mirror of
https://github.com/dgtlmoon/changedetection.io.git
synced 2026-02-15 17:20:21 -06:00
287 lines
9.9 KiB
Python
287 lines
9.9 KiB
Python
"""
|
|
Pure Python metadata extractor - no lxml, no memory leaks.
|
|
|
|
This module provides a fast, memory-efficient alternative to extruct for common
|
|
e-commerce metadata extraction. It handles:
|
|
- JSON-LD (covers 80%+ of modern sites)
|
|
- OpenGraph meta tags
|
|
- Basic microdata attributes
|
|
|
|
Uses Python's built-in html.parser instead of lxml/libxml2, avoiding C-level
|
|
memory allocation issues. For edge cases, the main processor can fall back to
|
|
extruct (with subprocess isolation on Linux).
|
|
"""
|
|
|
|
from html.parser import HTMLParser
|
|
import json
|
|
import re
|
|
from loguru import logger
|
|
|
|
|
|
class JSONLDExtractor(HTMLParser):
|
|
"""
|
|
Extract JSON-LD structured data from HTML.
|
|
|
|
Finds all <script type="application/ld+json"> tags and parses their content.
|
|
Handles multiple JSON-LD blocks on the same page.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.in_jsonld = False
|
|
self.data = [] # List of all parsed JSON-LD objects
|
|
self.current_script = []
|
|
|
|
def handle_starttag(self, tag, attrs):
|
|
if tag == 'script':
|
|
# Check if this is a JSON-LD script tag
|
|
for attr, value in attrs:
|
|
if attr == 'type' and value == 'application/ld+json':
|
|
self.in_jsonld = True
|
|
self.current_script = []
|
|
break
|
|
|
|
def handle_data(self, data):
|
|
if self.in_jsonld:
|
|
self.current_script.append(data)
|
|
|
|
def handle_endtag(self, tag):
|
|
if tag == 'script' and self.in_jsonld:
|
|
# Parse the accumulated script content
|
|
script_content = ''.join(self.current_script)
|
|
if script_content.strip():
|
|
try:
|
|
# Parse JSON (handles both objects and arrays)
|
|
parsed = json.loads(script_content)
|
|
if isinstance(parsed, list):
|
|
self.data.extend(parsed)
|
|
else:
|
|
self.data.append(parsed)
|
|
except json.JSONDecodeError as e:
|
|
logger.debug(f"Failed to parse JSON-LD: {e}")
|
|
pass
|
|
|
|
self.in_jsonld = False
|
|
self.current_script = []
|
|
|
|
|
|
class OpenGraphExtractor(HTMLParser):
|
|
"""
|
|
Extract OpenGraph meta tags from HTML.
|
|
|
|
Finds <meta property="og:*"> tags commonly used for social media sharing.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.og_data = {}
|
|
|
|
def handle_starttag(self, tag, attrs):
|
|
if tag == 'meta':
|
|
attrs_dict = dict(attrs)
|
|
prop = attrs_dict.get('property', '')
|
|
|
|
# Extract OpenGraph properties
|
|
if prop.startswith('og:'):
|
|
content = attrs_dict.get('content', '')
|
|
if content:
|
|
self.og_data[prop] = content
|
|
|
|
|
|
class MicrodataExtractor(HTMLParser):
|
|
"""
|
|
Extract basic microdata attributes from HTML.
|
|
|
|
Finds elements with itemprop attributes. This is a simplified extractor
|
|
that doesn't handle nested itemscope/itemtype hierarchies - for complex
|
|
cases, use extruct as fallback.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.microdata = {}
|
|
self.current_itemprop = None
|
|
|
|
def handle_starttag(self, tag, attrs):
|
|
attrs_dict = dict(attrs)
|
|
|
|
if 'itemprop' in attrs_dict:
|
|
itemprop = attrs_dict['itemprop']
|
|
|
|
# Price/currency/availability can be in content/href attributes
|
|
if itemprop == 'price':
|
|
if 'content' in attrs_dict:
|
|
self.microdata['price'] = attrs_dict['content']
|
|
else:
|
|
self.current_itemprop = 'price'
|
|
|
|
elif itemprop == 'priceCurrency':
|
|
if 'content' in attrs_dict:
|
|
self.microdata['currency'] = attrs_dict['content']
|
|
else:
|
|
self.current_itemprop = 'priceCurrency'
|
|
|
|
elif itemprop == 'availability':
|
|
# Can be in href (link) or content (meta)
|
|
if 'href' in attrs_dict:
|
|
self.microdata['availability'] = attrs_dict['href']
|
|
elif 'content' in attrs_dict:
|
|
self.microdata['availability'] = attrs_dict['content']
|
|
else:
|
|
self.current_itemprop = 'availability'
|
|
|
|
def handle_data(self, data):
|
|
# Capture text content for itemprop elements
|
|
if self.current_itemprop == 'price':
|
|
# Try to extract numeric price from text
|
|
try:
|
|
price_text = re.sub(r'[^\d.]', '', data.strip())
|
|
if price_text:
|
|
self.microdata['price'] = float(price_text)
|
|
except ValueError:
|
|
pass
|
|
elif self.current_itemprop == 'priceCurrency':
|
|
currency = data.strip()
|
|
if currency:
|
|
self.microdata['currency'] = currency
|
|
elif self.current_itemprop == 'availability':
|
|
availability = data.strip()
|
|
if availability:
|
|
self.microdata['availability'] = availability
|
|
|
|
def handle_endtag(self, tag):
|
|
# Reset current itemprop after closing tag
|
|
self.current_itemprop = None
|
|
|
|
|
|
def extract_metadata_pure_python(html_content):
|
|
"""
|
|
Extract structured metadata from HTML using pure Python parsers.
|
|
|
|
Returns a dict with three keys:
|
|
- 'json-ld': List of parsed JSON-LD objects
|
|
- 'opengraph': Dict of OpenGraph properties
|
|
- 'microdata': Dict of microdata properties
|
|
|
|
Args:
|
|
html_content: HTML string to parse
|
|
|
|
Returns:
|
|
dict: Extracted metadata in three formats
|
|
"""
|
|
result = {
|
|
'json-ld': [],
|
|
'opengraph': {},
|
|
'microdata': {}
|
|
}
|
|
|
|
# Extract JSON-LD
|
|
try:
|
|
jsonld_extractor = JSONLDExtractor()
|
|
jsonld_extractor.feed(html_content)
|
|
result['json-ld'] = jsonld_extractor.data
|
|
logger.trace(f"Pure Python: Found {len(jsonld_extractor.data)} JSON-LD blocks")
|
|
except Exception as e:
|
|
logger.debug(f"JSON-LD extraction failed: {e}")
|
|
|
|
# Extract OpenGraph
|
|
try:
|
|
og_extractor = OpenGraphExtractor()
|
|
og_extractor.feed(html_content)
|
|
result['opengraph'] = og_extractor.og_data
|
|
if result['opengraph']:
|
|
logger.trace(f"Pure Python: Found {len(og_extractor.og_data)} OpenGraph tags")
|
|
except Exception as e:
|
|
logger.debug(f"OpenGraph extraction failed: {e}")
|
|
|
|
# Extract Microdata
|
|
try:
|
|
microdata_extractor = MicrodataExtractor()
|
|
microdata_extractor.feed(html_content)
|
|
result['microdata'] = microdata_extractor.microdata
|
|
if result['microdata']:
|
|
logger.trace(f"Pure Python: Found microdata: {result['microdata']}")
|
|
except Exception as e:
|
|
logger.debug(f"Microdata extraction failed: {e}")
|
|
|
|
return result
|
|
|
|
|
|
def query_price_availability(extracted_data):
|
|
"""
|
|
Query extracted metadata for price and availability information.
|
|
|
|
Uses jsonpath_ng to query JSON-LD data (same approach as extruct).
|
|
Falls back to OpenGraph and microdata if JSON-LD doesn't have the data.
|
|
|
|
Args:
|
|
extracted_data: Dict from extract_metadata_pure_python()
|
|
|
|
Returns:
|
|
dict: {'price': float, 'currency': str, 'availability': str}
|
|
"""
|
|
from jsonpath_ng import parse
|
|
|
|
result = {}
|
|
|
|
# 1. Try JSON-LD first (most reliable and common)
|
|
for data in extracted_data.get('json-ld', []):
|
|
try:
|
|
# Use jsonpath to find price/availability anywhere in the structure
|
|
price_parse = parse('$..(price|Price)')
|
|
availability_parse = parse('$..(availability|Availability)')
|
|
currency_parse = parse('$..(priceCurrency|currency|priceCurrency)')
|
|
|
|
price_results = [m.value for m in price_parse.find(data)]
|
|
if price_results and not result.get('price'):
|
|
# Handle various price formats
|
|
price_val = price_results[0]
|
|
if isinstance(price_val, (int, float)):
|
|
result['price'] = float(price_val)
|
|
elif isinstance(price_val, str):
|
|
# Extract numeric value from string
|
|
try:
|
|
result['price'] = float(re.sub(r'[^\d.]', '', price_val))
|
|
except ValueError:
|
|
pass
|
|
|
|
avail_results = [m.value for m in availability_parse.find(data)]
|
|
if avail_results and not result.get('availability'):
|
|
result['availability'] = str(avail_results[0])
|
|
|
|
curr_results = [m.value for m in currency_parse.find(data)]
|
|
if curr_results and not result.get('currency'):
|
|
result['currency'] = str(curr_results[0])
|
|
|
|
# If we found price, this JSON-LD block is good
|
|
if result.get('price'):
|
|
logger.debug(f"Pure Python: Found price data in JSON-LD: {result}")
|
|
break
|
|
|
|
except Exception as e:
|
|
logger.debug(f"Error querying JSON-LD: {e}")
|
|
continue
|
|
|
|
# 2. Try OpenGraph if JSON-LD didn't provide everything
|
|
og_data = extracted_data.get('opengraph', {})
|
|
if not result.get('price') and 'og:price:amount' in og_data:
|
|
try:
|
|
result['price'] = float(og_data['og:price:amount'])
|
|
except ValueError:
|
|
pass
|
|
if not result.get('currency') and 'og:price:currency' in og_data:
|
|
result['currency'] = og_data['og:price:currency']
|
|
if not result.get('availability') and 'og:availability' in og_data:
|
|
result['availability'] = og_data['og:availability']
|
|
|
|
# 3. Use microdata as last resort
|
|
microdata = extracted_data.get('microdata', {})
|
|
if not result.get('price') and 'price' in microdata:
|
|
result['price'] = microdata['price']
|
|
if not result.get('currency') and 'currency' in microdata:
|
|
result['currency'] = microdata['currency']
|
|
if not result.get('availability') and 'availability' in microdata:
|
|
result['availability'] = microdata['availability']
|
|
|
|
return result
|