaration.

e A property of a function type for each exported function declaration.

e A property of a constructor type for each exported class declaration.

e A property of an object type for each exported enum declaration.

e A property of an object type for each exported instantiated module declaration.

e A property for each exported import alias that references a variable, function, class, enum, or
instantiated module.

An exported member depends on a (possibly empty) set of named types (section 3.5). Those named types
must be at least as accessible as the exported member, or otherwise an error occurs.

The named types upon which a member depends are the named types occurring in the transitive closure
of the directly depends on relationship defined as follows:

e Avariable directly depends on the Type specified in its type annotation.

e A function directly depends on each Type specified in a parameter or return type annotation.

e Aclass directly depends on each Type specified as a type parameter constraint, each
TypeReference specified as a base class or implemented interface, and each Type specified in a
constructor parameter type annotation, public member variable type annotation, public member

118

function parameter or return type annotation, public member accessor parameter or return type
annotation, or index signature type annotation.

e Aninterface directly depends on each Type specified as a type parameter constraint, each
TypeReference specified as a base interface, and the ObjectType specified as its body.

e A module directly depends on its exported members.

e A Type or ObjectType directly depends on every TypeReference that occurs within the type at any
level of nesting.

e A TypeReference directly depends on the type it references and on each Type specified as a type
argument.

A named type T having a root module R (section 2.3) is said to be at least as accessible as a member M if

e Ris the global module or an external module, or
e Ris an internal module in the parent module chain of M.

In the example
interface A { x: string; }

module M {
export interface B { x: A; }
export interface C { x: B; }
export function foo(c: C) { .. }

}

the 'foo’ function depends upon the named types ‘A’, '‘B’, and 'C'. In order to export ‘foo’ it is necessary to
also export ‘B’ and ‘C’ as they otherwise would not be at least as accessible as ‘foo’. The ‘A" interface is
already at least as accessible as ‘foo’ because it is declared in a parent module of foo's module.

10.5 Declaration Merging

Internal modules are “open-ended” and internal module declarations with the same qualified name
relative to a common root (as defined in section 2.3) contribute to a single module. For example, the
following two declarations of a module outer might be located in separate source files.

File a.ts:

module outer {
var local = 1; // Non-exported local variable
export var a = local; // outer.a
export module inner {
export var x = 10; // outer.inner.x

}

File b.ts:

119

module outer {
var local = 2; // Non-exported local variable
export var b = local; // outer.b
export module inner {
export var y = 20; // outer.inner.y

}

Assuming the two source files are part of the same program, the two declarations will have the global

module as their common root and will therefore contribute to the same module instance, the instance

type of which will be:

{
a: number;
b: number;
inner: {
X: number;
y: number;
}s
}

Declaration merging does not apply to local aliases created by import declarations. In other words, it is

not possible have an import declaration and a module declaration for the same name within the same

module body.

Declaration merging also extends to internal module declarations with the same qualified name relative to

a common root as a function, class, or enum declaration:

When merging a function and an internal module, the type of the function object is merged with
the instance type of the module. In effect, the overloads or implementation of the function
provide the call signatures and the exported members of the module provide the properties of
the combined type.

When merging a class and an internal module, the type of the constructor function object is
merged with the instance type of the module. In effect, the overloads or implementation of the
class constructor provide the construct signatures, and the static members of the class and
exported members of the module provide the properties of the combined type. It is an error to
have static class members and exported module members with the same name.

When merging an enum and an internal module, the type of the enum object is merged with the
instance type of the module. In effect, the members of the enum and the exported members of
the module provide the properties of the combined type. It is an error to have enum members
and exported module members with the same name.

When merging a non-ambient function or class declaration and a non-ambient internal module

declaration, the function or class declaration must be located prior to the internal module declaration in

the same source file. This ensures that the shared object instance is created as a function object. (While it

120

is possible to add properties to an object after its creation, it is not possible to make an object “callable”
after the fact.)

The example

interface Point {
X: number;
y: number;

}

function point(x: number, y: number): Point {
return { x: X, y:y };

}

module point {
export var origin = point(e, 0);
export function equals(pl: Point, p2: Point) {
return pl.x == p2.x && pl.y == p2.y;

}

var pl = point(@, 0);
var p2 = point.origin;
var b = point.equals(pl, p2);

declares 'point’ as a function object with two properties, ‘origin’ and ‘equals’. Note that the module
declaration for ‘point’ is located after the function declaration.

10.6 Code Generation

An internal module generates JavaScript code that is equivalent to the following:

var <ModuleName>;

(function(<ModuleName>) {
<ModuleStatements>

}) (<ModuleName>| | (<ModuleName>={}));

where ModuleName is the name of the module and ModuleStatements is the code generated for the
statements in the module body. The ModuleName function parameter may be prefixed with one or more
underscore characters to ensure the name is unique within the function body. Note that the entire module
is emitted as an anonymous function that is immediately executed. This ensures that local variables are in
their own lexical environment isolated from the surrounding context. Also note that the generated
function doesn't create and return a module instance, but rather it extends the existing instance (which
may have just been created in the function call). This ensures that internal modules can extend each other.

An import statement generates code of the form

var <Alias> = <EntityName>;

121

This code is emitted only if the imported entity is referenced as a PrimaryExpression somewhere in the
body of the importing module. If an imported entity is referenced only as a TypeName or ModuleName,
nothing is emitted. This ensures that types declared in one internal module can be referenced through an
import alias in another internal module with no run-time overhead.

When a variable is exported, all references to the variable in the body of the module are replaced with

<ModuleName>.<VariableName>

This effectively promotes the variable to be a property on the module instance and ensures that all
references to the variable become references to the property.

When a function, class, enum, or module is exported, the code generated for the entity is followed by an
assignment statement of the form

<ModuleName>.<EntityName> = <EntityName>;

This copies a reference to the entity into a property on the module instance.

122

11 Source Files and External Modules

TypeScript implements external modules that are closely aligned with those proposed for ECMAScript 6
and supports code generation targeting CommonJS and AMD module systems.

NOTE: TypeScript currently doesn't support the full proposed capabilities of the ECMAScript 6 import and
export syntax. We expect to align more closely on the syntax as the ECMAScript 6 specification evolves.

11.1 Source Files

A TypeScript program consists of one or more source files that are either implementation source files or
declaration source files. Source files with extension ".ts’ are ImplementationSourceFiles containing
statements and declarations. Source files with extension ".d.ts" are DeclarationSourceFiles containing
declarations only. Declaration source files are a strict subset of implementation source files.

SourcefFile:
ImplementationSourceFile
DeclarationSourceFile

ImplementationSourceFile:
ImplementationElements.;

ImplementationElements:
ImplementationElement
ImplementationElements ImplementationElement

ImplementationElement:
ModuleElement
ExportAssignment
AmbientExternalModuleDeclaration
export,, ExternallmportDeclaration

DeclarationSourceFile:
DeclarationElements.;

DeclarationElements:
DeclarationElement
DeclarationElements DeclarationElement

123

DeclarationElement:
ExportAssignment
AmbientExternalModuleDeclaration
export,, InterfaceDeclaration
exporty, ImportDeclaration
export,,: AmbientDeclaration
export,, ExternallmportDeclaration

When a TypeScript program is compiled, all of the program’s source files are processed together.
Statements and declarations in different source files can depend on each other, possibly in a circular
fashion. By default, a JavaScript output file is generated for each implementation source file in a
compilation, but no output is generated from declaration source files.

The source elements permitted in a TypeScript implementation source file are a superset of those
supported by JavaScript. Specifically, TypeScript extends the JavaScript grammar’s existing
VariableDeclaration (section 5.1) and FunctionDeclaration (section 6.1) productions, and adds
InterfaceDeclaration (section 7.1), ClassDeclaration (section 8.1), EnumDeclaration (section 9.1),
ModuleDeclaration (section 10.1), ImportDeclaration (section 10.3), ExternallmportDeclaration (section
11.2.2), ExportAssignment (section 11.2.4), AmbientDeclaration (section 12.1), and
AmbientExternalModuleDeclaration (section 12.2) productions.

Declaration source files are restricted to contain declarations only. Declaration source files can be used to
declare the static type information associated with existing JavaScript code in an adjunct manner. They are
entirely optional but enable the TypeScript compiler and tools to provide better verification and
assistance when integrating existing JavaScript code and libraries in a TypeScript application.

Implementation and declaration source files that contain no import or export declarations form the single
global module. Entities declared in the global module are in scope everywhere in a program. Initialization
order of the source files that make up the global module ultimately depends on the order in which the
generated JavaScript files are loaded at run-time (which, for example, may be controlled by <script/> tags
that reference the generated JavaScript files).

Implementation and declaration source files that contain at least one external import declaration, export
assignment, or top-level exported declaration are considered separate external modules. Entities
declared in an external module are in scope only in that module, but exported entities can be imported
into other modules using import declarations. Initialization order of external modules is determined by
the module loader being and is not specified by the TypeScript language. However, it is generally the case
that non-circularly dependent modules are automatically loaded and initialized in the correct order.

External modules can additionally be declared using AmbientExternalModuleDeclarations in the global
module that directly specify the external module names as string literals. This is described further in
section 12.2.

124

1111 Source Files Dependencies

The TypeScript compiler automatically determines a source file's dependencies and includes those
dependencies in the program being compiled. The determination is made from “reference comments”
and external import declarations as follows:

e A comment of the form /// <reference path="..."/> adds a dependency on the source file
specified in the path argument. The path is resolved relative to the directory of the containing
source file.

e An external import declaration that specifies a relative external module name (section 11.2.1)
resolves the name relative to the directory of the containing source file. If a source file with the
resulting path and file extension ".ts’ exists, that file is added as a dependency. Otherwise, if a
source file with the resulting path and file extension ‘.d.ts" exists, that file is added as a
dependency.

e An external import declaration that specifies a top-level external module name (section 11.2.1)
resolves the name in a host dependent manner (typically by resolving the name relative to a
module name space root or searching for the name in a series of directories). If a source file with
extension ".ts' or ".d.ts' corresponding to the reference is located, that file is added as a

dependency.

Any files included as dependencies in turn have their references analyzed in a transitive manner until all
dependencies have been determined.

11.2 External Modules

External modules are separately loaded bodies of code referenced using external module names. External
modules can be likened to functions that are loaded and executed once to initialize their associated
module instance. Entities declared in an external module are private and inaccessible elsewhere unless
they are exported.

External modules are written as separate source files that contain at least one external import declaration,
export assignment, or top-level exported declaration. Specifically, if a source file contains at least one

e ExternallmportDeclaration,

e ExportAssignment,

o top-level exported VariableDeclaration,
e top-level exported FunctionDeclaration,
e top-level exported ClassDeclaration,

e top-level exported InterfaceDeclaration,
e top-level exported EnumDeclaration,

e top-level exported ModuleDeclaration,

e top-level exported ImportDeclaration, or
e top-level exported AmbientDeclaration,

125

that source file is considered an external module; otherwise, the source file is considered part of the
global module.

Below is an example of two external modules written in separate source files.

File main.ts:

import log = require("./log");
log.message("hello");

File log.ts:

export function message(s: string) {
console.log(s);

}

The import declaration in the 'main’ module references the 'log" module and compiling the ‘main.ts’ file
causes the 'log.ts’ file to also be compiled as part of the program. At run-time, the import declaration
loads the ‘log’ module and produces a reference to its module instance through which it is possible to
reference the exported function.

TypeScript supports two patterns of JavaScript code generation for external modules: The CommonJS
Modules pattern (section 11.2.5), typically used by server frameworks such as nodejs, and the
Asynchronous Module Definition (AMD) pattern (section 11.2.6), an extension to CommonJS Modules that
permits asynchronous module loading, as is typical in browsers. The desired module code generation
pattern is selected through a compiler option and does not affect the TypeScript source code. Indeed, it is
possible to author external modules that can be compiled for use both on the server side (e.g. using
node.js) and on the client side (using an AMD compliant loader) with no changes to the TypeScript source
code.

11.2.1 External Module Names

External modules are identified and referenced using external module names. The following definition is
aligned with that provided in the CommonJS Modules 1.0 specification.

e An external module name is a string of terms delimited by forward slashes.

e External module names may not have file-name extensions like " js".

e External module names may be relative or top-level. An external module name is relative if the
first termis “." or "..".

e Top-level names are resolved off the conceptual module name space root.

e Relative names are resolved relative to the name of the module in which they occur.

For purposes of resolving external module references, TypeScript associates a file path with every external
module. The file path is simply the path of the module’s source file without the file extension. For
example, an external module contained in the source file ‘C:\src\lib\io.ts" has the file path 'C:/src/lib/io’
and an external module contained in the source file ‘C:\src\ui\editor.d.ts’ has the file path 'C:/src/ui/editor’.

126

http://www.commonjs.org/specs/modules/1.0/
http://www.commonjs.org/specs/modules/1.0/
https://github.com/amdjs/amdjs-api/wiki/AMD
http://www.commonjs.org/specs/modules/1.0/

An external module name in an import declaration is resolved as follows:

e If the import declaration specifies a relative external module name, the name is resolved relative
to the directory of the referencing module’s file path. The program must contain a module with
the resulting file path or otherwise an error occurs. For example, in a module with the file path
‘C:/src/ui/main’, the external module names ‘./editor’ and "../lib/io’ reference modules with the file
paths ‘C:/src/ui/editor” and ‘C:/src/lib/io’.

e If the import declaration specifies a top-level external module name and the program contains an
AmbientExternalModuleDeclaration (section 12.2) with a string literal that specifies that exact
name, then the import declaration references that ambient external module.

e If the import declaration specifies a top-level external module name and the program contains no
AmbientExternalModuleDeclaration (section 12.2) with a string literal that specifies that exact
name, the name is resolved in a host dependent manner (for example by considering the name
relative to a module name space root). If a matching module cannot be found an error occurs.

11.2.2 External Import Declarations

External import declarations are used to import external modules and create local aliases by which they
may be referenced.

ExternallmportDeclaration:
import Identifier = ExternalModuleReference ;

ExternalModuleReference:
require (Stringliteral)

The string literal specified in an ExternalModuleReference is interpreted as an external module name
(section 11.2.1).

An external import declaration introduces a local identifier that references a given external module. The
local identifier becomes an alias for, and is classified exactly like, the entity or entities exported from the
referenced external module. Specifically, if the referenced external module contains no export assignment
the identifier is classified as a module, and if the referenced external module contains an export
assignment the identifier is classified exactly like the entity or entities named in the export assignment.

11.2.3 Export Declarations

An external module that contains no export assignment (section 11.2.4) exports an entity classified as a
module. Similarly to an internal module, export declarations (section 10.4) in the external module are used
to declare the members of this entity.

Unlike a non-instantiated internal module (section 10.1), an external module containing only interface
types and non-instantiated internal modules still has a module instance associated with it, albeit one with
no members.

127

If an external module contains an export assignment it is an error for the external module to also contain
export declarations. The two types of exports are mutually exclusive.

11.2.4 Export Assignments

An export assignment designates a module member as the entity to be exported in place of the external
module itself.

ExportAssignment:
export = Identifier ;

When an external module containing an export assignment is imported, the local alias introduced by the
external import declaration takes on all meanings of the identifier named in the export assignment.

It is an error for an external module to contain more than one export assignment.

Assume the following example resides in the file ‘point.ts”:
export = Point;

class Point {
constructor(public x: number, public y: number) { }
static origin = new Point(@, 90);

}

When ‘point.ts’ is imported in another external module, the import alias references the exported class and
can be used both as a type and as a constructor function:

import Pt = require("./point");

var pl = new Pt(10, 20);
var p2 = Pt.origin;

Note that there is no requirement that the import alias use the same name as the exported entity.

11.2.5 CommonlJS Modules

The CommonJS Modules definition specifies a methodology for writing JavaScript modules with implied

privacy, the ability to import other modules, and the ability to explicitly export members. A CommonlJS
compliant system provides a ‘require’ function that can be used to synchronously load other external
modules to obtain their singleton module instance, as well as an ‘exports’ variable to which a module can
add properties to define its external API.

The ‘'main’ and 'log’ example from section 11.2 above generates the following JavaScript code when
compiled for the CommonJS Modules pattern:

File main,js:

128

http://www.commonjs.org/specs/modules/1.0/

var log = require("./log");
log.message("hello");

File log.js:

exports.message = function(s) {
console.log(s);

}

An external import declaration is represented in the generated JavaScript as a variable initialized by a call
to the 'require’ function provided by the module system host. A variable declaration and ‘require’ call is
emitted for a particular imported module only if the imported module, or a local alias (section 10.3) that
references the imported module, is referenced as a PrimaryExpression somewhere in the body of the
importing module. If an imported module is referenced only as a ModuleName or TypeQueryExpression,
nothing is emitted.

An example:
File geometry.ts:
export interface Point { x: number; y: number };

export function point(x: number, y: number): Point {
return { x: X, y: y };

}
File game.ts:

import g = require("./geometry");
var p = g.point(10, 20);

The ‘game’ module references the imported ‘geometry’ module in an expression (through its alias 'g’) and
a ‘require’ call is therefore included in the emitted JavaScript:

var g
var p

require("./geometry");
g.point(10, 20);

Had the ‘game’ module instead been written to only reference ‘geometry’ in a type position

import g = require("./geometry");
var p: g.Point = { x: 10, y: 20 };

the emitted JavaScript would have no dependency on the ‘geometry’ module and would simply be

var p = { x: 10, y: 20 };

11.2.6 AMD Modules

The Asynchronous Module Definition (AMD) specification extends the CommonJS Modules specification

with a pattern for authoring asynchronously loadable modules with associated dependencies. Using the
129

https://github.com/amdjs/amdjs-api/wiki/AMD

AMD pattern, modules are emitted as calls to a global ‘define’ function taking an array of dependencies,
specified as external module names, and a callback function containing the module body. The global
‘define’ function is provided by including an AMD compliant loader in the application. The loader arranges
to asynchronously load the module’s dependencies and, upon completion, calls the callback function
passing resolved module instances as arguments in the order they were listed in the dependency array.

The "main” and “log” example from above generates the following JavaScript code when compiled for the
AMD pattern.

File main,js:

define(["require", "exports", "./log"], function(require, exports, log) {
log.message("hello");
}

File log,js:

define(["require", "exports"], function(require, exports) {
exports.message = function(s) {
console.log(s);

}

The special ‘require’ and "exports’ dependencies are always present. Additional entries are added to the
dependencies array and the parameter list as required to represent imported external modules. Similar to
the code generation for CommonJS Modules, a dependency entry is generated for a particular imported
module only if the imported module is referenced as a PrimaryExpression somewhere in the body of the
importing module. If an imported module is referenced only as a ModuleName, no dependency is
generated for that module.

130

12 Ambients

Ambient declarations are used to provide static typing over existing JavaScript code. Ambient declarations
differ from regular declarations in that no JavaScript code is emitted for them. Instead of introducing new
variables, functions, classes, enums, or modules, ambient declarations provide type information for
entities that exist “ambiently” and are included in a program by external means, for example by
referencing a JavaScript library in a <script/> tag.

12.1 Ambient Declarations

Ambient declarations are written using the declare keyword and can declare variables, functions, classes,
enums, internal modules, or external modules.

AmbientDeclaration:
declare AmbientVariableDeclaration
declare AmbientFunctionDeclaration
declare AmbientClassDeclaration
declare AmbientEnumDeclaration
declare AmbientModuleDeclaration

12.1.1 Ambient Variable Declarations

An ambient variable declaration introduces a variable in the containing declaration space.

AmbientVariableDeclaration:
var Identifier TypeAnnotationg, ;

An ambient variable declaration may optionally include a type annotation. If no type annotation is
present, the variable is assumed to have type Any.

An ambient variable declaration does not permit an initializer expression to be present.

12.1.2 Ambient Function Declarations

An ambient function declaration introduces a function in the containing declaration space.

AmbientFunctionDeclaration:
function Identifier CallSignature ;

Ambient functions may be overloaded by specifying multiple ambient function declarations with the same
name, but it is an error to declare multiple overloads that are considered identical (section 3.8.2) or differ
only in their return types.

Ambient function declarations cannot specify a function bodies and do not permit default parameter
values.

131

12.1.3 Ambient Class Declarations

An ambient class declaration declares a class instance type and a constructor function in the containing
module.

AmbientClassDeclaration:
class Identifier TypeParameters,, ClassHeritage { AmbientClassBody }

AmbientClassBody:
AmbientClassBodyElements,;

AmbientClassBodyElements:
AmbientClassBodyElement
AmbientClassBodyElements AmbientClassBodyElement

AmbientClassBodyElement:
AmbientConstructorDeclaration
AmbientPropertyMemberDeclaration
IndexSignature

AmbientConstructorDeclaration:
constructor (Parameterlisty,) ;

AmbientPropertyMemberDeclaration:
AccessibilityModifier,,: staticq, PropertyName TypeAnnotationy, ;
AccessibilityModifier,p,: staticq, PropertyName CallSignature ;

1214 Ambient Enum Declarations

An ambient enum declaration declares an enum type and an enum object in the containing module.

AmbientEnumDeclaration:
enum [dentifier { AmbientEnumBody,, }

AmbientEnumBody:
AmbientEnumMemberlList , o

AmbientEnumMemberlList:
AmbientEnumMember
AmbientEnumMemberlList , AmbientEnumMember

AmbientEnumMember:
PropertyName
PropertyName = ConstantEnumValue

An AmbientEnumMember that includes a ConstantEnumValue value is considered a constant member. An
AmbientEnumMember with no ConstantEnumValue value is considered a computed member.

132

12.1.5 Ambient Module Declarations

An ambient module declaration declares an internal module.

AmbientModuleDeclaration:
module IdentifierPath { AmbientModuleBody }

AmbientModuleBody:
AmbientModuleElements

AmbientModuleElements:
AmbientModuleElement
AmbientModuleElements AmbientModuleElement

AmbientModuleElement:
export,,; AmbientVariableDeclaration
export,,; AmbientFunctionDeclaration
export,, AmbientClassDeclaration
export,, InterfaceDeclaration
export,,; AmbientEnumDeclaration
export,, AmbientModuleDeclaration
export,, ImportDeclaration

Except for ImportDeclarations, AmbientModuleElements always declare exported entities regardless of
whether they include the optional export modifier.

12.2 Ambient External Module Declarations

An AmbientExternalModuleDeclaration declares an external module. This type of declaration is permitted
only at the top level in a source file that contributes to the global module (section 11.1). The StringLiteral
must specify a top-level external module name. Relative external module names are not permitted.

AmbientExternalModuleDeclaration:
module Stringliteral { AmbientExternalModuleBody }

AmbientExternalModuleBody:
AmbientExternalModuleElements,;

AmbientExternalModuleElements:
AmbientExternalModuleElement
AmbientExternalModuleElements AmbientExternalModuleElement

AmbientExternalModuleElement:
AmbientModuleElement
ExportAssignment
export,, ExternallmportDeclaration

133

An ExternallmportDeclaration in an AmbientExternalModuleDeclaration may reference other external
modules only through top-level external module names. Relative external module names are not
permitted.

If an ambient external module declaration includes an export assignment, it is an error for any of the
declarations within the module to specify an export modifier. If an ambient external module declaration
contains no export assignment, entities declared in the module are exported regardless of whether their
declarations include the optional export modifier.

Ambient external modules are “open-ended” and ambient external module declarations with the same
string literal name contribute to a single external module. For example, the following two declarations of
an external module ‘io’ might be located in separate source files.

declare module "io" {
export function readFile(filename: string): string;

}

declare module "io" {
export function writeFile(filename: string, data: string): void;

}

This has the same effect as a single combined declaration:

declare module "io" {
export function readFile(filename: string): string;
export function writeFile(filename: string, data: string): void;

134

A Grammar

This appendix contains a summary of the grammar found in the main document. As described in section

2.1, the TypeScript grammar is a superset of the grammar defined in the ECMAScript Language
Specification (specifically, the ECMA-262 Standard, 5™ Edition) and this appendix lists only productions
that are new or modified from the ECMAScript grammar.

A1 Types

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter
TypeParameterList , TypeParameter

TypeParameter:
Identifier Constraint,;

Constraint:
extends Type

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument
TypeArgumentlist , TypeArgument

TypeArgument:
Type

Type:
PredefinedType
TypeReference
ObjectType
ArrayType
TupleType
FunctionType
ConstructorType

TypeQuery

135

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

PredefinedType:
any
number
boolean
string
void

TypeReference:
TypeName [no LineTerminator here] TypeArguments,,;

TypeName:
Identifier
ModuleName . Identifier

ModuleName:
Identifier
ModuleName . Identifier

ObjectType:
{ TypeBody,,: }

TypeBody:
TypeMemberlList ;o

TypeMemberList:
TypeMember
TypeMemberlList ; TypeMember

TypeMember:
PropertySignature
CallSignature
ConstructSignature
IndexSignature
MethodSignature

ArrayType:
ElementType [no LineTerminator here] []

ElementType:
PredefinedType
TypeReference
ObjectType
ArrayType
TupleType
TypeQuery

136

TupleType:
[TupleElementTypes]

TupleElementTypes:
TupleElementType
TupleElementTypes , TupleElementType

TupleElementType:
Type

FunctionType:
TypeParameters,,; (ParameterlList,,;y) => Type

ConstructorType:
new TypeParameters.,. (ParameterList,,;) => Type

TypeQuery:
typeof TypeQueryExpression

TypeQueryExpression:
Identifier
TypeQueryExpression . IdentifierName

PropertySignature:
PropertyName ?,,; TypeAnnotation,p;

PropertyName:
IdentifierName
StringLiteral
NumericLiteral

CallSignature:
TypeParameters,,; (ParameterlList,,;) TypeAnnotationyp

ParameterList:
RequiredParameterList
OptionalParameterList
RestParameter
RequiredParameterList , OptionalParameterList
RequiredParameterList , RestParameter
OptionalParameterlList , RestParameter
RequiredParameterList , OptionalParameterList , RestParameter

RequiredParameterList:
RequiredParameter

RequiredParameterList , RequiredParameter
137

RequiredParameter:
AccessibilityModifier,: Identifier TypeAnnotationg,
Identifier : StringlLiteral

AccessibilityModifier:
public
private
protected

OptionalParameterList:
OptionalParameter
OptionalParameterlList , OptionalParameter

OptionalParameter:
AccessibilityModlifier,,; Identifier ? TypeAnnotation
AccessibilityModifier,,; Identifier TypeAnnotation,, Initialiser
Identifier ? : Stringliteral

RestParameter:
Identifier TypeAnnotation,;

ConstructSignature:
new TypeParameters., (ParameterList,,;) TypeAnnotation,p

IndexSignature:
[Identifier : string] TypeAnnotation
[Identifier : number] TypeAnnotation

MethodSignature:
PropertyName 2., CallSignature

A.2 Expressions

PropertyAssignment: (Modified)
PropertyName : AssignmentExpression
PropertyName CallSignature { FunctionBody }
GetAccessor
SetAccessor

GetAccessor:
get PropertyName () TypeAnnotation,, { FunctionBody }

SetAccessor:
set PropertyName (Identifier TypeAnnotation,,:) { FunctionBody }

138

CallExpression: (Modified)

super (ArgumentListy,)
super . IdentifierName

FunctionExpression: (Modified)
function Identifier,, CallSignature { FunctionBody }

AssignmentExpression: (Modified)

ArrowFunctionExpression

ArrowFunctionExpression:
ArrowFormalParameters => Block
ArrowFormalParameters => AssignmentExpression

ArrowFormalParameters:
CallSignature
Identifier

Arguments: (Modified)
TypeArgumentsy,: (ArgumentList,,:)

UnaryExpression: (Modified)

< Type > UnaryExpression

A.3 Statements

VariableDeclaration: (Modified)
Identifier TypeAnnotation,: Initialiser,p;

VariableDeclarationNoln: (Modlified)
Identifier TypeAnnotation,y: InitialiserNoln,;

TypeAnnotation:
Type

A.4 Functions

FunctionDeclaration: (Modified)
FunctionOverloads,,: Functionlmplementation

FunctionOverloads:
FunctionOverload
FunctionOverloads FunctionOverload
139

FunctionOverload:
function Identifier CallSignature ;

Functionlmplementation:
function Identifier CallSignature { FunctionBody }

A5 Interfaces

InterfaceDeclaration:
interface Identifier TypeParameters,, InterfaceExtendsClause., ObjectType

InterfaceExtendsClause:
extends ClassOrinterfaceTypelist

ClassOrinterfaceTypelist:
ClassOrinterfaceType
ClassOrinterfaceTypelist , ClassOrinterfaceType

ClassOrlnterfaceType:
TypeReference

A.6 Classes

ClassDeclaration:
class Identifier TypeParameters,, ClassHeritage { ClassBody }

ClassHeritage:
ClassExtendsClause,: ImplementsClause,p;

ClassExtendsClause:
extends ClassType

ClassType:
TypeReference

ImplementsClause:
implements ClassOrinterfaceTypelist

ClassBody:
ClassElements;

ClassElements:
ClassElement
ClassElements ClassElement

140

ClassElement:
ConstructorDeclaration
PropertyMemberDeclaration
IndexMemberDeclaration

ConstructorDeclaration:

ConstructorOverloads,,: Constructorimplementation

ConstructorOverloads:
ConstructorOverload

ConstructorOverloads ConstructorOverload

ConstructorOverload:

AccessibilityModifier,,: constructor (Parameterlist,,:) ;

Constructorlmplementation:

AccessibilityModifier,,: constructor (Parameterlist,,,) { FunctionBody }

PropertyMemberDeclaration:
MemberVariableDeclaration
MemberFunctionDeclaration
MemberAccessorDeclaration

MemberVariableDeclaration:
AccessibilityModifier,,; staticoy

MemberFunctionDeclaration:

PropertyName TypeAnnotation,,: Initialiserc,

MemberFunctionOverloads,,: MemberFunctionimplementation

MemberFunctionOverloads:
MemberFunctionOverload

MemberFunctionOverloads MemberFunctionOverload

MemberFunctionOverload:
AccessibilityModifier,p,: staticoy

MemberFunctioniImplementation:
AccessibilityModifier,p,: staticoy

MemberAccessorDeclaration:
AccessibilityModifier,p,: staticop
AccessibilityModifier,p,: staticop

IndexMemberDeclaration:
IndexSignature

PropertyName CallSignature ;

PropertyName CallSignature { FunctionBody }

GetAccessor
SetAccessor

141

A.7 Enums

EnumDeclaration:
enum [dentifier { EnumBody., }

EnumBody:
ConstantEnumMembers , o
ConstantEnumMembers , EnumMemberSections , oyt
EnumMemberSections , oy

ConstantEnumMembers:
PropertyName
ConstantEnumMembers , PropertyName

EnumMemberSections:
EnumMemberSection
EnumMemberSections , EnumMemberSection

EnumMemberSection:
ConstantEnumMemberSection
ComputedEnumMember

ConstantEnumMemberSection:

PropertyName = ConstantEnumValue

PropertyName = ConstantEnumValue , ConstantEnumMembers
ConstantEnumValue:

Signedinteger

HexintegerLiteral

ComputedEnumMember:
PropertyName = AssignmentExpression

A.8 Internal Modules
ModuleDeclaration:

module IdentifierPath { ModuleBody }

IdentifierPath:
Identifier
IdentifierPath . Identifier

ModuleBody:
ModuleElements,;

142

ModuleElements:
ModuleElement
ModuleElements ModuleElement

ModuleElement:
Statement
export,, VariableDeclaration
exporty, FunctionDeclaration
exporty, ClassDeclaration
export,, InterfaceDeclaration
export,, EnumDeclaration
exporty,: ModuleDeclaration
export,, ImportDeclaration
export,,: AmbientDeclaration

ImportDeclaration:
import Identifier = EntityName ;

EntityName:
ModuleName
ModuleName . Identifier

A.9 Source Files and External Modules

SourceFile:
ImplementationSourceFile
DeclarationSourceFile

ImplementationSourcefile:
ImplementationElements.;

ImplementationElements:
ImplementationElement
ImplementationElements ImplementationElement

ImplementationElement:
ModuleElement
ExportAssignment
AmbientExternalModuleDeclaration
export,, ExternallmportDeclaration

DeclarationSourceFile:
DeclarationElements

143

DeclarationElements:
DeclarationElement
DeclarationElements DeclarationElement

DeclarationElement:
ExportAssignment
AmbientExternalModuleDeclaration
export,, InterfaceDeclaration
exporty, ImportDeclaration
export,,: AmbientDeclaration
export,, ExternallmportDeclaration

ExternallmportDeclaration:
import Identifier = ExternalModuleReference ;

ExternalModuleReference:
require (Stringliteral)

ExportAssignment:
export = Identifier ;

A.10 Ambients

AmbientDeclaration:
declare AmbientVariableDeclaration
declare AmbientFunctionDeclaration
declare AmbientClassDeclaration
declare AmbientEnumDeclaration
declare AmbientModuleDeclaration

AmbientVariableDeclaration:
var Identifier TypeAnnotationg, ;

AmbientFunctionDeclaration:
function Identifier CallSignature ;

AmbientClassDeclaration:
class Identifier TypeParameters,, ClassHeritage { AmbientClassBody }

AmbientClassBody:
AmbientClassBodyElements;

AmbientClassBodyElements:
AmbientClassBodyElement
AmbientClassBodyElements AmbientClassBodyElement

144

AmbientClassBodyElement:
AmbientConstructorDeclaration
AmbientPropertyMemberDeclaration
IndexSignature

AmbientConstructorDeclaration:
constructor (Parameterlisty,) ;

AmbientPropertyMemberDeclaration:
AccessibilityModifier,,: statice, PropertyName TypeAnnotationy, ;
AccessibilityModifier,,: staticq, PropertyName CallSignature ;

AmbientEnumDeclaration:
enum [dentifier { AmbientEnumBody,y: }

AmbientEnumBody:
AmbientEnumMemberlList , o

AmbientEnumMemberList:
AmbientEnumMember
AmbientEnumMemberlList , AmbientEnumMember

AmbientEnumMember:
PropertyName
PropertyName = ConstantEnumValue

AmbientModuleDeclaration:
module IdentifierPath { AmbientModuleBody }

AmbientModuleBody:
AmbientModuleElements,

AmbientModuleElements:
AmbientModuleElement
AmbientModuleElements AmbientModuleElement

AmbientModuleElement:
export,, AmbientVariableDeclaration
export,,: AmbientFunctionDeclaration
export,, AmbientClassDeclaration
export,, InterfaceDeclaration
exporty,: AmbientEnumDeclaration
export,,; AmbientModuleDeclaration
export,, ImportDeclaration

145

AmbientExternalModuleDeclaration:
module Stringliteral { AmbientExternalModuleBody }

AmbientExternalModuleBody:
AmbientExternalModuleElements

AmbientExternalModuleElements:
AmbientExternalModuleElement
AmbientExternalModuleElements AmbientExternalModuleElement

AmbientExternalModuleElement:
AmbientModuleElement
ExportAssignment
export,, ExternallmportDeclaration

146

