frigate/frigate/util/classification.py
Nicolas Mowen e832bb4bad Fix go2rtc init (#18708)
* Cleanup process handling

* Adjust process name
2025-08-16 10:20:33 -05:00

168 lines
5.1 KiB
Python

"""Util for classification models."""
import os
import sys
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models, optimizers
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor
from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import CLIPS_DIR, MODEL_CACHE_DIR, UPDATE_MODEL_STATE
from frigate.types import ModelStatusTypesEnum
from frigate.util.process import FrigateProcess
BATCH_SIZE = 16
EPOCHS = 50
LEARNING_RATE = 0.001
@staticmethod
def __generate_representative_dataset_factory(dataset_dir: str):
def generate_representative_dataset():
image_paths = []
for root, dirs, files in os.walk(dataset_dir):
for file in files:
if file.lower().endswith((".jpg", ".jpeg", ".png")):
image_paths.append(os.path.join(root, file))
for path in image_paths[:300]:
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (224, 224))
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = img_array[None, ...]
yield [img_array]
return generate_representative_dataset
@staticmethod
def __train_classification_model(model_name: str) -> bool:
"""Train a classification model."""
dataset_dir = os.path.join(CLIPS_DIR, model_name, "dataset")
model_dir = os.path.join(MODEL_CACHE_DIR, model_name)
num_classes = len(
[
d
for d in os.listdir(dataset_dir)
if os.path.isdir(os.path.join(dataset_dir, d))
]
)
# TF and Keras are very loud with logging
# we want to avoid these logs so we
# temporarily redirect stdout / stderr
original_stdout = sys.stdout
original_stderr = sys.stderr
sys.stdout = open(os.devnull, "w")
sys.stderr = open(os.devnull, "w")
# Start with imagenet base model with 35% of channels in each layer
base_model = MobileNetV2(
input_shape=(224, 224, 3),
include_top=False,
weights="imagenet",
alpha=0.35,
)
base_model.trainable = False # Freeze pre-trained layers
model = models.Sequential(
[
base_model,
layers.GlobalAveragePooling2D(),
layers.Dense(128, activation="relu"),
layers.Dropout(0.3),
layers.Dense(num_classes, activation="softmax"),
]
)
model.compile(
optimizer=optimizers.Adam(learning_rate=LEARNING_RATE),
loss="categorical_crossentropy",
metrics=["accuracy"],
)
# create training set
datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2)
train_gen = datagen.flow_from_directory(
dataset_dir,
target_size=(224, 224),
batch_size=BATCH_SIZE,
class_mode="categorical",
subset="training",
)
# write labelmap
class_indices = train_gen.class_indices
index_to_class = {v: k for k, v in class_indices.items()}
sorted_classes = [index_to_class[i] for i in range(len(index_to_class))]
with open(os.path.join(model_dir, "labelmap.txt"), "w") as f:
for class_name in sorted_classes:
f.write(f"{class_name}\n")
# train the model
model.fit(train_gen, epochs=EPOCHS, verbose=0)
# convert model to tflite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = __generate_representative_dataset_factory(
dataset_dir
)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
# write model
with open(os.path.join(model_dir, "model.tflite"), "wb") as f:
f.write(tflite_model)
# restore original stdout / stderr
sys.stdout = original_stdout
sys.stderr = original_stderr
@staticmethod
def kickoff_model_training(
embeddingRequestor: EmbeddingsRequestor, model_name: str
) -> None:
requestor = InterProcessRequestor()
requestor.send_data(
UPDATE_MODEL_STATE,
{
"model": model_name,
"state": ModelStatusTypesEnum.training,
},
)
# run training in sub process so that
# tensorflow will free CPU / GPU memory
# upon training completion
training_process = FrigateProcess(
target=__train_classification_model,
name=f"model_training:{model_name}",
args=(model_name,),
)
training_process.start()
training_process.join()
# reload model and mark training as complete
embeddingRequestor.send_data(
EmbeddingsRequestEnum.reload_classification_model.value,
{"model_name": model_name},
)
requestor.send_data(
UPDATE_MODEL_STATE,
{
"model": model_name,
"state": ModelStatusTypesEnum.complete,
},
)
requestor.stop()