2026-02-07 13:13:02 +01:00

152 lines
5.8 KiB
Python

"""
Optional hook called when processor settings are saved in edit page.
This hook analyzes the selected region to determine if template matching
should be enabled for tracking content movement.
Template matching is controlled via ENABLE_TEMPLATE_TRACKING env var (default: False).
"""
import io
import os
from loguru import logger
from changedetectionio import strtobool
from . import CROPPED_IMAGE_TEMPLATE_FILENAME
# Template matching controlled via environment variable (default: disabled)
# Set ENABLE_TEMPLATE_TRACKING=True to enable
TEMPLATE_MATCHING_ENABLED = strtobool(os.getenv('ENABLE_TEMPLATE_TRACKING', 'False'))
IMPORT_ERROR = "Template matching disabled (set ENABLE_TEMPLATE_TRACKING=True to enable)"
def on_config_save(watch, processor_config, datastore):
"""
Called after processor config is saved in edit page.
Analyzes the bounding box region to determine if it has enough
visual features (texture/edges) to enable template matching for
tracking content movement when page layout shifts.
Args:
watch: Watch object
processor_config: Dict of processor-specific config
datastore: Datastore object
Returns:
dict: Updated processor_config with auto_track_region setting
"""
# Check if template matching is globally enabled via ENV var
if not TEMPLATE_MATCHING_ENABLED:
logger.debug("Template tracking disabled via ENABLE_TEMPLATE_TRACKING env var")
processor_config['auto_track_region'] = False
return processor_config
bounding_box = processor_config.get('bounding_box')
if not bounding_box:
# No bounding box, disable tracking
processor_config['auto_track_region'] = False
logger.debug("No bounding box set, disabled auto-tracking")
return processor_config
try:
# Get the latest screenshot from watch history
history_keys = list(watch.history.keys())
if len(history_keys) == 0:
logger.warning("No screenshot history available yet, cannot analyze for tracking")
processor_config['auto_track_region'] = False
return processor_config
# Get latest screenshot
latest_timestamp = history_keys[-1]
screenshot_bytes = watch.get_history_snapshot(timestamp=latest_timestamp)
if not screenshot_bytes:
logger.warning("Could not load screenshot for analysis")
processor_config['auto_track_region'] = False
return processor_config
# Parse bounding box
parts = [int(p.strip()) for p in bounding_box.split(',')]
if len(parts) != 4:
logger.warning("Invalid bounding box format")
processor_config['auto_track_region'] = False
return processor_config
x, y, width, height = parts
# Analyze the region for features/texture
has_enough_features = analyze_region_features(screenshot_bytes, x, y, width, height)
if has_enough_features:
logger.info(f"Region has sufficient features for tracking - enabling auto_track_region")
processor_config['auto_track_region'] = True
# Save the template as cropped.jpg in watch data directory
save_template_to_file(watch, screenshot_bytes, x, y, width, height)
else:
logger.info(f"Region lacks distinctive features - disabling auto_track_region")
processor_config['auto_track_region'] = False
# Remove old template file if exists
template_path = os.path.join(watch.data_dir, CROPPED_IMAGE_TEMPLATE_FILENAME)
if os.path.exists(template_path):
os.remove(template_path)
logger.debug(f"Removed old template file: {template_path}")
return processor_config
except Exception as e:
logger.error(f"Error analyzing region for tracking: {e}")
processor_config['auto_track_region'] = False
return processor_config
def analyze_region_features(screenshot_bytes, x, y, width, height):
"""
Analyze if a region has enough visual features for template matching.
Uses OpenCV to detect corners/edges. If the region has distinctive
features, template matching can reliably track it when it moves.
Args:
screenshot_bytes: Full screenshot as bytes
x, y, width, height: Bounding box coordinates
Returns:
bool: True if region has enough features, False otherwise
"""
# Template matching disabled - would need OpenCV implementation for region analysis
if not TEMPLATE_MATCHING_ENABLED:
logger.warning(f"Cannot analyze region features: {IMPORT_ERROR}")
return False
# Note: Original implementation used LibVIPS handler to crop region, then OpenCV
# for feature detection (goodFeaturesToTrack, Canny edge detection, variance).
# If re-implementing, use OpenCV directly for both cropping and analysis.
# Feature detection would use: cv2.goodFeaturesToTrack, cv2.Canny, np.var
return False
def save_template_to_file(watch, screenshot_bytes, x, y, width, height):
"""
Extract the template region and save as cropped_image_template.png in watch data directory.
This is a convenience wrapper around handler.save_template() that handles
watch directory setup and path construction.
Args:
watch: Watch object
screenshot_bytes: Full screenshot as bytes
x, y, width, height: Bounding box coordinates
"""
# Template matching disabled - would need OpenCV implementation for template saving
if not TEMPLATE_MATCHING_ENABLED:
logger.warning(f"Cannot save template: {IMPORT_ERROR}")
return
# Note: Original implementation used LibVIPS handler to crop and save region.
# If re-implementing, use OpenCV (cv2.imdecode, crop with array slicing, cv2.imwrite).
return