mirror of
https://github.com/microsoft/TypeScript.git
synced 2026-02-15 20:25:23 -06:00
Always perform structural comparison when variance check fails
This commit is contained in:
parent
589e1f440c
commit
afc8a261cc
@ -282,9 +282,9 @@ namespace ts {
|
||||
const noConstraintType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined);
|
||||
const circularConstraintType = createAnonymousType(undefined, emptySymbols, emptyArray, emptyArray, undefined, undefined);
|
||||
|
||||
const markerSuperType = createType(TypeFlags.MarkerType);
|
||||
const markerSubType = createType(TypeFlags.MarkerType);
|
||||
const markerOtherType = createType(TypeFlags.MarkerType);
|
||||
const markerSuperType = <TypeParameter>createType(TypeFlags.TypeParameter);
|
||||
const markerSubType = <TypeParameter>createType(TypeFlags.TypeParameter);
|
||||
markerSubType.constraint = markerSuperType;
|
||||
|
||||
const anySignature = createSignature(undefined, undefined, undefined, emptyArray, anyType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false);
|
||||
const unknownSignature = createSignature(undefined, undefined, undefined, emptyArray, unknownType, /*typePredicate*/ undefined, 0, /*hasRestParameter*/ false, /*hasLiteralTypes*/ false);
|
||||
@ -8948,10 +8948,6 @@ namespace ts {
|
||||
|
||||
if (isSimpleTypeRelatedTo(source, target, relation, reportErrors ? reportError : undefined)) return Ternary.True;
|
||||
|
||||
if (source.flags & TypeFlags.MarkerType && target.flags & TypeFlags.MarkerType && !(source.flags & TypeFlags.Object || target.flags & TypeFlags.Object)) {
|
||||
return source === markerSubType && target === markerSuperType ? Ternary.True : Ternary.False;
|
||||
}
|
||||
|
||||
if (getObjectFlags(source) & ObjectFlags.ObjectLiteral && source.flags & TypeFlags.FreshLiteral) {
|
||||
if (hasExcessProperties(<FreshObjectLiteralType>source, target, reportErrors)) {
|
||||
if (reportErrors) {
|
||||
@ -9219,41 +9215,15 @@ namespace ts {
|
||||
// in the process of computing variance information for recursive types and when
|
||||
// comparing 'this' type arguments.
|
||||
const variance = i < variances.length ? variances[i] : Variance.Covariant;
|
||||
// We simply ignore omnivariant type arguments (because they're never witnessed).
|
||||
if (variance !== Variance.Omnivariant) {
|
||||
const s = sources[i];
|
||||
const t = targets[i];
|
||||
let related = Ternary.True;
|
||||
if (variance === Variance.Covariant) {
|
||||
related = isRelatedTo(s, t, reportErrors);
|
||||
}
|
||||
else if (variance === Variance.Contravariant) {
|
||||
related = isRelatedTo(t, s, reportErrors);
|
||||
}
|
||||
else if (variance === Variance.Bivariant) {
|
||||
// In the bivariant case we first compare contravariantly without reporting
|
||||
// errors. Then, if that doesn't succeed, we compare covariantly with error
|
||||
// reporting. Thus, error elaboration will be based on the the covariant check,
|
||||
// which is generally easier to reason about.
|
||||
related = isRelatedTo(t, s, /*reportErrors*/ false);
|
||||
if (!related) {
|
||||
related = isRelatedTo(s, t, reportErrors);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// In the invariant case we first compare covariantly, and only when that
|
||||
// succeeds do we proceed to compare contravariantly. Thus, error elaboration
|
||||
// will typically be based on the covariant check.
|
||||
related = isRelatedTo(s, t, reportErrors);
|
||||
if (related) {
|
||||
related &= isRelatedTo(t, s, reportErrors);
|
||||
}
|
||||
}
|
||||
if (!related) {
|
||||
return Ternary.False;
|
||||
}
|
||||
result &= related;
|
||||
const s = sources[i];
|
||||
const t = targets[i];
|
||||
const related = variance === Variance.Covariant ? isRelatedTo(s, t, reportErrors) :
|
||||
variance === Variance.Contravariant ? isRelatedTo(t, s, reportErrors) :
|
||||
Ternary.False;
|
||||
if (!related) {
|
||||
return Ternary.False;
|
||||
}
|
||||
result &= related;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@ -9418,21 +9388,14 @@ namespace ts {
|
||||
!(source.flags & TypeFlags.MarkerType || target.flags & TypeFlags.MarkerType)) {
|
||||
// We have type references to the same generic type, and the type references are not marker
|
||||
// type references (which are intended by be compared structurally). Obtain the variance
|
||||
// information for the type parameters and relate the type arguments accordingly.
|
||||
// information for the type parameters and relate the type arguments accordingly. If we do
|
||||
// not succeed, fall through and do a structural comparison instead (there are instances
|
||||
// where the variance information isn't accurate, e.g. when type parameters are used only
|
||||
// in bivariant positions or when a type argument is 'any' or 'void'.)
|
||||
const variances = getVariances((<TypeReference>source).target);
|
||||
if (result = typeArgumentsRelatedTo(<TypeReference>source, <TypeReference>target, variances, reportErrors)) {
|
||||
return result;
|
||||
}
|
||||
// The type arguments did not relate appropriately, but it may be because getVariances was
|
||||
// invoked recursively and returned emptyArray (in which case typeArgumentsRelatedTo defaulted
|
||||
// to covariance for all type arguments). It might also be the case that the target type has a
|
||||
// 'void' type argument for a covariant type parameter that is only used in return positions
|
||||
// within the generic type (in which case any type argument is permitted on the source side).
|
||||
// In those cases we proceed with a structural comparison. Otherwise, we know for certain the
|
||||
// instantiations aren't related and we can return here.
|
||||
if (variances !== emptyArray && !hasCovariantVoidArgument(<TypeReference>target, variances)) {
|
||||
return Ternary.False;
|
||||
}
|
||||
}
|
||||
// Even if relationship doesn't hold for unions, intersections, or generic type references,
|
||||
// it may hold in a structural comparison.
|
||||
@ -9851,13 +9814,18 @@ namespace ts {
|
||||
return result;
|
||||
}
|
||||
|
||||
// Return an array containing the variance of each type parameter. The variance is effectively
|
||||
// a digest of the type comparisons that occur for each type argument when instantiations of the
|
||||
// generic type are structurally compared. We infer the variance information by comparing
|
||||
// instantiations of the generic type for type arguments with known relations. Note that the
|
||||
// function returns the emptyArray singleton to signal that it has been invoked recursively for
|
||||
// the given generic type.
|
||||
// Return an array containing the variance of each type parameter. The variance information is
|
||||
// computed by comparing instantiations of the generic type for type arguments with known relations.
|
||||
// A type parameter is marked as covariant if a covariant comparison succeeds; otherwise, it is
|
||||
// marked contravariant if a contravarint comparison succeeds; otherwise, it is marked invariant.
|
||||
// One form of variance doesn't exclude another, so this information simply serves to indicate
|
||||
// a "primary" relationship that can be checked as an optimization ahead of a full structural
|
||||
// comparison. The function returns the emptyArray singleton if we're not in strictFunctionTypes
|
||||
// mode or if the function has been invoked recursively for the given generic type.
|
||||
function getVariances(type: GenericType): Variance[] {
|
||||
if (!strictFunctionTypes) {
|
||||
return emptyArray;
|
||||
}
|
||||
const typeParameters = type.typeParameters || emptyArray;
|
||||
let variances = type.variances;
|
||||
if (!variances) {
|
||||
@ -9870,20 +9838,14 @@ namespace ts {
|
||||
type.variances = emptyArray;
|
||||
variances = [];
|
||||
for (const tp of typeParameters) {
|
||||
// We first compare instantiations where the type parameter is replaced with
|
||||
// marker types that have a known subtype relationship. From this we can infer
|
||||
// invariance, covariance, contravariance or bivariance.
|
||||
// We compare instantiations where the type parameter is replaced with marker types
|
||||
// that have a known subtype relationship. From this we infer covariance, contravariance
|
||||
// or invariance.
|
||||
const typeWithSuper = getMarkerTypeReference(type, tp, markerSuperType);
|
||||
const typeWithSub = getMarkerTypeReference(type, tp, markerSubType);
|
||||
let variance = (isTypeAssignableTo(typeWithSub, typeWithSuper) ? Variance.Covariant : 0) |
|
||||
(isTypeAssignableTo(typeWithSuper, typeWithSub) ? Variance.Contravariant : 0);
|
||||
// If the instantiations appear to be related bivariantly, it may be because the
|
||||
// type parameter is omnivariant (i.e. it isn't witnessed anywhere in the generic
|
||||
// type). To determine this we compare instantiations where the type parameter is
|
||||
// replaced with marker types that are known to be unrelated.
|
||||
if (variance === Variance.Bivariant && isTypeAssignableTo(getMarkerTypeReference(type, tp, markerOtherType), typeWithSuper)) {
|
||||
variance = Variance.Omnivariant;
|
||||
}
|
||||
const variance = isTypeAssignableTo(typeWithSub, typeWithSuper) ? Variance.Covariant :
|
||||
isTypeAssignableTo(typeWithSuper, typeWithSub) ? Variance.Contravariant :
|
||||
Variance.Invariant;
|
||||
variances.push(variance);
|
||||
}
|
||||
}
|
||||
@ -9892,17 +9854,6 @@ namespace ts {
|
||||
return variances;
|
||||
}
|
||||
|
||||
// Return true if the given type reference has a 'void' type argument for a covariant type parameter.
|
||||
// See comment at call in recursiveTypeRelatedTo for when this case matters.
|
||||
function hasCovariantVoidArgument(type: TypeReference, variances: Variance[]): boolean {
|
||||
for (let i = 0; i < variances.length; i++) {
|
||||
if (variances[i] === Variance.Covariant && type.typeArguments[i].flags & TypeFlags.Void) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
function isUnconstrainedTypeParameter(type: Type) {
|
||||
return type.flags & TypeFlags.TypeParameter && !getConstraintFromTypeParameter(<TypeParameter>type);
|
||||
}
|
||||
@ -10709,9 +10660,9 @@ namespace ts {
|
||||
const sourceTypes = (<TypeReference>source).typeArguments || emptyArray;
|
||||
const targetTypes = (<TypeReference>target).typeArguments || emptyArray;
|
||||
const count = sourceTypes.length < targetTypes.length ? sourceTypes.length : targetTypes.length;
|
||||
const variances = strictFunctionTypes ? getVariances((<TypeReference>source).target) : undefined;
|
||||
const variances = getVariances((<TypeReference>source).target);
|
||||
for (let i = 0; i < count; i++) {
|
||||
if (variances && i < variances.length && variances[i] === Variance.Contravariant) {
|
||||
if (i < variances.length && variances[i] === Variance.Contravariant) {
|
||||
inferFromContravariantTypes(sourceTypes[i], targetTypes[i]);
|
||||
}
|
||||
else {
|
||||
|
||||
@ -3345,11 +3345,9 @@ namespace ts {
|
||||
}
|
||||
|
||||
export const enum Variance {
|
||||
Invariant = 0, // Both covariant and contravariant
|
||||
Invariant = 0, // Neither covariant nor contravariant
|
||||
Covariant = 1, // Covariant
|
||||
Contravariant = 2, // Contravariant
|
||||
Bivariant = 3, // Either covariant or contravariant
|
||||
Omnivariant = 4 // Unwitnessed type parameter
|
||||
}
|
||||
|
||||
// Generic class and interface types
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user